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The fundamental group of compact Kähler threefolds

BENOÎT CLAUDON

ANDREAS HÖRING
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Let X be a compact Kähler manifold of dimension three. We prove that there exists a
projective manifold Y such that �1.X/' �1.Y / . We also prove the bimeromorphic
existence of algebraic approximations for compact Kähler manifolds of algebraic
dimension dimX�1 . Together with the work of Graf and the third author, this settles
in particular the bimeromorphic Kodaira problem for compact Kähler threefolds.

14D07, 32J17, 32J27, 32Q55

1 Introduction

1A Main result

Compact Kähler manifolds arise naturally as generalizations of complex projective
manifolds, and Kodaira’s problem asked if every compact Kähler manifold is deforma-
tion equivalent to a projective manifold. A positive answer to this problem trivially
implies that the larger class of Kähler manifolds realizes the same topological invariants.
The classification of analytic surfaces by Kodaira [32; 33] implies a positive answer
to Kodaira’s problem in this case (see also Buchdahl [9] for a different approach).
However, Voisin’s counterexamples [49; 50] show that there exist compact Kähler
manifolds of dimension at least four that do not deform to projective ones. Nevertheless
it is interesting to study Kodaira’s problem at the level of some specific topological
invariants, like the fundamental group:

Conjecture 1.1 Let X be a compact Kähler manifold. Then the fundamental group
�1.X/ is projective, ie there exists a projective manifold M such that �1.X/'�1.M/.

Note that unlike other problems on fundamental groups, this conjecture does not reduce
to the case of surfaces: while, by the Lefschetz hyperplane theorem, the fundamental
group of any projective manifold is realized by a projective surface, it is a priori not
clear if the same holds in the Kähler category. Several partial results on Conjecture 1.1
have been obtained in the last years (see Campana, Claudon and Eyssidieux [16; 15,
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Théorème 0.2] and Claudon [20, Corollary 1.3]). In this paper we give a complete
answer in dimension three:

Theorem 1.2 Let X be a smooth compact Kähler threefold. Then �1.X/ is projective.

The proof of the result comes in several steps: If X is covered by rational curves,
then its MRC fibration XÜ Z induces an isomorphism �1.X/ ' �1.Z/— see
Kollár [34, Theorem 5.2] and Brunebarbe and Campana [7, Corollary 1] — so we
are done. If X is not covered by rational curves, we make a case distinction based
on the algebraic dimension, ie the transcendence degree of the field of meromorphic
functions on X. The case a.X/D 0 has been solved in Campana and Claudon [14]
(see also Graf [25, Corollary 1.8]), and for the case a.X/ D 1 we can describe in
detail the structure of the fundamental group using the algebraic reduction XÜ C

dominating a curve.1 The most difficult case is when a.X/D 2, where the resolution
of the algebraic reduction defines an elliptic fibration X 0! S over a surface. Here the
structure of the fundamental group is not known, even for a projective threefold. The
main contribution of this paper is to use the theory of elliptic fibrations developed by
Nakayama [39; 40; 41] to show the existence of a smooth bimeromorphic model X 0

of X which admits algebraic approximations. The arguments work in fact without the
assumption that dimX D 3. We will then derive the projectivity of Kähler groups in
this case as a corollary.

1B Algebraic approximation

Voisin’s examples [50] show that there exist compact Kähler manifolds of dimension at
least ten such that none of their smooth bimeromorphic models deform to a projective
manifold. Her examples are uniruled and, up to now, no nonuniruled manifold has
been discovered which satisfies the same property. In higher dimension, mild singulari-
ties occur naturally in the bimeromorphic models considered by the minimal model
program. In this spirit, Peternell and independently Campana proposed a more flexible,
bimeromorphic version of Kodaira’s problem:

Conjecture 1.3 Let X be a compact Kähler manifold that is not uniruled. Then there
exists a bimeromorphic map XÜ X 0 to a normal compact Kähler space X 0 with
terminal singularities that admits an algebraic approximation (see Definition 2.3).

1After the submission of the first version of this paper to the arxiv, the third author posted his
preprint [38] on algebraic approximation, which implies this case. Our proof is completely different and
should be useful for generalizations to higher dimension.
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Algebraic approximation provides an explicit way to prove that a Kähler group is
projective: since X 0 has terminal singularities, the fundamental group is invariant under
the bimeromorphic map XÜX 0 ; see Takayama [46]. If we can always choose the
algebraic approximation X ! � to be a locally trivial deformation in the sense of
Flenner and Kosarew [22, page 627] and Sernesi [43], then Conjecture 1.3 implies
Conjecture 1.1.

Very recently Graf [25] and the third author [37; 38] have made progress on the Kodaira
problem, by proving the existence of algebraic approximations for all smooth compact
Kähler threefolds of Kodaira dimension � at most one (including the case � D�1,
namely uniruled threefolds; see Höring and Peternell [29, Corollary 1.4]). We prove
Conjecture 1.3 for nonalgebraic manifolds of the highest algebraic dimension:

Theorem 1.4 Let X be a compact Kähler manifold of algebraic dimension a.X/D
dimX�1. Then there exists a bimeromorphic map X 0ÜX such that X 0 is a compact
Kähler manifold admitting an algebraic approximation.

As �.X/ � a.X/, the conclusion of Theorem 1.4 holds in particular when �.X/ D
dimX � 1. Thus Theorem 1.4 together with [25; 38; 37] establishes Conjecture 1.3
for all compact Kähler threefolds. As far as we can see, our techniques do not imply
the existence of algebraic approximations for threefolds whose algebraic reduction
X 0! S is over a surface. In fact, while resolving the bimeromorphic map X 0ÜX

appearing in our statement, one might blow up some curves that are not contracted by
X 0! S. In this case it is difficult to relate the deformation theories of X and X 0! S.
Thus the original Kodaira problem is still open for threefolds with a.X/D 2.

Finally, as we already mentioned above, Theorem 1.4 has the following immediate
corollary on the projectivity of Kähler fundamental groups:

Corollary 1.5 Let X be a smooth compact Kähler manifold of dimension n and
algebraic dimension a.X/D n� 1. Then �1.X/ is projective.

Acknowledgements We would like to thank J Cao, A Dimca, P Graf, J Kollár and
N Nakayama for very helpful communications on the various technical problems
related to this project. This work was partially supported by the Agence Nationale de
la Recherche grant project Foliage (ANR-16-CE40-0008) and Hodgefun (ANR-16-
CE40-0011-02).
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2 Notation and basic definitions

All complex spaces are supposed to be of finite dimension; a complex manifold is
a smooth Hausdorff irreducible complex space. A fibration is a proper surjective
morphism with connected fibres between complex spaces. A fibration 'W X ! Y is
locally projective if there exists an open covering Ui � Y such that '�1.Ui /! Ui is
projective, ie admits a relatively ample line bundle.

We refer to [26; 23; 21] for basic definitions about .p; q/–forms and Kähler forms in
the singular case.

Definition 2.1 Let 'W X ! Y be a holomorphic map. A relative Kähler form is a
smooth real closed .1; 1/–form ! on X such that for every '–fibre F , the restriction
!jF is a Kähler form. We say that ' is Kähler if such a relative Kähler form exists.

Projective morphisms (eg finite morphisms) are examples of Kähler morphisms.

Remark 2.2 If ' is a Kähler morphism over a Kähler base Y , then XU WD '�1.U / is
Kähler for every relatively compact open set U � Y . In fact, if !X is a relative Kähler
form on X and !Y is a Kähler form on Y , then for all m� 0 the form !X Cm'

�!Y

is Kähler [5, Proposition 4.6(2); 23].

