:. Geometry € Topology 23 (2019) 3141-3202
msp

Plato’s cave and differential forms

FEDOR MANIN

In the 1970s and again in the 1990s, Gromov gave a number of theorems and conjec-
tures motivated by the notion that the real homotopy theory of compact manifolds
and simplicial complexes influences the geometry of maps between them. The
main technical result of this paper supports this intuition: we show that maps of
differential algebras are closely shadowed, in a technical sense, by maps between the
corresponding spaces. As a concrete application, we prove the following conjecture
of Gromov: if X and Y are finite complexes with Y simply connected, then there
are constants C(X,Y) and p(X,Y) such that any two homotopic L-Lipschitz maps
have a C(L+1)?—Lipschitz homotopy (and if one of the maps is constant, p can be
taken to be 2). We hope that it will lead more generally to a better understanding of
the space of maps from X to Y in this setting.
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1 Introduction

In 1996, Princeton University invited several prominent mathematicians, including
Misha Gromoyv, to give a series of lectures entitled “Prospects in Mathematics”; each
speaker would discuss their views on future directions in their field. Gromov’s talk

1 and advanced the idea that the central

was entitled “Quantitative homotopy theory
questions of algebraic topology — such as “are two maps homotopic?” — should be
refined by asking about the sizes of the objects produced.

1 Actually, due to a mistake somewhere along the way, the title of the talk was given as “Qualitative
homotopy theory” — exactly the opposite of what Gromov meant! The notes were published as [25].
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3142 Fedor Manin

Indeed, a central weakness in the extremely powerful results of algebraic and geometric
topology is their indirectness: they are obtained by reducing geometric problems to
those of homotopy theory and homotopy problems to algebra, leaving us very little
understanding of the shapes of the solutions, or whether finding the correlates of
these solutions back in the geometric world is easy or hard. A beautiful example
of this phenomenon is the result of Nabutovsky [35] that, although every embedded
codimension-one sphere in the n—disk (n > 4) is isotopic to the boundary due to
Smale’s i—cobordism theorem, the complexity of such an isotopy (measured by the
size of an embedded normal bundle) cannot be bounded by any computable function
of the complexity of the original embedded sphere.

Nabutovsky’s result follows from the unsolvability of the triviality problem for groups:
while the embedded sphere is simply connected, it has no way of knowing that it is
(ie no algorithm can distinguish it from a homology sphere with nontrivial 1) and
in particular it cannot know that it is isotopic to the boundary. With objects that are
aware of their simple-connectivity, homotopy theory tends to be more computationally
tractable,? and the solutions are correspondingly less complex. This seems to stem
from the fact that the algebra describing them is commutative.

Indeed, in the setting of this paper, geometric complexity is controlled quite closely by
the algebraic structure of maps. One of the most important tools for studying simply
connected spaces is rational homotopy theory, first developed by Quillen and Sullivan in
the 1970s. Almost immediately, Gromov realized that Sullivan’s machine has geometric
consequences, providing lower bounds on the complexity of maps in a given homotopy
class, and conjectured that these lower bounds are sharp. In the intervening years these
ideas have been developed further by Gromov, and more recently by Weinberger, Ferry,
Chambers, Dotterrer, Guth and the author.

This paper seeks to strengthen the link between rational homotopy and geometry by
showing a kind of inverse result to the reduction to algebra: that, at least in the world
of compact spaces, the algebraic maps produced by the theory always have reasonably
close geometric doppelgangers. This is robust enough to provide an almost immediate
proof of one of the conjectures in Gromov’s talk. We also provide applications which
nibble at the margins of some other problems; it is the author’s hope that with more
effort and new techniques, other broader applications will be found.

2But this does not mean tractable in an absolute sense; see Cadek, Krc¢al, Matousek, Vokiinek and
Wagner [9] and Filakovsky and Vokiinek [20] for two contrasting perspectives.
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Our results do not directly resolve any metric problems beyond homotopy theory; in
settings such as cobordism or embedding, one also needs to analyze the reduction to
homotopy theory. However, again the hope is that these results will simplify that task
to some degree.

1.1 Gromov’s conjectures

Gromov’s 1990s questions have roots stretching back to the 1978 paper [23], where he
showed the following result:

Theorem Let Y be a simply connected finite complex with a (reasonable) metric.
Then m,(Y') has polynomial growth, ie the number of elements which have a represen-
tative with Lipschitz constant at most L is bounded by a polynomial in L.

There are several reasons why the Lipschitz constant is a natural notion of complexity
here. First, if two such spaces are homotopy equivalent, then they are Lipschitz
homotopy equivalent; this means that Lipschitz invariants such as the asymptotics of
the growth function of 7,(Y) are as natural as homotopy invariants in this context.
Conversely, every L-Lipschitz map from S” is homotopic to a simplicial map on a
subdivision with ~L" simplices; see Proposition 2.1. This means that the number of
bits of information needed to (homotopically) specify an L—Lipschitz mapis ®(L"). In
this framing, Gromov’s result says that for simply connected targets, this is a significant
overestimate.? On a more geometric level, the Lipschitz constant bounds the sizes of
pullbacks of forms; this is its main property used in the proof.

Gromov’s theorem vastly generalizes an observation about Hopf invariants. Suppose
that f: S3 — S? is a smooth L—Lipschitz map between round unit spheres. Denote
the volume form on S? by dvol; then f*dvol is a closed 2—form in S* and therefore
f*dvol=da for some 1-form «. Then, following J HC Whitehead, the Hopf invariant
of f is given by

H(f)=/53a/\f*dvol.

Now we look at the L.°°—norms of these forms (ie the supremum of their values taken
over all frames of unit vectors). We know || f *dvol||oc < L? and we can choose « so

30n the other hand, it is sharp for examples like 7, (T v §™): there are ©(exp(L")) homotopy
classes of maps with Lipschitz constant L.
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that ||||eo < C|| f*dvol|so.* Therefore we have the inequality
H(f)<Cvol(S*)L*.

Indeed, up to a constant, this is sharp: a map with Lipschitz constant O(L) and Hopf

invariant L* can be built via the composition

S 3 Hopf map S2 degree L2 S2

To Gromov, this and other examples suggested the following conjecture:

Conjecture A [25] The estimate on the growth of 7, (Y) provided by the method
of [23] is sharp.

Thus far, we have failed to give an algorithmic description of this method and thus
this conjecture remains an impressionistic, ill-defined one. In particular, in Section 3.3
we give an example where a candidate algorithm based on the work of Sullivan fails
to produce the correct bound. Nevertheless, the examples in that section illustrate the
intuition that suggests that an algorithm can be found.

Gromov returned to this theme in the 1990s in [24, Chapter 7] and the conference
paper [25]. In these works he presented two other conjectures which are relevant to the
present work. The first concerns a cousin of the growth of homotopy groups. Given an
element o € ,(Y), define the distortion function

So(k) =inf{Lip /| f: S" =Y, [f]=ka}.

Note that in all cases 84 (k) = O(k'/™); this is because one can always find a represen-
tative of ka by precomposing a representative of « with a degree k map f;: S" — S™
with Lip f = O(k'/"). On the other hand, for some « one can do better; we say
such o are distorted, whereas those for which 8q (k) = ©(k'/") are undistorted. In
this language, what Gromov showed in [23] is that the generator of m5,41(S") is
distorted, and also that when Y is simply connected, 8o for an element o € 7,(Y) is
always Q(k'/2m)y.

Conjecture B [25] When Y is simply connected, an element « € 7,(Y) is undis-
torted if and only if it has nonzero image under the Hurewicz map to H, (Y ; Q). If it is
distorted, then 84 (k) = O(k1/m+1y,

4The latter inequality is not entirely obvious and Gromov did not prove it in this paper, although he did
give a sketch in [24]; we prove it in Section 2.
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There is a “strong” but again impressionistic version of the conjecture which states that
the bound implied by [23] is sharp, and which is equivalent to Conjecture A.

One may try to formulate similar conjectures more generally for the set of mapping
classes [X, Y] where X is not necessarily a sphere. In [24], Gromov suggests that the
growth of [X, Y] should be asymptotic to L% for some integer @ determined by the
minimal models of X and Y. This is disproved in the companion paper [33] by the
author and Weinberger; however, we do show there that the growth of [X, Y] is at least
bounded above by a polynomial.

Since the integral homotopy classes can be thought of in general as the integer points
of an algebraic variety,’ one cannot say much in the way of lower bounds on growth.
Perhaps results can be obtained when this variety has particularly nice properties, or in
instances where there is more structure, for example for Aut(Y'), which Sullivan [39]
demonstrated is an arithmetic subgroup of an algebraic group of rational automorphisms.

One could formulate a weaker conjecture, somewhat analogous to Conjecture B. While
the notion of distortion only makes sense when the set of mapping classes [X, Y] is a
group, Gromov sketches an argument in [25] that the Lipschitz constant of a map gives
an upper bound on its obstruction-theoretic rational homotopy invariants. One can then
guess that every class which can be realized via small enough such invariants has a
C L-Lipschitz representative. This guess also turns out to be false in general, as will
be explained in a forthcoming paper [32].

Nonetheless, a relative analogue can be stated in this more general setting.

Conjecture C [25] Let f ~ g: X — Y be L-Lipschitz maps from a finite complex
to a finite simply connected complex. Then there is a polynomially bounded function
Pyy(L) = O(LPX-Y)) such that there is a homotopy between f and g through
Py .y (L)-Lipschitz maps.

Gromov remarked that he knew no examples where this polynomial had to be nonlinear.®

In the past few years, there has been some incremental progress on these conjectures by
a group including Shmuel Weinberger, Steve Ferry, Greg Chambers, Dominic Dotterrer

SThis variety is cut out of the space of graded algebra maps between free DGAs by equations forcing it
to be a chain map.

0n the other hand, if we allow 7;(Y) to be nontrivial and take X = S, this corresponds to the
so-called isodiametric function of 1 (Y), which for certain groups grows faster than any computable
function; see Gersten [21].
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and the author. An unpublished result of Weinberger (which appears in the author’s
PhD thesis [31]) shows the following weak version of the distortion conjecture: there
are no rationally nontrivial distorted elements in 74 (Y) if and only if the Hurewicz
map

1 (Y) ® Q > Hy(Y; Q)

is injective. The proof uses the fact that distortion is well understood for generalized
Whitehead products. Conjecture C is proven for target spaces Y whose rational
homotopy structure is relatively simple (including spheres, H-spaces and homogeneous
spaces of Lie groups) in the series of papers by Chambers, Dotterrer, Ferry, Manin and
Weinberger [18; 11; 12].

In this paper, we prove results about Lipschitz homotopies which generalize those
of [11; 12] and are actually somewhat stronger than Conjecture C. Define the length of
a homotopy (sometimes also referred to as width) to be the maximal Lipschitz constant
of its restrictions to {x} x [0, 1], and its thickness to be the maximal Lipschitz constant
of its restrictions to X x {¢}. Gromov’s conjecture only asks about thickness; here is a
summary of the results of Section 5.2:

Theorem A Let Y be a finite simply connected complex and X a finite complex of
dimension n.

(i) There are constants C(X,Y) and p(X,Y) such that any homotopic L —Lipschitz
maps f >~ g: X — Y are homotopic via a homotopy of length C and thickness

C(L+1)*.
(i) Moreover, any nullhomotopic L —Lipschitz map is nullhomotopic via a homotopy

of length C and thickness C(L + 1)2.

(iii) If in addition Y has positive weights (an algebraic condition on the rational
homotopy structure), then any nullhomotopic L —Lipschitz map is nullhomotopic
via a homotopy of linear thickness and length C (L + 1)*71,

The latter two bounds are sharp: there are spaces for which one parameter cannot be
decreased without increasing the other. On the other hand, it’s not clear whether linear
thickness is achievable for some classes of maps not satisfying (iii).

The growth and distortion conjectures are more resistant for reasons which are explained
later in the introduction, but we do prove a set of results for symmetric spaces:
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Theorem B Let Y be a simply connected finite complex which has the rational
homotopy type of a Riemannian symmetric space. Write ny: my(Y) — Hp(Y; Q) for
the Hurewicz homomorphism.

(i) The distortion of an element o € 7, (Y) is Ok if ni() # 0 and is
O(k/+1) otherwise. (This proves the “strong” distortion conjecture for
such spaces.)

(ii) The size of the L—ball in 7, (Y) is @(L"ximme+n+1)rkkerny,

(iii) Nullhomotopic L—Lipschitz maps X — Y, for any finite complex X, have
nullhomotopies whose Lipschitz constant is slightly superlinear in L.

I believe that the sharp bound on sizes of nullhomotopies in this case is linear, but (iii)
is an improvement over Theorem A which only gives a quadratic bound.

1.2 Minimal models and DGA maps

To state more precisely the technical ideas in this paper, we must delve into Sullivan’s
model of rational homotopy theory. This is discussed in greater detail in Section 3 and
we also refer the reader to [39] and Griffiths and Morgan’s textbook [22] for detailed
exposition. More accurately, what we give here is real homotopy theory; the results
are less impressive than those of rational homotopy theory in some respects that are
irrelevant to the ideas in this paper, but this theory has the advantage of working with
off-the-shelf differential forms which behave nicely with respect to smooth maps.

For our purposes, the main points of Sullivan’s theory are that the algebra of smooth
differential forms 2*Y on a compact manifold ¥ with boundary is a fairly good
homotopy-theoretic model for the space Y itself; and that it in turn is modeled by a
much smaller, easily described algebra closely related to the Postnikov tower of Y.

More precisely, we think of these as differential graded algebras (DGAs), that is, chain
complexes (in this case over R) equipped with a multiplication which satisfies the
graded Leibniz rule. If Y is simply connected, then there is a homotopy equivalence
(under a well-known notion of homotopy of DGAs, which we define in Section 3)
my: My — Q*Y, where M7, is a DGA of finite type (ie generated by a finite vector
space in every degree). This minimal model has a number of nice properties, but all that
matters for us is that given amap f: X — Y from some manifold X, we can describe
the homomorphism f*my: M} — Q*X using a finite number of differential-form-
valued invariants. Indeed, up to homotopy, this description can be made finitary in a
much stronger sense.
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Write [M3,, Q* X] for the set of homotopy classes of DGA homomorphisms. Then
f+ f*my induces a well-defined map [X, Y] — [M7, Q* X], which is finite-to-one
by [39, Theorem 10.2(i)]. Moreover, in various cases where these sets have a group
structure, this map is actually the homomorphism — ® R.

