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Boundaries of Dehn fillings
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We begin an investigation into the behavior of Bowditch and Gromov boundaries
under the operation of Dehn filling. In particular, we show many Dehn fillings of
a toral relatively hyperbolic group with 2–sphere boundary are hyperbolic with 2–
sphere boundary. As an application, we show that the Cannon conjecture implies a
relatively hyperbolic version of the Cannon conjecture.
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1 Introduction

One of the central problems in geometric group theory and low-dimensional topology
is the Cannon conjecture (see [14, Conjecture 11.34] and [16, Conjecture 5.1]), which
states that a hyperbolic group whose (Gromov) boundary is a 2–sphere is virtually a
Kleinian group. By a result of Bowditch [7], hyperbolic groups can be characterized in
terms of topological properties of their action on the boundary. The Cannon conjecture
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is that (in the case that the boundary is S2 ) this topological action is in fact conjugate
to an action by Möbius transformations. Relatively hyperbolic groups are a natural
generalization of hyperbolic groups, which are intended (among other things) to gener-
alize the situation of the fundamental group of a finite-volume hyperbolic n–manifold
acting on Hn .

A relatively hyperbolic group pair .G;P/ has associated with it a natural compact
space @.G;P/ called the Bowditch boundary [11, Section 9], on which it acts as a
geometrically finite convergence group, so that every parabolic fixed point has stabilizer
conjugate to a unique element of P . The motivating example is when G < SO.n; 1/ is
a geometrically finite Kleinian group and P a collection of conjugacy representatives
of maximal parabolic subgroups. In this case the Bowditch boundary coincides with
the limit set. A result of Yaman [49] characterizes relatively hyperbolic groups in terms
of their action on the Bowditch boundary.

It is natural to wonder whether a relatively hyperbolic group whose Bowditch boundary
is a 2–sphere is virtually Kleinian. In fact, both the Cannon conjecture and this
relative version are special cases of a much more general conjecture of Martin and
Skora [38, Conjecture 6.1]. One of the main results of this paper (see Corollary 1.4
below) is to prove that the relative version of the Cannon conjecture follows from the
absolute version.

If the peripheral subgroups P of a relatively hyperbolic group pair .G;P/ are them-
selves hyperbolic, then so is G , and it therefore acts as a uniform convergence group
on its Gromov boundary @G . (The relationship between these boundaries is explained
in Tran [47]; see also Gerasimov [26], Gerasimov and Potyagailo [27], Manning [37]
and Matsuda, Oguni and Yamagata [39].) In Groves and Manning [29] and Osin [43]
(cf Dahmani, Guirardel and Osin [21]), the operation of group-theoretic Dehn filling
is developed, and is shown to satisfy a coarse analog of Thurston’s hyperbolic Dehn
surgery theorem [46, Section 5.8]. This is to say that many “Dehn fillings” of a relatively
hyperbolic group pair are themselves relatively hyperbolic.

Relatively hyperbolic Dehn filling has found many important applications, including
in the proof of the virtual Haken conjecture (see Agol [1]) and the solution of the
isomorphism problem in a large class of relatively hyperbolic groups (see Dahmani
and Guirardel [20]).

In the classical setting one begins with a relatively hyperbolic group pair .G;P/
whose Bowditch boundary is a 2–sphere and ends with a hyperbolic group xG whose
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Gromov boundary is again a 2–sphere. On the other hand, examples of CAT.�1/
fillings of high-dimensional manifolds (see Fujiwara and Manning [25] and Mosher and
Sageev [41]) suggest that group-theoretic Dehn filling often produces a group xG whose
boundary is much more complicated than that of .G;P/, but which nonetheless admits
a fairly explicit description. One purpose of this paper is to begin an investigation
of whether these results are special to fillings of manifolds, or are reflective of more
general phenomena. To this end, we obtain a description (Theorems 5.2, 5.3 and 5.4)
of the boundary of a Dehn filling as a certain kind of limit of quotients of subsets of the
original boundary by discrete groups. The following result is contained in Theorems 5.2
and 5.3; see Definition 3.1 for the definition of weak Gromov–Hausdorff convergence.
For simplicity, we state it in the case of one peripheral subgroup, that is, P D fP g.

Theorem 1.1 Let xG D G=hhN ii be a sufficiently long hyperbolic filling of the rel-
atively hyperbolic pair .G; fP g/, with N G P infinite. Then there is a sequence of
Gromov hyperbolic spaces Xi whose boundaries @Xi weakly Gromov–Hausdorff con-
verge to @ xG , if we endow all these boundaries with suitable metrics. Moreover there is
an exhaustion K1<K2< � � � of ker.G! xG/ such that each @Xi can be identified with�

.@.G; fP g/ nƒ.Ki //=Ki
�
[F ;

where F is a union of finitely many copies of @.P=N/.

This gives a new way to prove statements about boundaries of Dehn fillings, by
proving a statement about the approximating @Xi , and showing it persists in the limit.
Theorem 5.4 states that under some additional assumptions, we may assume all these
metrics are uniformly linearly connected, which helps control the limit.

Our main application is the following statement, which says roughly that sufficiently
long Dehn fillings of relatively hyperbolic groups with 2–sphere boundary must have
2–sphere boundary.

Theorem 1.2 Let G be a group and P D fP1; : : : ; Png a collection of free abelian
subgroups. Suppose that .G;P/ is relatively hyperbolic, and that @.G;P/ is a 2–
sphere.

Then for all sufficiently long fillings G! xG DG.N1; : : : ; Nn/ with Pi=Ni virtually
infinite cyclic for each i , we have that xG is hyperbolic with @ xG homeomorphic to S2 .

Note that if @.G;P/ is a 2–sphere, then any parabolic acts properly cocompactly
on R2 . If we are assuming it is free abelian, it must therefore be Z2 . If we didn’t
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assume abelian, we might have to worry about higher-genus surface groups as peripheral
groups. These higher-genus surface groups being hyperbolic groups, we should exclude
them from the peripheral structure to get a boundary which is a Sierpinski carpet.
Conjecturally, a hyperbolic group with Sierpinski carpet boundary is virtually Kleinian.
Kapovich and Kleiner [34] prove that this would follow from the Cannon conjecture.

One can make a relative version of the Cannon conjecture as follows (see Problem 57
of the Kapovich problems [33]):

Conjecture 1.3 (Relative Cannon conjecture) Let .G;P/ be a relatively hyperbolic
group with @.G;P/Š S2 and all elements of P free abelian. Then G is Kleinian.

We remark that the usual Cannon conjecture says “virtually Kleinian” because a non-
elementary hyperbolic group may not act faithfully on its boundary; there may be a finite
kernel. However, under the assumption that the parabolic subgroups of a nonelementary
relatively hyperbolic group (with nontrivial peripheral structure) are free abelian, there
are no nontrivial finite normal subgroups, and so “Kleinian” is the expected conclusion.

We have the following corollary of Theorem 1.2; see Section 10 for the proof.

Corollary 1.4 The Cannon conjecture implies the relative Cannon conjecture.

This resolves [33, Problem 60], though we do not proceed via Kapovich’s suggested
method of proof.

1.1 Sketch proof of Theorem 1.2

We must somehow reconstruct @ xG from information about @.G;P/. It is a result of
Dahmani–Guirardel–Osin [21] that K D ker.G! xG/ is (for a sufficiently long filling)
freely generated by parabolic subgroups. Associated to .G;P/ is a proper, Gromov
hyperbolic space (the combinatorial cusped space) X D X.G;P/, on which G acts
geometrically finitely (cocompactly away from horoballs); the Gromov boundary of
this space is equivariantly homeomorphic to @.G;P/.

In Section 4 we develop an analog in the cusped space of the “windmills” technology
of [21] to obtain an exhaustion of K by free products of finitely many parabolic
subgroups. Our replacements for windmills are called spiderwebs — these form an
exhaustion W1 �W2 � � � of the cusped space by quasiconvex subsets, each of which
is acted on geometrically finitely by a finitely generated subgroup Kn of K . The
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“partial quotients” X=Kn approximate a cusped space X D X=K for the relatively
hyperbolic pair . xG;P/. But in the situation of interest xG is itself hyperbolic, so we
need approximations to @ xG , not to @. xG;P/. Such approximations are obtained from
X=Kn by removing finitely many images of (deep) horoballs of X . We must take
some care to ensure that these truncated partial quotients (Definition 5.1) are uniformly
hyperbolic over all n. With even more care, we are able to show that these boundaries
are uniformly linearly connected over all n (Theorem 5.4), and that they have nice
descriptions in terms of @.G;P/ (Theorem 5.2).

(For classical hyperbolic Dehn fillings, where we can take X D H3 instead of the
cusped space, the truncated partial quotients can be thought of as follows: Take the
quotient of H3 by a finitely generated free subgroup of the kernel. This contains some
cusps with annulus cross-section. These annular cusps are truncated at a depth where
the essential curve on the annulus has some uniformly bounded length. A neighborhood
of such an annulus is uniformly quasi-isometric to a neighborhood of a geodesic line
in H3, which should be thought of as an elevation of a Margulis tube in the filled
manifold.)

Once this is ensured, we have a sequence of spaces which converge in the pointed
Gromov–Hausdorff topology to a xG–cocompact space. Their boundaries therefore
converge (in a sense described in Section 3) to the boundary of xG (Theorem 5.3).

The above results apply more generally when xG is hyperbolic, and the result of a
long filling of a relatively hyperbolic pair .G;P/, and in fact we state versions in the
setting of the Bowditch boundary of @. xG; xP / as Theorems 5.5–5.7. The proofs of
these relative versions are strictly easier than those of Theorems 5.2–5.4, though we do
not provide the relative proofs in this paper.

In Section 7 we specialize to @.G;P/Š S2 , and Pi=Ki virtually cyclic. In this case
we can show the approximating boundaries are spheres by a homological argument.

We now sketch the argument that the boundary is planar. Results from Groves and
Manning [30] show that the boundary is a Peano continuum1 without local cut points.
We then invoke a characterization of Claytor [18], which says that a Peano continuum
without cut points is planar if and only if it contains no nonplanar graph. An adaptation
of a lemma of Ivanov (Lemma 3.9) shows that if @ xG contained such a graph, then so
would all but finitely many of the approximating boundaries. Since they are spheres,
they do not.

1By this we mean a connected, locally connected, compact metrizable space.
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Since @ xG is planar, connected and has no local cut points, a result of Kapovich and
Kleiner [34, Theorem 4] implies that it is either S2 or a Sierpinski carpet. In Section 8
we rule out the Sierpinski carpet.

1.2 Outline

Section 2 contains background, notation and preliminary results; the reader can skim it
and refer back to it when needed.

In Section 3 we introduce the notion of weak Gromov–Hausdorff convergence, which
plays an important role in our description of the boundary of a Dehn filled group.

In Section 4 we introduce spiderwebs, a variation of the windmills from Dahmani–
Guirardel–Osin [21]. We cannot use windmills directly for our purposes, but our
construction is very similar to that in [21].

Finally, the main contributions of this paper start with Sections 5 and 6, where we
state and prove our main results about general Dehn filling. As discussed above, we
describe the boundary of a Dehn filled group as a certain weak Gromov–Hausdorff
limit of spaces, each the boundary of a certain hyperbolic space, whose topology we
have control over.

Starting with Section 7, we focus on the setup of Theorem 1.2, that is to say we consider
fillings of a relatively hyperbolic pair whose Bowditch boundary is a 2–sphere. First
of all, we exploit the general description of the approximating boundaries to show that
in that situation they are all spheres.

Section 8 contains the last missing piece of the proof of Theorem 1.2: we prove that a
weak Gromov–Hausdorff limit of simply connected spaces is �–simply connected for
every � > 0, therefore proving that the Sierpinski carpet cannot be a limit of spheres.

In Section 9 we prove Theorem 1.2, which at that point only requires putting together
various pieces.

In Section 10 we prove Corollary 1.4, which requires arguments about limits of repre-
sentations in Isom.H3/.

Finally, in the appendix we record some technical results which are surely well known
to experts but for which we do not know of a reference in the literature.
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2 Preliminaries

For a point p of a metric space .M; d/, write SR.p/ for fx 2M j d.x; p/DRg, and
BR.p/ for fx 2M j d.x; p/ � Rg. If M is a geodesic space, we write Œx; y� for a
choice of geodesic from x to y in M.

In a geodesic space .Z; d/, every geodesic triangle � comes with a surjective map to
a possibly degenerate comparison tripod T� , which is isometric on each side of the
triangle, and so the vertices map to feet of the tripod. If the vertices of the triangle are
x , y and z , the leg corresponding to x has length

.y j z/x WD
1
2
.d.y; x/C d.z; x/� d.y; z//;

also known as the Gromov product of y and z with respect to x .

For ı > 0, the geodesic space Z is a ı–hyperbolic space if all geodesic triangles
in Z are ı–thin, in the sense that the map to the comparison tripod has fibers of
diameter at most ı . A space is Gromov hyperbolic if it is ı–hyperbolic for some ı .
See [12, Section III.H] for more details and the relationship with other definitions.

A Gromov hyperbolic space Z has a boundary at infinity or Gromov boundary @Z ,
which can be defined in terms of sequences of points. Namely, a sequence fxig
converges to infinity if

lim
i;j!1

.xi j xj /p D1

for some (or equivalently every) basepoint p . Two sequences fxig and fyig are
equivalent if

lim
i;j!1

.xi jyj /p D1;

and @Z is defined to be the set of equivalence classes of sequences which converge
to infinity. If the equivalence class of fxig is � , we write fxig ! � . In a proper
Gromov hyperbolic space, @Z can also be defined as equivalence classes of geodesic
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rays, where two rays are counted as equivalent if they have images which are finite
Hausdorff distance apart. All the spaces we consider are proper.

For p 2Z and �; � 2Z [ @Z , the Gromov product is extended as follows:

.� j �/p D sup
˚

lim inf
i;j!1

.xi jyj /p j fxig ! �; fyig ! �
	
:

It is a standard fact (see eg [48, Lemma 5.6] or [12, III.H.3.17.(5)]) that, up to a small
error, one can compute the Gromov product using any given representative sequences,
meaning that if fxig! � and fyig! � then lim inf.xi jyj /p is within 2ı of .� j�/p .

The following observation is [12, III.H.3.17.(3)]:

Lemma 2.1 Let Z be Gromov hyperbolic, and let p 2Z . For any � and � in Z[@Z ,
there are sequences fxig ! � and fyig ! � such that lim

n!1
.xn jyn/p D .� j �/p .

We also consider the Gromov product of geodesic rays .˛ jˇ/p with respect to their
common starting point p , which we define to be

.˛ jˇ/p D lim inf
s;t!1

.˛.s/ jˇ.t//p:

2.1 Visual metrics on the boundary of a Gromov hyperbolic space

For any given parameter � > 0 and basepoint p 2X , the function .�; �/ 7! e��.�j�/p

behaves somewhat like a metric on @X , though it may not satisfy the triangle inequality.
It does makes sense to ask whether e��.�j �/p is bilipschitz or quasi-isometric to some
metric on @X .

We recall the definition:

Definition 2.2 Let Z be a Gromov hyperbolic space, with basepoint w . A visual
metric on @Z , based at w , with parameters � and � is a metric �. � ; � / which is
�–bilipschitz to e��. �j �/w .

From [12, III.H.3.21] one can fairly readily deduce the following.

Proposition 2.3 [12, III.H.3.21] Let ı > 0. Then for all positive � � 1=6ı there is a
� D �.�; ı/� 1 with lim

�!0
�.�; ı/D 1 such that:

If Z is a ı–hyperbolic space and p 2Z , then @Z has a visual metric based at p with
parameters � and � .
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Visual metrics are hardly ever length metrics, and in fact hardly ever admit rectifiable
paths. However, the notion of linear connectedness is a useful “replacement” for the
notion of length metric.

Definition 2.4 Let L� 1. A metric space M is L–linearly connected if every pair of
points x; y 2M is contained in a connected subset J of diameter at most L � d.x; y/.
We say M is linearly connected if it is L–linearly connected for some L.

Remark 2.5 As observed, for example, in the introduction of [35], if M is compact
then up to increasing L by an arbitrarily small amount we can assume that J is an arc.
We frequently make this assumption in the rest of the paper.

A homeomorphism f W X ! Y of metric spaces is a quasisymmetry if there is a
homeomorphism �W Œ0;1/! Œ0;1/ such that

d.f .x/; f .y//

d.f .x/; f .z//
� �

�
d.x; y/

d.x; z/

�
for all triples of distinct points x; y; z 2X . The spaces X and Y are then said to be
quasisymmetric. All visual metrics on the boundary of a given hyperbolic space are
quasisymmetric to each other. Observe:

Lemma 2.6 If X is linearly connected, then so is any space quasisymmetric to X .

2.2 The cusped space associated to a relatively hyperbolic pair

In this section we associate a metric graph (the (combinatorial) cusped space) to a
relatively hyperbolic pair, and fix notation for various subsets of it.

Definition 2.7 Let � be a graph, endowed with the metric that gives each edge
length 1. The combinatorial horoball based on � is the metric graph H.�/ whose
vertex set is �.0/ �Z�0 , and with two types of edges:

(a) A vertical edge of length 1 from .v; n/ to .v; nC 1/ for any v 2 �.0/ and any
n� 0.

(b) For k > 0, if v and w are vertices of � such that 0 < d�.v; w/� 2k , then there
is a single horizontal edge of length 1 joining .v; k/ to .w; k/.
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Define the depth of a vertex D.v; n/D n and extend the depth function affinely over
edges.

The inverse image D�1.n/ for n an integer is called the horosphere at depth n. This
is a graph whose vertices are in bijection with those of � . The distance in D�1.n/
between two vertices .v; n/ and .w; n/ is d2�nd�.v; w/e.

If HDH.�/ for some � , and I is a nondegenerate interval in R, define HI DD�1.I /.

Let .G;P/ be a group pair (so G is a group and P is a finite collection of subgroups),
and suppose that G and the elements of P are all finitely generated. Choose a finite
generating set S for G which contains a generating set for each P 2P . (This is called
a compatible generating set.) Let � be the Cayley graph for G with respect to S ,
metrized so each edge has length 1. Each left coset gP of P 2 P spans a connected
gPg�1–invariant subgraph �.gP /� � .

Definition 2.8 The cusped space X.G;P/ is obtained from � by attaching, for each
P 2 P, and each coset gP , a copy of H.gP /, by identifying �.gP / to the horosphere
at depth 0 of H.gP /.

The cusped space is not quite determined by the pair .G;P/, since we had to choose a
generating set, but any two choices give quasi-isometric spaces, by [28, Corollary 6.7].

Definition 2.9 .G;P/ is relatively hyperbolic if and only if the cusped space X.G;P/
is Gromov hyperbolic.

In [29, Theorem 3.25] it is proved that this definition is equivalent to other definitions
of relative hyperbolicity, in the finitely generated case. See [31] for an extension of
this definition to the nonfinitely generated case. Throughout this paper, we are only
concerned with the case that G and all elements of P are finitely generated. We recall
the following useful property of horoballs in the cusped space of a relatively hyperbolic
group.

Lemma 2.10 [29, Lemma 3.26] Suppose X D X.G;P/ is ı–hyperbolic, and that
H�X is a combinatorial horoball. For any integer R � ı , the set HŒR;1/ is convex
in X .

Definition 2.11 Suppose that .G;P/ is relatively hyperbolic, and suppose that each
element of P is infinite. Let X.G;P/ be the associated cusped space. The Gromov
boundary @X.G;P/ is called the Bowditch boundary of .G;P/.
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If some elements of P are finite, then @X.G;P/ contains isolated points. If P1 is the
collection of infinite elements of P , then .G;P1/ is also relatively hyperbolic, and its
Bowditch boundary can be obtained from @X.G;P/ by removing the isolated points.