Definition 2.3 Let X be a normal compact Kähler space. We say that X admits an
algebraic approximation if there exist a flat morphism � W X ! � and a sequence
.tn/n2N in � converging to 0 such that ��1.0/ is isomorphic to X and ��1.tn/ is a
projective variety for all n.

In general a flat deformation does not preserve the fundamental group; this holds
however for deformations that are locally trivial in the sense of [22, page 627]. For the
case of fibrations we will work with an even more restricted class of deformations:

Definition 2.4 Let 'W X! S be a fibration between normal compact complex spaces.
A locally trivial deformation of .X; '/ is a pair of fibrations

� W X !�; ˆW X ! S ��

such that � D pS ıˆ, where pS W S ��! � is the projection onto the first factor
and the following holds:
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� X ' ��1.0/ and ' Dˆj��1.0/ .

� There exists an open cover .Ui /i2I of S such that (up to replacing � by a
smaller polydisc containing 0) we have

ˆ�1.Ui ��/' '
�1.Ui /��

for all i 2 I.

Let us recall some basic definitions on geometric orbifolds introduced in [12]. They are
pairs .X;�/ where X is a complex manifold and � a Weil Q–divisor; they appear
naturally as bases of fibrations to describe their multiple fibres: Let 'W X ! Y be a
fibration between compact Kähler manifolds and consider j�j � Y the union of the
codimension one components of the '–singular locus. If D � j�j, we can write

'�.D/D
X
j

mjDj CR;

where Dj is mapped onto D and '.R/ has codimension at least 2 in Y .

The integer m.';D/D gcdj .mj / is called the classical multiplicity of ' above D and
we can consider the Q–divisor

(1) �D
X
D�j�j

�
1�

1

m.';D/

�
D:

The pair .Y;�/ is called the orbifold base of ' .

Remark 2.5 In Campana’s work [12] both the classical and the nonclassical multi-
plicities infj .mj / play an important role. For elliptic fibrations, these multiplicities
coincide: the problem is local on the base; moreover, we can reduce to the case of a
relatively minimal elliptic fibration. Then it is sufficient to observe that in Kodaira’s
classification of singular fibres which are not multiple [31; 2, Chapter V, Table 3], there
is always at least one irreducible component of multiplicity one.

Let us recall what smoothness means for a geometric orbifold.

Definition 2.6 A geometric orbifold .X=�/ is said to be smooth if the underlying
variety X is a smooth manifold and if the Q–divisor � has only normal crossings. If,
in a coordinate patch, the support of � can be defined by an equation

rY
jD1

zj D 0;

we will say that these coordinates are adapted to �.
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In the category of smooth orbifolds, there is a good notion of fundamental group. It
is defined in the following way: If �D

P
j2J .1� 1=mj /�j , choose a small loop j

around each component �j of the support of �. Consider now the fundamental group
of X? DX nSupp.�/ and its normal subgroup generated by the loops mjj ,

hh
mj
j j j 2 J ii � �1.X

?/:

Definition 2.7 The fundamental group of .X=�/ is defined to be

�1.X=�/ WD �1.X
?/=hh

mj
j j j 2 J ii:

Remark 2.8 By definition, the loops j define torsion elements in �1.X=�/. Thus
we see that if �1.X=�/ is torsion-free, the natural surjection �1.X=�/� �1.X/ is
an isomorphism.

3 Elliptic fibrations

The structure of elliptic fibrations and their deformation theory has been described
in detail in the landmark paper of Kodaira [31] for surfaces and its generalization to
higher dimension by Nakayama [41; 40]. For the convenience of the reader we review
this theory and explain some additional properties that will be important in the proof
of Theorem 1.4.

3A Smooth fibrations and their deformations

Let S? be a complex manifold, and let f ?W X?! S? be a smooth elliptic fibration.
We associate a variation of Hodge structures H (VHS for short in the sequel) of weight 1
over S? , the underlying local system being given by the first cohomology group of
the fibres H 1.Xs;Z/' Z2 . A rank 2 and weight 1 VHS over S? is equivalent to the
following data: a holomorphic function to the upper half-plane

�H W zS
?
!H

defined on the universal cover zS?! S? which is equivariant under a representation

�H W �1.S
?/! SL2.Z/:

Now, if  2 �1.S?/, let us write

�H ./D

�
a b
c d

�
;
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the image of  under �H . It is then straightforward to check that the formula

..m; n/; / � .x; z/D

�
.x/;

zCm�H .x/Cn

c�H .x/C d

�
defines an action of the semidirect product Z2 Ì�1.S?/ on zS? �C which is fixed-
point-free and properly discontinuous. We can then form the quotient to get a smooth
elliptic fibration

pW J .H/! S?

which is endowed with a canonical section � W S?!J .H/. Following the terminology
of [32; 33; 40] we call p the basic elliptic fibration (associated to H ). Note that f ?

and p are locally isomorphic over S? , but their global structure can be quite different.

Since p has a global section, its sheaf of holomorphic sections J .H/ is a well-defined
sheaf of abelian groups and we have an exact sequence of sheaves

(2) 0!H ! LH ! J .H/! 0;

where

LH WDR1p�OJ .H/ 'R
1f ?� OX? :

Let us note that LH can also be interpreted as the zeroth graded piece H=F 1H of the
Hodge filtration on H WDH ˝OS? and thus depends only on the VHS H. Since f ?

is smooth, it has local sections over every point of S? and the difference of two such
sections on the intersection of their sets of definition can be seen as a section of J .H/.
In this way we have just associated a cohomology class

�.f ?/ 2H 1.S?;J .H//

to f ? , which is independent of the choices of local sections. The class �.f ?/ can also
be constructed in a more conceptual way. Pushing forward the exponential sequence
on X? by f ? yields a long exact sequence on S? ,

(3) 0!R1f ?� ZX !R1f ?� OX !R1f ?� O
�
X !R2f ?� ZX ' ZS? ! 0:

Recalling that J .H/ D R1f ?� OX=R1f ?� ZX , the class �.f ?/ is the image of 1 2
H 0.S?;ZS?/ under the connecting morphism

ıW H 0.S?;ZS?/!H 1.S?;J .H//:

The map � is in fact a bijection.
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Theorem 3.1 [32, Theorem 10.1; 33, Theorem 11.5; 41, Propositions 1.3.1 and 1.3.3]
Let S? be a complex manifold, and let H be a VHS of rank 2 and weight 1 over S? .

(a) The map f ? 7! �.f ?/ defines a one-to-one correspondence between the isomor-
phism classes of smooth elliptic fibrations over S? inducing H and the elements
of the cohomology group H 1.S?;J .H//.

(b) A smooth elliptic fibration f ?W X?! S? is a projective morphism if and only
if �.f ?/ is a torsion class.

The short exact sequence (2) induces an exact sequence

(4) H 1.S?;LH /
exp
�!H 1.S?;J .H// c

�!H 2.S?;H/:

The vector space V WDH 1.S?;LH / appears as a deformation space of smooth elliptic
fibrations over S? . More precisely, given an elliptic fibration f ?W X?! S? induc-
ing H, there exists a family of elliptic fibrations …W X!S?�V over S? parametrized
by V such that the fibre over t 2H 1.S?;LH / is an elliptic fibration whose associated
element in H 1.S?;J .H// is exp.t/C�.f ?/. Viewing … as a smooth elliptic fibration,
the cohomology class �.…/ 2 H 1.S? � V;J .pr�1H// associated to … is equal to
exp.�/Cpr��.f ?/, where prW S?�V !S? denotes the projection onto the first factor
and

� 2H 1.S?;LH /˝H 0.V;OV /�H 1.S? �V;Lpr�1H /

the element which corresponds to the identity map V !H 1.S?;LH /.

Theorem 3.2 [20, Proposition 2.4 and 2.5] (a) Let f ?1 W X
?
1 !S? and f ?2 W X

?
2 !