1.3 Existence of shadows

In this paper, we study the algebraicization map f + f*my more closely, as a
continuous map
Alg: Map(X,Y) — Hom(M}, Q*X),

where the latter object is equipped with a metric induced by its homotopy theory.
We can think of homomorphisms M7 — Q*X as “platonic forms” of maps. These
include, of course, the pullbacks of genuine maps X — Y, just as a committed platonist
would have to admit that the world of concepts includes the concept of any particular
object in the real world, as well as abstractions at various levels. But most platonic
forms are indeed abstract. Moreover, Alg is far from being a homotopy equivalence,
even on connected components, since many algebraic homotopies have noninteger and
even irrational invariants.

Nevertheless, the main technical theorem of this paper is that we can produce “almost
inverse images” under Alg. Suppose Y is compact and X has bounded geometry. If
@: M} — Q* X is in the connected component of a genuine map, then it has a shadow
f: X — Y in the “Plato’s cave” of genuine maps such that f*my is reasonably close
to ¢, as measured by the size of an (algebraic) homotopy between them. Moreover,
the Lipschitz constant of [ is closely related to a natural geometric functional on ¢,
which we call the formal dilatation. Most of our applications actually use the relative
form of this statement:

Theorem (shadowing principle, informal version) Let A C X be a subcomplex and
u: A — Y an L-Lipschitz map. Then any extension ¢: M} — Q*X over X of
u*my which is in the relative homotopy class of a genuine extension ii: X — Y of u
has a nearby shadow f: X — Y which is in the same relative homotopy class and has
Lipschitz constant at most CM + C, where M is the formal dilatation of ¢.

The precise statement is given in Theorem 4.1.

The significance of this is that platonic maps are sometimes easier to construct than
genuine maps, since they have fewer moving parts; this makes it easier to construct new
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geometrically bounded objects. For example, it is much easier to produce a homotopy in
the algebraic world than the geometric one, and this is what gives us our powerful results
about homotopies. Other new results are obtained by harnessing scaling automorphisms
of DGAs. On the other hand, in order to realize the full potential of the shadowing
principle, we need additional techniques for constructing DGA homomorphisms.

1.4 The method of Guth

The proof of the shadowing principle is inspired by Larry Guth’s recent streamlined
proof [26] of the main homotopical result of [11]. We give an outline of this proof here.

Suppose we are given a nullhomotopic L-Lipschitz map f: S — S", where either
n is odd or m < 2n — 2; we will construct a C(m, n)L-Lipschitz nullhomotopy
F: S™x[0,1]— S™. First of all, we may assume, by a quantitative simplicial approx-
imation result, that f is the composition of a simplicial map from some triangulation
of S™ at scale’ ~1/L to dA"+! and a smooth map that contracts all but one of the
faces of A" !, Next, we choose some uncontrolled nullhomotopy F of this map. We
will deform this to a controlled homotopy.

First, choose a triangulation X of S™ x [0, 1] also at scale ~1/L, restricting to our
triangulation of S™ at ¢t = 0. We will proceed by induction on the skeleta of this
triangulation. The key point is that at the k™ step we will make sure that the k—
simplices of X are mapped to S” in one of a fixed set of ways, depending only on m
and n. Then the Lipschitz constant is bounded by

~(max Lipschitz constant of a restriction to a simplex) - (min edge length of X)™!.

For k < n, we do this simply by sending the whole k—skeleton to the basepoint of S”.
This may make the homotopy even worse than it was on higher simplices, but we will
fix this in future steps. This gives us a homotopy Fj—; which sends X n=1) (o a point;
if m <n, we are done.

The n'™ step is the trickiest, and it is here that we use some algebra. Note that
since Fj—1|yw—n is constant, Fy_; has a well-defined degree on n—simplices. Let
¢ € C"(X) be the cochain whose value on simplices is this degree. Since Fj_; is
defined on (n+1)—cells, this is a cocycle.

We compare this to another cocycle, which describes the “ideal” behavior of such a
nullhomotopy. The piecewise smooth form f*dvol € Q"(S™) is exact since f is

"That is, with simplices uniformly bilipschitz to a linear simplex with edgelength 1/L .
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nullhomotopic. Moreover, || f*dvol|lcoc < L™; by an isoperimetric result for forms,
reproven in this paper as Lemma 2.2, we can find an o € Q"~!(S™) such that do =
f*dvol and |&]co < C(m,n)L". Let 7: X — S™ be the obvious projection; then
we define a cocycle w € C"*(X; R) by sending each n—simplex p to

w(p) = /((1 —t)r* f*dvol + (—1)"w*a A di).
p

The L°° bound then implies that |w(p)| <1+ C(m,n).

Note that w = ¢ on the simplices of S™ x {0, 1}. Thus w—c € C"(X, $™ x{0, 1};R)
is a relative cocycle and hence (since m > n) a relative coboundary: w — ¢ = b
for some b € C" (X, S™ x {0,1};R). Now we homotope F,_; to a map F, as
follows. The homotopy will be constant on X (=2) On each (n—1)—simplex ¢, we
make the homotopy trace out a map of degree [h(q)], ie the nearest integer to b(q),
and return to the constant map to the basepoint. This then fixes the degree of Fj on
each n—simplex p, this degree within distance %(n + 1) from (¢ + 8b)(p) = w(p).
This is bounded by a constant depending only on 2 and n; for each degree below this
bound, we fix a specific map on A" and homotope to that map.

Now let k > n; by induction, we have a map Fj_; which takes a finite set of values
on (k—1)-simplices. In particular, there is a finite set of values that it can take on
the boundary of any k—simplex p. Moreover, given Fy_;|3,, the possible relative
homotopy classes of Fj_;|, form a torsor for x (S"), which is finite by assumption.
Thus we can fix a map in each such relative homotopy class and homotope to an Fj
whose restriction to p is that map. Once k = m + 1, we have completed the proof.

Let us return now to the n'™ step. In this paper, we reinterpret this as follows. The form
(1—t)n* f*dvol + (—1)"n*a A dt

should be thought of as an algebraic nullhomotopy of the form f™*dvol which describes
/" up to finite uncertainty; this is made precise in Section 3. We construct our controlled
nullhomotopy by pulling the uncontrolled homotopy F as close as we can to the
controlled, but purely algebraic one.

In more general situations, the map and its nullhomotopy cannot be fully described by
a single form. Instead, the description of a map X — Y is an algebra homomorphism
M’)", — Q*X. However, we can still use roughly the same procedure: take an uncon-
trolled geometric homotopy F and a controlled algebraic one ®; as long as they are
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homotopic to each other in the algebraic sense, we can gradually pull F' towards @,
skeleton by skeleton, until we get a geometric homotopy which is close to ®, and
therefore controlled. This works not only for homotopies but for maps in a relative
homotopy class in general.

1.5 Seeing outside the cave

The method outlined in the previous section has an important weakness: in order to get
the bound we want, we need to first find a DGA homomorphism that satisfies it. In
the case of homotopies, there is an algorithm described in Section 3 which constructs
such a homomorphism. The bound obtained this way, however, while sharp in some
instances, is not, for example, sharp in the case of maps S> — S?2. Here the algebraic
method yields a quadratic bound, whereas I strongly suspect that the true bound is
linear. In fact, we produce an only slightly superlinear bound in Theorem 5.8 using a
somewhat mysterious ad hoc method.

Similarly, for elements of 7,(Y) we can always produce not-too-large representatives
algorithmically, but, if we use the most general construction, such representatives will
not say anything nontrivial about distortion.

To highlight some of the uncertainties, we come back to maps f: S — S2. To
construct an algebraic nullhomotopy of such a map, it is enough to find a 1-form
a € Q1(S3) with do = f*dvol and n € Q2(S3) with dn = a A f*dvol. By the
aforementioned isoperimetric result, we can find 1 with ||7]lec < (Lip f)*. A quick
argument (provided by the anonymous referee and explained in Section 5.3) shows
that this bound cannot in general be improved by choosing the forms in a more clever
way. At the same time, Sasha Berdnikov [4] has shown that linear homotopies can
always be constructed in this setting. Thus the obvious method of constructing algebraic
homotopies cannot provide a sharp geometric bound.

Of course, the problem does reduce to a question about whether there are homomor-
phisms M;z — Q(S3x[0, 1]) with certain L> bounds on the images of the generators.
The point is that the existence of such homomorphisms seems potentially just as hard to
decide as the original questions about maps and homotopies. The same sort of questions
bedevil any attempts at resolving Conjectures A and B purely through DGA methods;
all the proofs we have use some kind of self-maps that allow us to use one representative
to generate a whole class of maps, whether geometrically or algebraically.
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1.6 Extensions and generalizations

The shadowing principle has the advantage of being completely local. Therefore a
number of extensions which are not shown in this paper nevertheless seem achievable.
The author would like to thank David Kazhdan, Shmuel Weinberger and Tali Kaufman
for raising some of these points.

(1) The results should hold for nilpotent targets as well as simply connected ones.
This requires more complicated induction procedures and perhaps some stipulations
regarding basepoints.

(2) The results should hold for various extensions of rational homotopy theory, once
one has a good understanding of the relevant algebra. This includes equivariant rational
homotopy theory (see Scull [37]) and perhaps the rational homotopy theory of more
general diagrams of spaces a la Dror Farjoun [14] (although this has never been explicitly
developed) as well as sections of a fibration, or more generally for rational homotopy
theory of maps fibered over some fixed base space.

(3) The theorem holds for the case where the domain is an infinite complex of bounded
geometry (although we do not give any applications that use this). In such complexes,
one could have DGA homomorphisms which are not bounded, but are controlled within
an r —ball around some basepoint by some function f(r). Then, by rescaling or varying
the sizes of subdivisions, we can get an honest map with similar control on the Lipschitz
constant.

(4) One interpretation of the shadowing principle is that, in some sense, the map
Map(X, Y) — Hom(M3,, 2*X) induced by pullback of the minimal model is “almost
dense” and induces a near-equivalence between the Lipschitz constant on Map(X, Y)
and a similar geometric functional on the other space. One could ask whether there is
a stronger notion of connectivity between the Morse landscapes of these functionals;
this needs to be done with some care since the map is not a homotopy equivalence.
The 7o version of this question is this: given a path in Hom(M3,, Q* X') between two
genuine maps which is in the relative homotopy class of a genuine homotopy, can we
find a genuine homotopy with similar geometry to the path? The m, questions can be
formed similarly. It seems that the answer must be yes, but to confirm this one needs
to understand paths in the space of homomorphisms, most of which are not algebraic
homotopies in the sense we use.

We can find a closer topological equivalence by restricting to homomorphisms of
polynomial forms with rational coefficients. These are closely related to maps from X
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to the rationalization of Y, as discussed by Brown and Szczarba [8]. However, these
do not usually come from pullbacks of maps, so we would still have to use the space
Hom(M3,, Q*X) as a common refinement. Since smooth forms seem closely approx-
imable by polynomials, it is likely that the geometry of this space is likewise quite
similar.

1.7 Applications to geometric problems

One of the main motivations for studying quantitative algebraic topology is to try to
understand the solutions to problems in geometric topology. The long-time method of
doing geometric topology is to reduce it to problems in homotopy theory, then solve
those problems using algebraic methods. One could therefore attempt to understand
the solutions by putting geometric bounds on both the reduction and the homotopy
theory. Here are some examples where this has been achieved:

(1) In [11], we gave a bound on the size of a nullcobordism of a nullcobordant
manifold. This is a quantitative version of Thom’s cobordism theorem. Here, the
algebraic problem was a special case of Conjecture C; the geometric problem
was to get a bound on the size of Thom’s construction.

(2) Already in [23], Gromov uses his estimate on the growth of homotopy classes to
bound the growth of embedding spaces. By a theorem of Haefliger [27], when
2n > 3(m+1), isotopy classes of embeddings of an m—manifold M in R” are in
bijection with Z /27 —equivariant homotopy classes of maps (Mx M )\A— S"~ 1,
One direction is easy: every embedding f: M — R” is sent to the map

S (m) — f(n)

| f(m) = f(m)]
After forgetting a tubular neighborhood of the diagonal, this correspondence
sends L-bilipschitz maps to O(L?)-Lipschitz ones. Using (the free Z /27—
equivariant version of) Gromov’s polynomial estimate and this explicit procedure,

(m,n) —

one sees that the number of homotopy classes of L—bilipschitz embeddings
of M in R” is at most polynomial in L.

It would be interesting to investigate the space of such embeddings in greater detail.
The methods of this paper provide solutions to some of the requisite algebraic problems.
However, translating this into embedding theory requires a deeper, more geometric
understanding of the correspondence going from equivariant maps back to embeddings.
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Open problem (1) Find a sharp estimate of the number of embeddings of some M
in R” with a given bilipschitz constant or other geometric bound.

(2) Find a bound on the difficulty of isotoping two isotopic embeddings (again, in
terms of the bilipschitz constant or some other geometric bound).

We hope that our results will induce more work on the geometric side of these problems
and many others.

Structure of the paper

Section 2 introduces some technical results about the geometry of simplicial complexes
which underpin the various proofs. In Section 3, we discuss rational homotopy theory in
detail, including the geometric estimates introduced by Gromov. In Section 4, we state
and prove the main technical result. Applications, including the proofs of Theorems A
and B, are discussed in the last section.
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2 Geometric preliminaries

2.1 Simplicial approximation

A key principle in this paper, carried over from [11; 12], is local standardization of
maps. The simplest kind of such standardization is simplicial approximation. It was
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shown in [11] that on the right sort of subdivision, simplicial approximation can be
performed without increasing Lipschitz constants too much.

Let X be a simplicial complex with the standard metric. We say a subdivision of
X is L-regular if the simplices are r—bilipschitz to a standard simplex with edge
length 1/L for some r which perhaps depends on dimension. The most common
notion of subdivision used is barycentric subdivision, which is not regular: the simplices
get progressively skinnier. However, several regular subdivision schemes are available,
including the following:

e Add acentral vertex to each k —simplex to subdivide it into k+1 cubes. Cubulate
each such cube at scale 1/L, then break each small cube into simplices in a
standard way. This method was described by Ferry and Weinberger [18].

e Slice each simplex into approximately L slices of equal width along planes
parallel to each face. This subdivides it into a finite number of types of polyhedra.
Apply a standard simplicial subdivision to each. A specific such method is given
by Edelsbrunner and Grayson [15]; its advantage is that » can be taken to be a
constant /2, not depending even on dimension.

Such subdivisions are useful for simplicial approximation of maps.