In the case that G itself is hyperbolic, Bowditch characterized which .G;P/ are
relatively hyperbolic. Recall a family of subgroups P is almost malnormal if, whenever
P1\gP2g

�1 is infinite for P1; P2 2 P and g 2G , we have P1 D P2 and g 2 P1 .

Theorem 2.12 [11, Theorem 7.11] Let G be hyperbolic, and suppose P is a family
of distinct subgroups of G . The pair .G;P/ is relatively hyperbolic if and only if P is
an almost malnormal family of quasi-isometrically embedded subgroups.

2.3 Dehn fillings

Definition 2.13 Let G be a group and let P D fP1; : : : ; Png be a finite collection
of subgroups of G . Given a collection of normal subgroups Ni E Pi , called filling
kernels, the quotient G!G.N1; : : : ; Nn/DG=K , where K D

˝̋S
i Ni

˛̨
, is called a

(Dehn) filling of .G;P/. We say that a property holds for all sufficiently long fillings of
.G;P/ if there is a finite set B � G n f1g such that whenever Ni \B D ∅ for all i ,
the group G=K has the property.

Theorem 2.14 [43; 29] Let .G;P D fP1; : : : ; Png/ be relatively hyperbolic. Then
for any finite subset F �G n f1g the following holds. For any sufficiently long filling
�W G!G=K , we have:

(i) For each i , � induces an embedding of Pi=Ni in G=K , whose image we
identify with Pi=Ni .

(ii) .G=K; fP1=N1; : : : ; Pn=Nng/ is relatively hyperbolic.

(iii) � restricted to F is injective.

For any relatively hyperbolic pair .G;P/, the peripheral groups P always consist of
an almost malnormal family of quasi-isometrically embedded subgroups [42, Proposi-
tion 2.36 and Lemma 5.4]. Hence we have the following corollary of Theorem 2.14.

Corollary 2.15 Let .G;P/ be relatively hyperbolic. For all sufficiently long fillings
G!G=K , the filling G=K is hyperbolic if and only if every Pi=Ni is hyperbolic.

The following is an easy consequence of Theorem 2.14(iii).
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Lemma 2.16 Let .G;P/ be relatively hyperbolic, with associated cusped space X .
Then for any R � 0 the following holds. For any sufficiently long filling G!G=K ,
the restriction of the map X !X=K to any ball of radius R centered at an element of
the Cayley graph is an isometry onto its image. Moreover, the same holds true for the
map X !X=K0 where K0 <K is any subgroup.

The next result is proved in [2] assuming that G is torsion-free, but this assumption is
not necessary, as explained in the proof of [1, Theorem A.43]. Alternatively, it follows
from Lemma 2.16 and the Coarse Cartan–Hadamard theorem (Theorem 6.2 below).

Proposition 2.17 [2, Proposition 2.3] Suppose that .G;P/ is relatively hyperbolic,
and fix a generating set for G as in Definition 2.8. There exists a ı such that

(i) the cusped space for .G;P/ is ı–hyperbolic , and

(ii) for all sufficiently long fillings .G;P/! . xG;P/, the cusped space for . xG;P/
(with respect to the image of the fixed generating set for G ) is ı–hyperbolic.

2.4 Geometry of truncated horoballs

In the classical 2� theorem of Gromov and Thurston, a cusped hyperbolic 3–manifold
is modified to a closed negatively curved one by replacing each cusp neighborhood by
a thick “Margulis tube” around a short geodesic [5]. In the universal cover this tube
lifts to a large neighborhood of a geodesic line.

In our setting we model our Dehn filled group xG D G=K by a space which can be
either thought of as

(a) the quotient cusped space X=K with certain deep horoballs removed, or

(b) the Cayley graph of xG with certain truncated horoballs added.

The truncated horoballs are analogous to the neighborhoods of geodesic lines discussed
above. The same space with truncated horoballs omitted would still be Gromov
hyperbolic, but we would lose control of various constants and be unable to make
uniform statements over all long fillings.

Let � > 0 and suppose that � is a � –hyperbolic Cayley graph. It follows (see
[12, Proposition III.H.1.22]) that � satisfies Gromov’s 4–point condition Q.�/: for
all x; y; z; w 2 � ,

d.x;w/C d.y; z/�maxfd.x; y/C d.z; w/; d.x; z/C d.y;w/gC 2�:
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Definition 2.18 Let t .�/ be the smallest integer such that the graph Ht.�/ satisfies
the Gromov 4–point condition Q.5/. We argue below that this is well-defined.

Let H.�/ be the combinatorial horoball based on � . As noted in Section 2, the metric
on vertices in Hk DD�1.k/ is defined by

dHk .v; w/D d2�kd�.v; w/e:

This formula and the defining equation for Gromov products shows that t .�/ exists
and t .�/ � log2.�/. By the proofs of [12, Propositions III.H.1.17 and III.H.1.22]
this implies that triangles in Ht.�/ are 30–thin. The graph Ht.�/ is a 30–hyperbolic
Cayley graph. The loops of length at most 481 based at a vertex give the relations in
a Dehn presentation; see the proof of [12, Theorem III.� .2.6]. Attaching disks to all
loops of length at most 481 in Ht.�/ , we therefore obtain a simply connected complex
with linear combinatorial isoperimetric function with constant 1.

In [29, Section 3] a simply connected 2–complex is built from H.�/ by attaching
vertical squares and pentagons and horizontal triangles, and the depth function D is
extended across these 2–cells. Let zH.�/ be this simply connected 2–complex, and
denote the extended depth function by zD . Define zHI .�/D zD�1.I / for I an interval
in R. Then HI .�/ (defined above) is the 1–skeleton of zHI .�/.

The space zH.�/ satisfies a linear combinatorial isoperimetric function with constant 3,
by [29, Proposition 3.7]. The proof of this can be easily adapted by filling at depth t .�/
using the disks from the Dehn presentation, to prove the following result.

Proposition 2.19 Suppose that � is a � –hyperbolic Cayley graph, and that t .�/ is
chosen as in Definition 2.18. The 2–complex zHŒ0;t.�/�.�/ satisfies a linear combinato-
rial isoperimetric inequality with constant 3.

There is a universal bound on the length of boundaries of disks, so [29, Proposition 2.23]
gives the following.

Corollary 2.20 Let � > 0 and suppose that � is a � –hyperbolic Cayley graph. The
graph HŒ0;t.�/�.�/ is �0–hyperbolic for a universal constant �0 .

It is straightforward to see that if 0 � a � t .�/, then HŒa;t.�/�.�/ is convex in
HŒ0;t.�/�.�/. Therefore we have the following result.
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Corollary 2.21 Let � > 0 and suppose that � is a � –hyperbolic Cayley graph. For
any a 2 Œ0; t.�/�, the graph HŒa;t.�/�.�/ is �0–hyperbolic, for the same constant �0
from Corollary 2.20.

It is possible to understand geodesics in HŒa;t.�/�.�/ in a very similar way to geodesics
in H.�/. The following result can be proved using almost exactly the same proof as
[29, Lemma 3.10].

Lemma 2.22 Let � > 0 and suppose that � is a � –hyperbolic Cayley graph. Let
a 2 Œ0; t.�/� and suppose that p; q 2 HŒa;t.�/�.�/ are distinct vertices. There is a
geodesic 
 in HŒa;t.�/�.�/ between p and q which consists of at most two vertical
segments and a single horizontal segment. Moreover, if this horizontal segment is not
at depth t .�/, then it has length at most 3.

The next lemma tells us that truncated horoballs are “locally visible”; see Definition 3.4
for the definition of visibility.

Lemma 2.23 Let � >0 and suppose that � is a � –hyperbolic Cayley graph. Suppose
that t .�/ > � > 10�0 .

For any a 2 Œ�; t.�/� and any p; q 2HŒa;t.�/�.�/ such that d.p; q/D �, there exists
a geodesic Œp; q0� of length 2� in HŒa��;t.�/�.�/ such that d.q; Œp; q0�/� 2�0 .

Proof We assume that p and q are vertices.

Choose a geodesic Œp; q� of the form as in the conclusion of Lemma 2.22. There are a
number of possibilities.

If either Œp; q� has two vertical segments, or p has greater depth than q , then Œp; q�
ends at q with a vertical segment heading towards the horosphere H0Š� . In this case,
append a vertical segment of length �C10�0 to Œp; q� to form a new path � of length
2�C 10�0 . It is straightforward to see that � is a 10�0–local geodesic, and so � lies
within 2�0 of any geodesic between the endpoints of � ; see [12, Theorem III.H.1.13].
Taking an initial subpath of length 2� of any such geodesic gives a path Œp; q0� as in
the conclusion of the lemma.

Suppose next that q has greater depth than p and that there is a horizontal segment of
length at least 3 at the end of Œp; q�. In this case, appending a vertical path of length
�C 10�0 from q to the end of Œp; q� creates a 10�0–local geodesic, and we proceed
as in the first case.
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The only remaining case is that q has greater depth than p and that Œp; q� is entirely
vertical or terminates with a horizontal segment of length at most 2. Let d be the
depth of p . We claim that there exists y 2Hd at distance at least 2��4 from p . In
fact, if this were not the case then HdC��4 would be contained in a 1–ball around
some point (lying vertically below p ), and hence HdC��3 would have diameter 1,
implying that t .�/ is at most d C��3. However, the depth of q is at least d C��2,
a contradiction. There is a HŒa��;t.�/�.�/–geodesic from p to y that goes straight
down from p a distance � �� 3, along a short horizontal segment and then straight
up to y . The path Œp; q� lies in the 5–neighborhood of this geodesic, which can be
prolonged to a geodesic of length 2�, still contained in HŒa��;t.�/�.�/, if needed.

Finally, we prove that for sufficiently long fillings, the value of t .�/ (the partial
truncation depth above) can also be made large. This follows quickly from the following
straightforward result.

Lemma 2.24 Suppose that H is a group with finite generating set S . For any A> 0
there exists B such that for any nontrivial normal subgroup J of H such that

(i) H=J is a hyperbolic group, and

(ii) J contains no nontrivial elements of length less than B (with respect to the word
metric dS ),

the Cayley graph of H=J with respect to the image of S is not A–hyperbolic.

Proof Let h be the shortest nontrivial element of J . Consider a geodesic 
 in the
Cayley graph of H from 1 to h, which gives a loop p in the Cayley graph of H=J . It is
easily seen that any subgeodesic of 
 of length at most half the word length jhjS gives
a geodesic in the Cayley graph of H=J . In particular, the loop p can be subdivided
into a geodesic bigon where the midpoint of one side is at distance 1

4
jhjS from the

other side. The lemma now follows easily.

Suppose that .G;P/ is relatively hyperbolic. Fix a compatible finite generating set S .
Suppose that G.N1; : : : ; Nm/ is a Dehn filling with each Pi=Ni being hyperbolic.
According to Corollary 2.20 there are constants t .i/ such that the partially truncated
horoballs of the Cayley graphs of Pi=Ni to depth t .i/ are �0–hyperbolic for a uni-
versal constant �0 . Moreover, t .i/ depends only on the hyperbolicity constant of the
Cayley graph of Pi=Ni (with respect to the obvious generating set in the image of S ).
Moreover, from the construction and Lemma 2.24, it is clear that, as the length of
the shortest nontrivial element of Ni goes to infinity, this hyperbolicity constant (and
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hence t .i/) goes to infinity. Therefore, the following is an immediate consequence of
Lemma 2.24.

Corollary 2.25 Let C > 0 be any constant. The constants t .i/ are all larger than C
for all sufficiently long fillings G.N1; : : : ; Nm/ of .G;P/.

2.5 A Greendlinger lemma

Roughly speaking, the next lemma says that, for G!G=K a sufficiently long filling,
if we have some x 2 G and g 2 K n f1g, then any geodesic Œx; gx� in the cusped
space for G goes deep into a horoball, and it can be shortened using an element
of the conjugate of the filling kernel corresponding to the horoball. It is similar to
[21, Lemma 5.10] and it can presumably be proven using the techniques we use in
Section 4 to construct spiderwebs, but we give a simple proof that only relies on
Proposition 2.17 and Lemma 2.16.

For a relatively hyperbolic pair .G;P/ with cusped space X , let C denote the collection
of parabolic points for the G–action on @X . Suppose that G!G.N1; : : : ; Nm/ is a
Dehn filling, with Ni E Pi . The points in C are limit points of horoballs of the form
H.gPi / for g 2G . If c 2 C is of the form c D @H.gPi / then let Kc D gNig�1 . We
also write Hc for H.gPi /.

Lemma 2.26 Let .G;P/ be relatively hyperbolic, with associated cusped space X .
For any D � 0, the following holds for any sufficiently long filling G! G=K . For
any g 2K n f1g and x 2X , there exists c 2 C such that:

(i) Any geodesic Œx; gx� intersects HDc .

(ii) For any geodesic Œx; gx� there exists k 2Kc such that d.x; kgx/ < d.x; gx/.

Proof As in Proposition 2.17, let ı � 1 be such that

� X is ı–hyperbolic, and

� for all sufficiently long fillings, X=K is ı–hyperbolic.

Fix D� 0. It follows from Lemma 2.16 that for any sufficiently long filling G!G=K

and any x; y 2 X in the same K–orbit satisfying d.x; y/ � 10ı , there exists a
horoball Hc such that x; y 2HŒD;C1/c . Hence y D kx for some k 2Kc , since the
intersection of K and the stabilizer of Hc is Kc .
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Let K be the kernel of such a filling, and let g 2K nf1g and x 2X . If d.x; gx/� 10ı
then we are done by the argument above, so suppose d.x; gx/ > 10ı . Let 
 D Œx; gx�
be a geodesic in X from x to gx and let z
 be the projected path in X=K . Since z
 is
a loop of length at least 10ı , z
 is not a 10ı–local geodesic. Therefore, there are two
points p and q appearing in this order along 
 , with d.p; q/� 10ı and some k 2K
such that d.p; kq/ < d.p; q/. By the argument above, we have p; q 2HŒD;C1/c for
some horoball Hc , and hence 
 \HDc ¤∅. Also, we have k 2Kc and

d.x; kgx/� d.x; p/C d.p; kq/C d.kq; kgx/

< d.x; p/C d.p; q/C d.q; gx/D d.x; gx/;

as required.

3 Weak Gromov–Hausdorff convergence

Our strategy to describe boundaries of Dehn fillings involves describing them as limits,
in a suitable sense, of metric spaces that we have more control over. The correct notion
of limit for our purposes is similar to that of Gromov–Hausdorff limit and is described
as follows.

Definition 3.1 Let .Mi ; di /i2N and .M; d/ be metric spaces. We say that .M; d/ is
a weak Gromov–Hausdorff limit of the sequence .Mi ; di / if there exists �� 1 and a
sequence of .�; �i /–quasi-isometries M !Mi , with �i ! 0 as i !1.

Example 3.2 If the compact metric space .M; d/ is a weak Gromov–Hausdorff limit
of the sequence of connected metric spaces .Mi ; di /, then .M; d/ is connected. In
fact, if M is not connected then we can write M D AtB with A and B nonempty
and d.A;B/D � > 0. It is readily seen that for n large enough, Mn inherits a similar
decomposition and hence it is not connected.

This section has two goals. The first one is to show that when a sequence of hyperbolic
spaces converges in a suitable sense to a hyperbolic space, then their boundaries weakly
Gromov–Hausdorff converge to the boundary of the limit hyperbolic space. The second
goal is to give a criterion which allows us to prove (using a result of Claytor [18])
that the weak Gromov–Hausdorff limit of a sequence of metric spaces homeomorphic
to S2 is planar. The criterion we prove in this section, Lemma 3.9, is an adaptation of
a result of Ivanov [32].
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3.1 From convergence of spaces to convergence of their boundaries

The definition of convergence of hyperbolic spaces that we use is the following one.

Definition 3.3 Let .X; p/ be a pointed metric space. Say the sequence of pointed
metric spaces f.Xi ; pi /gi2N strongly converges to .X; p/ if the following holds: for
every R > 0, there are isometries �i W BR.p/! BR.pi / with �i .p/D pi for all but
finitely many i .

In order to relate the boundary of a hyperbolic space to spheres of large radius, we
need the space to be D–visible in the following sense — a different concept from that
of a visual metric given in Definition 2.2.

Definition 3.4 Let D > 0. A geodesic metric space X is D–visible if, for every
a; b 2X , there is a geodesic ray based at a passing within D of b .

The following is the main result of this subsection and it is an immediate corollary of
Lemma 3.8 below.

Proposition 3.5 Let ı > 0. Suppose f.Xi ; pi /gi2N strongly converges to .X; p/,
and that the spaces X and Xi are all ı–hyperbolic and ı–visible. Then for all positive
� � 1=6ı and � as in Proposition 2.3, and any visual metrics �i on @Xi and � on @X
with parameters � and � , the boundary .@X; �/ is a weak Gromov–Hausdorff limit of
.@Xi ; �i /.

Remark 3.6 With a bit more work it should be possible to weaken the assumption of
strong convergence in Proposition 3.5 to the assumption of pointed Gromov–Hausdorff
convergence.

Lemma 3.7 Let X be ı–hyperbolic and let w 2 X . Let ˛ and ˇ be rays starting
at w with limit points a; b 2 @X , respectively. Let T be the tripod obtained by gluing
two rays together along an initial subsegment of length .a j b/w . Then there is a
.1; 5ı/–quasi-isometry from ˛[ˇ to T , isometric on each of ˛ and ˇ .

Proof Let s; t 2 Œ0;1/. We must show that d.˛.s/; ˇ.t// is within 5ı of the distance
of their images in T :

�.s; t/D

�
js� t j if minfs; tg � .a j b/w ;
sC t � 2.a j b/w otherwise.
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By Lemma 2.1, there are sequences faig ! a and fbig ! b with

lim
i!1

.ai j bi /w D .a j b/w :

Choose n and N so that .an j ˛.N //w and .bn j ˇ.N //w are both greater than
maxfs; tg C 10ı , and so that .an j bn/w is within � � 1

2
ı of .a j b/w . Let ˛0 be a

geodesic from w to an , and let ˇ0 be a geodesic from w to bn . We have d.˛.s/; ˛0.s//
and d.ˇ.s/; ˇ0.s// both bounded above by ı .

Suppose first that one of s and t is at most .a j b/w . Without loss of generality it
is s . Then d.˛0.s/; ˇ0.s// � ıC 2� � 2ı . It follows that d.˛.s/; ˇ.s// � 4ı , and so
d.˛.s/; ˇ.t// is within 4ı of �.s; t/D js� t j.

Finally suppose that both s and t are larger than .ajb/w . Consider a geodesic triangle �
two of whose sides are ˛0 and ˇ0 . Let xa and xb be the images in the comparison tripod
for � of ˛0.s/ and ˇ0.t/, respectively. Then the distance d.xa; xb/D sC t�2.an jbn/w
is within 2� of �.s; t/D sC t�2.a jb/w . Thus d.˛0.s/; ˇ0.t// differs from �.s; t/ by
at most 2ıC 2�, and d.˛.s/; ˇ.t// differs from �.s; t/ by at most 4ıC 2�� 5ı .

For the next lemma, recall (as we observed in Section 2.1) that even though e��. �j �/

may not be a metric, the concept of quasi-isometry still makes sense. Also, recall that
given a point p of a metric space .M; d/, we denote the sphere of radius R around p ,
that is to say the set fx 2M j d.x; p/DRg, by SR.p/.

Lemma 3.8 For every ı and � there exists � such that the following holds. Let X
be ı–hyperbolic and ı–visible. Then for any w 2 X and any R > 0, there is a
.�; c/–quasi-isometry

�W .@X; e��. �j�/w /! .SR.w/; e
��. �j�/w /;

where c D c.ı; �; R/ tends to 0 as R tends to C1.