S? be two smooth elliptic fibrations over S? inducing H. Then f ?1 can be
deformed into f ?2 in the family described above if and only if c.�.f ?1 // D
c.�.f ?2 //

(b) Let f ?W X?! S? be a smooth elliptic fibration such that X? is Kähler. Then
c.�.f ?// is torsion and f ? can be deformed to a projective fibration.

3B Local structures and Weierstraß models

Definition 3.3 An elliptic fibration f W X ! S is a fibration whose general fibre Xs
is isomorphic to an elliptic curve. We say that f has a meromorphic section in a point
s 2 S if there exists an analytic neighbourhood s 2 U � S and a meromorphic map
sW UÜX such that f ı s is the inclusion U ,! S.
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Apart from smooth elliptic fibrations, discussed in the last section, the second simplest
examples of elliptic fibrations are Weierstraß fibrations. These fibrations turn out to be
crucial in the study of elliptic fibrations.

Definition 3.4 Let S be a complex manifold.

(a) A Weierstraß fibration over S consists of a line bundle L on S and two sections
˛ 2H 0.S;L.�4// and ˇ 2H 0.S;L.�6// such that 4˛3C 27ˇ2 is a nonzero
section of H 0.S;L.�12//. With these data, we can associate a projective family
of elliptic curves,

W WDW .L; ˛; ˇ/D fY 2Z DX3C˛XZ2CˇZ3g � P ;

where

P WD P .OS ˚L2˚L3/

and X, Y and Z are canonical sections of OP .1/˝L.�2/ , OP .1/˝L.�3/ and
OP .1/, respectively. The restriction of the natural projection P ! S to W

gives rise to a flat morphism pW W W ! S whose fibres are irreducible cubic
plane curves. This elliptic fibration is endowed with a distinguished section
fX DZ D 0g.

(b) A Weierstraß fibration W .L; ˛; ˇ/ is said to be minimal if there is no prime
divisor �� S such that div.˛/� 4� and div.ˇ/� 6�.

(c) A locally (minimal) Weierstraß fibration is an elliptic fibration f W X ! S such
that there exists an open covering .Ui /i2I of S such that the restriction of f to
Xi WD f

�1.Ui / is a (minimal) Weierstraß fibration.

Remark 3.5 Since the total space of the Weierstraß fibration pW W W !S is by defini-
tion a hypersurface in a manifold, the complex space W is Gorenstein, so the canonical
sheaf is locally free. In the case where W .L; ˛; ˇ/ is minimal and the discriminant
divisor div.4˛3C 27ˇ2/ has normal crossings, we know by [39, Corollary 2.4] that
W has rational, hence canonical, singularities (and this holds of course for the total
space of a locally Weierstraß fibration). Since pW is flat and the restriction of KW

to every fibre is trivial, we have KW ' p
�
WL for some line bundle L on S. Thus a

locally Weierstraß fibration is relatively minimal.

It is well known that smooth elliptic fibrations with a section are always Weierstraß:
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Theorem 3.6 [32; 33; 41, Proposition 1.2.4] Let S be a complex manifold, and let
f W X ! S be a smooth elliptic fibration admitting a section sW S ! X . Then there
exists a canonically defined isomorphism X!W over S to some Weierstraß fibration
W ! S sending s onto the distinguished section.

For nonsmooth fibrations we can only hope to work with bimeromorphic models:

Definition 3.7 Let f W X ! S be an elliptic fibration and let f ?W X?! S? denote
the restriction to a nonempty Zariski open subset S? � S such that f is smooth. A
(locally) Weierstraß model of f is a (locally) Weierstraß fibration pW W ! S such
that X? is isomorphic to W ? WD p�1.S?/ over S.

The existence of meromorphic sections is an obvious necessary condition for the
existence of a Weierstraß model. When the base S is smooth, it is also sufficient:

Theorem 3.8 [39, Theorem 2.5] Let S be a complex manifold, and let f W X ! S

be an elliptic fibration. If f admits a meromorphic section, then f has a unique
minimal Weierstraß model.

The following vanishing result will be useful:

Theorem 3.9 [41, Theorem 3.2.3] Let f W X ! S be an elliptic fibration such that
both X and S are smooth and that f is smooth over the complement of a normal
crossing divisor in S. Then we have

Rjf�OX D 0 for all j � 2:

The following example explains the importance of the normal crossing condition for
the theory of elliptic fibrations:

Example 3.10 Let S be a smooth nonalgebraic compact Kähler surface that admits
an elliptic fibration gW S ! P1 . Let F1! P1 be the first Hirzebruch surface, and
set X WD F1 �P1 S. Then X is a smooth compact Kähler threefold, and we denote
by f W X ! P2 the composition of the elliptic fibration X ! F1 with the blowdown
F1! P2 .

Then f is not locally projective since it has a two-dimensional fibre isomorphic
to the nonprojective surface S. Note however that g has at least 3 singular fibres
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[4, Proposition 1]; see Proposition A.1 for a detailed proof in the Kähler case. Thus the
discriminant locus of f consists of at least 3 lines meeting in one point. In particular, it
is not a normal crossing divisor and it is quite easy to see that R2f�OX ¤ 0 in this case.

A general elliptic fibration does not admit local meromorphic sections at every point, a
fact that is the starting point of Nakayama’s global theory of elliptic fibration using
the @–étale cohomology. For our needs we can use the strategy of Kodaira [32; 33] to
reduce to this case via base change:

Proposition 3.11 Let f W X ! S be an elliptic fibration such that both X and S are
smooth and that f is smooth over the complement of a simple normal crossing (SNC )
divisor in S. Suppose that f is locally projective (eg when X is a Kähler manifold [41,
Theorem 3.3.3]) and S is projective , then there exists a finite Galois cover zS ! S by
some projective manifold zS such that

X �S zS ! zS

has local meromorphic sections over every point of zS. The elliptic fibration X�S zS! zS
is smooth over the complement of an SNC divisor in zS.

This statement is a variant of [41, Corollary 4.3.3]: in our case S is projective, but we
lose the control over the branch locus.

Proof For every irreducible component Di of D we denote by mi 2N the multiplicity
of the generic fibre over Di . By [36, Proposition 4.1.12] we can choose a covering
zS ! S ramifying with multiplicity exactly mi over Di and the ramification divisor
is SNC. By construction the elliptic fibration X �S zS ! zS has no multiple fibre in
codimension one. Up to taking another finite cover and the Galois closure we can
suppose that zS ! S is Galois and the local monodromies are unipotent. Since the
elliptic fibration is locally projective, we can now apply [41, Theorems 4.3.1 and 4.3.2]
to conclude that it has local meromorphic sections over every point of zS.

3C Elliptic fibrations with local meromorphic sections

In this subsection we always work under the following:

Assumption 3.12 Let S be a complex manifold, and let f W X ! S be an elliptic
fibration having local meromorphic sections over every point of S. We denote by
j W S? � S a Zariski open subset such that X? WD f �1.S?/! S? is smooth and
assume that the complement S nS? is a normal crossing divisor.
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Denote by H the VHS on S? induced by the smooth elliptic fibration X?! S? . Let

L WD LH=S WDR1f�OX :

Let p?W J .H/!S? be the basic elliptic fibration associated with H. By Theorem 3.8,
we can extend p? to a Weierstraß model

pW W ! S:

When X is smooth, LH=S is isomorphic to the zeroth graded piece of the Hodge
filtration of the lower canonical extension of HDH˝OS? to S by [41, Lemma 3.2.3].
This induces a natural map j�H ! LH=S , which is injective by [41, Lemma 3.1.3].
Let J .H/W denote the quotient LH=S=j�H. The exact sequence

(5) 0! j�H ! LH=S
exp
�! J .H/W ! 0

extends the exact sequence (2) defined on S? � S.