Proposition 2.1 (quantitative simplicial approximation theorem) For finite simplicial
complexes X and Y with piecewise linear metrics, there is a constant C such that any
L —Lipschitzmap f: X — Y has a C(L+1)-Lipschitz simplicial approximation via a
homotopy of thickness C(L + 1) and length C.

The main purpose of simplicial approximation in this paper, as in [11; 12], is to bound
the behaviors of maps on simplices. If there are only finitely many things a map can do
on a simplex, we can bound its Lipschitz constant by the maximum Lipschitz constant
of these restrictions. Therefore it is useful to extract this more general property and
give it a name.

Let F be a finite set of maps A¥ — Y for some space Y. If X is a simplicial complex,
amap f: X — Y is F-mosaic if all of its restrictions to k—simplices are in Fy.
Here, F is a semisimplicial set whose simplices in degree k are Fj, which can be
formed naturally via restriction maps. We can think of this shard complex as a finite
subcomplex of the singular simplicial set of Y.

We refer to a collection of maps as uniformly mosaic if they are all F—mosaic with
respect to a fixed unspecified shard complex F.
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The main advantage of this definition is that the property of being mosaic is preserved
under postcomposition. Thus for example if we have a homotopy equivalence ¢: Z —Y
from a simplicial complex Z to a cell complex Y which contracts the 1-skeleton,
then we can simplicially approximate a map X — Z, then compose with ¢ to get an
Fp—mosaic map for some fixed F, whose 1-skeleton is a point.

2.2 Quantitative antidifferentiation

De Rham algebras exist in several variations, including smooth and piecewise polyno-
mial. In this paper, we also use the algebra of simplexwise smooth forms on a simplicial
complex. This has several advantages: such forms can be built skeleton by skeleton and
this is the natural context for pullbacks of smooth forms on a manifold by simplexwise
smooth functions. Given a simplicial complex X, this is the algebra we will denote
by Q*X'; for a manifold with boundary the same notation will denote the smooth forms.

A key step in both Gromov’s earliest arguments in [23] and in this paper is quantitative
antidifferentiation of forms: given an exact k—form with L°°-norm B, produce a
(k—1)—form which it bounds with L°°-norm CB, with C depending on the space
and perhaps some other requirements we impose. Gromov sketches an algorithm for
this using quantitative Poincaré lemmas to build antidifferentials skeleton by skeleton,
and this was explained in greater detail in Joshua Maher’s unpublished thesis [30]. We
give a full proof of a similar approach here.

A duality theorem shows that this isoperimetric inequality is closely related to the
Federer—Fleming isoperimetric inequality for currents in X. This kind of duality was
previously explored in [11].

Quantitative Poincaré lemmas The goal of this subsection is to prove the following:

Lemma 2.2 Let A C X be a finite simplicial pair with the standard simplexwise
metric. We use the notation Q*(X, A) to denote forms whose restriction to A is
zero. Then for every k there is a constant C(k, X, A) such that, for every exact form
w € dQ¥"1(X, A), there is a form a € Q¥~1(X, A) with da = w and ||a|leo <
Cle, X, A)|e]lo-

In order to prove this, we first show two important special cases, which will also be
used later in the paper.

Lemma 2.3 (first quantitative Poincaré lemma) For every 0 < k < n, there is a
constant C, j such that the following holds: Let w € Qk (A", 9A") be a closed smooth
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k —form which restricts to zero on the boundary of the standard simplex. (If k = n, we
require in addition that [,, = 0.) Then there is a form o € Qk=1(A" dA") such
that do = w and ||at||eo < Cy i ||@] oo -

Proof We prove this by induction on 7 and k, keeping n — k constant. We note also
that instead of the simplex we can use the unit n—cube, which is diffeomorphic to it.

The lemma is clear for k£ = 0, since then w is the zero function. To do the inductive
step, we use the usual proof of the Poincaré lemma with compact support, following
[7, Section 1.4]. Fix a smooth bump function &: [0, 1] — [0, 1] which is 0 near 0 and
1 near 1. By applying the lemma one dimension lower, we get a (k—2)—form 7 on
the (n—1)—cube with ||[]leo < Cy—1 k—1ll@]l0o and dn = fol w, the fiberwise integral
of w along the first coordinate x;. Then

o =d([s o—e(x)n*(f) ©)—de(x1) Ax*n),

where 7 is the projection to the (n—1)—cube along x; . This form restricts to zero on the
boundary of the n—cube and its co—norm is bounded by (24 Cy,—; x—1||d€||c0)[|@ | 0o -
O

From here, we show how to extend nonzero forms.

Lemma 2.4 (second quantitative Poincaré lemma) For every 0 < k < n, there is a
constant C, ;. such that the following holds: Let w € QK (A") be a closed k —form,
and let ay € QK=1(dA") be a (k—1)—form such that doy = w|gan . (If n =k, we also
require that the pair satisfy Stokes’ theorem, that is, |, A O = /: aak @y.) Then there is a
(k—1)—form a € Q%1 (A") extending ay such that do = w and

lefloo = Crk(llelloo + llaglloo)-

Proof Let U be the 1/(2n)-neighborhood of dA” in A", and let ¢: U — JA” be a
smooth projection with Lipschitz constant L, . Let e: A" — [0, 1] be a smooth bump
function with Lipschitz constant L¢ whichis 1 on dA” and 0 outside U. Then ez *ay
is an extension of oy to A" with

len*aglloo < L™ lletaloo.
ld(en*ap) oo = llde Am*ety + em*daglloo < Le L5 [alloo + L 0] co-
Now we apply the previous lemma to w —d(er*ay) to get an o € Q¥ (A", dA") with
lelloo = Co (Le Ly llealion + (L + Dlllloo).

The form we are looking for is @ = o’ + e *y. a
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Finally, we are ready to prove Lemma 2.2:

Proof of Lemma 2.2 First, let w € CK(X, A) be the simplicial k—cochain given by
integrating @ over simplices. By the de Rham theorem, this is a coboundary, and since

the space of such coboundaries is finite-dimensional, there is an isoperimetric constant
co(k, X, A) and an a € C¥~1(X, A) with §a = w and

lalloo < colk, X, A)[[wlloo < co(k, X, A) vol(A) ||| co-

Now we build a corresponding form « € Q¥ (X, A) by skeleta. On the (k—1)-skeleton,
we take o = ag dvol, where ¢ is a bump function with integral 1. We then extend
inductively to each higher skeleton by the previous lemma. At each step, the isoperi-
metric constant is multiplied by a constant depending only on the dimension. a

Isoperimetric duality In this section we show that the optimal isoperimetric constant
of Lemma 2.2 is equal to another, better-known isoperimetric constant. In geometric
measure theory, a k—dimensional current is simply a functional on the space of smooth
differential k£ —forms, with a boundary operator d defined to be dual to the differential.
The mass of a current 7', which may of course be infinite, is defined by mass(7") =
SUP|[oo=1 I (@). Thus the space of currents of finite mass is dual to (2" (X), || - [|oo)-
A normal current is a current T such that 7 and 07 both have finite mass; in
particular, any current of finite mass which is a cycle is normal. The space of normal
k—currents in X is denoted by /Ny (X). For a simplicial pair 4 C X, we also define
Ni(X,A) = Ni(X)/ Ny (A), equipped with the quotient norm. Then the following is
a dual statement to Lemma 2.2:

Lemma 2.5 Let A C X be a finite simplicial pair. Then there is a constant C(k, X, A)
such that every normal current T € Nj_1(X, A) has a filling S with mass S <
CmassT.

This is a version of the Federer—Fleming isoperimetric inequality [16, Theorem 5.5]. In
their original theorem, Federer and Fleming show that a k —current of mass 7" in R”
whose boundary is in the k—skeleton of the unit cubical lattice can be pushed to a
linear combination of k —cubes of this lattice through a (k+1)—current of mass at most
Cp x mass T'; moreover, the resulting cubical k—chain has mass at most C, x mass T’
as well. Except for the precise constants, their proof can be used to push a current in a
simplicial complex to its k —skeleton. Since it works by inductively pushing the current
onto lower skeleta, it also works for a relative current (when you reach A, stop pushing).
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Finally, once we have deformed our current to a simplicial boundary in (X, 4), it is
nullhomologous in a bounded way simply because the space of simplicial boundaries
By (X, A) is finite-dimensional.

The fact that the constants in Lemmas 2.2 and 2.5 are equal is a consequence of the
Hahn-Banach theorem. We can state this in a more general form:

Theorem 2.6 (isoperimetric duality) Let (V.| -|ly) and (W, | -|lw) be normed
vector spaces and ¢: V — W a (not necessarily continuous) linear operator. There is
a adjoint operator ¢*: Q — V*, where Q2 € W* is the space of operators w: W — R
such that w and ¢*w are both bounded. Let C; and C, be the least constants such
that:

(1) Forevery ¢ >0, every w € im(¢) has a preimage v with |v|y < Ci||w|w +¢.
(2) Forevery >0, every veim(¢™*) has a preimage w with ||@||p+* <Cs||v|y*+e.

If C; and C, are both finite, then C; = C,.

I would like to thank the referee for pointing out the need to assume the finiteness of
C 1 and C2 .

Proof Consider the bounded operators

o L (V) ||+ lw) = (V/ker @, || - llinf)
where ||v]|inf = infyez||v|y, and
@7 (@ QL |- lyr) = (W¥/ker o, || - [linf),

where || [|inf = infpea [|@|w=.

Here, ¢!

is a bounded isomorphism of vector spaces, but not necessarily a bilipschitz
equivalence; (¢*)~! is injective but its image Q /ker ¢* C W */ker ¢* is not necessarily
the whole space. Then C; and C, are the operator norms of ¢! and (p*)~!. It is
therefore enough to prove that ¢ ~! and (¢*)~! are adjoint operators on dual normed

vector spaces and so have the same norm.

First, any @ € W*/ker¢* gives a well-defined operator on ¢(V): if @ = «’, then
¢*(w — ') = 0 and so (@, ¢(v)) = (o', p(v)). Conversely, by the Hahn—Banach
theorem, any functional wgy: ¢(V) — R which is continuous with respect to | - ||
has an extension to W*. Thus (W*/ker¢™*, | -|lint) is the dual normed space to
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(V) |- lw). A similar argument holds for the other pair, though one needs to
invoke (1) to show the duality. Finally, it is clear that

(v, 97 (w)) = ((¢*) v, w). O

3 Homotopy theory of DGAs

In this section we sketch out the homotopy theory of differential graded algebras,
following the treatment of Griffiths and Morgan [22, Chapters IX and X]. The relatively
explicit formulation helps us obtain quantitative bounds on the sizes of DGA homotopies,
which we will later harness to obtain various geometric bounds. We also review
Gromov’s arguments bounding the homotopy classes of maps with a given Lipschitz
constant.

A (commutative) differential graded algebra (DGA) will always denote a cochain
complex of Q- or R—vector spaces equipped with a graded commutative multiplication
which satisfies the (graded) Leibniz rule. The prototypical example of an R-DGA is
the algebra of smooth forms on a manifold or piecewise smooth forms on a simplicial
complex.

The cohomology of a DGA is the cohomology of the underlying cochain complex. The
relative cohomology of a DGA homomorphism ¢: A — B is the cohomology of the
cochain complex

Cn(gl)) — An @Bn—l
with the differential given by d(a, b) = (da, ¢(a) — db). This cohomology fits, as

expected, into an exact sequence involving H*(A) and H*(B).

Given a coefficient vector space V, H*(A, V) is the cohomology of the cochain
complex Hom(V, A"). By the universal coefficient theorem, this is naturally isomorphic
to Hom(V, H*(A)), but we will frequently be using the cochain complex itself.

A weak equivalence between DGAs A and B is a homomorphism A — B which
induces an isomorphism on cohomology.

An algebra A is simply connected if HO(A) = H'(A) = 0. If A is simply connected
and of finite type (ie it has finite-dimensional cohomology in every degree) then it has a
minimal model: a weak equivalence m 4: M4 — A where M4 is freely generated as an
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algebra by finite-dimensional vector spaces V}, in degree n (we write M4 = Aj2, Vy)
and the differential satisfies

dVy € NIZS Vi

In other words, M4 can be built up via a sequence of elementary extensions (sometimes
called Hirsch extensions)

Ma(m+1) = Ma(m)(Vit1),

with the differential on M 4(n+ 1) extending that on M 4(n), starting with M4(1) =Q
or R. We refer to elements of the V,, as indecomposables. We will often describe
finitely generated free DGAs by indicating the degree of generators as superscripts in
parentheses: ¢®) means that a is a generator in degree 3.

In particular, if Y is a simply connected manifold or simplicial complex, the algebra of
forms ©2*Y has a minimal model, which we will call my: M3 — Q*Y. This models
the Postnikov tower of Y : each V;, = Hom(r,(Y), R) and the differential on V,, is
dual to the k—invariant of the fibration Y,y — Y(,—1). This can be shown inductively
via obstruction theory.

3.1 Obstruction theory

Given a principal fibration K(,n) — E 2> B and a space X, obstruction theory
gives an exact sequence of sets

H"(X;7)— [X, E] 25 (X, B]-% H'" P (X 7),

in the sense that im px = O~1(0) and H"(X; ) acts on [X, E] via an action whose
orbits are exactly the preimages of classes in [ X, B]. Moreover, if B is simply connected
(or more generally, 771 (B) acts homotopically trivially on the fiber) then over a given
map f: X — B, there is an exact sequence of groups

s H V(X 7) = m(EX, [) = 1 (BX, f) — H"(X:;7) — pZ (f]) — 0,

where p; ([ f]), the set of homotopy classes of maps lifting /', is a torsor acted on by
H"(X;m) and f is any lift of f.

We now give DGA versions of these statements. First define homotopy of DGA
homomorphisms as follows: f, g: A — B are homotopic if there is a homomorphism

H: A— BR({©, qar (V)
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such that H|;—¢, gr=0 = f and H|,—1 4:=0 = g. We think of R(¢, dt) as an algebraic
model for the unit interval and this notion as an abstraction of the map induced by
an ordinary smooth homotopy. In particular, it defines an equivalence relation [22,
Corollary 10.7]. Moreover, for any piecewise smooth space X there is a map

p: QX @R(t,dt) — Q*(X x[0,1])
given by “realizing” this interval, that is, interpreting the ¢ and d¢ the way one would
as forms on the interval. We will use this realization map further in the paper.