Proof All rays in this proof are rays starting at w . Denote e��. �j �/ by �. �; �/. We
will prove the lemma for �D e5�ı=2 and c D e�.5ı=2�R/ . Note that c tends to 0 as R
tends to 1.

Let us define a map �W @X ! SR.p/. For a 2 @X , choose a ray 
a (parametrized by
arc length) representing it. Then, set �.a/D 
a.R/.

The fact that X is ı–visible combined with the fact that asymptotic rays stay within
distance ı of each other implies that for any x 2 SR.w/ there exists a 2 @X with, say,
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d.x; �.a// � 4ı , and hence �.x; �.a// � e��.R�2ı/ < c . Hence, the image of � is
c–dense in SR.w/.

Now let a; b 2 @X . We distinguish two cases.

If .a j b/w � R then �.a; b/ � e��R . In this case �.a/ and �.b/ lie within 5ı of
each other by Lemma 3.7. In particular �.�.a/; �.b//� e5�ı=2��R , so the difference
j�.�.a/; �.b//� �.a; b/j is at most e5�ı=2��R D c .

Suppose on the other hand .a j b/w � R , so that �.a; b/ � e��R . By Lemma 3.7,
jd.�.a/; �.b//� 2.R� .a j b/w/j � 5ı , and hence j.�.a/ j �.b//w � .a j b/w j � 5

2
ı .

We deduce that
��1�.a; b/� �.�.a/; �.b//� ��.a; b/;

with no additive error in this case.

3.2 Linear connectedness and a lemma of Ivanov

In order to show that the boundary of our filled group is planar in the proof of
Theorem 1.2 in Section 9, we use the following adaptation of a lemma of Ivanov
[32, Lemma 2.2].

Lemma 3.9 Let .Mi ; di / be metric spaces, and assume that each Mi is (homeomor-
phic to) a closed smooth manifold of dimension � 2. Suppose that there exists L such
that each Mi is L–linearly connected and that .M; d/ is a weak Gromov–Hausdorff
limit of .Mi ; di /. If the finite graph � can be topologically embedded in M then for
all large enough i it can also be embedded in Mi .

We emphasize that we do not assume that the limit M is a manifold.

Proof By assumption there is some K � 1, and a sequence of .K; �.i//–quasi-
isometries �i W M !Mi with �.i/! 0 as i !C1.

Let f W �!M be a topological embedding. Fix some constants C , � and �0 satisfying:

(i) C > 5K2L.

(ii) For any disjoint subgraphs �1 and �2 of � , we have d.f .�1/; f .�2//� C� .

(iii) If edges e1 and e2 share the endpoint v , and pj 2 ej for j D 1; 2 are such that
d.f .pj /; f .v//� �=C , then d.f .p1/; f .p2//� C�0 .

(iv) �0 < �=.6KL/.

Fix i so that �.i/� �0 until the end of the proof. For v a vertex of � , let zvD�i .f .v//.
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Claim 3.9.1 We can choose , for each vertex v of � , a path-connected neighborhood
Uzv of zv such that B�.zv/ � Uzv � B4L�.zv/. Moreover, we can require Uzv to be a
compact manifold (with boundary).

Proof of claim For x; y 2Mi , let Ax;y be the union of all paths of length �Ldi .x; y/
joining x to y . Let AD

S
fAx;y j x; y 2 B�.zv/g. Notice that A� B.2LC1/�.zv/, and

that A is path-connected. Fix a homeomorphism h from a smooth manifold to Mi ,
and let gW Mi ! Œ0;1/ be chosen so that g ıh is smooth and g�1.0/ is the closure
of A.

For any R > .2LC 1/� , and any sufficiently small regular value t of g ıh, we have
g�1.Œ0; t �/� BR.zv/. In particular, we can fix t so that Ut D g�1.Œ0; t �/� B4L�.zv/.
We may take Uzv to be the connected component of Ut containing A.

Claim 3.9.2 We can choose, for each edge e of � , an embedded path 
e in Mi in
such a way that the following properties are satisfied. If v is not an endpoint of e
then 
e does not intersect Uzv , and it intersects Uzv exactly in one endpoint if v is an
endpoint of e . Moreover, the paths 
e are disjoint.

Proof of claim Let e be an edge of � , and let fpj gjD1;:::;n be a sequence of points
along f .e/ that subdivide f .e/ into subpaths of diameter � �0 . For each j set
qj D �i .pj /. Consider paths 
j connecting qj to qjC1 of diameter �Ldi .qj ; qjC1/.
Let Ae be the union of all such paths, and notice that Ae �NL.KC1/�0.�i .f .e///.

Suppose that v is not an endpoint of e . We claim that Ae\Uzv is empty. Indeed, since
d.f .v/; f .e//� C� , we have

di .zv;Ae/�
C�

K
� �i �L.KC 1/�

0
�
�
5KL� 1

2
K
�
� > 4L�:

Suppose that e and e0 are edges of � not sharing an endpoint. We claim Ae \Ae0 is
empty. Indeed,

di .Ae; Ae0/� di .�i .e/; �i .e
0//� 2L.KC 1/�0 �

C�

K
� �i � 2L.KC 1/�

0 > 0:

Finally suppose that e and e0 are edges which do share an endpoint v . We claim
Ae \Ae0 � VUzv . Indeed, if x 2 Ae \Ae0 , there are qj 2 �i .f .e// and q0

k
2 �i .f .e

0//

within L.KC 1/�0 of x . The corresponding points pj 2 f .e/ and p0
k
2 f .e0/ must

satisfy d.pj ; p0k/ �K.L.KC 1/�
0C �0/ < C�0 . Using the condition (iii), it follows

that d.pj ; f .v// is bounded above by �=C , and so d.qj ; zv/ � K�=C C �i . Finally
d.x; zv/�K�=C C �i CL.KC 1/�

0 < � .
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It is now easy to see that the path-connected set Ae contains an embedded path 
e , as
required.

In order to conclude the construction we just need to observe that, since Uzv is a
manifold of dimension at least 2, each Uzv contains a union of paths Pzv that pairwise
only intersect at zv , each connecting zv to an endpoint of some 
e .

The union
S
Pzv [

S

e is a subset of Mi homeomorphic to � .

4 Spiderwebs

In this section we make a construction similar to that of windmills from [21, Section 5].
We call our construction spiderwebs. The main difference between the constructions is
that we want the stabilizers of spiderwebs to be a free product of finitely many factors,
which is not the case for the windmills from [21].

We give an informal description first: Let X be a cusped space for the relatively
hyperbolic pair .G;P/, as in Definition 2.8, and let K be the kernel of some appro-
priately long Dehn filling. We describe an exhaustion of X by quasiconvex sets (the
spiderwebs), whose stabilizers exhaust K . We begin with a single point. Given one
spiderweb S , we construct a larger one which includes a neighborhood of S , all the
horoballs near S , and the images of S and these horoballs under the conjugates of the
filling kernels which fix those horoballs. The new spiderweb S 0 has stabilizer which is
the free product of the stabilizer of S and finitely many conjugates of filling kernels.

4.1 Notation and conventions

We work in this section with a � –hyperbolic space, reserving the symbol ı for a
constant that is chosen in later sections (and depends on � ). We will fix a particular �
in Assumption 6.1 and then fix ı D 1500� in Assumption 6.4.

We fix the following notation from now until the end of the section. Let .G;P/ be a
relatively hyperbolic pair, and let X be a cusped space for the pair as in Definition 2.8.
Fix an arbitrary integer � � 1 so that X is � –hyperbolic. As in Section 2.5, let C be
the collection of parabolic fixed points in @X . We are going to choose a G–equivariant,
103� –separated family of horoballs as follows: Let c 2 C . Then c is the unique limit
point of some HcDH.gP /, for some coset gP of some P 2P . Let bHcDHŒ500�;1/c ;
this is convex in X by Lemma 2.10. Note that the closure of the complement of

S bHc

is G–cocompact.
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Suppose that fNi C Pig is a collection of (long) filling kernels, with Ni ¤ f1g. As
in Section 2.5, if c D @H.gPi /, then let Kc D gNig�1 be the conjugate of a filling
kernel fixing c . We suppose that the groups Kc satisfy the following:

Very translating condition For each c 2 C , g 2Kc n f1g and x 2X n bHc , we have
dX .x; gx/� 10

4� .

The following is an easy consequence of Theorem 2.14.

Lemma 4.1 For sufficiently long fillings the family fKcg satisfies the very translating
condition.

4.2 Spiderwebs

For Y a subset of X we write C.Y /D fc 2 C j Y \ bHc ¤∅g.

Definition 4.2 (Spiderweb) A � –spiderweb is a subset W of X containing 1 and
satisfying the following axioms:

(S1) W is 4� –quasiconvex.

(S2) C.W /D C.N50� .W //.

(S3) The group KW generated by [
c2C.W /

Kc

preserves W . Moreover, for any R > 0, .NR.G/\W /=KW is compact.

(S4) There exists a finite subset C � C.W / such that KW is the free product¨
c2C Kc .

Here is the main theorem of this section.

Theorem 4.3 In the notation established in Section 4.1, and for K D
˝̋S

i Ni
˛̨

, there
exists a family of � –spiderwebs W0�W1 � � � such that

S
Wi DX and (consequently)

K D
S
KWi

.

To extend a given � –spiderweb W to a larger one, we need a few lemmas about
how W interacts with its translates under elements of Kc for bHc near to W , but not
intersecting W . Define C0.W / to be C.N100� .W // n C.W /.
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Lemma 4.4 Let c 2 C0.W /. Then

diamX .�bHc
.W //� 8� and diamX .�W .bHc//� 16�:

Proof Note that bHc is convex, and W is 4� –quasiconvex. Moreover, by Axiom (S2)
of � –spiderwebs, d.bHc ; W /�50� . The lemma then follows by applying Lemma A.12.

Lemma 4.5 Suppose c 2 C0.W /, and g 2Kc n f1g. Let 
 be a geodesic joining W
to gW . Then:

(i) The geodesic 
 intersects bHc in a subsegment of length at least 100� .

(ii) The geodesic 
 is contained in N6� .W /[N102� .bHc/[N6� .gW /.

Proof Let 
 be a geodesic joining w 2W to gw0 2 gW .

Now g�bHc
.W /D �bHc

.gW /. By Lemma 4.4, �bHc
.W / has diameter at most 8� . By

the very translating condition, dX .�bHc
.W /; �bHc

.gW // is at least .104 � 16/� . In
particular,

dX .�bHc
.w/; �bHc

.gw0// > 103�:

Using the second part of Lemma A.12, the geodesic 
 passes within 6� of both
�bHc

.W / and �bHc
.gW /. In particular there are points p and p0 on 
 at depth at least

.500� 6/� in the horoball containing bHc , and satisfying

dX .p; p
0/� .104� 16� 12/�:

Since geodesics in combinatorial horoballs are vertical except for up to three horizontal
edges (Lemma 2.22), 
 must intersect bHc in a subsegment of length at least

.104� 16� 12� 12/� � 3 > 100�;

establishing the first claim of the lemma.

Turning to the second claim, let �1 be a shortest geodesic joining W to bHc , and let
�2 be a shortest geodesic from bHc to gW . Note that each of �1 and �2 has length at
most 100� . Lemma A.13 implies that the part of 
 between w and bHc is contained
in N6� .W [ bHc/[N2� .�1/. Similarly the part of 
 between bHc and w0 is contained
in N6� .bHc [gW /[N2� .�2/. Thus


 �N6� .W [gW /[N102� .bHc/;

as required.
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Lemma 4.6 Let c; c0 2 C0.W / be distinct, and let g 2 Kc n f1g and g0 2 Kc0 n f1g.
Then dX .�W .gW /; �W .g0W //� 500� .

Proof By way of contradiction, suppose that g 2Kc n f1g and g0 2Kc0 n f1g satisfy
dX .�W .gW /; �W .g

0W // < 500� .

We claim that �W .gW / � �W .bHc/ and �W .g0W / � �W .bHc0/. Indeed, suppose
that x 2 �W .gW /. Then there is some y 2 gW with d.y;W / D d.y; x/. By
Lemma 4.5(i), any geodesic from x to y intersects bHc . Let z 2 bHc be on one such
geodesic. Then d.z;W /D d.z; x/, so x 2 �W .z/� �W .bHc/. This establishes that
�W .gW /� �W .bHc/; the argument that �W .g0W /� �W .bHc0/ is identical.

Thus we also have dX .�W .bHc/; �W .bHc0// < 500� . By Lemma 4.4, these projections
have diameter at most 16� . Since bHc and bHc0 are each distance at most 100� from W ,
we deduce that dX .bHc ; bHc0/ < 500� C 2.16�/C 2.100�/D 732� < 10

3� . Since the
horoballs are 103� –separated, this contradicts c ¤ c0 .

Since f1g is a � –spiderweb, Theorem 4.3 follows immediately from the following
proposition.

Proposition 4.7 Let W be a � –spiderweb. There is a � –spiderweb W 0 such that

(i) W 0 contains N10� .W /, and

(ii) KW 0 DKW � .
¨
c2E Kc/ for some finite subset E � C.W 0/ n C.W /.

Proof If C.N60� .W //D C.W / then W 0DN10� .W / is a � –spiderweb, and the other
condition trivially holds.

Therefore, suppose that C0.W / D C.N100� .W // n C.W / is nonempty. (We use the
100� –neighborhood instead of the 60� –neighborhood in order to ensure property (S2)
for the enlarged spiderweb W 0.) Note that C0.W / has finitely many KW –orbits, because
of item (S3) in the definition of � –spiderweb.

Let E be a set of representatives for the KW –orbits of C0.W /, let

KCW D

�
KW [

� [
c2E

Kc

��
and let W 0 be the union of all geodesics connecting pairs of points in the orbit
KCWN10�W . By Lemma A.10, W 0 is 2� –quasiconvex. We remark that Lemma 4.5(i)
(together with nontriviality of the Ni ) implies that C0.W /� C.W 0/.
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Our goal is now to prove that W 0 is a � –spiderweb and KCW DKW 0 .

Let
�W KW �

� ¨
c2E

Kc

�
!KCW

be the natural map. Clearly � is surjective. We establish (S4) in the definition of � –
spiderweb by showing that � is injective. At the same time, we obtain information about
geodesics between KCW –translates of W sufficient to establish (S2) in the definition of
a � –spiderweb.

Claim Let w;w0 2W , and let g 2KW � .
¨
c2E Kc/. Let 
 be a geodesic joining w

to �.g/w0 . Let H1 D
S
c2E

bHc . Then:

(i) The geodesic 
 lies in N34� .K
C

WW /[N130� .K
C

WH1/.

(ii) Let x 2 
 n N34� .K
C

WW /. Then the distance from x to KCWW is at most
depth.x/� 300� .

(iii) If g …KW , then �.g/w0 …W .

We complete the proof of the proposition, assuming the claim. As already noted,
Axiom (S1), quasiconvexity, follows from Lemma A.10.

We next show that Axiom (S2) holds. In fact, we show KCW .C.W /[E/D C.W 0/D
C.N50� .W 0//. The containments “�” are clear, so we are left to show that if some
horoball bHc satisfies dX .bHc ; W

0/ � 50� , then c 2 KCW .C.W /[E/. Let x 2 W 0

minimize the distance to bHc . The point x is on some geodesic joining points in
KCW : N10� .W /. It therefore lies within 12� of a geodesic joining points in KCW : W .
Translating everything by an element of KCW , we may assume that this geodesic has
one endpoint in W , as in the claim. Part (i) of the claim implies that x lies either in
a 46� –neighborhood of some KCW –translate of W , or in a 142� –neighborhood of
some KCW –translate k : bHc0 of bHc0 for some c0 2 E . In the first case, we conclude
that bHc has a KCW –translate meeting a 100� –neighborhood of W , implying that
c 2KCW .C.W /[E/. In the second case, we have d.bHc ; k : bHc0/ � 200� , implying
c D kc0 by 103� –separation of horoballs, and hence c 2KCW .E/.

The invariance of W 0 under KCW is immediate from the construction. Also, KCW DKW 0
because C.W 0/DKCW .C.W /[E/, so we get the first part of Axiom (S3). The second
part of Axiom (S3) follows from part (ii) of the claim.

Since � is automatically injective on KW , part (iii) of the claim shows � is injective,
establishing Axiom (S4), and showing W 0 is a � –spiderweb.
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Proof of claim We’ll prove the assertions of the claim by building a nice 100� –local
12� –tight quasigeodesic joining w to gw0 , and applying quasigeodesic stability. Since
g lies in a free product, it can be written g D g1 � � �gn where each gi is a nontrivial
element of some free factor. Without any loss of generality, we may assume that
g ¤ 1, and (rechoosing w0 if necessary) that gn … KW . We define certain prefixes
ki D g1 � � �gji

of g inductively as follows:

j1 D

�
1 if g1 …KW ;
2 if g1 2KW ;

jiC1 D

�
ji C 1 if gjiC1 …KW ;

ji C 2 if gjiC1 2KW :

Thus, for example, k1 D g1 if g1 … KW and k1 D g1g2 otherwise. We obtain
elements k1; : : : ; ks , where ks D g . These choices ensure that, if we define W0 DW
and Wi D kiW for i 2 f1; : : : ; sg, we always have Wi ¤Wi�1 . For each i 2 f1; : : : ; sg
choose a shortest geodesic Œqi�1; pi � from Wi�1 to Wi . This is a translate of a
segment joining W to �W for some � 2Kc n f1g, c 2 C0.W /. Lemma 4.5(i) implies
that Œqi�1; pi � has length at least 100� .

Note that qi�1 2 �Wi�1
.pi / and pi 2 �Wi

.qi�1/.

Set p0 D w , and qs D �.g/w0 . For each i 2 f0; : : : sg choose a geodesic Œpi ; qi �;
this geodesic lies in a 4� –neighborhood of Wi by quasiconvexity. When i … f0; sg,
we have pi 2 �Wi

.Wi�1/ and qi 2 �Wi
.WiC1/, so by Lemma 4.6, it has length at

least 500� .

Let ˛ be the broken geodesic Œp0; q0� � Œq0; p1� � � � Œps; qs�. We claim that ˛ is a 100� –
local 12� –tight path. Except possibly for the first and last segments, all the geodesic
subsegments of ˛ have length at least 100� , so tightness need only be verified on
concatenations of two of the geodesic subsegments. One of these segments always
connects a point to a closest-point projection in some Wi which contains both endpoints
of the second segment. Since Wi is 4� –quasiconvex, we can apply Lemma A.15 to
conclude that this concatenation of two subsegments is 12� –tight.

We can now apply Lemma A.16, with C D 12� , to conclude that any geodesic 
 with
the same endpoints as ˛ is Hausdorff distance at most 28� from ˛ . In particular, such
a geodesic ˛ does not lie in a 4� –neighborhood of W , so �.g/w0 …W and part (iii)
of the claim is established.

To establish part (i), we note that ˛ lies in N6� .K
C

WW /[N102� .K
C

WH1/ by applying
Lemma 4.5(ii) to the subsegments passing between the Wi . It follows that any geodesic
from w to �.g/w0 lies in N34� .K

C

WW /[N130� .K
C

WH1/.

Geometry & Topology, Volume 23 (2019)



2956 Daniel Groves, Jason Fox Manning and Alessandro Sisto

To establish part (ii), let x lie on 
 . Then x lies within 28� of some point x0 on ˛ . If
x0 2 Œpi ; qi � for some i , then dX .x;KCWW / � 30� . Otherwise, x0 2 Œqi ; pi �, which
is entirely contained in the 100� –neighborhood of some bHc . In particular, the depth
of x0 is at least 400� C d.x;KCWW /.

This completes the proof of Proposition 4.7.

We have already noted that Theorem 4.3 follows immediately from Proposition 4.7, so
we have proved Theorem 4.3 and completed the construction of � –spiderwebs.