Let W # � W denote the Zariski open of W consisting of points x 2 W where
pW W ! S is smooth. The variety W # is a complex analytic group variety over S,
where over a point t 2 S which parametrizes a nodal (resp. cuspidal) rational curve
in pW W ! S, the fibre is the multiplicative group C� (resp. additive group C ). For
each integer m, the multiplication-by-m W #!W # extends to a meromorphic map
mW W ÜW , which is generically finite when m¤ 0.

Remark 3.13 In [40, page 550], the sheaf J .H/W is first defined to be the germs of
holomorphic sections of pW W ! S, then one proves that J .H/W sits inside the exact
sequence (5). However with this definition of J .H/W , the exactness of (5) fails as it
follows from the false claim that local sections of p are contained in W # . Indeed, the
Weierstraß fibration parametrized by ˛ 2C defined by Y 2ZDX3C˛X has a section
˛ 7! .X.˛/D 0; Y.˛/D 0/ which passes through the cusp of the singular central fibre.

In order to keep the sequence (5) exact, the correct definition of J .H/W should be
the sheaf of germs of holomorphic sections of W ! S whose image is contained
in W # . In this way, as already mentioned in [40, page 550] since W # acts on W

by translations [40, Lemma 5.1.1(7)], a local section of J .H/W gives rise to a local
automorphism of W .

We can associate an elliptic fibration to a cohomology class � 2 H 1.S;J .H/W /

[40, page 550]:
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Construction 3.14 Fix an open cover .Uj /j2N of S such that the class � is repre-
sented by a cocycle .�ij /i<j where �ij 2 H 0.Ui \ Uj ;J .H/W /. By the remark
above, with the choice of a zero section Ui ! W #jUi for each i , we can identify
the �ij to automorphisms of Wij WDW jUi\Uj over S. The cocycle condition ensures
that the condition of the gluing lemma [28, Chapter II, Exercise 2.12] is satisfied in our
situation, so we can glue the elliptic fibrations Wi WDW jUi!Ui to an elliptic fibration
p�W W � ! S. Since the gluing morphisms are translations so act as the identity on
the VHS, the VHS induced by p� on S? is H. This construction is independent of the
choices of .Ui / and the zero sections Ui !W #jUi

According to the above construction, given p�W W �! S and an open cover .Ui / of S
as above, the multiplication-by-m’s on W jUi ! Ui glue together to a meromorphic
map mW W �ÜWm� over S, which up to isomorphisms is independent of the choices
of .Ui / and the zero sections Ui !W #jUi .

Now given a locally minimal Weierstrass fibration f W X ! S as constructed by
Construction 3.14, we shall explain how to find � to which f associates. Consider the
long exact sequence

(6) � � � !R1f�ZX !R1f�OX !R1f�O�X !R2f�ZX ! � � � :

Since X ! S is obtained by gluing the pieces Wi ! Ui by translation maps
�ij W Wij !Wij , which act trivially on H 1.Wij ;Z/, we have R1f�ZX DR1p�ZW .
The translations �ij also act trivially on H 1.Ws;OWs

/, where Ws WD p
�1.s/ for any

s 2 Ui \Uj . As pW W ! S is flat and H 1.Ws;OWs
/'C, by Grauert’s base change

theorem we deduce that R1f�OX DR1p�OW .

Lemma 3.15 The map R1p�Z!R1p�OW induced by Z ,!OW is isomorphic to
'W j�H ! LH=S in (5).

Proof Let � W Y !W be a minimal desingularization of W and g WD p ı � W Y ! S.
First we have ��OY DOW and ��ZDZ. Since W has at worst rational singularities,
the sheaves R1��OY and R1��Z vanish. Applying the Grothendieck spectral sequence
to the composition g D p ı � yields R1g�OY D R1p�OW and R1g�Z D R1p�Z.
As we know that the map R1g�Z! R1g�OY induced by Z ,! OY is isomorphic
to ' [40, Theorem 5.4.9], Lemma 3.15 follows.

Therefore R1f�ZX !R1f�OX is isomorphic to the morphism j�H ! LH=S in (5).
Finally, since the fibres of f are of dimension 1, we have R2f�OX D 0. Thus (6)
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becomes

(7) j�H ! LH=S !R1f�O�X !R2f�ZX ! 0:

Recall that j�H !LH=S is injective and J .H/W sits inside the short exact sequence

(8) 0! j�H ! LH=S ! J .H/W ! 0:

As a fibre F of f is either an elliptic curve, a nodal rational curve or a rational curve
with a cusp, we have H 2.F;Z/ D Z. Since p is proper, by [30, Theorem III.6.2]
R2f�ZX ' ZS . Hence we have a second short exact sequence

(9) 0! J .H/W !R1f�O�X ! ZS ! 0:

If � 2 H 1.S;J .H/W / denotes the element which defines (9), then f will be the
elliptic fibration associated to �.

Remark 3.16 It is important that f is a locally Weierstraß fibration constructed from
some element � 2H 1.S;J .H/W / in order to identify R1f�ZX ! R1f�OX with
j�H ! LH=S . There are examples of elliptic fibrations due to N Nakayama (personal
communication) showing that not every locally Weierstraß fibration can be constructed
in this way.

Each class � 2H 1.S;J .H/W / comes equipped with a tautological family:

Proposition 3.17 Under Assumption 3.12, given � 2H 1.S;J .H/W /, there exists a
locally trivial (see Definition 2.4) family of elliptic fibrations � W X ! S �V over S
parametrized by V WD H 1.S;L/ that satisfies the following property: an elliptic
fibration X! S is a member of � if and only if X is isomorphic to W � ! S over S
for some � 2H 1.S;J .H/W / such that c.�/D c.�/.

Proof As in the smooth case, let

� 2H 1.S;L/˝H 0.V;OV /�H 1.S �V;Lpr�1H=S�V /

be the element which corresponds to the identity map V ! H 1.S;LH=S /, where
prW S �V ! S is the projection onto the first factor. Let � W X ! S �V be the elliptic
fibration obtained by Construction 3.14 from exp.�/Cpr��2H 1.S�V;J .pr�1H/W /.
Then, considering � as a family of elliptic fibrations over S parametrized by V , the
fibre over t 2H 1.S;LH=S / is the elliptic fibration constructed by Construction 3.14
from exp.t/C� 2H 1.S;J .H//. Thus � satisfies the desired property. As V is Stein
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and contractible, in order to construct � W X ! S �V , it is possible to take the open
cover of S �V in Construction 3.14 to be fUi �V g for some open cover fUig of S.
Thus � W X ! S �V is locally trivial.

The cohomology group H 1.S;J .H/W / is a parameter set of elliptic fibrations over S
with VHS H, but for classification purposes it is too small. We denote by J .H/mer

the sheaf of meromorphic sections of pW W ! S. Since p has a global meromorphic
section, we see that J .H/mer has a group structure [41, pages 243–244]. There is a
trivial inclusion of sheaves of abelian groups

(10) J .H/W � J .H/mer

which is an isomorphism on S? : since W is smooth over S? we have J .H/'W jS? ,
moreover any meromorphic section is holomorphic over S? [41, Lemma 1.3.5]. In
particular, the quotient sheaf

QH WD J .H/mer=J .H/W

is supported on DD S nS? . By [40, Theorem 5.4.9] we have a commutative diagram

(11)

0

0 j�H LH=S J .H/W 0

0 J .H/mer R1f�O�X=VX ZS 0

0 QH R2f�ZX=VX ZS 0

0

‰f

where

VX WD Ker
�
R1f�O�X ! j�..R

1f�O�X /jS?/
�

and ‰f is constructed from the local meromorphic sections of f .