We also introduce some notation to help us define homotopies between DGA homo-
morphisms. For any DGA A, define an operator fé: AQR(t, dt) > AQR(¢, dt) by

, o , —_ . fit1
Joa®t' =0, [ya®t dt=(-1) °g“a®m
and an operator fol: AQR(t,dt) — A by
1 j 1 i d a

Joa®t'=0. [ya®t'di=(-1) egam'
These provide a formal analogue of fiberwise integration; in particular, they satisfy the
identities
@3.1) d(fou)+ fodu=u—ul=o gr=0® 1,

1 1

(3.2) d(fyu)+ [odu=ulr=1,ar=0 — tuli=0, dr=0-

Now we state the main lemma of obstruction theory, which states the conditions under
which a map can be extended over an elementary extension.

Proposition 3.3 [22, Lemma 10.4] Let A(V) be an n—dimensional elementary
extension of a DGA A. Suppose we have a diagram of DGAs

A#B

L,

AVY £ ¢

with g| 4 ~hf by ahomotopy H: A—C®R(t,dt). Then the map O: V — B" 1 gC"
given by
O) = (f(dv).g() + fy H(dv))

defines an obstruction class [0] € H"t1(h: B — C; V) to producing an extension
f: A(V)— Bof f with g >~ ho f via a homotopy H extending H.
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When the obstruction vanishes, there are maps (b,c): V — B* @ C"~! such that
d(b,c) = 0,ie
db(v) = f(dv), dc(v)=hob(v)—g(v) —fol H(dv).
Then for v € V' we can set f(v) = b(v) and
(3.9) Hv) = g@) +d(c(v) ®1) + [y H(dv).
This gives a specific formula for the extension.
This lemma has a relative analogue which is also quite useful.

Proposition 3.5 [22, Lemma 10.5] Let A{(V) be an n-dimensional elementary
extension of a DGA A. Suppose we have a diagram of DGAs

ALBL)D

where
(1) gla~hf byahomotopy H: A— C ®R(t,dt) such that vo H is constant,
(2) w is surjective,
(3) voh = pu on the nose, and
(4) po f =vog|a onthe nose.
Then the map O: V — B"t1 @ C" given by
0@) = (f(dv). () + [y H(dv))

defines an obstruction class [0] € H"T1(h: B — C; V) to producing an extension
f: A(V)— B of f withg>~ho f viaahomotopy H extending H, where v o H is
constant (ie v o H = (o fI®1).

More specifically, in this case we can define b and ¢ as above so that pob =vog|py
and voc = 0; then H is again defined via (3.4).

A special case of Proposition 3.5 gives rise to the following result:
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Proposition 3.6 Let A(V) be an n—dimensional elementary extension of a DGA A.
Suppose we have maps
AVY 28 pm B N

with u surjective, together with a homotopy ®: A — M ® (t,dt) between ¢|4
and |4 and a homotopy x: A(V) — N(t,dt) between jro ¢ and p o which
extends (o ®. Then the obstruction in H" (u: M — N; V') to producing a homotopy

O: A(V) > M@ (t,dt)

which extends ® and lifts x is given by O(v) = (¥ (v) —(v) — fol ®(dv), fol x(v)).

Proof We apply Proposition 3.5 using
B=M®(tdt), [f=P, C=D=MQQ(t,dt)/keru® (t(1—1),dt),
g=¢R@(U-0)+¥®t+x—(Xli=0® (1 —=1)+ xli=1 ®0).

Thus we obtain an obstruction cocycle 0:V —pBrtligcn given by

O(v) = (®(dv), g(v)).

We get a cocycle (p, g) which is cohomologous to O and satisfies Pli=o =pli=1=0
and

q=x—Xli=0®(1—1)— xlt=1 @]y
by subtracting off
dlely @ (1 -1+ ¢ |y ®1,0).

Finally, by (3.1) and (3.2), (p, ¢) is cohomologous to (—1)" ((fo1 p)®dt, —(fol q)®dt)
via

d(~for+ (o )&t Joa—(fy 4) ®1).
It is easy to see that fol q(v) = fol x(v) and
Jo P) ==Y (@) +9@®) + f5 D(dv).

This obstruction is zero if and only if O € H"(u; V) is zero. a

Proposition 3.9 will give a quantitative version.

Finally, we give the DGA version of the exact sequence of groups; in this, unlike the
previous lemmas, the domain algebra must be minimal.
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Proposition 3.7 Let A{V) be an n—dimensional elementary extension of a mini-
mal DGA A. Then for any DGA B and map ¢: A — B which has an extension
@: A(V) — B, there is an exact sequence of groups (and a torsor)

[A(V), BRR(eD)]5 — [A, B&R(eM)],

O, gB V) { elements of [A(V'), B] } o

which extend ¢

Moreover, the group structure on the first two sets is given as follows. Their elements
are given by representatives of the form ¢ +n ® e, where n: A* — B*~! (respectively
A(V)* — B*~1) satisfies the identities dn = nd and

(3.8) n(uv) = (=1)*E’nw)p((v) + e)n(v).

Then, given two elements ¢ + 11 and ¢ + 1, , their sum is given by

(p+mR@e)B@+nee)=9p+01 +n2)Qe.

The arrow O is given by
p+ner>nd|y: V- B".

Exactness at the third and fourth term are given in [22, Proposition 14.4]. Exactness at
the second term can be proven using Proposition 3.5, similarly to Proposition 3.6.

3.2 Quantitative aspects

In this subsection, X will be a finite piecewise Riemannian simplicial complex and Y
a compact simply connected Riemannian manifold with boundary with minimal model
my: M3} — Q*Y. The technical results of this paper largely concern homomorphisms
©: M"{, — Q*X for such X and Y. We would like to define a notion of size on such
homomorphisms. Given a simplexwise Riemannian metric on X, we equip each Qkx
with the L.°°—norm; we also fix a norm on each of the vector spaces V. of degree k
indecomposables of M7, . Since the Vj are finite-dimensional, the choice of this norm
affects anything that depends on finitely many of them only up to a constant. Given
this data, we define the ( formal) dilatation of ¢ by

Dil(p) = ke{zf.l.l.z}c)igim X}”(p|Vk Hop :
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Note that if /: X — Y is an L-Lipschitz map, then f* multiplies the L norm of
k—forms by at most L. Therefore when ¢ = f*my for some map f: X — Y,

Dil(¢) < C Lip f,
where C depends only on my and the norms on the V7.

We define the dilatation of a homotopy via the realization map p. Since we often want
to scale the time interval independently of X, we define a whole family

Dil; (®) = Dil(p. ),

where pr: Q*X QR(t, dt) — Q*(X x[0, ]) sends ¢ +> ¢ /7. One can then think of 7
as the “length” of the formal interval.

We will frequently want to apply the obstruction lemmas in such a way that we can
say something quantitative about the extension. We give here a couple of specialized
instances in which we can do this.

Proposition 3.9 Suppose that ®i: M7, (k) — Q*X ® R(¢, dt) is a partially defined
homotopy between ¢, y: M} — Q*X.
(i) The obstruction to extending @ to a homotopy
Qpp1: My (k+1) > QX ®R(t, dt)
is a class in HK+! (X; Vi +1) represented by a cochain o with (for any T > 0)
lollop < TC (k. d|py,) Dile (@) 2 + Dil (p)* ' + Dil(y) .
(ii) If this obstruction class vanishes, then we can choose ® 1 so that
H (@k+1){ |Vk+1 Hop
< (Cip +2)(tC(k. d |y ;) Dile(P)*+2 + Dil ()" + Dil () +1),

where Cip is the isoperimetric constant for (k+2)—forms in X and 7 > 0 is
arbitrary.

Moreover, if for some subcomplex A C X we have an existing homotopy
X My —> Q*AQR(t, dr)

between ¢|4 and V|4, then if the obstruction from Proposition 3.6 vanishes, we can
get an extension with similar bounds, using a relative isoperimetric constant and with
an additional O(t Dil;(x)) term.
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Proof We start with the absolute case, which is simpler. We let

o (v) = ¥ (v) —pv) — f; Px(dv).

This clearly satisfies the given bound; by Proposition 3.6, it is the obstruction to
extending &y .

Now, suppose the obstruction class vanishes. Then we can choose ¢: Vi1 — Q*X
such that dc = o0 and ||¢|l00 < Gipllo||op and set

Op41(0) = p(v) +d(c() ®1) + fo P (dv),
similar to (3.4). This satisfies the bound in (ii).

We now tackle the relative case. As previously, we need to choose ®f .1 so that
d®j41(v) = P(dv), but now we also need to satisfy the condition @4 1(v)|4 = x(v).
Let 7 Ax [0, 1] — A be the piecewise linear deformation retraction of a neighborhood
of A in X to A, and choose a bump function &: X — [0, 1] whichis 1 on A and
supported on A. Finally, let

() = {

em{ x(v) at points in A,
0 outside A.

Then, if the obstruction

(¥ —¢— [} Dr(dv), [y x())

vanishes, we can choose ¢: Vi1 — Q*X supported on X \ A and with the right
isoperimetric bounds such that

1 1~
de =y —¢— [y Qx(dv)—d [y X(v),
and then set
Op1 (V) = @) +d(c(v) ®1) + f5 Dre(dv) +d f5 Z(v).
This is the extension we are looking for. a
In the specific instances we consider, we can often obtain better bounds. Suppose
that ¢ and v both have dilatation < L, and that we can construct a homotopy &

between them formally up to degree n without encountering any nonzero obstructions
that make extendability dependent on choices made in lower degree. Write QD{ for the
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t*(dt)? —term of ®. We claim that the homotopy can be built so that for k < and for
some constants C(k, X, Y) depending on the norms on the Vj,

op = Ck, X, Y)L¥72 for j=0,1.

(3.10) |7 1
Clearly this is true for k£ = 2, since degree 2 indecomposables have zero differential.
Now suppose it’s true up to k — 1. Then, for a € dV}, ®(a) is a sum of some number

of terms (depending on a) each with co—norm bounded by
I1 Clk—1,X,Y)L*i "2 <C(k—1,X,Y) ' L?*2,
ri4tre=k+1
Since V}, is finite-dimensional, this gives us a constant C(k, X, Y) which depends on

C(k—1,X,Y) as well as the algebraic structure of the differentials.

Moreover, the largest power of ¢ present is bounded only as a function of k, as is
clear from the construction. In particular, we end up with Dil; (®) < L@n=2)/n and
Dil; 2(®) < L2.

A second quantitative lemma concerns formal (that is, algebraic) concatenation of
homotopies. The proof of [22, Corollary 10.7] shows in a formal way that DGA
homotopy is a transitive relation. We reproduce this proof with quantitative bounds on
the size of the concatenation.

Proposition 3.11 Suppose ¢,y &: M}, — Q*X are homomorphisms and we are
given homotopies ® between ¢ and ¥ and W between v and &. Then we can find a
homotopy

E: My — Q*X @ R(t,dt)

between ¢ and & such that for any L satisfying Dil; —1(®) < L and Dil; 1 (V) < L,
Dil;-1(E) = C(Y,dim X)L,
and moreover Dil( [} E) < Dil(f, ®)+ Dil(J, ¥).

Proof Roughly speaking, we will arrange ® and W along two sides of a formal square,
extend the map to the rest of the square and then restrict to the diagonal to get =. Here
is how this is done in detail.

Write CID? and \Ill(.) for the coefficients of #/ of ® and W, respectively, and CD} and \Ill-l
for the coefficients of ¢dt. We first note that the formula

P1 q1 P2 q2
"o+ =)0+ dl@tidi+ Y e+ v stds
i=0 j=0 k=1 £=0
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(where k starts at 1 because the ¢ parts already restrict to ¢ when ¢ = 1) defines a
DGA map

My = QX QR(1,dt, s, ds)/(s(t — 1), (t — 1)ds, sdt).

This should be thought of as the DGA of two sides of a square, and we want to lift to a
map
E: M}y — Q*X @R(z,dt, s, ds)

to the DGA of the whole square. We do this by induction on degree. The map is trivial
on M3 (1); then we extend from M3, (n) to M3 (n + 1) by defining

E(v) =“®+ V() + [5 (E(dv) — (E(dV))|r=1).

It is easy to check that this has the right differential and the right restrictions to t = 1
and to s = 0. Finally, we take the “diagonal” & = &|s—;.

Now we discuss the dilatation of E. The inequality for Dil( fol E) is clear since

Jo E= o CO+Wsm) = f5 O+ [y 0.

For the other inequality, we can assume without loss of generality that L = 1; we can
achieve the conditions by scaling the metric on X by L. Thus we need to show that if
Dil; (®) <1 and Dily (V) < 1, then

Dil; (E) = C(Y,dim X).
To do this, it is enough to bound the dilatation of the realization of E as a map

M3 — QX x|0, 1]?. This can again be done by induction on degree. We need only
remark that

leBllos < lltloo - IBlloc: [ fo@] oo = lllco-

This allows us to bound || E |V llop in terms of the operator norms in lower degrees and
the structure of M7, . Thus the final constant we get depends on Y and the dimension
of X. a

3.3 Homotopy periods and Gromov’s results

Now let f: §” —Y be a smooth map. If we try to nullhomotope f*my: M3} — Q*S"
by the method of Proposition 3.9, the procedure does not fail until the very last step,
where the obstruction

a e H'"TH(Q*S" @R(t,dt) - Q*S" @R(t)/(t(1 —1)); Va) = H"(S"; Vi)
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given by the formula o = [ [rmyly, + /. 01 D,d| Vn] may be nontrivial. This obstruction
determines an element of 7,(Y) ® R = Hom(V},, R) and can be computed algorith-
mically by repeated antidifferentiation. In other words, it generalizes Whitehead’s
construction of the Hopf invariant and coincides with the construction of “homotopy
periods” outlined by Sullivan in [39, Section 11].

Example 3.12 (i) Let /: S* — S? be a map. The minimal DGA of S? is given by
(x(z), y(3) | dx =0, dy = x?);
clearly, mg2y = 0 in any minimal model. Thus the first stage of a nullhomotopy
of f*mg2 is given by
Dy(x) = Fmeax @ (1 —1) + ¢(x) @ dt,
where dc(x) = f*mg2x. The obstruction to extending this to y is given by
—[f*mgax Ac(x)] € H*(S*;R).
Up to sign, this is the Hopf invariant.

(ii) For a slightly more complicated example, we consider ¥ = (S x §3)\ D®. This
is a 6—manifold homotopy equivalent to S3 Vv S3; the relevant part of the minimal
model is

3 .3 .6 ..
<x1 (%) 2y

RN -5 s ldxi =0, dy = x1x2, dzi = xip,...).