The following result follows immediately from the construction of spiderwebs and may
be useful in future applications.

Theorem 4.8 Suppose that .G;P/ is a relatively hyperbolic pair, let X be the cusped
space for .G;P/ and let C be the set of parabolic fixed points in @X .

For all sufficiently long fillings, the following holds. Let K be the kernel of the filling.
There is a set T � C meeting each K–orbit exactly once, so that

K D
¨
t2T

.K \Stab.t//;

and each subgroup K \Stab.t/ is conjugate in G to a unique filling kernel Ni C Pi .

Proof Fix a long enough filling

G!G.N1; : : : ; Nm/

so that the very translating condition above holds (this condition holds for sufficiently
long fillings by Lemma 4.1).

We then choose the construction of spiderwebs fWigi2N as in Theorem 4.3, and specif-
ically the family constructed via Proposition 4.7. By Theorem 4.3 we have, for each i ,

K D
[
i

KWi
;

and by Proposition 4.7 we know that

KWiC1
DKWi

�

� ¨
c2Ei

Kc

�
for some finite Ei � C , where Kc is a conjugate of some filling kernel Nj . Thus

(1) KWi
D

¨
c2 xEi

Kc ; where xEi D
iG

jD1

Ej :
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Since K is an increasing union of the subgroups KWi
, we have, for T D

S
i
xEiD

F
i Ei ,

K D
¨
c2T

Kc :

It remains to show that T meets each K–orbit in C exactly once. Since
S
i Wi DX ,

it is clear that each K–orbit of element of C is eventually included in one of the Ei .
Suppose by contradiction that there are k 2K and c1; c2 2 T such that kc1 D c2 . Let
j be chosen large enough that c1; c2 2 xEj and k 2 KWj

. Then the subgroups Kc1

and Kc2
are conjugate inside KWj

, contradicting the free product structure (1).

In [21, Theorem 7.9] it is proved that the kernel is a free product of conjugates of the
filling kernels Ni . The only new part of the above result is to identify the indexing set
for the free product as being in bijection with the K–orbits of C . We believe that this
description of the indexing set also follows from the construction of windmills in [21],
and also that this description is surely known by the authors of [21].

5 Approximating the boundary of a Dehn filling

The statements in this section form the core of our new method for understanding the
boundary of a Dehn filling. In this section we give statements in the absolute and
relative settings, but only use (or indeed prove) the absolute statements in the sequel.
The careful reader will see that the relative statements are strictly easier to establish.

The absolute (hyperbolic) statements require some further constructions, which we
give in the next subsection.

5.1 Truncated quotients

Let .G;P/ be relatively hyperbolic. In subsequent sections we will focus on (long)
filling kernels fKi C Pig with Pi=Ki hyperbolic for each i . We call such fillings
hyperbolic fillings. Since we do not require anything about the hyperbolicity constant
of (a Cayley graph of) Pi=Ki , we do not get a uniform hyperbolicity constant for
quotients of (a given Cayley graph of) G by the filling kernel. We overcome this by
taking truncated quotients as defined below. Having a uniform hyperbolicity constant
regardless of the long hyperbolic filling will be crucial for us. Recall that in the case
that Pi=Ki is (virtually) Z, the corresponding truncated horoball can be thought of as
(the lift to the universal cover of) a Margulis tube, as discussed in Section 2.4.
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Let K be the normal closure in G of
S
i Ki . For a sufficiently long filling, it is the

case that the intersection Kc of K with a horoball stabilizer is conjugate to some Ki ;
see Theorem 2.14(i). If we are assuming that the Pi=Ki are hyperbolic, this means
that Kc acts on each “horosphere” HDc � Hc with quotient a Gromov hyperbolic
graph. We saw in Section 2.4 that for sufficiently deep horospheres, the quotient is a
hyperbolic graph with uniform constant.

Fix a cusped space X for .G;P/. In Section 4 we constructed, for sufficiently long
fillings G! xG DG.K1; : : : ; Kn/, a sequence Wk �WkC1 � � � � �X of spiderwebs
(Definition 4.2), each of which is stabilized by a subgroup KWj

of the kernel of G! xG .

Recall that in this section we are assuming that all the quotients Pi=Ki are hyperbolic
groups. The universal constant �0 comes from Corollary 2.20.

Definition 5.1 Let W be a � –spiderweb in X associated to the filling kernels
fKi C Pig. The truncated quotient TW associated to W is obtained in the following
way. As in Section 2.4, for each horoball center c , we let tc be the minimal integer
such that the quotient by Kc of the horosphere at depth tc in Hc satisfies Gromov’s
4–point condition Q.5/, and note that Corollary 2.20 then implies that the quotient
HŒ500�;tc�c =Kc is �0–hyperbolic (where HŒ500�;tc�c is that part of the horoball Hc
between depth 500� and tc ). Let †c denote the horosphere at depth tc , centered
at c . The group KW acts properly on X n

S
fH.tc ;1/c j c 2 C.W /g, and we let

TW be the quotient by this action. We similarly define T xG to be the quotient of
X n

S
fH.tc ;1/c j c 2 Cg by K .

The points coming from W in TW form a compact subset. The quotient T xG is
quasi-isometric to xG .

5.2 Statements for hyperbolic fillings

The next results are some of the main ingredients of the proof of Theorem 1.2.

The following theorem says that, for W a � –spiderweb associated to a long filling,
TW is hyperbolic and visible (as in Definition 3.4) with uniform constants, and it
describes the topology of its boundary. The objects TW and †c are defined in
Definition 5.1. By the limit set of a subset A of a hyperbolic space X , we mean the set
of points in @X which are limits of points in A. We denote this set in @X by ƒ.A/. If
H acts on X , then ƒ.Hx/ is independent of x 2X , so we set ƒ.H/Dƒ.Hx/.
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Theorem 5.2 Let .G;P/ be relatively hyperbolic with cusped space X . Then there
exist � and ı with the following properties. For all sufficiently long hyperbolic
fillings G! xG DG.N1; : : : ; Nn/ with Ni infinite for all i , and any � –spiderweb W
(see Definition 4.2) associated to the filling , we have:

(i) The truncated quotient TW is ı–hyperbolic and ı–visible , and so is T xG .

(ii) If F is the union of subsets of @TW of the form ƒ.†c=Kc/ for c 2 C.W /,
then there exists a regular covering map .@X nƒ.KW //! @TW nF with deck
group KW .

(iii) @TW nF is open and dense in @TW .

The following theorem describes the boundary of the quotient group as a limit of
boundaries of TWi

, where the � –spiderwebs Wi form an exhaustion of the cusped
space. Recall the notion of weak Gromov–Hausdorff convergence from Section 3.

Theorem 5.3 Let .G;P/ be relatively hyperbolic. Then there exist � and � such that
for all sufficiently long hyperbolic fillings G! xG DG.N1; : : : ; Nn/ with Ni infinite
for all i , the following hold :

(i) For any � –spiderweb W , as in Theorem 5.2, associated to the filling , there is a
visual metric �W on @TW based at the image of 1 with parameters � and � .

(ii) If W1 � W2 � � � � is a sequence of � –spiderwebs with
S
Wj D X , then

the sequence f.@TWj
; �Wj

/g weakly Gromov–Hausdorff converges to a visual
metric on @T xG .

The following theorem guarantees that the boundaries of the TW are linearly connected
with uniform constant. This is important in order to be able to apply Lemma 3.9.

Theorem 5.4 Let .G;P/ be relatively hyperbolic and suppose that the Bowditch
boundary @X (when endowed with any visual metric) is linearly connected. Then
for all sufficiently long hyperbolic fillings G ! xG D G.N1; : : : ; Nn/ with xG one-
ended and Ni infinite for each i , the following holds: There exists L such that, for
any � –spiderweb W with parameter � as in Theorem 5.2, .@TW ; �W / is L–linearly
connected, where �W is the visual metric from Theorem 5.3.

Note that L depends on the filling, but then is uniform over � –spiderwebs associated
to that filling. The constants ı , � and � do not depend on the (long) filling.
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5.3 Statements for general fillings

For a general (not necessarily hyperbolic) long Dehn filling, we can make similar
statements as above for the Bowditch boundary of . xG;P/. We use the following
terminology. For W a spiderweb associated to a Dehn filling, let XW D X=KW . If
K is the kernel of the filling map G ! xG , let X xG D X=K , and note that, for long
fillings, X xG is a cusped space for the pair . xG;P/. In particular, @. xG;P/D @X xG .

Theorem 5.5 Let .G;P/ be relatively hyperbolic with cusped space X . Then there
exist � and ı with the following properties. For all sufficiently long fillings G! xG D
G.N1; : : : ; Nn/ with Ni infinite for all i , and any � –spiderweb W associated to the
filling , we have:

(i) The quotient XW is ı–hyperbolic and ı–visible , and so is X xG .

(ii) If F � @XW consists of the points ƒ.Hc=Kc/ for c 2 C.W /, then there exists
a regular covering map .@X nƒ.KW //! @XW nF with deck group KW .

(iii) Let F iso � F consist of those points which are isolated in @XW (so they come
from finite index Ni C Pi ). Then @XW nF is open and dense in @XW nF iso .

Theorem 5.6 Let .G;P/ be relatively hyperbolic. Then there exist � and � such that
for all sufficiently long fillings G! xG D G.N1; : : : ; Nn/ with Ni infinite for all i ,
the following hold :

(i) For any � –spiderweb W as in Theorem 5.5 associated to the filling there is a
visual metric �W on @XW based at the image of 1 with parameters � and � .

(ii) If W1 � W2 � � � � is a sequence of � –spiderwebs with
S
Wj D X , then

the sequence f.@XWj
; �Wj

/g weakly Gromov–Hausdorff converges to a visual
metric on @X xG .

Theorem 5.7 Let .G;P/ be relatively hyperbolic and suppose that the Bowditch
boundary @X (when endowed with any visual metric) is linearly connected. Then for
all sufficiently long fillings G! xGDG.N1; : : : ; Nn/ with @. xG;P/ linearly connected
and Ni infinite for each i , the following holds: There exists L such that for any
� –spiderweb W with parameter � as in Theorem 5.5, .@XW ; �W / is L–linearly
connected , where �W is the visual metric from Theorem 5.6.
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6 Proofs of approximation theorems for hyperbolic fillings

In this section we give proofs of the hyperbolic versions of the theorems stated in the
last section, namely Theorems 5.2, 5.3 and 5.4. No other results from either this section
or the last are used in the sequel.

Assumption 6.1 (Choice of � ) We fix once and for all a choice of � so that:

(i) � � 100.

(ii) � is a hyperbolicity constant for the cusped space X , and X is also � –visible.

(iii) � � �0 , where �0 is as in Corollary 2.20.

From now on we drop “� ” when talking about spiderwebs.

6.1 Hyperbolicity and visibility of the truncated quotient

We now prove Theorem 5.2(i), which states that the truncated quotient TW is ı–
hyperbolic and ı–visible, and so is T xG , for some constant ı which is independent of
the (long) filling and the spiderweb W .

Both ı–hyperbolicity and ı–visibility are proved using a kind of local-to-global prin-
ciple. In the case of hyperbolicity, this is the Coarse Cartan–Hadamard theorem of
Delzant and Gromov [22]. We use the formulation of Coulon in [19]. Say that a space is
r –simply connected if the fundamental group is normally generated by free homotopy
classes of loops of diameter less than r .

Theorem 6.2 (coarse Cartan–Hadamard [19, Theorem A.1]) Let � � 0, and let
R� 107� . Let M be a geodesic space. If every ball of radius R in M is �–hyperbolic
and if M is 10�5R–simply connected, then M is 300�–hyperbolic.

The following is our local-to-global principle for visibility. (Recall from Definition 3.4
that a space is visible if, roughly speaking, geodesics can be coarsely prolonged to
geodesic rays.)

Proposition 6.3 (Local visibility implies global visibility) For every � � 1, the
following holds. Let M be a proper �–hyperbolic space and suppose that for all
p; q 2M with d.p; q/� 100� there exists a geodesic Œp; q0� of length at least 200�
with d.q; Œp; q0�/� � . Then M is 5�–visible.
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Proof Let Œa; b� be a geodesic segment. We will define a sequence of points fpigi2Z�0

so that (i) p0 D a and b 2 fp1; p2g, (ii) the Gromov products .pi�1; piC1/pi
are

small, and (iii) the distances dM .piC1; pi / are large for i > 0. A standard argument
(eg [3, Lemma 4.9]) shows that the concatenations of geodesics Œp0; p1� � � � Œpn�1; pn�
lie close to any geodesics Œp0; pn�. These geodesics (sub)converge to a geodesic ray
passing near b .

Two cases must be distinguished. If dM .a; b/ < 50� , then let p1 D b . Now choose a
geodesic �2 of length 200� beginning at a and passing within � of b . Choose p2 to
be the point on �2 at distance 50� from b .

The second case is when dM .a; b/� 50� . In this case, choose p1 to be the point on
Œa; b� at distance 50� from b and let p2 D b .

We can inductively suppose that points p0; : : : ; pi�1 have been chosen, and that
dM .pi�1; pi�2/D 50� . We apply the hypothesis of the lemma with p D pi�2 and
q D pi�1 to find a geodesic �i of length 200� beginning at pi�2 , passing within �
of pi�1 . The geodesic �i contains a point at distance 50� from pi�1 and distance at
least 98� from pi�2 . We choose pi to be such a point of �i .

We thus have a sequence of points p0; p1; : : : such that dM .pi ; piC1/ D 50� and
dM .pi ; Œpi�1; piC1�/<� for each i >0. A standard argument shows the concatenation
Œp0; p1� � � � Œpn�1; pn� lies in a 5�–neighborhood of Œp0; pn�. In particular, the point b
lies within 5� of any geodesic Œp0; pn�. Because M is proper, a sequence of geodesics

n D Œp0; pn� must subconverge to a geodesic ray 
 which also passes within 5� of
the point b .

We want to consider a long hyperbolic filling of .G;P/, and the truncated partial
quotient TW associated to a spiderweb for the kernel of such a filling (see Definition 5.1).
In particular, we will show it is ı–hyperbolic and ı–visible, where ı D 1500� , thus
establishing Theorem 5.2(i).

Claim 6.3.1 TW is 100� –simply connected.

Claim 6.3.2 For all sufficiently long hyperbolic fillings G! xG , and any associated
spiderweb W , the following holds. Let B be a ball of radius 107� in TW or T xG . Then
B is isometric to a ball in either X or HŒ500�;tc�c =Kc for some c 2 C . Moreover, the
first case holds whenever B is not entirely contained in a horoball.
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Before proving Claims 6.3.1 and 6.3.2, we argue that together they imply hyperbol-
icity and visibility of TW (the argument for T xG is identical). Since both X and
HŒ500�;tc�c =Kc are � –hyperbolic (see Corollary 2.21), it follows immediately from the
two claims and Theorem 6.2 that TW is 300� –hyperbolic.

We now check that TW is 1500� –visible using Proposition 6.3 with � D 300� (the
argument for T xG is identical). Consider a geodesic Œp; q� in TW with d.p; q/ �

100� D 3 �104� . We need to find a geodesic Œp; q0� of length at least 6 �104� and such
that d.q; Œp; q0�/ � � D 300� . If p is contained in a ball B in TW of radius 107�
isometric to a ball in X , then the required geodesic of length 6 � 104� exists since
X is � –visible. If not, a ball of radius 107� centered at p lies in some horoball
HŒ500�;tc�c =Kc . In particular, p lies at depth at least 107� , and Œp; q� lies in a horoball
HŒ10

6�;tc�
c =Kc . Lemma 2.23 gives a geodesic Œp; q0� passing within 2�0 < � D 300�

of q . By Proposition 6.3, TW is 5� D 1500� –visible.

Proof of Claim 6.3.1 Note that X is � –hyperbolic. It follows immediately from
[12, Lemma III.H.2.6] that X is 16� –simply connected, which is to say that �1.X/
is normally generated by free homotopy classes of loops of length at most 16� .

Now �1.XW =KW / is normally generated by free homotopy classes of

(a) the images of the loops which normally generate �1.X/, and

(b) loops representing a choice of generators of KW .

We can choose loops which represent generators of KW to each lie within a single
horoball at depth 0.

The subgraph TW of X=KW agrees with X=KW at depth less than tc (for each given
horoball), so the generators of �1.TW / can be taken to be a collection of loops which
are either

(a) images of loops representing generators of �1.X/ of length at most 16� , or

(b) peripheral loops, entirely contained in a truncated horoball.

Any path in a horoball can be pushed across pentagons and squares to maximal
depth. Since at maximal depth the horoball is �0–hyperbolic, another application
of [12, Lemma III.H.2.6] implies that TW is 100� –simply connected, as required.
This proves Claim 6.3.1.
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Proof of Claim 6.3.2 We suppose that G ! xG is a long enough filling to apply
Corollary 2.25 with C D 1010� and to apply Lemma 2.16 with R D 109� . In
particular, we have tc � 1010� for all c 2 C . We fix an associated spiderweb W , and
prove the claim for TW , the proof for T xG being almost identical.

Let B 0 be a ball with the same center as B and radius 108� . Notice that geodesics
connecting points in B are contained in B 0 . We distinguish two cases.

In the first case, B 0 is disjoint from G=KW , the image of the Cayley graph in X=KW .
In this case, B is isometric to a ball in HŒ500�;tc�c =Kc .

In the second case, B 0 intersects G=KW , say at the image of p 2G . Since tc � 1010� ,
B misses the truncation completely, and is isometric to a ball yB in X=KW with
center at depth � 108� . This ball yB is entirely contained in the image of a ball B 0

of radius 109� centered on a vertex of the Cayley graph of G contained in X . Using
Lemma 2.16, this ball embeds isometrically into X=KW , so B is actually isometric to
a subset of B 0 �X . This proves Claim 6.3.2.

As we explained above, these two claims imply Theorem 5.2(i), so the proof of this
theorem is complete.

Assumption 6.4 (Choice of ı ) For the remainder of this section, ı denotes the
constant in Theorem 5.2(i); ie ı D 1500� .

6.2 Topology of the boundary of the truncated quotient

In this section, we prove part (ii) of Theorem 5.2 about the existence of a covering
map .@X nƒ.KW //! @TW nF with deck group KW (for an appropriate set F ). To
this end, we fix for this subsection a hyperbolic Dehn filling of .G;P/ with associated
� –hyperbolic cusped space X , and make the following assumption.

Assumption 6.5 The Dehn filling is sufficiently long that:

(i) If W is a spiderweb associated to the filling, then the truncated quotient TW is
ı–hyperbolic and ı–visible (Theorem 5.2(i)).

(ii) Every truncation depth tc is at least 1010� (Corollary 2.25).

(iii) For any x 2X and any k 2K n f1g, any geodesic Œx; kx� meets some horoball
at depth D � 105� (Lemma 2.26).

We also fix a spiderweb W �X associated to the Dehn filling we have chosen.

Geometry & Topology, Volume 23 (2019)



Boundaries of Dehn fillings 2965

Definition 6.6 The saturated spiderweb SW is W [
�S

c2C.W /
bHc

�
. The truncated,

quotiented version xSW is the intersection of SW =KW with TW �X=W .

6.2.1 Quasiconvexity and limit sets

Lemma 6.7 The saturated spiderweb SW is 6� –quasiconvex in X .

Proof If A is a K–quasiconvex set, and W is a collection of L–quasiconvex sets
each of which has nonempty intersection with A, an easy quadrangular argument shows
that A[

S
W is .maxfK;LgC 2�/–quasiconvex.

The spiderweb W is 4� –quasiconvex, and the horoballs bHc are 0–quasiconvex, so
the result follows.

Since X ! X=KW is a covering map and SW is KW –equivariant, we have the
following corollary.

Lemma 6.8 SW =KW is 6� –quasiconvex in X=KW .