Definition 3.18 We define

�.f / 2H 1.S;J .H/mer/

to be the image of 1 2H 0.S;ZS / under the connecting morphism of the long exact
sequence associated to the second line of (11).
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By [40, Proposition 5.5.1] we have an injection

E0.S;D;H/ ,!H 1.S;J .H/mer/;

where E0.S;D;H/ is the set of bimeromorphic equivalence classes of elliptic fibra-
tions f W X ! S having meromorphic sections over every point of S and such that
f �1.S?/! S? is bimeromorphic to a smooth elliptic fibration over S? inducing the
VHS H. By Construction 3.14 we have

{W W H 1.S;J .H/W /! E0.S;D;H/ ,!H 1.S;J .H/mer/

but contrary to the smooth case it is not clear if the images coincide. If S is a curve,
the skyscraper sheaf QH has no higher cohomology, so the map

H 1.S;J .H/W /!H 1.S;J .H/mer/

is surjective.

If �.f / 2H 1.S;J .H/mer/ is the image of some � 2H 1.S;J .H/W /, then there is
a morphism of short exact sequences

(12)

0 J .H/W R1p�O�W � ZS 0

0 J .H/mer R1f�O�X=VX ZS 0

o

where the first row is the short exact sequence (9) defined by p�W W �! S.

3D The Kähler case

From now on we will focus on the case where the total space of the elliptic fibration f
is compact Kähler. In that case, the element �.f / 2 H 1.S;J .H/mer/ represented
by f lies in the image of H 1.S;J .H/W /, up to replacing �.f / by a larger multiple
(see [40, Proposition 7.4.2] for a more general statement).

Lemma 3.19 In the situation of Assumption 3.12, suppose also that X is bimeromor-
phic to a compact Kähler manifold. Then the image of the class �.f /2H 1.S;J .H/mer/

is torsion in H 1.S;QH /. In particular, there exists an integer m� 1 such that m ��.f /
can be lifted to some element in H 1.S;J .H/W /.

Proof Since the class �.f / depends only on the bimeromorphic equivalence class of
X ! S, we can suppose that X is a compact Kähler manifold. Indeed, let X 0ÜX
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be a bimeromorphic map from a compact Kähler manifold X 0 and let zX 0 ! X be
a resolution of X 0ÜX by successively blowing up X 0 along smooth subvarieties.
Then zX 0 is a Kähler manifold and zX 0! S, which is the composition of zX 0!X with
X ! S, is an elliptic fibration bimeromorphic to X. So we may replace X by zX 0, for
instance.

Let ! 2 H 2.X;R/ be a Kähler class on X. By density, there exists a class ˛ 2
H 2.X;Q/ (in general not of type .1; 1/) such that ˛ �F ¤ 0, where F is a general
f –fibre. The class ˛ defines a global section of R2f�QX and we can cancel the
denominators in such a way that ˛ defines a section of R2f�ZX and thus a nonzero
element x̨ 2H 0.S;R2f�ZX=VX /. The third line of (11) induces an exact sequence

H 0.S;R2f�ZX=VX / �
�!H 0.S;ZS /

ı
�!H 1.S;QH /

and is straightforward to check that �.x̨/ D F � ˛ . It is then a positive multiple of
the class 1 2H 0.S;ZS / and it follows that ı.1/ is a torsion class in H 1.S;QH /. A
diagram chase in (11) shows that ı.1/ is the image of �.f / in H 1.S;QH /.

We can now generalize Theorem 3.2 (see also [40, Proposition 7.4.2]):

Theorem 3.20 In the situation of Assumption 3.12, let us also assume that X is
bimeromorphic to a compact Kähler manifold. Suppose also that �.f / is in the image
of H 1.S;J .H/W /. Denote by

cW H 1.S;J .H/W /!H 2.S; j�H/

the morphism defined by the first line of the exact sequence (11). Then the class c.�.f //
is torsion in H 2.S; j�H/.

Proof Let �2H 1.S;J .H/W / be an element which maps to �.f /2H 1.S;J .H/mer/

and let p�W W WDW �! S be the minimal locally Weierstrass fibration which repre-
sents � 2H 1.S;J .H/W /. By [38, Lemma 8.1], the diagram

H 0.S;R2p
�
�Z/'H

0.S;Z/ H 1.S;J .H/W / H 2.S;R1p
�
�Z/'H

2.S; j�H/
˛

d2

c

commutes, where c and ˛ are the connecting morphisms in the long exact sequences
induced by (8) and (9), respectively. As ˛.1/D �, it suffices to prove the following
lemma, which implies that d2˝RD 0.
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Lemma 3.21 H 2.W;R/!H 0.S;R2p
�
�R/ is surjective.

Proof Since W is normal and has at worst rational singularities, by [29, Injection (3)]
we have an injection

H
1;1
BC .W / ,!H 2.W;R/:

Assume on the contrary that H 2.W;R/! H 0.S;R2p
�
�R/ is not surjective, so in

particular its restriction to H 1;1
BC .W / is not surjective. Let � W �W ! W be a Kähler

desingularization of W . By the projection formula, given an element ! 2H 2.W;R/,
its image in H 0.S;R2p

�
�R/'H

0.S;R/'R equals
R
F �
�! , where F is a smooth

fibre of p� ı � W �W ! S. Let n WD dimW . The nonsurjectivity assumption implies
that ��H 1;1

BC .W /� ŒF �
? , where the orthogonal is with respect to the Poincaré duality

pairing
Hn�1;n�1.�W /R �H 1;1.�W /R!Hn;n.�W /R 'R:

However, since ker.��/?���H
1;1
BC .W / by [29, Lemma 3.3], we deduce that ��ŒF �D0,

which is not possible.

Remark 3.22 The last result gives a direct proof of a phenomenon which was ob-
served by Kodaira in the case dimS D 1: he first proved that the cohomology group
H 2.S; j�H/ is finite if the VHS is not trivial. He then computed the first Betti number
of an elliptic surface when H is trivial and obtained in [33, Theorem 11.9] that this
quantity is even if c.�.f //D 0 and odd otherwise. A posteriori we can conclude that
an elliptic surface f W X! S (without multiple fibres) is Kähler if and only if c.�.f //
is torsion in H 2.S; j�H/. We will now prove that this equivalence also holds in our
setting:

Proposition 3.23 In the situation of Assumption 3.12, suppose also that the base S is
a compact Kähler manifold. Assume that the Weierstraß fibration W ! S is minimal.
Let � 2H 1.S;J .H/W / be a class such that c.�/ is torsion in H 2.S; j�H/. Then
the total space of W �! S is bimeromorphic to a compact Kähler manifold.

Proof Recall that the Weierstraß model pW W ! S associated to H is a projective
morphism. Since S is compact Kähler, the total space W is Kähler by Remark 2.2.
As in the case of smooth elliptic fibrations, the Weierstraß fibration comes equipped
with a family of elliptic fibrations (over S ) W! S �H 1.S;L/ parametrized by the
vector space H 1.S;L/ such that

�.Wt ! S/D exp.t/ 2H 1.S;J .H/W /
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for any t 2H 1.S;L/. By Remark 3.5 the complex spaces W � have at most canonical,
hence rational, singularities. From [42, Proposition 5] we know that any small flat
deformation of compact Kähler space having rational singularities remains Kähler. Thus
W exp.t/ is Kähler for t in a neighbourhood U of 0 2H 1.S;L/. Now if t is given in
H 1.S;L/ let us consider a positive integer m such t=m 2U. The multiplication-by-m
map

mW W exp.t=m/ÜWm�exp.t=m/
DW exp.t/:

is generically finite. Since W exp.t=m/ is Kähler, W exp.t/ is bimeromorphic to a compact
Kähler manifold.

