Volume 23, issue 7 (2019)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The Morel–Voevodsky localization theorem in spectral algebraic geometry

Adeel A Khan

Geometry & Topology 23 (2019) 3647–3685
Bibliography
1 B Antieau, D Gepner, Brauer groups and étale cohomology in derived algebraic geometry, Geom. Topol. 18 (2014) 1149 MR3190610
2 A Asok, M Hoyois, M Wendt, Affine representability results in 𝔸1–homotopy theory, I : Vector bundles, Duke Math. J. 166 (2017) 1923 MR3679884
3 D C Cisinski, A A Khan, Brave new motivic homotopy theory, II : Homotopy invariant K–theory, preprint (2017) arXiv:1705.03340
4 D Clausen, A Mathew, N Naumann, J Noel, Descent in algebraic K–theory and a conjecture of Ausoni–Rognes, preprint (2016) arXiv:1606.03328
5 D Gaitsgory, N Rozenblyum, Crystals and D–modules, Pure Appl. Math. Q. 10 (2014) 57 MR3264953
6 A Grothendieck, Eléments de géométrie algébrique, IV : Étude locale des schémas et des morphismes de schémas, IV, Inst. Hautes Études Sci. Publ. Math. 32 (1967) 5 MR0238860
7 M Hoyois, A quadratic refinement of the Grothendieck–Lefschetz–Verdier trace formula, Algebr. Geom. Topol. 14 (2014) 3603 MR3302973
8 M Hoyois, The six operations in equivariant motivic homotopy theory, Adv. Math. 305 (2017) 197 MR3570135
9 A Khan, Motivic homotopy theory in derived algebraic geometry, PhD thesis, Universität Duisburg-Essen (2016)
10 D Knutson, Algebraic spaces, 203, Springer (1971) MR0302647
11 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
12 J Lurie, Higher algebra, book project (2012)
13 J Lurie, Spectral algebraic geometry, book project (2016)
14 F Morel, V Voevodsky, A1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 MR1813224
15 M Robalo, K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 MR3281141
16 B Toën, G Vezzosi, Homotopical algebraic geometry, II : Geometric stacks and applications, 902, Amer. Math. Soc. (2008) MR2394633
17 V Voevodsky, Homotopy theory of simplicial sheaves in completely decomposable topologies, J. Pure Appl. Algebra 214 (2010) 1384 MR2593670