Next we show that the quasiconvexity persists after we truncate.

Lemma 6.9 xSW is 3ı–quasiconvex in TW .

Proof Suppose that p; q 2 xSW . Let 
 be a X=KW –geodesic between p and q .
According to [29, Lemma 3.10], we may assume that 
 intersects any horoball in a
path which consists of at most two vertical segments and a single horizontal segment.
We form a path x
 in TW between p and q as follows. Any part of 
 which is not
contained in TW lies in a truncated part of a horoball H . Such a segment of 
 consists
of two vertical segments (of length at least tc ) and a single horizontal segment. Replace
any such subsegment below depth tc by a geodesic at depth tc in the truncated horoball.

Applying Lemma 6.8 to 
 and noting that x
 n
 lies entirely in xSW , we see that x
 lies
in a 6� –neighborhood of xSW .

We claim that x
 is a 10ı–local geodesic in TW . At depths less than tc � 10ı this is
clear, since at such depths the spaces X=KW and TW , and the paths 
 and x
 , are
locally identical. Thus suppose that � is a subsegment of x
 of length 10ı that has
at least one point at depth greater than tc � 10ı . Since tc� 10ı (Assumption 6.5(ii)
above), this subsegment lies entirely inside a single truncated horoball.
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Let a and b be the endpoints of � . If � were part of the original path 
 then since
distances in TW are greater than those in X=KW , � remains a geodesic in this case.

We are left with the possibility that � is not part of the original path 
 . Suppose that �0
is a TW –geodesic between a and b , chosen to satisfy the conclusion of Lemma 2.22.
In particular, �0 consists of at most two vertical segments and a single horizontal
segment, either at depth tc or having length at most 3. It is clear that the only way �0
could be shorter than � is if �0 does not intersect depth tc , since in every other case
the only possible difference between � and �0 is the choice of geodesic at depth tc .
However, if �0 does not intersect depth tc , it must be that neither a nor b is at depth tc ,
and the X=KW –geodesic between a and b goes beneath depth tc (in order that p be
truncated). Lemma 2.22 ensures that any horizontal segment in �0 has depth at most 3.
But then it is clear that there would not have been truncation, since �0 is then an
X=KW –geodesic as well. Thus �0 cannot be shorter than � and we have argued that x

is a 10ı–local geodesic, as required. By [12, Theorem III.H.1.13], any geodesic joining
p to q lies within 2ı of such a path, and thus lies in the .2ıC 6�/–neighborhood
of xSW . Since 6� < ı , the lemma is proved.

Lemma 6.10 ƒ.SW /Dƒ.W /Dƒ.KW /.

Proof The group KW stabilizes W , hence ƒ.KW / � ƒ.W /, and W � SW , so
ƒ.W /�ƒ.SW /. It remains to show ƒ.SW / �ƒ.KW /. Let fxig be a sequence of
points in SW converging to some x 2 @X . We can assume that either (i) they are
all contained in G , or (ii) each is contained in a horoball bHgic for some gi 2 KW
(there are finitely many KW –orbits of horoballs intersecting W ). In the first case,
x 2 ƒ.KW / because KW acts cocompactly on W \G . In the second case, up to
passing to a subsequence one of the following holds: either all gic coincide, or all gic
are pairwise distinct.

First suppose that all gic coincide. Recalling that c is the point at infinity of bHc , we
have x D gic , and gic 2ƒ.KW / because Kgic <KW is infinite.

Finally, suppose that all gic are pairwise distinct. In this case it is easy to see that x
coincides with the limit of the gi , hence x 2ƒ.KW / as required.

We next describe the limit set of xSW . Recall that the set F is the union of the limit
sets ƒ.†c=Kc/ for c 2 C.W /.

Lemma 6.11 ƒ. xSW / is F .

Geometry & Topology, Volume 23 (2019)



Boundaries of Dehn fillings 2967

Proof Note that xSW is finite Hausdorff distance from the union
S
c2C.W /†c=Kc ,

which (choosing representatives of KW –orbits of horoball centers c ) is actually a finite
union of quasiconvex sets of the form †c=Kc . The limit set ƒ. xS/ is thus equal to the
union of the limit sets of the †c=Kc in @TW , which is F .

6.2.2 The action of KW on SW and X

Definition 6.12 The frontier of SW is the set of vertices in SW which are joined by
an edge to a point in X nSW .

Observe that by construction every vertex in the frontier of SW has depth at most 500� .

Lemma 6.13 Suppose that x 62 SW or x belongs to the frontier of SW . Then for any
k 2K n f1g we have d.x; kx/ > 100ı .

Proof Consider x 62 SW . Then any y 2 �SW
.x/ is contained in the frontier of SW .

By Assumption 6.5(iii), any geodesic Œy; ky� must go at least 105� into some horoball.
Since the depth of y is at most 500� , we have d.y; ky/� 2 �.105�500/� . The broken
geodesic Œx; y�[ Œy; ky�[ Œky; kx� is 2� –close to a geodesic Œx; kx�, from which it
quickly follows that d.x; kx/ > 1:5 � 105� D 100ı , as required.

Corollary 6.14 Let x be a point in X nN100ı.SW /. Then the map from X to X=KW
restricts to an isometry from the 50ı–ball in X around x to a 50ı–ball in TW .

6.2.3 The covering map Let �W X!X=KW be the quotient map. We define a map

‚W .@X nƒ.KW //! .@TW / nF

as follows. Represent � 2 @X nƒ.KW / by a 50ı–local geodesic ray 
 W Œ0;1/!X

starting at 1. (Note that there is a geodesic ray Hausdorff distance at most 3� from 
 ;
we use local geodesic rays because they occur naturally in the proof anyway.) Let
R
 be the smallest number such that d.
.t/; SW / � 100ı for all t � R
 . Since
� …ƒ.KW /Dƒ.SW / (see Lemma 6.10), and SW is quasiconvex, there is such an R
 .
If 
 is actually a geodesic, Lemma A.12 can be used to show that 
 makes linear
progress away from SW after time R
 :

(2) 100ı� 22� C t < d.
.R
 C t /; SW /� 100ıC t:

Similar statements can be made for a 50ı–local geodesic, using the fact it is quasi-
geodesic and close to a geodesic, and/or replacing 100ı with any quantity sufficiently
large with respect to � .
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Define x
.t/ D �.
.t C R
 //. The image x
 of the ray in X=KW lies entirely in
TW nN100ı. xSW /. It follows from Corollary 6.14 that x
 is a 50ı–local geodesic in
the ı–hyperbolic space TW . In particular, Œx
� represents a point of .@TW / nF , and
we define ‚.�/ to be this point.

Lemma 6.15 The map ‚ is well-defined and continuous.

Proof Suppose 
 and f
igi2N are 50ı–local geodesics in X starting at 1, so that
Œ
i �! Œ
� in @X . We show that ‚ is well-defined and continuous by showing that
Œx
i �! Œx
� in @TW . (To deduce the map is well-defined, take a constant sequence.)

If all the rays are geodesic, they stay within � of each other on larger and larger initial
subsegments. Using the inequality (2) above, it can be shown that for all but finitely
many i , we have d.
i .R
i

/; 
.R
 //� 24� . If they are only 50ı–local geodesics, we
can use the fact that they are 3� –close to geodesics to get the bound

d.
i .R
i
/; 
.R
 //� 104� < ı

for all but finitely many i . It follows that the rays x
 and fx
ig all start within ı of one
another. Moreover, for any large t , all but finitely many x
i pass within 7� of x
.t/. It
follows that the equivalence classes fŒx
i �g converge to Œx
�, as required.

Proposition 6.16 The map ‚ is a covering map. The preimage of any given point is a
KW –orbit in @X .

Proof Let x� 2 .@TW / nF , and let x
 be a geodesic ray in TW from x1 to x� . For t0
sufficiently large there exists an open neighborhood xU � .@TW / nF of x� with the
property that any 50ı–local geodesic from N100ı. xSW / to xU passes within 10ı of
xb D x
.t0/.

Let fbggg2KW
be the preimage of xb , with indexing so that gbhDbgh for all g; h2KW .

Let Rg be the set of all lifts to X starting at bg of 50ı–local geodesic rays in TW
starting at xb and limiting to xU (notice that TW is a subset of X=KW which is covered
by X ). Since xSW is quasiconvex, and xb starts away from N100ı. xSW /, we can apply
Corollary 6.14 to imply that all such lifts are 50ı–local geodesic rays. Let Ug be the
set of all limit points in @X of elements of Rg .

Clearly, for any g; h 2KW we have gUh D Ugh . We now have to prove:

(a) For each distinct g; h 2KW , we have Ug \Uh D∅.
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(b) For each g 2KW , Ug is open and ‚jUg
is a homeomorphism onto xU .

(c) ‚�1. xU/D
S
g2KW

Ug .

To show item (a), notice that any 
 2Rg has the property that the diameter of �SW
.
/

is at most 20ı . For g and h distinct elements of KW , the distance between �SW
.bg/

and �SW
.bh/Dhg

�1�SW
.bg/ is at least 100ı by Lemma 6.13. In particular, elements

of Rg cannot be asymptotic to elements of Rh , so Ug \Uh D∅.

Let us prove that Ug is open. Let Œ˛� 2 Ug . We may suppose ˛ 2Rg , so ˛ is the lift
of x̨ starting at bg and x̨ is a 50ı–local geodesic starting at xb and limiting to a point
in xU . Since xU is open, some standard basic neighborhood of Œx̨� is contained in xU .
In particular, for t chosen sufficiently large, if � is a 50ı–local geodesic starting at xb
and passing within 10ı of x̨.t/, then Œ�� 2 xU .

Now consider a standard neighborhood V of Œ˛� 2 @X , the set of points represented
by 50ı–local geodesic rays starting at bg and passing within 10ı of ˛.t/. By the
previous paragraph, all such rays are elements of Rg , so V � Ug . Since Œ˛� was
arbitrary, this proves Ug is open.

Let us prove that ‚jUg
is injective. Take 
1; 
2 2Rg with distinct limit points in @X .

Then for some smallest t1 , d.
1.t1/; 
2.t1// � 20ı , which implies that the same
holds for their projections to TW (see Corollary 6.14), which in turn implies that such
projections have distinct limit points.

Surjectivity of ‚jUg
onto xU and continuity of the inverse are clear from the definition

via lifts. We have proved item (b).

We are left to prove that for any ray ˛ in X starting at 1 with ‚.˛/ 2 xU we have
˛ 2Ug for some g . Let ˛0 be the subray of ˛ that intersects N100ı.SW / at its starting
point only. By the defining property of xb , the projection x̨0 of ˛0 to TW passes within
10ı of xb , which implies that ˛0 passes within 10ı of bg for some g 2 KW . Any
geodesic ray starting at bg and asymptotic to ˛ belongs to Rg because its projection
to TW is asymptotic to x̨0 , which limits to xU . Hence, the limit point of ˛ is in Ug , as
required. This completes the proof of Proposition 6.16.

Proof of Theorem 5.2(ii) We defined a map ‚W .@X/ nƒ.KW /! .@TW / n F in
Section 6.2.3 and proved that it is a covering map in Proposition 6.16. The fact
that this covering is regular with deck group KW may be seen as follows. For any
k 2 KW and � 2 .@X nƒ.KW // we have ‚.k�/ D ‚.�/ since we can represent �
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and k� by rays 
 and k
 , so that the definition of ‚ and Lemma 6.15 clearly give
‚.�/D‚.
/D‚.k
/D‚.k�/. Hence, KW acts by deck transformations, and by
the description of preimages of points given by Proposition 6.16, it acts transitively on
preimages of points. Hence, the covering is regular with deck group exactly KW .

6.2.4 Connectedness of @TW The following result is Theorem 5.2(iii).

Lemma 6.17 For any spiderweb W associated to a sufficiently long filling, @TW nF
is open and dense in @TW .

Proof We have already remarked that F is a finite union of closed sets, so @TW nF
is open.

More specifically, the set F is a finite disjoint union of closed sets F1; : : : ;Fk , where
each Fi is the limit set of some †c=Kc . Since F is a finite union of closed sets, it
suffices to show that Fi has dense complement for each i .

Let � 2 Fi be represented by a geodesic ray 
 . By quasiconvexity, we may assume
that some tail of 
 is contained in the truncated image of bHci

. Moreover, we may
assume this tail is entirely horizontal. For N 2Z very large, we form a new, 50ı–local
geodesic y
N which agrees with 
 up to t DN , and then changes to a vertical (depth-
decreasing) path until it leaves the truncated image of bHci

. The terminal vertical
subsegment of y
N has length tc (which is large compared to ı ). Using ı–visibility,
y
N is in a controlled neighborhood of a geodesic ray 
N which fellow-travels 
 for
time N , but tends to a point not in the limit set of Fi . It follows that � is a limit of
points in @TW nFi .

We have now proved Theorem 5.2.

Corollary 6.18 Suppose that W is associated to a sufficiently long filling and that
@X nƒ.KW / is connected. Then @TW is connected.

Proof Theorem 5.2(ii) implies that @TW nF is covered by @X nƒ.KW /. Thus con-
nectedness of @TW nF follows from connectedness of @X nƒ.KW /. By Lemma 6.17,
@TW nF is open and dense in @TW . It follows that @TW is connected.

6.3 Choosing the visual metric

We have already proved (Theorem 5.2(i)) that, for long fillings, the TW are all ı–
hyperbolic, for a fixed ı > 0. Fix � D 1=.10ı/. Fix � D �.�; ı/ as in Proposition 2.3.
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Fix a spiderweb W with parameter � associated to a filling sufficiently long that
TW is ı–hyperbolic and ı–visible. We denote the image in TW of 1 2 X by x1.
Proposition 2.3 implies that there exists a visual metric �W . �; �/ on @TW based at x1
with parameters � and � . This proves Theorem 5.3(i).

6.4 Convergence

In this subsection, we prove Theorem 5.3(ii), which states that the visual metrics
constructed in the last subsection weakly Gromov–Hausdorff converge to a visual
metric on @T xG .

Proof of Theorem 5.3(ii) Using Proposition 3.5, it is enough to show that the TWj

strongly converge to T xG , a space on which xG acts geometrically. Fix any R � 0 and
let j be large enough that Wj contains the ball B of radius 2R in X , and moreover
whenever x; y 2B are in the same K–orbit then they are in the same KWj

–orbit. The
latter property can be arranged since there are only finitely many k 2K such that there
exists a x 2 B with kx 2 B .

We will show that there exists a locally isometric bijection b that preserves lengths
of paths from the ball Bj of radius 2R around x1 in TWj

to the ball xB of radius 2R
around x1 in T xG . Such a bijection restricts to an isometry on the corresponding balls of
radius R , proving strong convergence since R was arbitrary.

Before defining b , notice that there are covering maps

ĵ W X n
[
fH.tc ;1/c j c 2 C.Wj /g ! TWj

and ˆW X n
[
fH.tc ;1/c j c 2 Cg ! T xG

(the domains of the two covering maps are obtained from X by removing different
sets of horoballs).

The map b is defined by b.x/Dˆ.ˆ�1j .x//. In order to show that it is well defined
we have to show that ˆ�1j .x/ is contained in the domain of ˆ and that any point in
ˆ�1j .x/ has the same image under ˆ. In order to show the former property notice
that, since we can lift geodesics from TWj

to X n
S
fH.tc ;1/c j c 2 C.W /g to paths of

the same length, Bj is contained in ĵ .B/, so that ˆ�1j .x/�KWj
B �W . Hence, if

by contradiction we had some y 2ˆ�1j .x/\H.tc ;1/ for some c 2 C , then we would
actually have c 2 C.W /, but clearly ˆ�1j .x/\H.tc ;1/ in that case. The latter property
just follows from the fact that if two points of X are in the same KW –orbit then they
are in the same K–orbit.
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From the fact that b is well-defined and the fact that ˆ and ĵ are covering maps
it follows that b is a local isometry. Injectivity of b follows from the fact that if
two points p and q of KWj

B are in the same K–orbit (ie ˆ.x/Dˆ.y/) then they
are in the same KWj

–orbit (ie ĵ .x/D ĵ .y/). Surjectivity of b follows from the
following argument. If y lies in xB , then we can lift a geodesic from x1 to y to a path z

in X n

S
fH.tc ;1/c j c 2 Cg of length at most 2R starting at 1. If x is the endpoint

of ĵ ı z
 , then it is readily checked that b.x/ D y . The proof that b is a locally
isometric bijection is complete.

We have now completed the proof of Theorem 5.3.

6.5 Linear connectedness

In this subsection we prove Theorem 5.4 about uniform linear connectedness.

Theorem 5.4 Let .G;P/ be relatively hyperbolic and suppose that the Bowditch
boundary @X (when endowed with any visual metric) is linearly connected. Then
for all sufficiently long hyperbolic fillings G ! xG D G.N1; : : : ; Nn/ with xG one-
ended and Ni infinite for each i , the following holds: There exists L such that , for
any � –spiderweb W with parameter � as in Theorem 5.2, .@TW ; �W / is L–linearly
connected , where �W is the visual metric from Theorem 5.3.

We must show that our approximating spaces TW have Gromov boundaries which are
uniformly linearly connected. We first reformulate the linear connectedness condition
in terms of joining points by “discrete paths” of points which are at least a bit closer.
The following is similar to the last part of the proof of [6, Proposition 4].

Lemma 6.19 Let M be a compact metric space. Suppose that there exists L� 1 such
that each p; q 2M can be joined by a chain of points p D p1; : : : ; pn D q such that
diam.fp1; : : : ; png/�Ld.p; q/ and d.pi ; piC1/� 1

2
d.p; q/. Then M is 5L–linearly

connected.

Proof Let p; q 2M . We can construct a chain of points interpolating between p
and q , and then a “finer” one by interpolating between consecutive points of the first
chain, and so on. Formally, we can construct by induction on i sequences of points
Qi D fqij gjD0;:::;n.i/ with

� Q0 D fp; qg,
� Qi �QiC1 ,
� qi0 D p; q

i
n.i/
D q ,
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� d.qiC1j ;Qi /� Ld.p; q/=2i ,

� d.qij ; q
i
jC1/� d.p; q/=2

i .

Define Q to be the closure of
S

Qi , and notice that p; q 2 Q. Also, it is easily
seen that for each qij we have d.fp; qg; qij /�

Pi�1
mD0.Ld.p; q/=2

m/� 2Ld.p; q/, so
that diam.Q/ � 5Ld.p; q/. Finally, Q is connected because if not, one could write
Q as a union of disjoint nonempty clopen sets A and B . By compactness we have
d.A;B/ D � > 0. Also, since

S
Qi is dense in Q, both A and B intersect Qi for

each sufficiently large i . However, for sufficiently large i and for any qij1
and qij2

there exists a chain of points in Qi � Q connecting qij1
and qij2

where consecutive
points are within distance 1

2
� of each other, in contradiction with the decomposition

QD AtB .

In the specific case that M D@Z for a Gromov hyperbolic space Z , and @Z is equipped
with a visual metric, we can translate this criterion into one about geodesic rays. Since
there are many constants involved, we briefly explain their roles. First of all, ı , �
and � are just the usual constants associated to a hyperbolic space. Secondly, � needs
to be large enough to ensure that, in a sequence of rays interpolating between two given
ones 
1 and 
2 , the distance between the limit points of consecutive rays is at most
one half of the distance between the limit points of 
1 and 
2 . Finally, the constant S
will be the one determining the eventual linear-connectedness constant, which is L.


2

˛1

˛2

˛n�1


1

Figure 1: The criterion of Lemma 6.19 translates into a statement (Lemma 6.20)
about rays with certain Gromov products. Large Gromov product corresponds
to small distance in the boundary.
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The following is the criterion we will use to show the spaces @TW are uniformly
linearly connected.