Since c.�/ is torsion by assumption, there exists a positive integer k and an element
t 2H 1.S;L/ such that k � �D exp.t/. As the multiplication-by-k map

W �ÜW k��
DW exp.t/

is generically finite and the target is bimeromorphic to a compact Kähler manifold, we
conclude that W � is also bimeromorphic to a compact Kähler manifold.

3E A G –equivariant version of Construction 3.14

Let pW W ! S be a Weierstraß fibration satisfying Assumption 3.12. In Construction
3.14, we have constructed for each � 2H 1.S;J .H/W / an �–twisted locally Weier-
straß fibration p�W W �! S. Now let G be a finite group acting on both W and S
such that p is G–equivariant and the zero section † � W is G–stable. In this
subsection, we will generalize Construction 3.14 by associating a G–equivariant locally
Weierstraß fibration p�W W �! S to each element �G 2H 1

G.S;J .H/
W / and vice

versa (here the notation H 1
G.S;J .H/

W / stands for the G–equivariant cohomology).
This construction is due to Kodaira and can be found in [33, Section 14] for the case
dimS D 1. The same argument therein also works in higher dimension and we will
only describe the constructions following [33, Section 14] and refer to loc. cit. for
verifications of the details (see also [20, Section 2.3] for a quick review of equivariant
cohomology in the context of equivariant smooth families of tori).

Given an element �G 2H 1
G.S;J .H/

W /. Let fUigi2I be a G–invariant good open
cover of S and let G act on I such that g�1.Ui / D Ugi . The element �G can be
represented by a 1–cocycle f.�ij /i;j2I ; .�

g
i /i2I;g2Gg, where .�ij / is a 1–cocycle

with coefficients in J .H/W and �gi are local sections of J .H/W defined over Ui
satisfying some cocycle conditions. The 1–cocycle .�ij / represents the image � of �G
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in H 1.S;J .H/W / and let p�W W �!S be the associated locally Weierstraß fibration.
Fix biholomorphic maps

�i W W
�
i WD .p

�/�1.Ui /!Wi WD p
�1.Ui /

such that �i ı ��1j D tr.�ij /, where tr.�ij / denotes the translation by the holomorphic
section �ij . For each g 2G, the cocycle conditions allow us to patch together

 ig WD �
�1
i ı tr.�gi / ıg ı �gi W W

�
gi !W �

i

and obtain an automorphism  g W W �!W � , which defines a G–action on W � such
that p� is G–equivariant. Up to isomorphism, the above construction does not depend
on the choice of f.�ij /; .�

g
i /g representing �G . We call p�W W �! S together with

the thus-defined G–action the G–equivariant locally Weierstraß fibration associated
to �G .

The above construction can be reversed and gives a one-to-one correspondence be-
tween elements of H 1

G.S;J .H/
W / and G–equivariant locally Weierstraß fibrations.

Given a G–equivariant locally Weierstraß fibration p� W W � ! S twisted by � 2
H 1.S;J .H/W /, we can recover the (unique) element �G 2 H 1

G.S;J .H/
W / as

follows. First of all, the G–action on p� induces a G–action on H WD .R1p��Z/jS? ,
where S? � S is a Zariski open over which p� is smooth. By [39, Corollary 2.6], the
G–action on H extends to a G–action on W such that p is G–equivariant, and it is
for this G–action we define the G–equivariant cohomology group H 1

G.S;J .H/
W /.

Now let fUig be a G–invariant good open cover of S and fix biholomorphic maps
�i W W

�
i !Wi such that �i ı ��1j D tr.�ij / for some 1–cocycle f�ij g representing

� 2 H 1.S;J .H/W /. Let  g W W � !W � be the action of g 2 G on W � . If we
define

tr.�gi / WD �i ı g ı �
�1
gi ıg

�1

then f.�ij /; .�
g
i /g represents an element �G 2H 1

G.S;J .H/
W /. The class �G depends

only on the G–equivariant locally Weierstraß fibration p�W W �! S and p� 7! �G

is the converse of the construction in the last paragraph.

Our discussion of E0.S;�;H/ right after Definition 3.18 can also be generalized
to the G–equivariant setting. Let f W X ! S be an elliptic fibration satisfying
Assumption 3.12. Let G be a finite group acting on S and on X such that f
is G–equivariant. Let H be a local system of rank 2 over S n � endowed with
a G–action compatible with the G–action on S. Let EG0 .S;�;H/ denote the set
of bimeromorphic classes of all such G–equivariant elliptic fibrations f such that
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.R1f�Z/jSn� is G–equivariantly isomorphic to H. To each G–equivariant elliptic fi-
bration f 2EG0 .S;�;H/, we can associate an element �G.f /2H 1

G.S;J .H/mer/ sim-
ilar to the above construction in an injective manner. According to the above, there exists
a map H 1

G.S;J .H/
W /! EG0 .S;�;H/ which associates �G 2H 1

G.S;J .H/
W / to

the bimeromorphic class of the G–equivariant elliptic fibration p�W W �! S and the
composition

{WG W H
1
G.S;J .H/

W /! EG0 .S;�;H/ ,!H 1
G.S;J .H/mer/

equals the map induced by the natural injective map J .H/W ,! J .H/mer .

At the end of this subsection, we show that in the situation where f W X ! S is a G–
equivariant elliptic fibration for some finite group G, if the conclusion of Lemma 3.19
holds, then it also holds G–equivariantly.

Lemma 3.24 Let �G 2H 1
G.S;J .H/mer/ and let � be its image in H 1.S;J .H/mer/

G.
Assume that there exist m 2 Z>0 and �0 2H 1.S;J .H/W / such that m�D {W .�0/;
then, up to replacing m with a larger multiple, m�G can be lifted to an element in
H 1
G.S;J .H/

W /.

Proof As G is finite, up to replacing m with a larger multiple, we can assume that
�0 2H 1.S;J .H/W /G. The Grothendieck spectral sequence induces a commutative
diagram

H 1
G.S;J .H/

W / H 1.S;J .H/W /G H 2.G;H 0.S;J .H/W //

H 1.G;H 0.S;J .H/mer// H 1
G.S;J .H/mer/ H 1.S;J .H/mer/

G

{WG {W

with exact rows. As G is finite, H 2.G;H 0.S;J .H/W // is a torsion group. So,
up to replacing m with a larger multiple, there exists �0G 2H

1
G.S;J .H/mer/ which

maps to �0 2H 1.S;J .H/W /. Again since G is finite, H 1.G;H 0.S;J .H/mer// is
also a torsion group. So, up to replacing m with a larger multiple, we deduce that
m�G D {

W
G .�

0
G/.

3F Hodge theory of Weierstraß models

The main purpose of this subsection is to establish the following result:
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Theorem 3.25 Let pW W ! S be the minimal Weierstraß fibration associated to the
VHS H over a compact Kähler manifold S satisfying Assumption 3.12 and let

W! S �H 1.S;L/!H 1.S;L/

be the tautological family associated to p (ie the family constructed in Proposition 3.17
for �D 0). Then the subset of H 1.S;L/ parametrizing projective fibrations Wt ! S

is dense.

Remark 3.26 Before giving the proof of Theorem 3.25, let us note that Theorem 3.25
is equivalent to the surjectivity of the canonical map

(13) H 1.S; j�HR/!H 1.S;L/:

Indeed, as S is assumed to be compact Kähler, by Remark 2.2, Theorem 3.20 and
Proposition 3.23 the total space W is Kähler. So each fibre of the tautological family
W ! S �H 1.S;L/! H 1.S;L/ is also Kähler. The elliptic fibration Wt ! S is
projective if and only if its cohomology class �.Wt!S/ is torsion in H 1.S;J .H/W /

(see [40, Theorem 6.3.8]). Using the first line of (11), the exact sequence

H 1.S; j�H/!H 1.S;L/!H 1.S;J .H/W /

shows that this happens exactly when t lies in the range of the map H 1.S; j�HQ/!