Consider amap f: S7 — Y ; again we try to nullhomotope f*my, and the first few
stages are

O(x;) = fTmy x;i®(1—1)—c(x;)®dt,
O(y) = [ myy@(1—1)+5(f*myxi Ac(x)—c(x)A [ myx2) @1 —1*)—c(y)®d,
where dc(x;) = f*myx; and
de(y) = [*myy +3([*myx; Ac(xz) —c(x1) A [Fmyx;).
Since myz; = 0 for dimension reasons, the obstruction to extending to z; is given by
—c(x)A (5 myy+ 15 (FmyxiAc(x2)—c(x) A fFmyx2))+ 5 f*myxinc(p).

Clearly, homotopy periods quickly become impractical to compute by hand for more
complicated DGAs. Similar examples were computed by Richard Hain in his PhD
thesis [28].
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Suppose now that f is L-Lipschitz. Then, by (3.10), we can make sure that the
obstruction class « satisfies |la|op < L*"72. Since the map 7, (X) — H"(S"; Vy)
is a group homomorphism with finite kernel and covolume, this proves the following
results of Gromov:

Theorem 3.13 Let Y be simply connected and Lipschitz homotopy equivalent to a
finite complex.
(i) The distortion function of an element of 7,(Y) is Q(k!/(21n=2)y.

(ii) The growth function of 1, (Y) is polynomial and in fact O (L2~ k(ma(Y)®Q))

While Gromov stated these in various combinations in [23; 25; 24, Chapter 7], the
proofs are essentially omitted in the first two and incorrect in the last. This section is
meant to close this gap.

The bounds above, however, are not sharp in most cases. We do not currently know
how to express in full generality the bounds whose sharpness is presumed by Gromov’s
conjectures. They are obtained by assuming that all pullbacks of genuine k—forms
on Y have L norm < L* and inducting to obtain bounds on other forms; on the
other hand, the algorithm given at the beginning of this subsection (which coincides
with that given by Sullivan and is at least weakly canonical) does not always produce
the optimal exponent. We illustrate this by way of yet another example.

Example 3.14 Let NF be an 8—complex with the minimal model
Mg = (x®, y® O U0y =dy =0, dz =xy, dT = xyz,...).

The geometry of this complex is discussed further in Section 5.1. Here we focus on the
algebra. Note that 7r1(NF) has a single rational generator. Suppose f: S'° — NF is
L-Lipschitz; then we get the following partial nullhomotopy of f*mny:

O(x)= fFmapx®(1—1)—c(x)®dt,
P(y)=fFmary@(1—1)—c(y)Qdt,
O(z)= f*mapz@(1—1)+ 1 (f*mpx Ac(y)—c(X)A [*mary) @ (1—1%)—c(2) ®d1,

where
de(x) = f*mnrx,

de(y) = f*mnry,
de(z) = f*mapz + 5(f*mapx Ac(y) —c(x) A f*mnpy).
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Then our algorithm computes the obstruction to extending the nullhomotopy to 7" as

—3 () A SEmap(y A2) +e(P) A SEmap(z Ax) +c(2) A f mar(x A p)).
Now, [lc(x)]loo and [|c(¥)]loo < L3 by Lemma 2.2, but the same argument only yields
lle(z)|| < L. This gives a bound of O(L!!) for the first two terms but O(L'?) for
the last. On the other hand, the last term can be eliminated by subtracting the exact
form d(c(z) A f*mnrz). Thus we get an overall bound (7, f) = O(L'!). As we
will see below, this bound is sharp.

4 The shadowing principle

Theorem 4.1 (the shadowing principle) Let (X, A) be an n—dimensional simplicial
pair with the standard metric on simplices and Y a simply connected compact Rie-
mannian manifold with boundary which has a minimal model my: My — Q*Y. Fix
norms on the spaces V. of k—dimensional indecomposables of M3,. Let f: X —Y
be a map and ¢: M3 — Q*X a homomorphism such that:

(1) f*my|4q4 = ¢|4 (ie the homomorphisms restrict to the same homomorphism
My — Q*A).
(2) f*my and ¢ are homotopic rel A (ie via a homotopy whose restriction to A is
constant).
(3) fl|a is L—-Lipschitz.
(4) Dil(p) < L.
Then f is homotopic rel A to a C(L+1)-Lipschitz map g: X — Y such that
g¥my ~ ¢ via a homotopy

O: MY — Q*(X) ® (1. d1).

whose restriction to A is constant, such that Dily,r (®) < C(L + 1). The constant C
depends on Y, my and the norms on indecomposables, as well as n (but not anything
else about X').

The condition that ¥ be a manifold is only necessary for the technical definitions. In
most applications, one can use any space which is Lipschitz homotopy equivalent to a
manifold, for example any simplicial complex with a piecewise linear metric.

As stated in the introduction, we want to interpret the shadowing principle as saying
that pullbacks of genuine maps have reasonably high density in Hom(M3,, 2* X)
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when it is endowed with a metric of the form

d (e, V) = inf{size(P): ¢ %) v}

for some notion of size. However, there is some difficulty in defining an appropriate
such notion; that is, we would like the size of a constant homotopy to be zero and the
notion of distance to be nondegenerate and satisfy the triangle inequality, and this is
already nontrivial. One notion that satisfies these two properties, at least when the
source is a minimal model, is the formal length, given by

length(®) = Dil(f;, ).

The triangle inequality is given by Proposition 3.11 and nondegeneracy follows from
applying (3.2) to the lowest-degree indecomposable on which the two homomorphisms
differ.

Under this metric, the theorem states that there is a pullback of a genuine map within
distance O(L) of any homomorphism with dilatation L which lies in the homotopy
class of the pullback of a genuine map. Put this way, this is a nontrivial statement since
the set of all homomorphisms with dilatation < L has diameter which is in general
some polynomial in L ; this polynomial is linear only when Y has finite homotopy
groups up to dimension 7.

Unfortunately, the formal length does not correspond well to the length of a genuine
homotopy, or, as far as I can tell, any geometric invariant of genuine maps. In particular,
as shown by Calder and Siegel [10] and again in this paper in Theorem 5.5, when the
space Map(X, Y) is equipped with the metric given by the optimal (geometric) length
of a homotopy (ignoring thickness), the diameter of each connected component is finite,
with a uniform bound.

Proof By subdividing (X, A) at scale 1/L and rescaling so that simplices are unit
size, we may assume L = 1; here we implicitly use the uniformity of the result with
respect to the large-scale geometry of X. We also subdivide once if the star of 4,
denoted by st(A4), does not retract to A.

At the cost of increasing the Lipschitz constant again to some Cy = Cy(n, Y), we may
also assume that f|4 is mosaic with respect to a fixed shard complex Z C AY with
ZM = % To reduce to this case, we modify both f and ¢ on st(A4), which we equip
with a facewise linear deformation retraction to A4,

7 st(A) x [0, 1] — st(A),
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and a simplexwise linear map 7: st(4) — [0, 1] sending A +— 0 and 1k(A4) — 1.
Let H: A x[0,1] > Y be a C(n, Y)-Lipschitz homotopy to a C(n, Y)-Lipschitz
mosaic map on some chosen shard complex. (Such a homotopy can be constructed by
simplicially approximating on a complex which is homotopy equivalent to Y.) We use
this homotopy on a collar of width % around A, pushing f'|s 4 to the outer part of the

collar:
H(m(x,1),1-2t(x)) if t(x

f(Jr(x, 2— 2f(x))) if 7(x
We push ¢ to the outer half of st(A4) by a similar formula, adding H*my on the

-~ <1
feo={ =2
— 2

)
)

inner half; this gives us an algebraic map ¢. Applying the rest of the proof to f
and @, we produce a map & with the required properties such that g|4 = f|4. To get
the desired g we again push g|s(4) to the outer % of the star and add H, going in
the opposite direction, to the collar. To show that the resulting g indeed has a short
homotopy to ¢, note that it clearly has a short homotopy to the algebra map 5 which
is given by H*my on the inner third of st(A4), pushing ¢ out. But this map in turn

has a short homotopy to ¢.

We now give an overview of the induction on skeleta that characterizes the rest of the
proof. At the (k+1)% step, we will produce an increasingly controlled intermediate
map gx+1 Which is homotopic to gz via a homotopy Hy 41 (and therefore homotopic
to /). In particular, g will be equal to the final g on the k—skeleton of X and Hj 4
will be a constant homotopy on the (k—1)—skeleton; its behavior on k—cells is crucial
for establishing control over the behavior of gz ; on (k+1)—simplices. Essentially,
the behavior of gz on (k+1)—simplices allows us to define an “almost coboundary”
in Ck+1(x; k+1(Y) ® R) and the homotopy Hj . changes this cochain by the
coboundary that it almost is, leaving a uniformly bounded remainder.

In order to figure out a recipe for doing this which can be continued further, we
consult a homotopy ®; between g and ¢ over which we also have increasing control
depending on k. We then construct ;4 from &y and Hy ., via a second-order
homotopy W ;1. The objects we produce are summarized in Figure 1.

As a first step, we homotope f rel A to a map g; which sends X M to the basepoint
of Y. We also choose a homotopy

¢ My — Q¥ (X) ®@R(r,dr)

between gimy and ¢.
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Figure 1: A summary of the various maps, homotopies and second-order
homotopies produced in the proof of Theorem 4.1. The bottom row consists
of genuine maps X — Y and homotopies between them; the rest is on the
level of DGAs. Maps become better controlled from left to right.

After the k't step, we assume that we have constructed

e amap gx: (X, A) — Y, homotopic rel 4 to f, such that gi |y« is mosaic
with respect to a shard complex Z; C AY which depends only on Y, my and
the norms on the V;;

* ahomotopy ®p: My — Q*(X) ®R(z, dt) from gimy to ¢ such that
Dily (Pr | pez 1)) lx0) < Ch = Cr(n, Y).

We write B = fol @y ; note that for v € Vi, dBy(v) = (v) — gfmy (v) —fol Oy (dv)
and B (v)[4 =0.

We then construct the analogues one dimension higher. Let b € CK (X, A4; wr4+1(Y)) be
the simplicial cochain obtained by integrating S|y, , over k—simplices and choosing
an element of mx1(Y) whose image in Vi is as close as possible in norm (but
which is otherwise arbitrary). Note that the values of b are potentially unbounded.
We use b to specify a homotopy Hyq1: X x[0,1] - Y from gj to our new desired

map gk+1-
We start by setting Hy 1 to be constant on X (k=1) " On each k—simplex ¢, we set
Hj 414 to be a map such that

8k+1lg = Hit1lgxt1y = Hit1lgxtoy = 8klg:

but such that on the cell ¢ x[0, 1], the map traces out the element (b, g) € rx1(Y). This
is well defined since Hyy1|3(gx[0,1]) 1S canonically nullhomotopic by precomposition
with a linear contraction of the simplex.
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Now, given that gz = g, on the k—skeleton, the possible relative homotopy classes
of the restriction of gx4q to a (k+1)—simplex p form a torsor for mz41(Y). No
matter how we extend Hyq over p x [0, 1], we will get gxy1|p — gklp = (8b, p)
in this torsor. For each possible restriction g |y, (of which there are finitely many
since they correspond to simplicial maps AN+ 5 7 1) we fix representatives for
each element of this torsor. We then set gx 41|, to be the appropriate representative.

We then extend the homotopy in an arbitrary way to higher skeleta.

We now argue that, for a given Zj;—mosaic map ug: A+ 5 Y, the number of
extensions of 1 to AK*! which could occur as 8k+1lp for some (k+1)—simplex p
are drawn from a finite set depending only on Cj, Y and the norms on the V; for
i <k 4 1. At various stages we will write “< 17 for numbers that are bounded by
a constant depending on these items. Thus for example, every such ug hasa < 1—
Lipschitz extension u: A1 5 Y. In this language, it is enough to show the following
lemma:

Lemma 4.2 Let p be a simplex of X such that gi|s, = ug. The homotopy class
of the map u: Skt1 y given by gi|p on the northern hemisphere and the fixed
extension u on the southern hemisphere is contained in a < 1-ball around (8b, p)
in Vit .
Therefore, the homotopy class of the map obtained by gluing together g+ 1[p and u ina
similar fashion is contained in a < 1-ball around 0 € V;*

k+1°
is a homomorphism from a finitely generated group whose kernel is torsion, there are

Butsince 741 (Y) = V',

finitely many elements in this ball.

Proof of Lemma 4.2 In Section 3.3, we described the real homotopy class of

: SKt1 Y as the obstruction in Vi

lently, it is the obstruction to homotoping it to any other algebraically nullhomotopic

to homotoping #*my to zero. But, equiva-

map, for example the map ¢ which restricts to @[, on each hemisphere.

So we build such a homotopy W through degree &, then evaluate the obstruction to
extending it to V4. On the northern hemisphere, we simply use W = ®4|,. On the
southern hemisphere, since Dil; (®x[5,) < 1, we can use Proposition 3.9 to make sure
Dil; (W) < 1.

Now the obstruction to extending to Vi is given, according to Proposition 3.6, by

~ 1
[_$ }Vk—i—l +”*mY|Vk+1 +f0 lI1d|Vk—|-1] € Vk*+1'
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Analyzing this form separately on each hemisphere, we get that this class is the sum of
the class sending v € Vi 41 to

/ (0(v) — gimy () — [} Dy (dv)) = / dBy(v)
V4 D

on the northern hemisphere and a < 1 error coming from the southern hemisphere.
Thus, by Stokes’ theorem, it is within < 1 of (b, p). o

This allows us to fix a new shard complex Zj 1 = Z; U Zk+1) U Fg+1, where Fg 4 q
is the finite set of restrictions to (k+1)—cells we have produced.

It remains to define the homotopy ® ;. We do this by applying a restriction to a
second-order homotopy. Let 7: X x [0, 1] = X be the obvious projection. Then we
will construct a homotopy

Wyi1: My — Q¥(X x[0,1])) @ R(s, ds)

between Hyyq and 7*¢ such that Wy |;=0 = P and such that Oy 41 := Vg4 q|;=;
has the properties we desire. Accordingly, we will use the notation @41 and Wy 4 |;=1
interchangeably.

We build this homotopy by induction on the degree of indecomposables of M3, . The
crucial step is in degree k + 1, since this is where we do not yet have control but need
to establish it; thus we split the construction into “before”, “during” and “‘after”.

For v € V; with i <k Inlow degrees, we further induct on skeleta. First we set

Wi 1+1(0)xxfoy = Pr (v),
V1 (V) xxk-nxpo,1] = 7 O (V)| y k-1,

Vi1 (V) [xwxgy = Pr(v).