Lemma 6.20 Let ı; �; � > 0 and let � > ln.2�2/=�C 10ı . For every S there exists
L with the following property. Let Z be ı–hyperbolic, with a basepoint w and a
visual metric � on @Z based at w with parameters � and � . Also, suppose that for
each pair of rays 
1; 
2 starting at w there exists a chain 
1 D ˛1; : : : ; ˛n D 
2 of
rays starting at w with .˛i j˛iC1/w � .
1 j
2/wC� and .˛i j
1/w � .
1 j
2/w �S .
Then .@Z; �/ is L–linearly connected.

Proof Notice that � satisfies

(3) �2e���C10�ı < 1
2
:

Now fix S , and let LD 10�2e�SC10�ı .

We check the criterion in Lemma 6.19. Let Z be ı–hyperbolic, let w be a basepoint,
and let �. �; �/ be a visual metric as in the statement of the lemma. Fix p and q

in @Z , which we represent by rays 
p and 
q , respectively. Let f˛igiD1;:::;n be a
chain of rays with ˛1D 
p and ˛nD 
q , satisfying .˛i j˛iC1/w � .
1 j
2/wC� and
.˛i j 
1/w � .
1 j 
2/w �S . Let pi 2 @Z be the equivalence class of ˛i .

We observed in Section 2 that Gromov products at infinity can be computed, up to a
small error, using representative rays. In particular, since .˛i j˛iC1/w � .
p j
q/wC�,
we have .pi jpiC1/w � .p j q/w C�� 10ı , so

(4) �.pi ; piC1/� �e
��.pjq/w���C10�ı � �2e���C10�ı�.p; q/ < 1

2
�.p; q/:

Similarly, for any pi , we have

(5) �.pi ; p/� �
2e�SC10�ı�.p; q/D 1

10
L�.p; q/:

Thus the diameter of the set fp1; : : : png is at most 1
5
L�.p; q/. Since p and q were

arbitrary, Lemma 6.19 implies that .@Z; �/ is L–linearly connected.

The following lemma provides a converse to Lemma 6.20 by allowing us to construct a
sequence of rays starting from an arc in the boundary.

Lemma 6.21 Let Z be hyperbolic and suppose that @Z , when endowed with a visual
metric based at w 2 Z , is linearly connected. Then there exists R > 0 such that for
every C > 0 and every pair of rays 
1; 
2 in Z starting at w , there exists a sequence
of rays 
1 D ˛1; : : : ; ˛n D 
2 starting at w with .˛i j ˛iC1/w � .
1 j 
2/w CC and
.˛i j 
1/w � .
1 j 
2/w �R .
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Proof Denote by ı a hyperbolicity constant for Z and fix w 2Z . Then there exist � ,
� , L and a visual metric � based at w with parameters � and � such that .@Z; �/ is
1
2
L–linearly connected. Set R D log.�2L/=�C 20ı . Fix now any C , 
1 and 
2 as

in the statement. Denoting by p1; p2 2 @Z the limit points of 
1 and 
2 , there exists
an arc I connecting p1 to p2 with diameter � L�.p1; p2/. Let ˛ be a ray from w

to a point p 2 I . Approximating Gromov products of points at infinity by Gromov
products of rays, we have

e��.
1j˛/w � �e10�ı�.p1; p/� �e
10�ıL�.p1; p2/� �

2e20�ıLe��.
1j
2/w ;

from which we deduce .
1 j˛/w � .
1 j 
2/w � log.�2L/=�� 20ı D .
1 j 
2/w �R .
A similar computation shows that whenever p; q 2 @Z are close enough, any rays 
p
and 
q from w to p and q , respectively, satisfy .
p j
q/w � .
1 j
2/wCC . Hence, by
a simple compactness argument, we can find a sequence of points p1Da1; : : : ; anDp2
contained in I so that, for any choice of rays ˛i from w to ai , f˛ig provides the
required sequence of rays.

In the current work, we only need the following proposition for a particular value
of R . However we believe the more general form given will be useful in future
work. Recall that xSW denotes the truncated quotient of the saturated spiderweb
by KW (see Definition 6.6), while T xG denotes the quotient of the cusped space minus
certain horoballs by K (see Definition 5.1). Roughly speaking, we show that a large
neighborhood of xSW in TW isometrically embeds in T xG . This is a stronger version of
the strong convergence property we used in Theorem 5.3(ii).

Proposition 6.22 Let .G;P/ be relatively hyperbolic, and let X be the corresponding
� –hyperbolic cusped space. Then for every R the following holds. For all sufficiently
long hyperbolic fillings G! xG and every � –spiderweb W associated to the filling,
NR. xSW / isometrically embeds into T xG . More precisely, let

ˆW W X n
[
fH.tc ;1/c j c 2 C.W /g ! TW and ˆW X n

[
fH.tc ;1/c j c 2 Cg ! T xG

be the natural covering maps. There exists an isometric embedding �W NR. xSW /! T xG
such that �ıˆW Dˆ, where both sides are defined (in particular, �.1/D 1). Moreover,
the image of � is NR.ˆ.SW n

S
fH.tc ;1/c j c 2 Cg//.

Proof Our proof rests on the following claim.
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Claim For every R0 and every sufficiently long filling, the following holds. For
every spiderweb W , whenever g 2 K and x 2 X are such that x and gx lie in the
R0–neighborhood of SW , we have g 2KW .

Let us assume the claim and fix some R � 10ı . We set R0 D RC 22ı and assume
that we are considering a filling sufficiently long that the conclusion of the claim holds
and so that tc �R0C 500� C 1 for every c 2 C ; see Corollary 2.25.

Let bW NR0
. xSW /! T xG be the map defined by b.x/Dˆ.ˆ�1W .x//. First of all, let us

check that ˆ�1W .x/ is contained in the domain of ˆ, and that ˆ.ˆ�1W .x// consists of
a single point, so that b is well-defined. The first property follows from the fact that
we can lift any geodesic from x to xSW to a path of the same length in X , showing
that ˆ�1W .x/ is contained in NR0

.SW /, where the neighborhood is taken in X . If
by contradiction we had y 2 ˆ�1W .x/ \H.tc ;1/c for some c , we would then have
HŒ500�;1/c \ SW ¤ ∅, since tc � R0 C 500� C 1, and hence c 2 C.W /. But then
clearly ˆ�1W .x/\H.tc ;1/c D∅, a contradiction. The fact that ˆ.ˆ�1W .x// consists of
a single point just follows from the fact that if two points are in the same KW –orbit
then they are in the same K–orbit.

We will now show that b is a locally isometric bijection onto its image. The fact that
it is locally isometric easily follows from the fact that ˆW and ˆ are covering maps
(and the fact that it is well-defined). Injectivity follows from the claim, and the fact
that ˆ�1W .x/ is contained in NR0

.SW / for each x 2NR0
. xSW /, as we argued above.

What is more, we claim that for any ball B D B20ı.x/ in TW centered at some
x 2NRC2ı. xSW /, bjB is a surjection onto the ball B20ı.b.x//. In particular, b restricts
to an isometry between balls of radius 10ı with the same centers. The reason for
surjectivity is simply that we can define an inverse by lifting to X geodesics from b.x/

to other points in B20ı.b.x// and pushing them to TW using ˆW , obtaining paths of
length at most 20ı , which therefore have endpoints in B .

Let yS D b.NR.SW //. From what we proved so far, it follows that any pair of points
in ySW is connected by a 10ı–local geodesic contained in b.NRC2ı. xSW //. Since
any 10ı–local geodesic stays within 2ı of any geodesic with the same endpoints (see
[12, Theorem III.H.1.13]), we get that ySW is 4ı–quasiconvex. (We implicitly used
b.NRC2ı. xSW //�N2ı. ySW /, which follows from the fact that b is 1–Lipschitz since
it is locally isometric.)

Let us now that prove that �D bjNR. xSW /W NR.
xSW /! ySW is an isometry. Since it is

1–Lipschitz, we are left to show that d.x; y/�d.b.x/; b.y// for each x; y 2NR. xSW /.
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This holds because any geodesic 
 from b.x/ to b.y/ is contained in N4ı. ySW /, which
in turn is contained in b.NR0

. xSW // (this follows from the statement about 10ı–balls
above). In particular, x and y are connected by a path of length at most d.x; y/,
namely b�1.
/, as required.

Finally, to prove the “moreover” part one just needs to once again consider lifts of
geodesics to ˆ

�
SW n

S
fH.tc ;1/c j c 2 Cg

�
.

We now prove the claim.

Proof of claim Choose a filling sufficiently long that Lemma 2.26 applies with
D D R0 C 10

3� . We argue by contradiction, assuming that x and gx provide a
counterexample. Since the K–orbit of x is discrete, there exists g0 2 KW g such
that d.x; g0x/ is minimal (notice that we still have g0x 2 NR0

.SW /). Also, g0 ¤ 1
because we are assuming g …KW . By Lemma 2.26, any geodesic Œx; g0x� intersects
some horosphere HDc . Since SW is 6� –quasiconvex (Lemma 6.7), such a geodesic
is contained in NR0C10� .SW /, implying that SW intersects H500�c . In turn, this
implies that we have Kc < KW . But then, for k 2 Kc as in Lemma 2.26, we have
d.x; kg0x/ < d.x; g0x/, contradicting the minimality of d.x; g0x/.

Having proved the claim, the proof of Proposition 6.22 is complete.

The following elementary lemma is useful in the proof of Theorem 5.4. The notation
A�C B for quantities A and B indicates A 2 ŒB �C;BCC �.

Lemma 6.23 Let p0 and p1 be points in a ı–hyperbolic space. For i 2 f0; 1g,
let ˛i and ˇi be geodesic rays based at pi , such that ˛0 is asymptotic to ˛1 and
ˇ0 is asymptotic to ˇ1 . Suppose further that the Gromov products .p0 jˇ1.t//p1

and
.p0 j ˛1.t//p1

are bounded above by a constant C for every large enough t . Then
.˛0 jˇ0/p0

�2CC8ı .˛1 jˇ1/p1
C d.p0; p1/.

Proof See Figure 2. Choose points ai 2 ˛i and bi 2 ˇi far away from p0 and p1 so
that d.a0; a1/� 2ı , d.b0; b1/� 2ı , and so that .ai j bi /pi

�2ı .˛i jˇi /pi
.

Now notice that d.p1; ˛0/ and d.p1; ˇ0/ are at most C C 2ı . It follows that

d.a0; p0/�2CC6ı d.a1; p1/C d.p0; p1/;

and similarly d.b0; p0/�2CC6ı d.b1; p1/C d.p0; p1/. Combining this with the fact
that d.a0; b0/�4ı d.a1; b1/, we get the desired estimate.
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p0

p1

˛0

˛1

ˇ0

ˇ1

Figure 2: Estimating the Gromov product at p0 in terms of the one at p1 .

Recall that Theorem 5.4 says that, for sufficiently long one-ended hyperbolic fillings
and any spiderweb W associated to such filling, the @TW have visual metrics �W
(of uniform parameters) which are uniformly linearly connected. We only expect
uniformity over spiderwebs associated to a fixed filling, not uniformity over fillings.

Proof of Theorem 5.4 The idea here will be to build “discrete paths” joining any two
points at infinity. This means building, between any two rays to infinity, a sequence
of interpolating rays satisfying the hypothesis of Lemma 6.20. Given a pair of rays
in TW , there will be two cases, depending on whether the rays begin to diverge far
from xSW or not.

Informally we proceed as follows. In the first case, we exploit the linear connectedness
of @X ; we lift our two rays to X , find a chain of interpolating rays there, and then
project back down to TW . In the second case we use the linear connectedness of @ xG ;
this is more complicated. We start with intersections of our two rays with a large
neighborhood N of xSW . The neighborhood N embeds in T xG , where we can extend
the intersections to rays, which we can then interpolate between. These interpolating
rays intersect N in long initial subsegments, which we pull back to TW , and extend
using ı–visibility. We now give details.

We must fix some constants before choosing a filling. As before ıD 1500� , � D 1=10ı
and � are the constants (which depend only on ı ) from Theorem 5.3. Fix � >

ln.2�2/=�C 10ı as in Lemma 6.20.

By hypothesis @X is linearly connected. Recall that Lemma 6.21 provides, for a
hyperbolic space Z and a basepoint w 2Z , a constant R which governs the behavior
of “discrete paths” of geodesic rays based at w , interpolating between two given rays.
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Claim There is a number RX such that the conclusion of Lemma 6.21 applies with
RDRX and w any vertex of X at depth less than 201ı .

Proof There are finitely many G–orbits of vertices in X of bounded depth.

We fix such an RX .

Now fix a filling G! xG so that all the following hold for every spiderweb W associated
to the filling:

(a) The truncated quotient TW is ı–hyperbolic and ı–visible (Theorem 5.2).

(b) The boundary @TW carries a visual metric �W based at x1 with parameters �
and � (Theorem 5.3).

(c) The neighborhood NRXC�C106ı. xSW / isometrically embeds into the quotient T xG
(Proposition 6.22).

(d) Assumption 6.5 holds. In particular, Lemma 6.13 and Corollary 6.14 hold.

By assumption xG is one-ended, so @T xG Š @ xG is linearly connected [6, Proposition 4].
We let R xG be the constant R from Lemma 6.21 applied to a visual metric on @T xG
based at x1.

Finally we fix a spiderweb W associated to this filling. Recall that we have a natural
covering map ˆW W X n

S
fH.tc ;1/c j c 2 C.W /g ! TW . The following lemma will

allow us to move back and forth more easily between geodesic rays in TW and geodesic
rays in X .

Lemma 6.24 Let 
 be a path in X which avoids the 102ı–neighborhood of SW ,
and let x
 DˆW ı 
 be the projection to TW . Then 
 is geodesic if and only if x
 is
geodesic.

Proof Our argument is based on the following claim.

Claim If x� is a TW –geodesic lying outside the 100ı–neighborhood of xSW , then any
lift � of x� to X is a geodesic.

Proof of claim By Corollary 6.14, � is a 50ı–local geodesic. Let � 0 be a geodesic
with the same endpoints. The space X is � –hyperbolic, so � 0 lies in a 2� –neighborhood
of � , by [12, Theorem III.H.1.13]. In particular, � 0 lies in the domain of ˆW . If �
were not geodesic, � 0 would have strictly smaller length, and would project to a path x� 0

with the same endpoints as x� , contradicting the assumption that x� was geodesic.
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Now let 
 be a path in X avoiding the 102ı–neighborhood of SW , and let x
 be the
projection of 
 to TW . It follows that x
 avoids the 102ı–neighborhood of xSW .

One direction of the lemma is immediate from the claim; if x
 is geodesic, then so is 
 .

In the other direction, suppose that 
 is geodesic. Since the points of 
 lie outside
N100ıSW , we can apply Corollary 6.14 to deduce that x
 is a 50ı–local geodesic
in TW . The endpoints of x
 are therefore joined by a geodesic x� which lies in a
2ı–neighborhood of x
 , again using [12, Theorem III.H.1.13]. Thus x� lies outside
N100ı xSW . Let � be a lift of x� with the same initial point as 
 . The claim implies
that � is a geodesic.

We now claim that � has the same terminal point as 
 . Indeed, let p be the terminal
point of 
 and let q be the terminal point of � , and suppose p ¤ q . Since p and
q project to the same point in TW , there must be some k 2 KW n f1g such that
q D kp . Let p0 2 �SW

.p/, and let q0 D kp0 2 �SW
.q/. Lemma 6.13 implies that

d.p0; q0/ > 100ı . Let � be a geodesic joining p to q . Then � � Nı.
 [ �/ lies
outside the 99ı–neighborhood of SW . The set SW is 6� –quasiconvex by Lemma 6.7,
so we can apply Lemma A.12 to deduce that the diameter of �SW

.�/ is at most 9ı ,
contradicting d.p0; q0/ > 100ı .

Since � and 
 are geodesics with the same endpoints, they have the same length.
It follows that x
 has the same length as the geodesic x� , and is therefore geodesic
in TW .

We now begin the main argument, a verification of the hypothesis of Lemma 6.20 for
the space TW with S DmaxfRX C 100ı;R xG C 10

3ıg. Accordingly, we fix a pair x
1
and x
2 of rays based at x1 2 TW , and look for a sequence of interpolating rays x̨i as in
Lemma 6.20. Let t1 D .x
1 j x
2/x1 .

Case 1 d.x
1.t1/; xSW /�RX C 10
5ı .

Let t0 D supft j d.x
1.t/; xSW /� 200ıg, and let xx D x
1.t0/. We note that the depth of
xx is bounded by 500� C 200ı < 201ı .

We let x
 01 be the restriction of x
1 to Œt0;1/. Let D D t1 � t0 , and note that D �
RXC.10

5�200/ı . Let x
 02 be a broken geodesic following x
 01 for distance D , and then
following a geodesic ray asymptotic to x
2 . Let xT be the tripod x
 01[ x


0
2 , and note that:

Claim 6.24.1 All points of xT are distance at least 200ı from xSW .
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Proof of claim This is because otherwise there would be points x0 , x1 and x2 on x
2 ,
appearing in the given order, such that x0 lies at distance at most 201ı from xSW (just
pick x0 within ı of xx ), x1 lies at distance at least RX C 104ı from xSW (pick x1
within 10ı of x
1.t1/) and x2 lies at distance at most 201ı from xSW (pick x2 ı–close
to a point on x
 02�fxxg contained in the 200ı–neighborhood of xSW ). The existence of
such a triple is easily seen to contradict the fact that N201ı. xSW / is 2ı–quasiconvex,
since xSW is 3ı–quasiconvex (Lemma 6.9).

Since xT is simply connected and ˆW W X n
S
fH.tc ;1/c j c 2 C.W /g!TW is a covering

map, we can lift xT to a tripod T � X . By Lemma 6.24, the legs of this tripod are
geodesic. Let 
1 be the lift of x
 01 , and let 
2 be a geodesic ray starting at the same
point x , asymptotic to the lift of x
 02 .

We claim that the Gromov product .
1 j 
2/x is within 10ı of D . Indeed, this
Gromov product can be estimated to within 2ı using points on the tripod T . The
tripod T (respectively its image xT ) is ı–quasiconvex, and lies outside a 200ı–
neighborhood of SW (respectively xSW ), so Lemma 6.24 implies the projection is
isometric on T . It is not hard to see that for s and t sufficiently large, we have
.x
1.t/ j x
2.s//xx �3ı .x
1 j x
2/x1� t0 DD .

The depth of xx was at most 201ı , and so the depth of x is at most 201ı . It follows
that there is a discrete path f˛1; : : : ; ˛ng of rays based at x interpolating between 
1
and 
2 , and satisfying

(a) ˛1 D 
1 and ˛n D 
2 ,

(b) .˛i j˛iC1/x � .
1 j 
2/xC�C 100ı for all i , and

(c) .
1 j˛i /x � .
1 j 
2/x �RX > 10
4ı for all i .

A similar argument to the one that proves that any point on xT is at distance at least
200ı from xSW proves the following claim.

Claim 6.24.2 No ˛i meets a 102ı–neighborhood of SW .

Proof of claim First of all, it follows from 3ı–quasiconvexity of xSW that for each
t � t0 we have d.x
1.t/; xSW / � t � t0C 198ı . This is easily deduced from the fact
that xx lies within ı of any geodesic from x
1.t/ to xSW .

Notice that if p 2X �SW then d.p; SW /D d.ˆW .p/; xSW /, because we can project
to TW a shortest geodesic from p to SW and, vice versa, lift a shortest geodesic from
ˆW .p/ to xSW . In particular, for each t � t0 we have d.
1.t/; SW /� t � t0C 198ı .
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In order to prove that ˛i does not intersect the 102ı–neighborhood of SW , we can
now proceed similarly to Claim 6.24.1 and argue that if that was not the case we could
find 3 points along ˛i such that the middle one is far away from SW but the other
ones are close, contradicting quasiconvexity of SW .