H 1.S;L/. Hence the density of projective elliptic fibrations is equivalent to the
surjectivity of the map (13).

When S�D S, the surjectivity of (13) is a straightforward consequence of the existence
of a pure Hodge structure of weight 2 on the lattice H 1.S;H/ as constructed by
Deligne (see [52, Theorem 2.9]).

Theorem 3.25 will serve as a crucial ingredient in the proof of Theorem 1.4. More
precisely, it will be the following corollary that we use in the proof:

Corollary 3.27 Let G be a finite group and f W X ! S a G–equivariant elliptic
fibration satisfying Assumption 3.12 over a compact Kähler manifold. Then the image
of H 1.S; j�HQ/

G in H 1.S;L/G under the map H 1.S; j�HR/
G ! H 1.S;L/G is

dense.

Proof By Remark 3.26, Theorem 3.25 implies that (13) is surjective. As G is a finite
group, the G–invariant part of (13) is also surjective. Corollary 3.27 thus follows from
the density of H 1.S; j�HQ/

G in H 1.S; j�HR/
G.
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To prove the density of projective fibrations in the tautological family we will use the
following criterion, which is reminiscent of Buchdahl’s works [8; 9]:

Lemma 3.28 Let � W X ! B be a smooth family of compact Kähler manifolds, and
let ˆW X ! S �B ! B be a fibration such that � D prB ıˆ. Consider the VHS

over B
V WDR2��Q=H

2.S;Q/:

Let b 2 B be a point, and Œ!� a Kähler class defined on X WD Xb . If the composition
of the maps

TB;b
�&
�!H 1.X; TX /

�^Œ!�
���!H 2.X;OX /! V 0;2

b

is surjective, then the set of parameters u 2 B such that the morphism Xu ! S is
projective is dense near b .

In the statement above, the first arrow is the Kodaira–Spencer map associated to � ,
and the second one is induced by the contraction with the class ! 2H 1.X;�1X /.

Proof This is nothing but [48, Proposition 17.20, page 410] applied to the VHS V .

The deformation families provided by Nakayama’s theory are not smooth, so in order
to apply the relative Buchdahl criterion we have to pass to a smooth model. Kollár’s
theory of strong resolutions [35, Chapter 3] gives a resolution in families:

Lemma 3.29 Let p0W W0! S be a fibration from a normal compact complex space
onto a compact complex manifold S, and pW W!S�B be a locally trivial deformation
of .W0; p0/ (see Definition 2.4). Then (up to replacing B by a smaller open set) there
exists a resolution of singularities �W X !W such that the family

� WD prB ıp ı�W X ! B

is a family of compact complex manifolds , and for every b 2B the map �bW Xb!Wb

is a resolution of singularities that is functorial.

Proof By [35, Theorem 3.35] (the analytic situation is dealt with in [51]) there exists
a functorial resolution �W X !W . This resolution commutes with smooth maps, so if
.Ui /i2I is a finite open cover2 of S such that p�1.Ui �B/' p�10 .Ui /�B, then the
resolution is the product of the functorial resolution of p�10 .Ui / with the identity.

2By Definition 2.4 these covers exist up to replacing B by a smaller open subset.
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We follow the convention of [43, Appendix B, page 287]: given a morphism f W X!S

of normal varieties, we denote by TX=S the dual of the sheaf of Kähler differen-
tials �X=S . In particular, TX=S is always a reflexive sheaf.

Lemma 3.30 Let p�W W �!S be a minimal local Weierstraß fibration over a smooth
base S. Then we have

(14) TW �=S ' .p
�/�L:

Moreover, let �W X!W � be a functorial resolution of singularities and set f WDp�ı�.
Then there exists a natural injection ��TW �=S ! TX=S inducing a map

(15) H 1.W �; TW �=S /!H 1.X; TX=S /:

Proof All the fibres of p� are reduced plane cubics, so there exists a codimension-two
subset Z �W � such that p�jW �nZ is a smooth fibration. On this smooth locus we
have by construction TW �nZ=S ' .p

�jW �nZ/
�L. Since TW �=S and p�L are both

reflexive and W � is normal, the isomorphism extends to an isomorphism on W � . This
shows (14); in particular, TW �=S is locally free.

Since the resolution � is functorial, the direct image sheaf ��.TX /� TW � is reflexive
[27, Corollary 4.7]. Thus, for any open subset U �W � , the restriction map

�.��1.U /; TX /! �.��1.U / nExc.�/; TX /

is surjective. Using the exact sequence

0! TX=S ! TX ! f �TS

and the fact that f �TS is torsion-free, we obtain that

�.��1.U /; TX=S /! �.��1.U / nExc.�/; TX=S /

is surjective. Thus ��.TX=S / is reflexive, and the natural map ��.TX=S /! TW �=S is
an isomorphism. By applying the projection formula to the inverse TW �=S!��.TX=S /

we obtain an injective morphism

��TW �=S ! TX=S :

Since TW �=S is locally free and W � has rational singularities, we have an isomorphism

H 1.W �; TW �=S /'H
1.X; ��TW �=S /
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given by �� . The statement follows by composing this isomorphism with the map
H 1.X; ��TW �=S /!H 1.X; TX=S /.

Following [43, Chapter 3.4.2] (see [22] for a presentation in the analytic setting) we
consider the functor of locally trivial deformations of f W X ! S with fixed target S.
By [43, Lemma 3.4.7(ii)(b) and Theorem 3.4.8] we have an injection

H 1.X; TX=S / ,!DX=S ;

where DX=S is the tangent space of the semiuniversal deformation. Given a locally
trivial deformation

X ˆ
//

�
##

S �B

prB
��

B

parametrized by a smooth base B, we have for every b 2 B a Kodaira–Spencer map

�&ˆW TB;b!DX=S

associating a tangent vector with the corresponding first-order deformation.

Proof of Theorem 3.25 Fix b 2 H 1.S;L/. By Lemma 3.29 there exists (up to
replacing the base H 1.S;L/ by a neighbourhood of the point b ) a simultaneous
functorial resolution of the tautological family:

X
�

//

ˆ

%%

�

!!

W
p

yy

}}

S �H 1.S;L/

��

H 1.S;L/

In order to simplify the notation, we replace pbW W exp.b/! S by pbW Wb! S . We
have a commutative diagram

Xb
�b

//

fb   

Wb

pb
~~

S

where �b is a functorial resolution of singularities of Wb .

Geometry & Topology, Volume 23 (2019)



3258 Benoît Claudon, Andreas Höring and Hsueh-Yung Lin

Step 1 (the Kodaira–Spencer map �&ˆ;b is given by f �
b

) Using (14) one shows
easily that the Kodaira–Spencer map �&p for any point b 2H 1.S;L/ identifies to the
pullback

p�b W H
1.S;L/!H 1.Wb; p

�
bL/'H

1.Wb; TWb=S /:

By functoriality of the Kodaira–Spencer map we have a factorization

H 1.S;L/
�&ˆ;b

//

�&p;b ''

H 1.Xb; TXb=S /

��

H 1.Wb; TWb=S /

By (15) the right column has an inverse H 1.Wb; TWb=S /!H 1.Xb; TXb=S / defined
by ��

b
. Since �&p;b identifies to the pullback p�

b
, we obtain that �&ˆ;b identifies to

f �b W H
1.S;L/!H 1.XB ; .fb/�L/:

Step 2 (applying the relative Buchdahl criterion) We want to apply Lemma 3.28 to
the family X ! S �H 1.S;L/!H 1.S;L/. Fix a point b 2H 1.S;L/, and observe
that

V 0;2
b
DH 2.Xb;OXb /=H

2.S;OS /:

We have to check that the composed map

(16) H 1.S;L/ �&ˆ;b���!H 1.Xb; TXb /
�^Œ!�
���!H 2.Xb;OXb /

!H 2.Xb;OXb /=H
2.S;OS /

is surjective.