Over cells of the form ¢ x [0, 1] where ¢ is a k—simplex of X, we can extend in an
arbitrary way by the usual Poincaré lemma.

Over cells of the form p x {1} where p is a (k+1)—simplex, we have promised to
control the size of the homotopy, which is part of &, ;. Recall that B = fol ®;, . For
veV; withi <k, we let

Ppy1(v) = g5 my (V) +d(Brs1(v) ®5) + [ Prey1(dv);
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we would like to define such a B 41 on V; which is bounded on X (k+1) and such that
dBrr1(v) = o) = g4 my (V) = [y Pera(dv).
By induction, dfg 4+, = dBy on X and
ldBr+1lxw+n Hop <L

By the second quantitative Poincaré lemma, we can therefore extend Bi|yw) to a
Brk+1lxw+n with

“ﬂk‘i‘l |X(k+1) Hop 5 1'
Since i <k, all such choices differ by coboundaries.
On all higher cells, we can once again extend in an arbitrary way by the usual Poincaré

lemma.

For v € V41 We need to ensure that @y 41|y, , has low dilatation on (k+1)—cells
of X. As before, we will set

Dpy1(v) = gg L my (V) +d(Brs1(v) ®5) + [ Prey1(dv),

where dBj41(v) = ¢(v) — g;HmY(v) — fol @y 4 1(dv). Specifically, we determine
Br+1 as follows:

o Take B 41lq to be the volume form times a bump function scaled so that

/ﬁﬂﬂ@=/ﬂHW—W@@)
q q

e Use the second quantitative Poincaré lemma to extend By 41 (v) to px{1} forev-
ery (k+1)-simplex p so that dBj 1 (v) is as desired and H,Bk+1 |y e+ Hop <lI.

e Extend arbitrarily to higher skeleta by the usual Poincaré lemma.

By Proposition 3.6, the obstruction to extending this to a definition of Wz (v) is
given by a class in H¥T1(X x[0,1], X x {0, 1}; V) defined by

OW) = (*p(v) = Hy 1my () = fo Wit 1(dv), B (v) & Biy1(v)).

In other words, we can get such an extension if there is a form B(v) € Q¥ (X x [0, 1])
such that O(v) = (dB(v), B(v)|xx{0,1})-
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In fact, we can find such a B with B(v) = 0 on the (k—1)-skeleton of X. By the
Poincaré lemma, it is enough that B satisfy Stokes’ theorem, in other words that for ¢

/qx[o,l]dB(v) :/qﬂkﬂ(”)_/qﬂk(v).

Therefore, we just need to show that qu[O,l] dB(v) = —(b,q)(v).

a k—simplex of X,

To do this, notice that both Hy_{ and dB(v) factor through the map ¢ %[0, 1] — S k+1
which identifies ¢ x {0} with ¢ x {1} and flattens d¢ x [0, 1] to dg. Thus |, ax[0.1] dB

is the obstruction to homotoping H,* .my to 7w*(¢|s) in this quotient; the latter is

k+1
algebraically nullhomotopic since it factors through Q*(DH). By the construction

of Hyy1,thisis —(b,q).

For v € V; with i > k + 1 Finally, we extend to M7} by applying the relative
obstruction lemma Proposition 3.6 to the diagram

M*Y(k-l-l) —— Q*(X x[0,1]) ® R{(s, ds)
_
[ //// lt=0 \
M*Y i} Q*X®R(S,d5') _— Q*X®R(S,d5)

in which the middle vertical arrow is a quasi-isomorphism. This completes the con-
struction of @y ; and the inductive step. When k = dim X, the result is the statement
of the theorem. a

S Applications

5.1 Distortion and growth

In theory, our results reduce Conjectures B and A to purely algebraic questions about
the homotopy theory of maps between algebras of forms. In reality, however, it is not
clear whether these questions are any easier to answer than the geometric questions
they come from. In this section, we give some examples of geometric constructions
that confirm Conjecture B for certain types of spaces, as well as a first attempt at a
general theorem using our machinery. First, however, there is the following result,
which is almost a triviality given the shadowing principle:
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Theorem 5.1 Let X be an n—dimensional simplicial complex with the standard
simplexwise metric and Y a simply connected finite complex. Then there is C(n,Y)
such that if o, f € [X, Y] are homotopy classes which are the same rationally, then
leellLip = CIBILip + 1)

The remarkable aspect is that this constant does not depend on the particular rational
homotopy class or even on the topology of X, but only on its bounded geometry. This
is although the number of distinct homotopy classes within a rational homotopy class
may be unbounded, even for a fixed X '; see [33] for examples of this phenomenon.

Proof To apply the shadowing principle, we need Y to be a Riemannian manifold
with boundary. So we embed Y in some RV and thicken it up to a manifold Y”. The
map Y < Y’ is a Lipschitz homotopy equivalence, so this affects the Lipschitz norm
of homotopy classes only by a multiplicative constant C(Y < Y’).

Let /: X — Y’ be a (near-)optimal representative of 8 and g: X — Y’ some repre-
sentative of o. Choose a minimal model my: M}, — Q*Y’. The shadowing principle
allows us to deform g to a map g such that g*my is near f*my ; in particular,

Lip(g) < C(n,Y,my)(Lip(f) + 1). i

Universal constructions There are a number of cases in which the distortion of
elements of homotopy groups can be determined geometrically, without using the
machinery introduced in this paper. Gromov originally noted in [23] that given a map
f: 82"=1 — §" with nonzero Hopf invariant / and Lipschitz constant L, a map with
Hopf invariant k2”4 and Lipschitz constant < kL can be produced by composing with
a self-map

deg=k"
s

st L, gn s".

More generally, a large number of homotopy group elements can be represented by the
following universal construction. Given spheres S"1, ..., S"r, their product can be
given a cell structure with one cell for each subset of {1, ..., r}. Define their far wedge
Vi_,S™ to be this cell structure without the top face. Let N = -1+ /_, n;, and let
7 SN > Vi_;S" be the attaching map of the missing face. By definition, o € 7 (Y)
is contained in the r™—order Whitehead product [ay, ..., a,], where ; € 7, (Y), if
it has a representative which factors through a map

SN Ty smi Jesy
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such that [ fo|sn;] = ;. Note that there are many potential indeterminacies in how
higher-dimensional cells are mapped, so [«q,...,®,] is a set of homotopy classes
rather than a unique class.®

Nevertheless, as long as each of the n; is at least 2, any class in this set has distortion
O (kY N+D) for the following reason. Let o;: S — S™ be an O(L)—Lipschitz
map of degree L" . Then the product of the o; induces a self-map of the fat wedge

LN-H

which has degree on the missing cell. Since the fat wedge is simply connected,

the relative Hurewicz theorem gives an isomorphism
r n r n =~ r n r n
7TN+1(H,'=15 " Vi=1S r) —>HN+1(H,'=1S " Vi=1S r)-

Thus the composition
[To; Jo

SN I Vi 8" —5 Vi 8" =5 Y
gives us an O(L)-Lipschitz representative of LN 1.

This class of examples has not been described in detail before, but it is not original to
this paper. It was mentioned by Gromov in [25] and it also provides the tools to prove
the following observation of Shmuel Weinberger:

Theorem 5.2 The following are equivalent for a finite, simply connected complex Y :

(i) All rationally nontrivial elements of w,(Y') are undistorted.
(ii) The rational Hurewicz map 74«(Y) ® Q — H«(Y; Q) is injective.

(iii) Y is rationally equivalent to a product of odd-dimensional spheres.

This follows from the fact that the lowest-dimensional nonzero element in the kernel of
the rational Hurewicz map is always a generalized Whitehead product. This is shown
in the author’s thesis [31, Lemma 5.2].

There are also more subtle examples of similar constructions. One of the simplest
examples of a rational homotopy class which is not a generalized Whitehead product
is contained in the my¢ of an 8§—dimensional, four-cell CW complex constructed
as follows. Ordinary Whitehead products satisfy the relations for a Lie bracket: in
particular, they are bilinear and satisfy the Jacobi identity. This can be demonstrated
via universal topological constructions, as in [36]. In particular, the rational homotopy

8See Andrews and Arkowitz [2] for the relationship between generalized Whitehead products and
Sullivan minimal models.
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groups of SV S? are a free Lie algebra whose Lie bracket is the Whitehead product,
generated by the identity maps of the two spheres, which we call f and g. So we
attach two 8—cells killing

w1(S* v S ®Q = (/. ¢, f1.1/. gl &)

to get a space NF. (This stands for “nonformal”, as NF is also one of the simplest
examples of a space which is not formal in the sense of Sullivan.) Then 1¢(NF) ® Q
is generated by a single element. This can be seen by constructing the first few levels
of the minimal model

My = (x?),x?),y(s), 740 |dx; =0, dy =x1x2, dT = x1x2p,...),

but we also give an explicit generator.

Lemma 5.3 An explicit generator t: S'® — NF for m,¢(NF) is given by the follow-
ing sequence of homotopies between maps S° — NF, coned off at both ends:

so= g, 120 1o £ o] g], 11220 (121, ], ] g]

[nullh.,g]
—[*g7. 8] = *.

Note that the Jacobi identity takes this form since [[ f, g],[f, g]] has order 2 for degree
reasons.

Proof Since m19(NF) has rank 1, we just need to show that the given map pairs
nontrivially with 7.

‘We do this as follows. Let

Y1 = (S*v S Uppg e’
Y =(S?VS?) Uyseer e’
Z=(S’VSHUrenslere'’s

and let ¢;: ¥; — NF for i = 1,2 be the obvious inclusions. Then there is a map
f1: Z — Y which is the identity on the 3—skeleton and sends the 10—cell to Y; via
the right hemisphere of 7. Similarly, there is a map f>: Z — Y, which acts on the
10—cell via the left hemisphere of t. We would like to show that ¢; o f1 and (50 f, are
rationally distinct; in other words, that the two halves of t are rationally nonhomotopic
nullhomotopies of [[[2f, g], f]. g]-
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We argue via minimal models. Through degree 8, we have

M?q = <x§3),x§3),y(5’,2§7), o ldxi =0, dy = x1x2, dzy = x2p,...),

My, = (xf),xg?’),y(s),z?), o |dxi =0, dy = x1x2, dzy = x19,...),

3 3 N (7
M*Z = (xi ),xg ),y(s),zi ),zg ),... |dx;i =0, dy = x1x2, dzi = xiy,...),
with more generators in degree 9; clearly, the maps f;*: M*Y, — M7, must send the
generators x;, y and z; to themselves.

Likewise, the map (}: MYy — ./\/l*Y1 sends x; and y to themselves. By obstruction
theory, since g (NF) is finite, this determines its homotopy class; after making a choice
within this homotopy class, we can send T+ —xz;. Similarly, (J: Mgy — /\/l’)“,2
sends 7' +— x5z .

Now, x1z; + x321 is cohomologically nontrivial in M} since it is dual to the added
10—cell (see [17, Sections 13(d)—(e)] for more detail). This gives a rational obstruction
to homotoping the maps ¢; o f; and 5 0 f3. a

To demonstrate that this element is distorted, we exhibit a representative of L',

i 2] (2251, g). L¥g]. L° /]

LN 215/, g, LP f1, L3g]

% =[xg7, L’ f]

lh.,L3
7u [*S7’ L3g] = *,

keeping track of the sizes of the intermediate maps and their homotopies. Clearly all
the Whitehead products have Lipschitz constant at most L, including the implicit third
term of the Jacobi identity, [2L°[ £, g],[L3 f, L3g]]. Since the Jacobi identity is given
by a universal construction, it can be done in linear space and time in terms of the
Lipschitz constants of the entries. The nullhomotopy of [2L°[ f, g], L3 g] can also be
done in linear space and time using the composition

D% %, §5 % §3 X%, §5 « §3 L NF,

where o is the attaching map of the top cell and o5 and o3 are maps of degree 217
and L3, respectively. Likewise with the rest of the homotopies, which are also nullho-
motopies of Whitehead products.

The trickiest part is finding an L—Lipschitz nullhomotopy of [2L3[ £, g].[L3 f. L3g]],
the third term of the Jacobi identity. Note that the bilinearity of the Whitehead product is
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also realized by a universal construction; that is, there is an O(£)—Lipschitz homotopy
realizing the relation

3, 3
2°[(30)° . (30 ] = [ f.4¢)
Suppose that L is a power of 4. Then we can apply such homotopies repeatedly to get

[2L5[f. gl.[L? f. L3 gl ~ 2[[L*/2 f, L3/?g],[L* 1. L?¢]]
~2T[[L2 £, L2, [(3L°) /. (3L7)g]]
~ = 2L[[L2 f L2 gL (L2 £ L3 2],

The total amount of time this composition takes can be expressed as a geometric series,
and therefore it is also O(L).

We have demonstrated O(k'/!!)—Lipschitz representatives for k7, where k is a power
of 222; this is sufficient to show that 7 has distortion O(k!/11). The analysis of the
minimal model in Section 3.3 shows that this is the best one can do.

Indeed, when one looks for homotopy group elements which are not generalized
Whitehead products, such “nullhomotopies of Whitehead products in two different
ways” come up naturally. It seems possible that one can build universal models for all
rational homotopy classes (that is, all “higher rational homotopy operations”, as in [5])
by an inductive application of this method.

Open problem Can one prove Conjecture B for all spaces by applying self-maps and
similar geometric methods to inductively built models?

Symmetric spaces Our universal constructions generalize Gromov’s Hopf invariant
example in one direction; we also generalize it in another, to a more general class of
spaces that have self-maps with the right properties.

Theorem 5.4 Suppose that the finite complex Y has the rational homotopy type of
a Riemannian symmetric space. Then, for any « € ,(Y), the distortion function is
O (kYD) if « is in the kernel of the Hurewicz map and ©(k'/™) otherwise.

This is part (i) of Theorem B; part (ii) follows immediately.

Note that it is not clear whether the theorem contains any new results beyond the
previous ones. Symmetric spaces are formal, meaning that their rational homotopy
type is determined by their cohomology. From looking at presentations of the rational
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cohomology of nearly all symmetric spaces, it appears that their homotopy classes
can always be represented as generalized Whitehead products. Nevertheless, there is
also no obvious reason why this should be the case; certainly formality itself is not
sufficient.’

Open problem Are all homotopy classes of symmetric spaces contained in generalized
Whitehead product sets? Can this be shown other than by exhaustion?

The proof of the theorem heavily uses the fact that symmetric spaces admit a splitting
homomorphism of algebras H*(Y;R) — Q*(Y), induced by the harmonic forms.
There has been some study of when the harmonic forms specifically induce such a
splitting for ¥ a manifold [29], but besides formality it is not clear what the requirements
are for such a splitting to exist.