It follows (using Lemma 6.24 again) that the ˛i project to geodesic rays x̨0i starting at xx .
We may prepend each such ray with the initial segment of x
1 terminating at xx , to obtain
a broken geodesic x̨00i with Gromov product at xx bounded above by ı . Let x̨1D x
1 , and
x̨n D x
2 . For i … f1; ng, let x̨i be a geodesic ray beginning at x1 and asymptotic to x̨0i .

Using Lemma 6.23 for the second and last estimates we obtain

.x̨i j x̨iC1/x1 �2ı .x̨
00
i j x̨

00
iC1/x1 �10ı .x̨

0
i j x̨
0
iC1/xxC t0 D .˛i j˛iC1/xC t0

� .
1 j 
2/xC�C 100ıC t0

�10ı .x
1 j x
2/xxC�C 100ı;

The total errors add up to less than 100ı , so we obtain

.x̨i j x̨iC1/x1 � .x
1 j x
2/xxC�:

A similar computation yields, for each i ,

.x
1 j x̨i /x1 � .x
1 j x
2/x1� .RX C 100ı/:

We have thus verified the hypothesis of Lemma 6.20 in this case, with S D S1 D

RX C 100ı .

Case 2 d.x
1.t1/; xSW / < RX C 10
5ı .

Let x
 0i be the maximal initial subgeodesic of x
i entirely contained in the set N D
NRC�C106ı. xSW /. Recall that by assumption N is isometric to a subspace of T xG ,
so let us now regard N as a subspace of T xG . Since T xG is ı–visible, x
 0i is con-
tained in the 2ı–neighborhood of some ray x
 00i . There exists a sequence of rays
x
 001 D˛

00
1 ; : : : ; ˛

00
nDx


00
2 , all starting at 12 xG such that .˛00i j˛

00
iC1/1� .x


00
1 jx

00
2 /1C�C10

3ı

and .˛00i j x

00
1 /1 � .x


00
1 j x


00
2 /1 �R xG . Let ˛0i be the maximal initial subgeodesic of ˛00i

contained in N . We now switch back to thinking of N as a subspace of TW . Since
TW is ı–visible, there exist rays ˛i , starting at 1, such that ˛0i is contained in the
10ı–neighborhood of ˛i . We can take ˛1 D x
1 , ˛n D x
2 . It is now straightforward
to check that .˛i j˛iC1/1 � .x
1 j x
2/1C� and .˛i j x
1/1 � .x
1 j x
2/1�R xG � 10

3ı .

We have verified the hypothesis of Lemma 6.20 in this case, with S DS2DR xGC10
3ı .

Geometry & Topology, Volume 23 (2019)



Boundaries of Dehn fillings 2983

Taking S to be the maximum of S1 and S2 , we have verified the hypothesis of
Lemma 6.20 in both cases, and conclude using this lemma that .@TW ; �W / is linearly
connected with constant independent of the spiderweb chosen.

7 Approximating boundaries are spheres

7.1 Statement and notation

In this section we fix .G;P/ relatively hyperbolic with P D fP1; : : : ; Png where each
Pi is virtually Z˚ Z. We let X be a cusped space for the pair and assume that
@.G;P/D @X is a 2–sphere. We also fix a Dehn filling � W G! xG DG.N1; : : : ; Nn/
so that each Ni is isomorphic to Z, and suppose the filling is long enough to apply
Theorem 5.2. For � and ı the constants in Theorem 5.2, we consider a � –spiderweb W
associated to this filling (Definition 4.2). The spiderweb is preserved by a finitely
generated free group KW < ker� . We denote the rank of KW by k . The associated
truncated quotient TW (Definition 5.1) is ı–hyperbolic by Theorem 5.2.

In this section we describe the Gromov boundary of the truncated quotient:

Proposition 7.1 With the above assumptions, @TW is homeomorphic to S2 .

7.2 Reduction to a homology computation

Thanks to the following lemma, the proof of Proposition 7.1 is reduced to a homology
computation.

Lemma 7.2 Let M be a compact Hausdorff space and let S be a dense subset of M
homeomorphic to a surface with empty boundary. Suppose that m D #.M n S/ is
finite and that the dimension of H1.S;Z=2/ is at most maxfm� 1; 0g. Then M is
homeomorphic to S2 .

Proof When we refer to “homology” in this proof, we always mean homology with
Z=2 coefficients.

First of all, we claim that S is a surface of finite type. Indeed, this follows from the
fact that surfaces of infinite type have infinite-dimensional first homology, as one can
deduce from the classification of noncompact surfaces given in [44, Theorem 3].

Geometry & Topology, Volume 23 (2019)



2984 Daniel Groves, Jason Fox Manning and Alessandro Sisto

Let p be the number of punctures of S . If p D 0, then M D S is a compact surface
with H1.M IZ=2/D 0, so M Š S2 .

Now suppose p >0, and let xS be the closed surface obtained by filling in the punctures
of S . Note that xS is equal to the end-compactification of S .

Since M nS is finite, S is open and M nS is totally disconnected. Also, by assumption
M is compact and Hausdorff and S is dense in M , and hence the universal property
of end-compactifications [24, Satz 6] gives us a map hW xS ! M restricting to the
identity on S . Since S is dense in M the map h is surjective. In particular, m� p .
Moreover, if dDdimZ=2H1. xS IZ=2/ and rDdimZ=2H1.S IZ=2/, then rDdCp�1.
By assumption r � m � 1, so we must have d D 0 and thus xS Š S2 . Finally
p�mD rC1�m�m�1C1�mD 0, again by assumption. This shows that h also
restricts to a bijection between xS nS and M nS , and so h is a homeomorphism.

7.3 Loops and Cantor sets in disks

By a Cantor set we mean a totally disconnected compact metrizable space with no
isolated points. This subsection is about Cantor sets in the plane or in S2, and doesn’t
refer directly to our group-theoretic setup. We will see later that ƒ.KW / is a Cantor
set, and use the following lemmas to control how ƒ.KW / sits in @X .

Lemma 7.3 Let C be a Cantor set contained in an open disk D . Suppose that
fUigi2I is a finite collection of disjoint clopen subsets of C whose union is C .

Then there exists a finite collection of closed subdisks fDigi2I such that for all distinct
j; k 2 I we have Dj \Dk D∅, and for all j we have C \ VDj D Uj .

Proof Let Cstd be the standard middle-third Cantor set in the plane. It is known that
any homeomorphism f W C ! Cstd extends to a homeomorphism xf W D! R2 ; see
[40, Chapter 13]. It is then easy to construct a homeomorphism f so that the collection
of clopen sets ff .Ui /g admits a family of disks in R2 as in the statement, which can
be then pulled back to D using xf .

Lemma 7.4 Let C be a Cantor set contained in S2. Suppose that U is a clopen
subset of C . If D1 and D2 are closed disks in D with VDi \C D U , then @D1 is
homologous to @D2 in H1.S2 nC /.

Proof Let hW S2! Œ0; 1� be a smooth function which is zero exactly on U . Then for
a sufficiently small regular value � , the set h�1Œ0; �� is contained in D1 \D2 . The
1–manifold h�1.�/ is clearly homologous to both @D1 and @D2 .
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7.4 The particular Cantor set

In this subsection we return to the situation set up in Section 7.1 and verify that the
limit set ƒ.KW / in @X is a Cantor set when the rank k � 2. We also describe a nice
basis for the topology on ƒ.KW /.

Recall that the group KW is freely generated by parabolic elements a1; : : : ; ak . In
particular it is a free group whose Gromov boundary @KW can be identified with the
set of all infinite freely reduced words in a˙11 ; : : : ; a˙1

k
. The collection of quasicon-

vex subgroups AD fha1i; : : : hakig is malnormal in the free group KW , so the pair
.KW ;A/ is relatively hyperbolic. Its Bowditch boundary @.KW ;A/ is the quotient
of @KW obtained by identifying the pairs fwa1i ; wa

�1
i g for each i and each freely

reduced w . We can choose w not to end with ai or a�1i in such a description. (See
[47, Theorem 1.1] for the description of the boundary of a relatively hyperbolic pair
.H;Q/ where H is hyperbolic; cf [26; 27; 39; 37].)

Lemma 7.5 There is an equivariant homeomorphism @.KW ;A/!ƒ.KW /.

Proof The spiderweb axioms (S1) and (S3) from Definition 4.2 imply that KW is
relatively quasiconvex in .G;P/, using [31, Definition 6.5 (QC-3)]. In particular,
the limit set ƒ.KW / is equivariantly homeomorphic to the relative boundary of KW
endowed with the peripheral structure induced by G (see eg the alternative definition of
relative quasiconvexity [31, Definition 6.2 (QC-1)]), which corresponds to the peripheral
structure on KW used to define @.KW ;A/.

Definition 7.6 Given a natural number k , an index i 2 f1; : : : ; kg, a natural number j
and a word w which does not end with ai or a�1i , let B.w; ai ; j / be the image in
@.KW ;A/ of the set of all infinite freely reduced words beginning with waji or wa�ji .

Lemma 7.7 The sets B.w; ai ; j / are clopen in @.KW ;A/.

Proof The subset A of @KW of all infinite (freely reduced) words which start with
wa

j
i or wa�ji is closed, whence compact, and hence so is its image B.w; ai ; j / in

@.KW ;A/. Moreover, Ac is also closed and hence so is its image B in @.KW ;A/. It
is easily seen that if the infinite freely reduced word w0 does not start with either waji
or wa�ji then no word identified to w0 in @.KW ;A/ starts with either waji or wa�ji ,
hence B D B.w; ai ; j /c , and B.w; ai ; j / is clopen.
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Corollary 7.8 If k � 2 then @.KW ;A/ is a Cantor set.

Proof The fact that @.KW ;A/ is totally disconnected follows from the fact that the
B.w; ai ; j / are clopen. It is also easy to see that it does not have isolated points. Finally,
@.KW ;A/ is compact and metrizable since it is (homeomorphic to) the boundary of a
proper hyperbolic space.

The following two lemmas follow directly from the definitions.

Lemma 7.9 For any i and any w that does not end with ai or a�1i , we have

w :B.1; ai ; 1/D B.w; ai ; 1/:

Lemma 7.10 For any w which does not end with ai or a�1i and any j > 1, the set
B.w; ai ; j / is equal to B.w; ai ; 1/ minus the union� [

j 0<j
i 0¤i

B.waj�j
0

i ; ai 0 ; 1/

�
[

� [
j 0<j
i 0¤i

B.wa�.j�j
0/

i ; ai 0 ; 1/

�
:

Lemma 7.11 Let U � @.KW ;A/ be clopen. Then U is a finite disjoint union of sets
fB.ws; ais ; js/gs2J .

Proof Let U 0 be the preimage of U in @KW , and note that U 0 is clopen.

Claim There is an n > 0 such that whenever v is an infinite freely reduced word
which coincides with some w 2 U 0 on an initial subword of length n, then v 2 U 0.

Proof Suppose not. Then there is a sequence of pairs f.vi ; wi /gi2N such that vi
coincides with wi on an initial subword of length i , wi 2 U 0 , but vi … U 0 . The
common prefixes ui subconverge to an infinite word which is in the closure both of U 0

and of its complement, contradicting the fact that U 0 is clopen.

Now let J be the set of prefixes of words in U 0 of length n which end with a positive
power of one of the generators ai . Any s 2 J can be written uniquely as a freely
reduced word wsa

js

is
. Then fB.ws; ais ; js/gs2J satisfies the required properties.

7.5 Proof of Proposition 7.1

We use the notation set up at the beginning of the section. Note that @X nƒ.KW / has
a KW –action, which makes its homology into a KW –module. Recall that KW is free
of rank k .
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Lemma 7.12 As a KW –module, the homology group H1.@X nƒ.KW /IZ=2/ has
rank at most maxfk� 1; 0g.

Proof When we refer to “homology” in this proof we always mean homology with
Z=2 coefficients.

The cases k D 0; 1 are easy, so we can assume k � 2. Let Z D @X nƒ.KW /. We
identify @.KW ;A/ with ƒ.KW /, which we can do in view of Lemma 7.5. Recall that
ƒ.KW / is a Cantor set by Corollary 7.8. For each set B.w; ai ; j / as in Definition 7.6,
let lw;ai ;j be a loop in @X bounding a disk that intersects ƒ.KW / in B.w; ai ; j /,
which exists by Lemma 7.3 in view of the fact that B.w; ai ; j / is clopen; see Lemma 7.7.
The element of H1.Z/ represented by lw;ai ;j depends only on w , ai and j , by
Lemma 7.4. As a first step in the proof, let us show that such loops generate H1.Z/. It
suffices to prove that any simple loop l in Z is, homologically, a sum of loops lw;ai ;j .
This is because it suffices to consider smooth self-transverse loops, and each of those
is homologically a sum of simple loops. Let D be one of the disks in @X bounded
by l . It follows from Lemma 7.11 that D\ƒ.KW / is a disjoint union of sets of the
form B.w; ai ; j /, which in turn implies, in view of Lemma 7.3, that homologically l
is a sum of loops lw;ai ;j .

We now prove that each loop lw;ai ;j is homologically a sum of loops of the form lw 0;ai0 ;1.
Consider some lw;ai ;j . By Lemma 7.10, one of the disks D bounded by lw;ai ;1 has
the property that D\ƒ.KW / is a disjoint union of B.w; ai ; j / and sets B.w0; ai 0 ; 1/.
By Lemma 7.3, lw;ai ;j is homologically a sum of loops lw 0;ai0 ;1 , as required.

Homologically, each of these loops lw 0;ai0 ;1 is in the KW –orbit of the loop l1;ai0 ;1 by
Lemma 7.9. In particular, the k loops fl1;ai ;1g generate H1.Z/ as a KW –module.
If k � 2, these loops can be chosen to encircle disjoint discs whose union con-
tains ƒ.KW /, so we have

P
l.1; ai ; 1/ D 0 in H1.S2 nƒ.KW //. Any one of the

generators can be written in terms of the others, so the rank is at most k� 1.

Proof of Proposition 7.1 For sufficiently long fillings and any spiderweb W with
suitable parameter, by Theorem 5.2 there is a normal covering map

@X nƒ.KW /! @TW nF

with deck group KW , where F is the union of all limit sets of horosphere quotients
ƒ.†c=Kc/ for c 2 C.W /, which in our case is a finite set with 2k elements if k is
the rank of the free group KW (we assume k � 1). In particular, S D @TW nF is a
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2–manifold, and since @TW nF is open and dense in @TW by Theorem 5.2(iii) and
@TW is compact, in view of Lemma 7.2 we are left to show that the dimension of
H1.S;Z=2/ is at most 2k� 1. From the short exact sequence

1! �1.@X nƒ.KW //! �1.S/!KW ! 1;

we see that this dimension is the sum of k and the rank of H1.@X nƒ.KW // as a
KW –module, so we are done by Lemma 7.12.

8 Ruling out the Sierpinski carpet

In the next section, we will prove Theorem 1.2 by first showing that the boundary
@ xG is planar, using Lemma 3.9 and a criterion of Claytor [18]. A result of Kapovich
and Kleiner [34, Theorem 4] (along with [30, Theorem 1.2]) then implies that @ xG is
either S2 or a Sierpinski carpet. In this section, we rule out the possibility that it is a
Sierpinski carpet.

Definition 8.1 Let M be a metric space, let f W S1!M be continuous, and let � > 0.
We say that f has an �–filling if there is a triangulation of the unit disk D2 and a (not
necessarily continuous) extension of f to xf W D2!M , such that each simplex of the
triangulation is mapped by xf to a set of diameter at most � .

Definition 8.2 Say a metric space M is weakly simply connected if, for every contin-
uous f W S1!M and every � > 0, f has an �–filling.

The following two lemmas are easy.

Lemma 8.3 For a compact metrizable space M , being weakly simply connected is
independent of the metric.

Lemma 8.4 Any simply connected metric space is weakly simply connected.

Lemma 8.5 The Sierpinski carpet (with any metric) is not weakly simply connected.

Proof By Lemma 8.3, we just need to check this for a Sierpinski carpet S embedded
in the 2–sphere and endowed with the induced metric. Suppose by contradiction that S
is weakly simply connected. Then it is easily seen that, given any � > 0 and any loop `
contained in S , we can find a continuous map f W D2! S2 whose image is contained
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in the �–neighborhood of S and such that f .@D2/ is `. However, the image of a
continuous map f W D2! S2 such that f .@D2/ is a simple loop ` contains one of the
two connected components of S2 n `. For ` a peripheral circle of S and � > 0 small
enough, neither connected component of S2 n ` is contained in the �–neighborhood
of S , a contradiction.

Theorem 8.6 Suppose the compact metric space Z is a weak Gromov–Hausdorff
limit of fZngn2N , and suppose that there is some L � 1 such that all the spaces Zn
and Z are L–linearly connected. If the spaces Zn are weakly simply connected, then
so is Z .

Proof Assume that fZng and Z are as in the hypothesis of the theorem. Then there
are a K � 1 and some .K; �n/–quasi-isometries  nW Zn!Z and �nW Z!Zn which
are �n–quasi-inverses of one another and for which lim

n!1
�n D 0.

Let f W S1! Z , and let � > 0. Choose some �0 < �=.10LK2/, and fix some n so
that �n < �0 .

We want to build an �–filling (in Z ) from some �0–filling in Zn . We will first
approximate f by a discrete map, push it to Zn , fill, and then push the filling back
to Z .

Let ‚ � S1 be a discrete set with at least three points. We say that �; � 0 2 ‚ are
consecutive if they bound a (necessarily unique) interval I DW Œ�; � 0� in S1 whose
interior is disjoint from ‚. By refining ‚ we can ensure the following:

� If � and � 0 are consecutive (on S1 ), and x 2 Œ�; � 0�, then dZ.f .�/; f .x// < �0 .

In particular, f .S1/ lies in an �0–neighborhood of f .‚/, and �nf .S
1/ lies in a

.KC1/�0–neighborhood of �nf .‚/. More to the point, if � and � 0 are consecutive
elements of ‚, then dZn

.�nf .�/; �nf .�
0// < .KC1/�0 , and so there is an arc in Zn

of diameter at most L.KC1/�0 joining �nf .�/ to �nf .� 0/. Concatenating these arcs,
we obtain a continuous f 0W S1!Zn .

Claim For any x 2 S1 , we have dZ. nf 0.x/; f .x// < �
2

.

Assuming the claim, we argue as follows. The map f 0 has an �0–filling F 0W D2!Zn .
Define a filling F W D2!Z of f by

F.x/D

�
f .x/ for x 2 S1;
 nF

0.x/ for x 2D2 nS1:
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Since �n < �0 , and since the difference between  nf 0 and f is at most �
2

on S1 , F is
a
�
.KC1/�0C �

2

�
–filling of f . But �0 < �=.2.KC 1//, so F is an �–filling. Modulo

the claim, the theorem is proved.

Proof of claim Note first that if x 2‚, then f 0.x/D �nf .x/, so

dZ. nf
0.x/; f .x//� �n < �

0 < �
2
:

Suppose now that x …‚. There are consecutive �; � 0 2‚ such that x lies in Œ�; � 0�
and dZ.f .x/; f .�// < �0 . It follows that dZn

.�nf .x/; �nf .�// < .KC 1/�
0 .

From the construction of f 0 we have dZn
.f 0.x/; f 0.�//�L.KC1/�0 . Pushing back

to Z we get

dZ. nf
0.x/; f .x//

� dZ. nf
0.x/;  nf

0.�//C dZ. nf
0.�/; f .�//C dZ.f .�/; f .x//

< K.L.KC 1/�0C �0/C �0C �0 � 5LK2�0 < 1
2
t�;

and the claim is proved.

With the claim proved, the proof of Theorem 8.6 is complete.

9 Proof of Theorem 1.2

In this section we will prove Theorem 1.2, which we restate for the convenience of
the reader.

Theorem 1.2 Let G be a group and P D fP1; : : : ; Png a collection of free abelian
subgroups. Suppose that .G;P/ is relatively hyperbolic, and that @.G;P/ is a 2–
sphere.

Then for all sufficiently long fillings G! xG DG.N1; : : : ; Nn/ with Pi=Ni virtually
infinite cyclic for each i , we have that xG is hyperbolic with @ xG homeomorphic to S2 .

Proof Notice first that the Pi have rank 2, because they act properly discontinuously
and cocompactly on the complement of the corresponding parabolic point in @.G;P/,
which is homeomorphic to R2 . Suppose the filling is long enough that Theorems 5.2,
5.3 and 5.4 and Proposition 7.1, as well as [30, Theorem 1.2], all apply. In particular, xG
is hyperbolic. By Theorem 4.3 there exists a sequence of spiderwebs Wi and (visual)
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metrics �Wi
on @TWi

such that

� each @TWi
is homeomorphic to a 2–sphere (see Proposition 7.1),

� there exists L such that each �Wi
is L–linearly connected (see Theorem 5.4),

� .@TWi
; �Wi

/ weakly Gromov–Hausdorff converges to a (visual) metric on @T xG
(see Theorem 5.3), which is homeomorphic to @ xG .

It follows from [30, Theorem 1.2] that @ xG is a Peano continuum without local cut
points. Moreover, by Lemma 3.9, @ xG does not contain an embedded topological
copy of any nonplanar graph and hence, by [18], @ xG is planar. Since, as mentioned,
@ xG does not contain local cut points, it must be a sphere or a Sierpinski carpet, by
[34, Theorem 4]. The latter is ruled out by Theorem 8.6 and Lemma 8.5.

Remark 9.1 There is another possible variation of the argument above that does not
use [30, Theorem 1.2]. First of all, @ xG is connected because it is a weak Gromov–
Hausdorff limit of connected spaces. Moreover, it does not have global cut points
because it is the connected boundary of a hyperbolic group [45]. Hence, [18] applies
and @ xG is planar. At this point we would have to adapt the arguments in Section 8 to
deal with a planar continuum properly contained in S2 .

10 Proof of Corollary 1.4

In this section we prove Corollary 1.4, that the Cannon conjecture implies the relative
Cannon conjecture. To that end, suppose that the Cannon conjecture is true and suppose
that .G;P/ is a relatively hyperbolic pair, where PDfP1; : : : ; Png is a finite collection
of free abelian subgroups of rank 2, and suppose further that the Bowditch boundary
of .G;P/ is homeomorphic to S2 .

Definition 10.1 A sequence f�i W G!Gig of homomorphisms is stably faithful if �i
is faithful on the ball of radius i about 1 in G .

By choosing filling kernels Ki;j E Pj where Pj =Ki;j is infinite cyclic but the slope
is growing, we obtain a stably faithful sequence of fillings G!Gi . The groups Gi
are all hyperbolic relative to a finite collection of infinite cyclic groups, and so are in
fact hyperbolic. By Theorem 1.2, we may assume that each Gi is a hyperbolic group
with 2–sphere boundary. By the Cannon conjecture, each Gi admits a discrete faithful
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representation into Isom.H3/. Precomposing with the quotient maps G!Gi , we get
a stably faithful sequence of representations of �i W G! Isom.H3/.

There are two cases (after passing to a subsequence of f�ig):

(a) Up to conjugacy in Isom.H3/, the representations �i converge to a representation
�1W G! Isom.H3/.

(b) The representations �i diverge in the Isom.H3/–character variety of G .

Suppose that the first case holds. The �i are stably faithful with discrete image.

Claim Suppose that the limiting representation �1 is not discrete and faithful. Then
for every � > 0 there exists a pair fg; hg of noncommuting elements of G and a point
x 2H3 such that �1.g/ and �1.h/ move x distance less than � .

Proof of claim If the limiting representation is not faithful then there are certainly
noncommuting elements g and h in the kernel, which will suffice.

On the other hand, suppose that the limiting representation is faithful, but indiscrete.
Then there are elements gj of G which are not in the kernel of �1 but such that
�1.gj / tends towards the identity. Unless the gj eventually commute with each other,
taking two elements far enough along the sequence will suffice for g and h. Thus we
may suppose that all of the gj commute with each other, which implies that they all
preserve some point at infinity, some geodesic or some point in the interior of H3 .
Since �1 is faithful, it is not elementary, so there is some 
 2G such that �1.
/ does
not preserve this set. We can take gj and g
j for our g and h (for large enough j ).

The condition from the Claim is an open condition, so for all but finitely many i the
elements �i .g/ and �i .h/ move some point in H3 a distance smaller than � . Since for
large i the elements �i .g/ and �i .h/ are nontrivial, for small enough � this violates
Margulis’ lemma and shows that the image �i is not discrete, which is a contradiction.
This implies that in the first case the representation �1 is discrete and faithful, so G
is Kleinian, as required.

It remains to rule out the second case, that the sequence �i diverges. If it does, then
by choosing basepoints appropriately and rescaling, these representations limit to an
action of G on an R–tree T with no global fixed point.

A standard argument (see, for example, the proof of [30, Theorem 6.1]) shows that arc
stabilizers for the G–action on T are metabelian and hence small. Since small sub-
groups of G are finitely generated, this means that arc stabilizers satisfy the ascending
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chain condition. Therefore, by [4, Proposition 3.2.(2)] the action of G on T is stable.
It now follows from [4, Theorem 9.5] that G splits over a small-by-abelian (and hence
small) subgroup.

However, all small subgroups of G are elementary, but we know that G admits no
elementary splittings (by work of Bowditch [8; 9; 10; 11], see [30, Corollary 7.9]).
This implies that G is Kleinian, as required.

Appendix ı–hyperbolic technicalities

In this appendix, we collect some technical results which are needed for the proofs in
this paper, but which are proved using standard arguments and are probably well known
to experts. In Section A.1, we prove that the various different approaches to building
“cusped” spaces all result in quasi-isometric spaces. The key application of this in our
paper is Corollary A.9. In Section A.2 we collect some results about ı–hyperbolic
geometry, which are all well known. The sole innovation is to record constants.

A.1 Quasi-isometric horoballs and cusped spaces

The combinatorial cusped space in Definition 2.8 is one of several ways to build a
“cusped space” whose hyperbolicity detects the relative hyperbolicity of the pair .G;P/.
Each method begins with a Cayley graph for G , and attaches some kind of “horoball”
to each left coset of an element of P . In [11], Bowditch glues “hyperbolic spikes”
(the subset Œ0; 1�� Œ1;1/ in the upper half-space model of H2 ) to each edge in the
included cosets of Cayley graphs of the peripheral subgroups, with the lines f0g�Œ1;1/
and f1g � Œ1;1/ glued according to when edges share vertices. The resulting cusped
space is also Gromov hyperbolic if and only if .G;P/ is relatively hyperbolic, by [11].
Another way of building horoballs on graphs is provided by Cannon and Cooper [15].
In this case, the horospheres are copies of � , but scaled at depth d by �d for some
� 2 .0; 1/ (Cannon and Cooper chose �D e�1 , which is the most natural choice when
comparing to the metric in Hn .)

In order to be able to translate results proved with different cusped spaces to the
other settings, it is convenient to notice that it is not only the case that all of these
constructions provide characterizations of relative hyperbolicity, but that they provide

Geometry & Topology, Volume 23 (2019)



2994 Daniel Groves, Jason Fox Manning and Alessandro Sisto

G–equivariantly quasi-isometric cusped spaces, a fact well-known to experts. This
is what we explain in this subsection. Throughout the paper, the fact that we can use
results from the literature proved using different models is justified by the results in
this section.

We consider three types of horoballs, each depending on some scaling factor �.

Definition A.1 (Combinatorial horoball) Let � be a graph and � > 1 a constant.
The combinatorial horoball based on � with scaling factor � is the graph as defined in
Definition 2.7 except that horizontal edges are added between .v; k/ and .w; k/ when
0 < d�.v; w/� �

k . We denote this space by CH.�; �/.

Note that Groves and Manning used �D 2, as in Definition 2.7.

Definition A.2 (Cannon–Cooper horoball) Let � be a metric graph and let � > 1.
We form the CC-horoball based on � with scaling factor � to be a metric graph H.�/
whose vertex set is �.0/ �Z�0 , and with two types of edges:

(i) A vertical edge of length 1 from .v; n/ to .v; nC 1/ for any v 2 �.0/ and any
n� 0.

(ii) If � is an edge of length l in � joining v to w , and n� 0, there is a horizontal
edge of length ��nl joining .v; n/ to .w; n/.

We denote this space by CCH.�; �/.

Note that Cannon and Cooper used �D e .

To define the Bowditch horoball, it is convenient to use the notion of a warped product
of length spaces.

Definition A.3 (warped product of length spaces [17]) Let .B; dB/ (the base) and
.F; dF / (the fiber) be two length spaces, and let f W B ! Œ0;1/ be a continuous
function (the warping function). Let t 7! .ˇ.t/; 
.t// define a path � W Œ0; 1�!B �F .
Define a length by first considering, for each partition �Df0D t0<t1< � � �<tn.�/D1g,
the � –length

l� .�/D

n.�/X
iD1

�
d2B.ˇ.ti /; ˇ.ti�1//Cf

2.ˇ.ti //d
2
F .
.ti /; 
.ti�1//

� 1
2 :
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Any two partitions have an upper bound (their union), and there is a well-defined limit
over partitions l.�/ 2 Œ0;1�. In fact it is not hard to see there is always a finite length
path, and we get a length pseudometric df on B � F . If f has no zeros, this is a
metric, and B �F with this metric is written B �f F .

Definition A.4 (Bowditch horoball) Suppose that � is a metric graph and that �> 1
is a constant. The Bowditch horoball based on � with scaling factor � is the warped
product

Œ0;1/���t �:

We denote this space by BH.�; �/.

Note that Bowditch used �D e .

The following result is elementary and probably well known to many experts. The
proof is very similar to part of the proof of [15, Theorem, Section 4.2]; see also
[23, Proposition 3.2] for more details. Neither Cannon and Cooper nor Durham deal
with a general graph, but this is irrelevant for the proofs. We leave the details as an
exercise for the reader.

Proposition A.5 Suppose that �1; �2 > 1 are constants and that � is a graph. The
map �.0/ �Z�0! Œ0;1/���t

2
� defined by

.v; n/ 7!

�
ln.�1/
ln.�2/

n; v

�
extends naturally to quasi-isometries

CH.�; �1/! BH.�; �2/ and CCH.�; �1/! BH.�; �2/;

by mapping edges in the left-hand spaces to geodesics in BH.�; �2/.

Remark A.6 If some care is not taken then different kinds of horoballs may not be
quasi-isometric. For example, if the warping function f for Œ0;1/�f � is taken to
be doubly exponential, the resulting horoball will still be Gromov hyperbolic, but will
not be quasi-isometric to BH.�; �/.

For each kind of horoball, there is then an associated cusped space, obtained from the
Cayley graph of G by gluing the horoballs based on the Cayley graphs of P 2 P onto
the cosets in the same way as described in Definition 2.8 above.

The following is a straightforward application of Proposition A.5.
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Corollary A.7 Suppose that G is a group, and that P is a finite collection of finitely
generated subgroups of G . The three kinds of cusped spaces obtained by gluing either
combinatorial, Cannon–Cooper, or Bowditch horoballs to the Cayley graph of G are
all quasi-isometric via maps extending the identity map on the Cayley graph of G .

In particular, any one of them is Gromov hyperbolic if and only if any of the others is.

Quasi-isometric proper Gromov hyperbolic spaces have quasisymmetric boundaries;
see for example [13, Theorem 5.2.17].

Corollary A.8 Suppose that .G;P/ is relatively hyperbolic. Let XCH , XCCH and
XBH be the three cusped spaces for .G;P/ associated to the three kinds of horoballs.
Equip the (Bowditch) boundaries @XCH , @XCCH and @XBH with visual metrics based
at 1. These boundaries are quasisymmetric.

By Lemma 2.6, either all these boundaries are linearly connected, or none of them are.
The following is now an immediate consequence of [36, Proposition 4.10] and results
of Bowditch [8; 9; 10]; see [30, Theorem 7.3], for example.

Corollary A.9 Suppose that .G;P/ is relatively hyperbolic , that P consists of finitely
presented groups with no infinite torsion subgroups , and that .G;P/ has no nontrivial
peripheral splittings. Then the boundary of the cusped space of .G;P/ (with respect to
any type of horoball ) is linearly connected.

A.2 ı–hyperbolic geometry

All lemmas in this section are well-known facts about ı–hyperbolic spaces. We include
proofs for completeness and to explicitly keep track of how the constants appearing in
the construction of spiderwebs depend on ı .

Lemma A.10 Let Y be a ı–hyperbolic space and let A � Y be any set. Then the
union Z of all geodesics connecting pairs of points in A is 2ı–quasiconvex.

Proof For i D 1; 2, let zi 2 Œxi ; yi � for some xi ; yi 2A, and pick any z 2 Œz1; z2�. To
prove 2ı–quasiconvexity we observe that z is 2ı–close to either Œx1; z1�� Œx1; y1�,
Œx1; x2� or Œx2; z2�� Œx2; y2�, and all such geodesics are contained in Z .

Definition A.11 For a set W , denote the power set of W by 2W . Suppose that X is
a metric space and W �X . Let �W W X ! 2W be closest-point projection, so �W .x/
is the set of all x0 2W satisfying dX .x; x0/D dX .x;W /.
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Lemma A.12 Let Y be a ı–hyperbolic space and let W � Y be Q–quasiconvex.
Let x; y 2 X , and let x0 2 �W .x/ and y0 2 �W .y/. If dY .x0; y0/ > 8ıC 2Q , then
dY .Œx; y�;W /� 2ıCQ and maxfdY .Œx; y�; x0/; dY .Œx; y�; y0/g � 6ıC 2Q .

Proof Pick any point p on a geodesic Œx0; y0� satisfying dY .p; x
0/; dY .p; y

0/ >

4ı CQ . The quasiconvexity of W ensures that d.p;W / � Q . Slimness of geo-
desic quadrilaterals implies that p is 2ı–close to some point q lying on a geodesic
Œx; x0�, Œy; y0� or Œx; y�. We will rule out the first two possibilities, and deduce that
d.Œx; y�; p/� 2ı and so d.Œx; y�;W /� 2ıCQ .

By symmetry, we can assume q 2 Œx; x0�. Since dY .q; x0/� dY .p; x0/�2ı > 2ıCQ
and dY .x; q/D dY .x; x0/� dY .q; x0/, we have

dY .x;W /� dY .x; q/C dY .q;W / < .dY .x; x
0/� 2ı�Q/C 2ıCQD dY .x; x

0/;

contradicting the fact that x0 2 �W .x/.

To obtain the second assertion, note that we could have chosen p at distance 4ıCQC�
from x0 or y0 for any sufficiently small � > 0.

Lemma A.13 Let Y be a ı–hyperbolic space and let W1 and W2 be Q–quasiconvex
subsets of Y . Also, let 
 be any geodesic from some point p1 2 W1 to some point
p2 2W2 . Then any geodesic ˛ from W1 to W2 is contained in

NQC2ı.W1/[NQC2ı.W2/[N2ı.
/:

Proof Let qi be the endpoints of ˛ , with qi 2Wi . Then any point in ˛ is 2ı–close
to either 
 or to a geodesic Œpi ; qi � for some i , and each such geodesic is contained in
NQ.Wi /, so we are done.

Definition A.14 We say that a path ˛ in a geodesic space is C –tight if

(a) it is .1; C /–quasigeodesic, and

(b) for any s � t � u in the domain of ˛ any geodesic from ˛.s/ to ˛.u/ passes
C –close to ˛.t/.

The path is �–locally C –tight if ˛jI is C –tight for every interval I of length at
most �.
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We remark that in this paper we consider a .�; �/–quasigeodesic to be a unit-speed
path � such that d.�.s/; �.t//� ��1js� t j � � for all s and t . The results we prove
are also true if instead one considers quasi-isometric embeddings of an interval, but all
the quasigeodesics we need are continuous unit-speed maps.

Lemma A.15 Let Y be a ı–hyperbolic space, let W � Y be Q–quasiconvex and
let x 2X . If w 2 �W .x/, then for any w0 2W the concatenation of geodesics Œx; w�
and Œw;w0� is .4ıC2Q/–tight.

Proof We prove that the concatenation satisfies the second condition in the definition
of C–tight, with C D 2ı CQ . We then note that such a concatenation must be
.1; 2C /–quasigeodesic.

We can restrict ourselves to considering geodesics connecting some z1 2 Œx; w� to
some z2 2 Œw;w0�. Choose Œz1; w�� Œx; w� and Œw; z2�� Œw;w0�, and let p 2 Œz1; z2�,
p12 Œz1; w�, p22 Œw; z2� be the internal points of the triangle Œz1; z2�[Œz1; w�[Œw; z2�.

Since p2 lies on Œw;w0�, we have d.p2; W /�Q , and so d.p1; W /� ıCQ . Since
p1 lies on a shortest path from x to W , we have d.p1; w/ � ı CQ . Moreover
d.p2; w/D d.p1; w/� ıCQ . It follows that any point on Œz1; w�[ Œz2; w� lies within
2ıCQ of some point on Œz1; z2�, as required.

The proof of the next result is a minor variation of that of [12, Theorem III.H.1.13].

Lemma A.16 Let Y be a ı–hyperbolic space and let ˛ be a .6CC8ıC1/–local
C–tight path. Then the Hausdorff distance between ˛ and any geodesic with the same
endpoints as ˛ is at most 2C C 4ı .

Proof Let us first show ˛�NCC2ı.
/, where 
 is a geodesic with the same endpoints.

Let Œ0; a� be the domain of ˛ . Let p D ˛.t/ be any point on ˛ at maximal distance
from 
 , and let d D dY .˛.t/; 
/. Suppose by contradiction that d > 2C C 4ı . Let
RD 3CC4ıC 1

2
, so that ˛ is 2R–locally C –tight. Using local C –tightness, there are

points xD ˛.t1/ and y D ˛.t2/ satisfying t1 2 .t �R; t/; t2 2 .t; tCR/ and such that
minfdY .x; p/; dY .y; p/g > 2C C 4ı . Choose a geodesic Œx; y�. By local tightness,
there is a p0 2 Œx; y� within C of p .

Let x0; y0 2 
 be chosen so that dY .x; x0/ and dY .y; y0/ are minimal, and let Œx0; y0�
be the subsegment of 
 joining them. Consider a geodesic quadrilateral

Œx; y�[ Œx0; y0�[ Œx; x0�[ Œy; y0�:
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The point p0 is within 2ı of some p00 in one of the other three sides. It cannot
be Œx0; y0�, or we would have d D dY .p; 
/� dY .p; p00/� C C 2ı . Suppose on the
other hand that p00 2 Œx; x0� (the argument for Œy; y0� is identical). Then dY .p; 
/�
C C 2ıC d � dY .p

00; x/. However dY .p00; x/ � dY .x; p/� C � 2ı > C C 2ı , so
dY .p; 
/ < d , a contradiction.

Suppose now that there exists p 2 
 nNCC2ı.˛/ (otherwise we are done), and let us
show dY .p; ˛/ � 2C C 4ı . Any point on ˛ is .CC2ı/–close to a point on one of
the two sides of p in 
 , and hence there exists some q 2 ˛ that is .C C 2ı/–close to
points p1 and p2 on opposite sides of p . Since dY .p1; p2/ � 2C C 4ı and 
 is a
geodesic, we have dY .p; pi /� C C 2ı for some i , and hence dY .p; q/� 2C C 4ı ,
as required.
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