Open problem Give a topological characterization of all simplicial complexes Y for
which the quotient map Q*(Y) — H*(Y;R) admits a splitting as a homomorphism
of algebras. Perhaps the homotopy groups of such spaces are always generated by
generalized Whitehead products?

Proof of Theorem 5.4 It is not hard to see that distortion is a rational homotopy
invariant. Therefore, for any given symmetric space it is enough to show the theorem
for symmetric spaces themselves (or a compact retract, for noncompact symmetric
spaces).

We use two topological properties of symmetric spaces. First, the indecomposables of
the minimal model of a symmetric space split as Wy & Wy, where Wy = kerd and
dWy € \ Wy. This is true for all homogeneous spaces; one gets such a model by
canceling out some elements of W, and W; in the (nonminimal) Sullivan model
constructed in [17, Section 15(f)]. Second, symmetric spaces are geometrically
Sformal [29], that is, products of harmonic forms are harmonic, so in particular there
is an algebra homomorphism H*(Y;R) — Q*(Y). This induces a minimal model
my: M} — Q*(Y) such that my (y) is nonzero if and only if y is cohomologically
nontrivial. This is the property we actually use.

9 An example is [(S3 x $3)*2 x $3]°. This space is formal; as with NF, the boundary of the puncture
can be modeled via two different nullhomotopies of a Whitehead product, but not as a Whitehead product
itself.
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This property is preserved under pullback by a rational homotopy isomorphism; there-
fore for a noncompact symmetric space we can take our space Y to be an embedded
compact deformation retract.

Let us take a splitting Wy @& W; as above. Note that there is an automorphism
pL: M} — M7 which sends an indecomposable

Ldegwy, if weWw,,
w > .
Ldegwtly, if we W;.

Now, suppose o € 7,(Y) is in the kernel of the Hurewicz map, and let f: S” — Y be
a representative of . Recall that the indecomposables of M7, are naturally isomorphic
to Hom(,(Y), R). By the method of Section 3.3, we build a homotopy

o: My — Q*S" @R(t, dr)

from f*my to a map which sends y + 0 when deg y < n and which sends the
indecomposables in degree n to Rdvol via the map v — v(«)dvol (the double dual
of @ in Hom(Hom(7,(Y),R),R)).

Then ® o p;, is a homotopy between the double dual of L"T1a (at t = 1) and a
map ¢ (at ¢ = 0) whose image in degree k has operator norm O(L¥), since it sends
Wi + 0.19 In other words, ¢y is in the rational homotopy class of L"*!a; applying
the shadowing principle, we get a CL—Lipschitz map f7: S” — Y whose integral
homotopy class is L"+!a. This proves the theorem. O

5.2 Lipschitz homotopies

The major application of the shadowing principle is in turning algebraic homotopies
into geometric ones. Here previous geometric bounds were poor or nonexistent, and
just producing some new ones is a big result. We produce several new results using the
same schema:

(1) Construct an algebraic homotopy between two maps f, g: X — Y, with a bound
on dilatation determined by their Lipschitz constants.

(2) Concatenate this homotopy with an algebraic self-homotopy of g so that the
result is homotopic rel ends to a genuine homotopy between f and g. This may
increase the dilatation by an amount depending on the homotopy class of g.

(3) Finally, apply the shadowing principle to obtain a genuine homotopy.

1071t is here that this argument definitively fails for nonformal spaces; for example, for NF, any model
maps the element y to a nonzero form since x;y is cohomologically nontrivial.
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The latter two steps are encapsulated in the technical Theorem 5.7.

This schema can prove a number of different results, depending on the bound achieved
in the first step. The most general and easily stated such result is as follows:

Theorem 5.5 Let Y be a finite simply connected complex and X a finite complex of
dimension n.

(i) There are constants C(X,Y) and p(X,Y) such that any homotopic L —Lipschitz
maps [ ~ g: X — Y are homotopic via a C(L+1)? —Lipschitz homotopy,
which can in addition be taken to have length C.

(i) Moreover, any nullhomotopic L —Lipschitz map is nullhomotopic via a homotopy
of length C and thickness CL?. (In particular, this is true for general homotopies
if X has the rational homotopy type of a suspension.)

Remarks (a) Calder and Siegel [10] and again Ferry and Weinberger [18] gave
proofs that constant-length homotopies can always be obtained in this context, but
without any geometric bounds in the space direction. In this sense only the simultaneous
bound on thickness is new.

(b) Theorem 5.5 is a stronger statement than Conjecture C as given by Gromov, since
Gromov did not ask for a bound on lengths of homotopies. On the other hand, since
we give nonlinear thickness, it is weaker than Conjectures 2 and 3 in [12].

(c) Part (ii) gives an almost sharp estimate of O(L2") on the volume of the null-
homotopy: for any completely general bound on length and thickness, we must have

(Iength) - (thickness)” = Q(L>""2).

This is demonstrated by a sequence of examples first given in [12, Section 7.1]. Let X},
be a space constructed by attaching (n+41)—cells to S? Vv S? to kill 7,(S?2Vv S?)®Q.
Then 7, (Xp) is finite, but since the generators of 7, (S? Vv S?) ® Q have distortion
~k1/27=2) 'we can find L-Lipschitz maps S™ — X,, for which every nullhomotopy
has degree Q2(L?"~2) over some (n+1)—cell.

In a more refined sense, the estimate is sometimes sharp: one cannot decrease the
degree of the thickness bound while retaining constant length. This can be seen for
maps S3 — S2. Consider a nullhomotopic, ®(L)-Lipschitz such map f which sends
a solid torus inside S3 to S? via a map whose cross-section has degree L? and which
is constant on the circular fibers, and sends the complementary solid torus to the south
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pole of S2. Let C be a circle on the bounding torus which links nontrivially (hence
with linking number L?) with the preimage of the north pole. Then any nullhomotopy
of f must have relative degree L2 on C x [0, 1]; therefore, if its length is constant, its
thickness must be Q(L?). I would like to thank Sasha Berdnikov for pointing out this
argument.

(d) Moreover, in the case of maps S* x §3 — S*, the results of [12, Section 7.2]
show that the exponent p from (i) cannot be less than % Thus the bound of (ii) does
not in general hold for nonnullhomotopies.

(e) On the other hand, the estimate (ii) can be improved in various ways if we
know more about the rational homotopy type of Y. For example, if Y is rationally
k—connected, we can take the degree of the thickness bound tobe 1 + 1/k.

(f) While the estimates (i) and (ii) look similar, they are actually different in certain
crucial respects. The nullhomotopy estimate is very soft, using only facts about DGAs.
On the other hand, the estimate for homotopies is actually false on the level of DGAs;
indeed homotopies may be unbounded in the size of the original map. This can already
be seen for homomorphisms modeling maps S* x §3 — S*, in terms of minimal
models

(@, | da =0, db=a*) - (x®,y® D |dx =dy =0, dz = y?).

For small ¢ > 0, the pairs of homomorphisms a + gy, b > &2

z and a — ¢y,
b+ &2z 4+ xy, which have norm bounded independent of &, are homotopic via the
homotopy

ar>ey—Q2e) 'x@dt, b—e?z+xyQt,

whose size increases without bound as ¢ — 0. Indeed, any homotopy must correctly
resolve the obstruction class (2¢)~!x in degree 3. Thus to prove the polynomial
bound we need to use the integral structure of the set of homotopy classes between X
and Y. Unfortunately, the explicit estimate on the degree of the polynomial goes out
the window in the process.

Our next theorem replicates and generalizes the results of [11; 12]. To do this requires
a definition of spaces with positive weights, discussed in [6]. A simply connected
space Y has (Q-)positive weights if the indecomposables of its minimal DGA split
as Uy ® U, @ ---® U, so that for every ¢ € Q there is an automorphism ¢; sending
v > t'v for v € U;. Examples of spaces with Q—positive weights include formal
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B

spaces [38], coformal spaces [13] as well as homogeneous spaces and other “depth two’
spaces whose indecomposables split as Wi & W, , where d W =0 and d W, C )\ W;.
A nonexample is a complex given in [34] which is constructed by attaching a 12—cell
to S3 v CP?; other, much higher-dimensional nonexamples are given in [3; 1].

For the below theorem, it is enough that Y has an (n+1)—connected map to a space
with positive weights. For example, the examples in Remark (c) above fit the bill since
they have (n+1)—connected maps to coformal spaces.

Theorem 5.6 Suppose Y is a finite simply connected complex with positive weights
equipped with automorphisms ¢; and X is a finite complex of dimension n. Then
there are constants C1(n,Y) and C,(X) such that any nullhomotopic L —Lipschitz
map f: X — Y has a nullhomotopy of length C; C5(L +1)? and thickness Cy(L+1).
Here d is the number of levels in a filtration of the indecomposables of M3, (n),

0=WoCW;C---CWy with \Wy = M3 (n),

such that dW; € /\ W;_; and such that there is a basis for the indecomposables V} in
each degree k such that the subspaces W; N V. for each j and

UnNVie={veVi: o) =1tv}

for each i are generated by subbases.

Remarks (a) The number d is bounded above by n — 1 since we can always take
Wj to consist of all the indecomposables of M7 (j + 1). On the other hand,
sometimes it can be much smaller: for example, for homogeneous spaces or any
of the other depth two spaces discussed in [12], we can always choose d = 2.

(b) It remains unclear whether such linearly thick nullhomotopies are achievable
when Y does not have positive weights. The example of [34] has an extremely
complicated DGA; it may be worth looking for an example whose Sullivan
model has a simpler presentation to test whether there is an obstruction to linear
thickness. Nevertheless, the requirement that the space be neither formal nor
coformal already forces a certain amount of complexity in the algebra.

(c) Unlike the previous theorem, this one gives a sharp asymptotic estimate on the
volume of nullhomotopies for the examples of [12, Section 7.1]. On the other
hand, as we see in Theorem 5.8, it is not sharp in the case of maps S — S2".
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We now state the technical result which we use to convert estimates on algebraic
homotopies to geometric ones. In the proofs of Theorems 5.5 and 5.6, we assume the
target is a compact Riemannian manifold. As in the proof of Theorem 5.1, this can
be built from a general complex by thickening; since this thickening is a Lipschitz
homotopy equivalence, it changes the result by at most some C(Y).

Theorem 5.7 Let Y be a simply connected compact Riemannian manifold with
a minimal model my: M} — Q*(Y) and X an n-dimensional finite simplicial
complex with the standard metric. Let f, g: X — Y be homotopic Lipschitz maps and
let

®: My — X QR(r,dr)

be an algebraic homotopy between f*my and g*my with Dil,(®) <o for some t
and o. Then for every o € [0, 1] there is a homotopy between f and g of length
C(Ly + 1), where

Ly =07+ P([/1lLip)*

and thickness C(Lg + 1), where
Lo = max{o. P(|[/]llip)' ~*}.
and where C depends on Y, n and the minimal model and P is a polynomial depending

on X and Y.

In particular, for results pertaining to nullhomotopic maps, the terms involving P
reduce to a constant depending on X and Y.

Proof We would like to construct a controlled homotopy by applying the shadowing
principle to the pair
(LoX x[0, L;], LgX x{0, L;}),

homotoping an uncontrolled homotopy between f and g to be close to the realization
p®: My — Q*(LgX %[0, L,]).

If we can do this, then we’re done; but, for this, the uncontrolled homotopy has to be
actually DGA homotopic to p® rel the ends of the interval. Such a homotopy may not
exist.

To resolve this, we concatenate p® with an algebraic self-homotopy of f*my ; this cre-
ates a new DGA map which is DGA homotopic to an honest homotopy. The numbers L
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and Lg are obtained by combining the measurements of @ (algebraic “thickness” o and
“length” ot ) with those of this self-homotopy, which must therefore be reasonably small.

To find such a small self-homotopy, we first let H: X x [0, 1] — Y be an uncontrolled
homotopy between f and g. At this point, the difference between the relative homotopy
classes of H and p® may be quite large; to correct this, we will simultaneously concate-
nate H with an honest self-homotopy of f and p® with a reasonably small algebraic
one so that the resulting homotopies are in the same relative DGA homotopy class.

We implement this strategy as follows. Let W: M}, — Q* (X' xS 1) be a homomorphism
which restricts to po® on one half of the circle and H*my on the other. Now let
U: M7 —QFX®R (M) be obtained using Proposition 3.5 to lift through the diagram

Q*X @ R(e) =% Q*x

2

pad ler—)d@
_ lo=o

My —2L5 Q¥ (X x S

AT

Such a lift always exists since the cohomology of the vertical arrow vanishes. This lets
us define our small algebraic self-homotopy. Let

E=f"my+n®e: My - Q X ®R(e)
be a homomorphism such that
[E B V] e [Mb, Q*(X) @ R(e)]frmy

is the rationalization of a class in 771 (Y X; f);let F: X x[0, 1]— Y be an (uncontrolled)
self-homotopy of f which is a representative of that class. By [33, Lemma 5.2(i)] and
the surrounding discussion, we can pick E to be of polynomial length, ie so that for
each k, |[n]y, lop = P(lI[f]llLip), where P is a polynomial depending on X and Y.
Note also that p(f*my + n® dt) has dilatation < 1 when scaled to be a map

M5y — @ (max{Lip £, P(I[/Tip)' ~*3X x [0, P(I[/lILip)*])
for any o € [0, 1]. Now we define

. & My — QF(LgX x[0, Ly]) to be the homomorphism obtained by concate-
nating appropriately scaled versions of p(f*my +n®t) and p®;

. H: Ly X x[0,L;]—Y to be the map obtained by concatenating scaled versions
of F and H.
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Now ® and H*my are homotopic rel ends because concatenating either of them on
both sides with H*my creates a map M} — Q*(X x S 1) which is homotopic rel
X x {8 =0} to p(E HW¥). Moreover, Dil(®) < 1. Applying the shadowing principle
to ® and H therefore gives the controlled homotopy we desire. |

We now prove Theorems 5.5 and 5.6.

Proof of Theorem 5.5 We first handle the case of nullhomotopies. In this situation,
we will see that we are in the case of (3.10): that is, that we can construct the homotopy
by extending formally in each degree, without encountering a nontrivial obstruction.
To show this, notice first that the map

My (k+1), Q"X ® (e)]o > [My (k). Q"X ® {e)]o

is a surjection. This can be seen for example as follows. Recall that representatives of
elements of the latter group can be represented as 0 + n ® e for some 7n; moreover, the
derivation law (3.8) implies that 7n(v) = 0 unless v is indecomposable. Therefore the
obstruction map

. k+1,y.
O:0+n®er> gy, € H(X: Vig)
is zero, and therefore the previous step in the exact sequence is a surjection.

This means that maps to 2*X ® (e) which are zero at the basepoint can be extended
without obstruction. To show that the same holds for nullhomotopies

My (k) > Q*X ® (1, dt),

fix some uncontrolled algebraic nullhomotopy ¥: M3} — Q*X ® (¢,dt) of f*my
and let ®: M} (k) — Q*X ® (t,dt) be the partial nullhomotopy which we would
like to extend. We perform the formal equivalent of joining the homotopies at both
ends to form a map X x S' — Y. Namely, let E be the algebraic concatenation of
| M (k) and P, as constructed in Proposition 3.11, which is a homotopy of the zero
map to itself. In particular, the image of E lies in the subalgebra

QXK CQXQ(t,dt),
where K is the set of elements ), a;t' + b;t'dt for which Zizl a; =0. Itis easy to

see that (dt) — K is an isomorphism on cohomology. Thus by Proposition 3.5 we can
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find a homotopy lift

e—0

Q*X ® (e) 2% Q*X

o
- ler—m’t

M (k) —— Q*(X) ® K

69 RN

which extends without obstruction to M7, (k + 1) by the argument above. There-

fore, again by Proposition 3.5, E also extends without obstruction. Finally, applying
Proposition 3.5 to the diagram

o]}

M (k) Q*X ® (1, dt, s, ds) QX

[ l / ((r=Dr)

v Q*X®(t,dt,s,ds)
(=1 (s—1), (t—1)(ds—dt), (s—t)dt)

we produce an extension of ®, which can therefore also be extended without obstruction.

]

«

Mk + 1)(V) ==

Solet f: X — Y be anullhomotopic L-Lipschitz map. To choose a nullhomotopy &
of f*my, we can use the following simple procedure. Set

®: R = My (1) > Q*(X)  R(z, dt)

to be the trivial map. Then, at the (k+1)% stage, since there is no obstruction, we
choose an extension as in Proposition 3.9(ii) to extend to M7 (k +1). By (3.10), we
get Dil; >(®) < L2. By plugging this into Theorem 5.7, using & = 0, we get an
L2 —Lipschitz nullhomotopy of f of constant length.

Now let f ~ g: X — Y be nonnullhomotopic maps. In this general case, we still
construct a homotopy
O: My — Q*X @R(1, dt)

by lifting inductively from k to k& + 1. However, now the lift may be obstructed, so
we will need to fix our partially constructed homotopy

Dp: M (k) > Q* X ®R(t,dI)

using a self-homotopy of f*my . To get a bound on &y in terms of Py, we will
use the following roadmap:

(1) Using Proposition 3.9(i), estimate the size of the obstruction to extending the
homotopy in H*¥t1(Q*X: Vjyy).
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(2) Find an element of [M7,(k), Q* X ® R(e)]+p,, which maps to this obstruction
class, with an estimate on the size of a representative Wy .

(3) Algebraically concatenate the two homotopies; an estimate on the size of the
new homotopy qD;( is provided by Proposition 3.11.

(4) Finally, by Proposition 3.9(ii), CID;c lifts in a quantitative way to
Qpt1: My (k+1) > Q*X @R, dt).
This provides an estimate on the dilatation of ®4 ¢ in terms of that of CD}(.

Together, all these polynomial estimates will give a p such that Dilp-» & < LP.
From there we can again apply Theorem 5.7 to obtain a genuine nullhomotopy with
the given bound.

We have explicit bounds on the degree to which steps (1), (3) and (4) distort the size of
the homotopy. Step (2) is where we must use the fact that f and g are honest maps
between spaces, and where we lose this explicit bound on the degree of the polynomial.
The map

O: My (k). 2* X @R()]yemy — H ' (X, Vigr)

is given by [/*my +n® e] > [nlay;,,]. For a given homotopy class of [, this is
a linear map in terms of the values of n on indecomposables. Moreover, if we fix a
basis on the indecomposables and on H k+1 (X, Vg 41), the resulting matrix has entries
given by polynomials in the values of f*my on indecomposables. Given a class ¢
in the image of this matrix, we would like to find a bound on the minimal size of a
preimage in terms of ||c]|.

Now, as observed by Sullivan, these groups are the result of tensoring
1U(Ya)™ . f) = H N (X (V)

with R. Indeed, following [33, Section 5], we can say somewhat more. If we equip
[MF (k). Q"X ® R{e)]s+m, with the norm which assigns to ¢ + 1 ® e the operator
norm of 7 restricted to the indecomposables of M7, (k), then the map

(Y™, f) = My (k). Q* X @ R(e)]fsmy

is Py (Lip f)—surjective for a polynomial Pj; depending on X and Y, ie every point
in the codomain is at most distance Py (Lip /) away from the image. In particular,
this gives a basis b for the image lattice whose vectors are polynomially bounded in
terms of Lip f; we also have a polynomial bound on the vectors of O(b). Since the
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lattice is mapped to the image of H¥*T1(X; k4+1(Y)) in HF1(X; Vi+1), we also
have a fixed lower bound (independent of ) on the dim(im O)—dimensional volume
of the parallelotope spanned by O(b). This gives a polynomial lower bound on the
shortest axis of this parallelotope. This completes step (2) and the proof. a

Proof of Theorem 5.6 For spaces with positive weights, we can take advantage of
automorphisms to give an alternative construction of an algebraic nullhomotopy. Fix
amap f: X — Y and a family of automorphisms ¢;: Mj — M3, with the desired
properties. Now, let v € Vi N U; be an element of the basis mentioned in the statement
of the theorem. Then we inductively define

PW) = [Fmyv®t +cv) @i,

where ¢(v) is chosen so that de(v) = (—1)K*! f*myv+c(dv). Here c(dv) is defined
by induction so that

O(dv) = [Fmy(dv) @t +c(dv) it~V dr;

we know ®(dv) takes this form by positive weights and the definition of & on
lower-degree indecomposables. Moreover, by the same argument as in the proof
of Theorem 5.5(ii), there is no obstruction to finding such a ¢(v).

The ¢! —oefficients of ® always have operator norm L*; moreover, by Lemma 2.2 and
induction on j, the #~1dt—coefficients ¢(v) can be chosen so that for v e V;; "M j,the
operator norm is bounded by C(X, Y)Lkﬂ_1 . This gives us Dil¢(x yypa—1 ® = L;
plugging this into Theorem 5.7, with o = 1, gives the result. O

5.3 Maps between spheres

The previous applications are to problems of great generality. But the shadowing
principle can also be applied to yield new results in the much more specific situation
of maps between spheres, beyond the results of [11; 12].

Sharper bounds on nullhomotopies As noted before, the bounds of Theorem 5.6 are
sharp for certain classes of examples. On the other hand, they turn out not to be sharp
for example for maps X — S, including X = S™ . In that case, in the dimension range
where Hopf invariants play a role (when » is even and dim X > 2n — 1), Theorem 5.6
only yields a quadratic bound on length.
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In fact, this bound cannot be improved simply by choosing antidifferentials in a clever
way; it seems likely that any attempt to construct uniformly low-degree polynomial
nullhomotopies with a sharper bound would be similarly foiled. Consider the map
f: 8% — S? given by the connect sum of [L?idg2, L?idg2] (on the northern hemi-
sphere of S3) and —[L?id 2, L%id s2] (on the southern hemisphere). The method of
constructing an algebraic nullhomotopy

®: M, = (x@ .y | dy =x?) - Q*(SP) @ R(t, dt)
of f used in the proof of Theorem 5.6 yields
O(x)= fFdvol@t+a®dt, ®(y)=-n®2tdt,
where do = — f*dvol and dn = — f*dvol A«.

Note that we can choose « to be zero on the equator; in that case, by Stokes’ theorem,
every choice of n must satisfy

/ n=/ f*dvolna = —L*.
S2 D3

south

Indeed, consider any other choice & = @ +  where df =0. Then 8 = dy for some y,
and therefore

/ f*dvol/\&—/ f*dvol/\oz:/ d(f*dvol/\)/):/
D3 3 3

f*dvolny =0,
S2
south south south eq
since f*dvol = 0 on the equator. In other words, | s2 1 does not depend on our
eq
choices, and every nullhomotopy of this format must have formal length at least L2. I

would like to thank the referee for pointing this out.

One can do better by constructing and manipulating genuine, geometric homotopies.'!
At the same time, the inductive approach given here forces the thickness of the homotopy
to grow. I suspect that linear homotopies always exist in this situation but that finding
them will require new tools. In fact, Berdnikov has constructed such linear homotopies
in the case S3 — S?2 using a purely geometric method [4].

Theorem 5.8 Let n be even and X a finite simplicial complex with dim X > 2n —1.
Then every L—Lipschitz nullhomotopic map X — S™ has an O(L exp(k~/log L))—
Lipschitz nullhomotopy X x [0, 1] — S for some constant k = k(X,n). In particular,
this function is o(L'1#) for every ¢ > 0.

110Of course, such homotopies have polynomial approximations.
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Proof Let y(L) be the best possible such function; we will show using a recurrence
relation that y grows at most as fast as the above function.

Let f: X — S" be anullhomotopic L-Lipschitz map. The idea is to first nullhomotope
a “slightly shrunken copy” of f. We then expand this nullhomotopy again to get a
nullhomotopy of f. In a way, this is similar to Theorem 5.6; the key point is that in
this case working with a genuine nullhomotopy lets us make this map not too much
bigger.

Define
mgn: M, = (@™, 6C"V | da =0, db = a®) — Q*S"

via mgn(a) = dvol and mgn(b) =0, and let C’ = C’(m, S™) be the constant given
in the shadowing principle. Let p(L) be some function asymptotically below L. We
apply the principle to get a DGA homotopy

O: MG —> QX @Rz, dt)

between the DGA map (1/[C’p(L)]") f*mgn and a nullhomotopic L /p(L)-Lipschitz
map g: X — §” such that Dil¢/ ), @ < L/p(L). This is possible since f™*mgn
is (algebraically) nullhomotopic, and hence so is its scaled version. Finally, we choose
a y(L/p(L))-Lipschitz nullhomotopy G: S™ x [0, 1] — Y of this g.

Now we produce a new homomorphism
U Mgn — Q*(X x[0,2])

satisfying W|;—¢ = f*mgn and ¥|;—, = 0, as well as

. < n2n/(2n—1) ’ L

Dil W < max{(C ) Lp(L),C p(L)y(p(L)a)},
by setting

V(@) () = {[C’p(L)]”@D(a)It:s if 0<s<I,
D TAC p(L)'GHdvol |(x -1y if 1 <5 <2,

[C'p(D)?"®(b)|;=s if 0<s=<1,

U(b =
(Olcx.s) {o if 1 <s<2.

The key is the observation that since G*mgn(b) = 0, the dilatation of G*mgn scales
linearly as we expand. Meanwhile, ® was small to begin with and so the fact that it
scales superlinearly doesn’t matter very much.
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Finally, we apply Theorem 5.7 to get a C(Dil W+ 1)—Lipschitz nullhomotopy of f on
this interval. Thus (assuming L is large enough to ignore the additive constant) we
obtain that

(5.9) y(L) <2C max{(c )2V Lp(L), C ML)V( (L))}

Now choose k¥ = +/210g(2CC’) and p(L) = exp(k+/log L). Let Ly be such that
p(L) < L for L > L and fix a constant A >2C (C")?"/(2n=1) gych thatfor | <L < L,
y(L) < ALp(L). Such a constant exists simply because we are maximizing over a
bounded interval. Now, given L > L, suppose by induction that

y<p(LL)) = Ap(LL)'O(p(LL))'

Then (5.9) implies that

y(L) <max{ALp(L), A-2CC’L exp(x \/logL —k+/log L)}.

The term kv/log L — k+/log L has a Taylor expansion

2 3
kVloglL — — — —— —---
s 2 84/logL
with all subsequent terms negative, and so we get that y (L) < AL exp(k+/log L), as
desired. |

Note that while this theorem yields eventual low growth, the number L, may be
extremely large; (arbitrarily) plugging in k = 5 yields an intersection point L = p(L)
at L ~ 7.2 x10'%. Before that point, the theorem does not yield an estimate any better
than the quadratic one. It may be possible to obtain better estimates in this low- L range
by using the same method with p(L) = L? for various fixed ¢ > 0 to show directly
that y(L) = o(L'¥).

The proof above uses only the following facts about S”:

e S" is geometrically formal (or, more generally, the map Q*S" — H*(S™;R)
admits a splitting algebra homomorphism);

e S admits automorphisms which multiply elements of H k by tk for some ¢.

In fact, the second property is a consequence of formality [38]. The same proof
(with slight modifications depending on the height of the positive weight filtration
defined in Theorem 5.6) provides a bound of the form O(L exp(k (X, Y)+/log L))
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for nullhomotopies any map from a finite complex X to a Y for which Q*S” —
H*(S";R) splits. For example, this gives such a bound for nullhomotopies of maps
from S to a wedge of n—spheres and of maps to symmetric spaces, or more generally
to wedges of symmetric spaces. This completes part (iii) of Theorem B.

Uniformity over the metric In [26], Guth asks the following question:

Question 5.10 The n—dimensional ellipse with principal axes Ry, ..., R, is the set
defined by
n X 2
Z(R—’) = 1.
j=0~""

Let E™ and F" be m— and n—dimensional ellipses, respectively. If f: E — F is
nullhomotopic and L -Lipschitz, can we homotope f to a constant map through maps
of Lipschitz constant at most L' = L'(m,n, L), independent of the dimensions of E
and F? Can this be taken to be C(m,n)L or C(m,n)L? as dictated by the rational
homotopy? What about more complicated metrics on the sphere?

Such ellipses, and any metric on the sphere, can be closely approximated by simplicial
complexes after sufficient scaling. Therefore, Theorem 5.6 allows us to give a half-
answer to this, which is, however, less than half satisfying. As long as we fix the
target metric on the sphere and L is larger than some constant depending on the
domain metric,'? the nullhomotopy can go through maps of Lipschitz constant at most
C(F,m,n)L (if n is odd or m < 2n—1) or C(F,m,n)L? (otherwise). However,
dependence on the target metric is a complete mystery, as it is in this whole paper.

Recent results in [19] suggest that the constants depending on the target space can be
quite large even for relatively small target spaces in fixed dimension. On the other hand,
it may be that things are less dire when we restrict to spaces of the same homeomorphism

type.
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