Claim The quotient H 2.Xb;OXb /=H
2.S;OS / is isomorphic to H 1.S;L/ and the

projection H 2.Xb;OXb /!H 1.S;L/ is induced by .fb/� .

We have R1.fb/�OXb D L by definition and R2.fb/�OXb D 0 by Theorem 3.9.
Moreover, since Xb is compact Kähler, the natural map H 2.S;OS /!H 2.Xb;OXb /

is injective. Thus the Leray spectral sequence yields an exact sequence

0!H 2.S;OS /!H 2.Xb;OXb /!H 1.S;R1.fb/�OXb /'H
1.S;L/! 0:

This shows the claim.

Combining Step 1 and the claim, the composed map (16) is given by

H 1.S;L/
f �
b
�!H 1.Xb; TXb /

�^Œ!�
���!H 2.Xb;OXb /

.fb/�
��!H 2.Xb;OXb /=H

2.S;OS /:
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Using Dolbeault representatives we see that

.fb/�.! ^f
�
b .˛//D c!˛;

where c! D ! �F with F a general fb –fibre. Thus (16) is even an isomorphism.

4 Proofs of the main results

4A Proof of Theorem 1.4 and Corollary 1.5

Proof of Theorem 1.4 Since a.X/D dimX �1, the algebraic reduction of X shows
that, up to replacing X with a bimeromorphic model, there exists a holomorphic map
X ! S onto a projective manifold of dimension dimX � 1 whose general fibre is an
elliptic curve [47, Theorem 12.4]. Up to replacing X with another bimeromorphic
model, we can assume that X ! S is an elliptic fibration such that both X and S are
smooth, X is Kähler, S is projective and the discriminant locus � � S is an SNC
divisor. By Proposition 3.11, there exists a finite Galois cover r W zS ! S such that the
elliptic fibration zX WD X �S zS ! zS has local meromorphic sections at every point
of zS ; let G WD Gal. zS=S/.

Let � 2H 1. zS;J . zH/mer/ be the element associated to zX! zS, where zH WD r�H, and
let V WDH 1. zS;L zH= zS /. The G–action on zH induces a G–action on V ; let V G be
the G–invariant part.

Lemma 4.1 There exists a family …W zX q
�! zS � V G ! V G of elliptic fibrations

over zS parametrized by V G together with a G–action on zX such that q is G–
equivariant and satisfies the following properties:

(i) The G–equivariant elliptic fibration zX� ! zS parametrized by � 2 V G corre-
sponds to

exp1.�/C � 2H
1. zS;J . zH/mer/;

where exp1 is the composition of expW H 1. zS;L zH= zS /!H 1. zS;J . zH/W / with
H 1. zS;J . zH/W /!H 1. zS;J . zH/mer/. In particular, the central fibre zX 0! zS
of … is G–equivariantly bimeromorphic to zX ! zS. Furthermore, zX 0 is a
compact Kähler variety.

(ii) There exist a G–invariant open cover fUig of zS and elliptic fibrations Wi!Ui

such that q�1.Ui �V G/'Wi �V
G over Ui �V G (in particular , … is locally

trivial in the sense of Definition 2.4).
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(iii) Moreover , there exists a G–action on fWi!Uig compatible with the G–action
on fUig such that for each g 2 G, the restriction of the G–action on zX to
q�1.Ugi �V

G/ is isomorphic to .‚gi � Id/W Wgi �V
G ��!Wi �V

G, where
‚
g
i W Wgi !Wi is the map defining the G–action on fWi ! Uig.

As an immediate consequence of (ii) and (iii), the quotient zX=G! S �V G! V G of
zX ! zS�V G! V G is a locally trivial family of elliptic fibrations over S parametrized
by V G.

Proof First we define 1–cocycle classes �G and �G which will be used to construct
the family … and the G–action. Let � 2 V G ˝ H 0.V G ;OVG / be the element
corresponding to the identity maps IdVG . Let �G 2H 1

G.
zS;J . zH/mer/ be the element

associated to the G–equivariant elliptic fibration zX ! zS as we defined in Section 3E.
By Lemmas 3.19 and 3.24, up to replacing m by a larger multiple, there exists �0G 2
H 1
G.
zS;J . zH/W / such that m�G D {WG .�

0
G/, where we recall that

{WG W H
1
G.S;J .H/

W /!H 1
G.S;J .H/mer/

is the map induced by the inclusion J .H/W � J .H/mer . Define

(17) �G WD .�G ˝ 1/C .expG1 ˝ Id/.�/ 2H 1
G.
zS;J . zH/mer/˝H

0.V G ;OVG /

'H 1
G.
zS �V G ;J .pr�11 zH/mer/

and

(18) �G WD .�
0
G ˝ 1/C .expG ˝ Id/.m�/ 2H 1

G.
zS;J . zH/W /˝H 0.V G ;OVG /

'H 1
G.
zS �V G ;J .pr�11 zH/

W /;

where

expG W H 1. zS;L zH= zS /
G
!H 1

G.
zS;J . zH/W /

is induced by expW L zH= zS ! J . zH/W in (5) and expG1 is defined as the composition
of expG with H 1

G.
zS;J . zH/W /!H 1

G.
zS;J . zH/mer/. Then m�G coincides with the

image of �G in H 1
G.
zS �V G ;J .pr�11 zH/mer/.

Let fUigi2I be a G–invariant good open cover of zS and Uij WD Ui \ Uj . Let
pW W ! zS be the G–equivariant minimal Weierstraß fibration associated to zH and
let Wi WD p

�1.Ui /. As V G is contractible, fUi � V Gg is a good cover of zS � V G.
Since m�G D {WG .�

0
G/, we can choose 1–cocycles f.�ij /; .�

g
i /g and f.�ij /; .�

g
i /g
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representing �G and �G in such a way that the diagrams

(19)

Wij �V
G Wij �V

G

Wij �V
G Wij �V

G

tr.�ij /

�ij�Id �ij�Id

�

tr.�ij /

Wgi �V
G Wi �V

G

Wgi �V
G Wi �V

G

 ig

�gi�Id �i�Id

�

�g�Id

are commutative, where �i W WiÜWi is multiplication by m composed with some
meromorphic translation, �g W W !W is the action of g 2G on W induced by the
G–action on zH, and  ig WD tr.�gi / ı .�g � Id/.

Let �0i W Wi !Wi be the finite map in the Stein factorization of �i . Then there exist
bimeromorphic maps hi W WiÜWi such that the diagrams

(20)
Wij �V

G Wij �V
G

Wij �V
G Wij �V

G

Hij

�0
i
�Id �0

j
�Id

tr.�ij /

Wgi �V
G Wi �V

G

Wgi �V
G Wi �V

G

‚
g

i

�0
gi
�Id �0

i
�Id

�g�Id

are commutative, where

Hij WD .hj � Id/�1 ı tr.�ij / ı .hi � Id/ and ‚
g
i WD .hi � Id/�1 ı gi ı .hgi � Id/:

As both Wi and Wi are normal and �0i is finite, the bimeromorphic maps Hij and ‚gi
are biholomorphic. Thus we obtain an elliptic fibration qW zX ! zS � V G by gluing
the Wi � V

G together using the 1–cocycle of biholomorphic maps fHij g. This is
the construction of the family …W zX q

�! zS � V G ! V G and (ii) follows directly.
Using fHij g the maps ‚gi can be glued to a biholomorphic map ‚g W zXG! zXG and
g 7!‚g defines a G–action on zXG such that q is G–equivariant. Property (iii) also
follows easily from the construction.

By construction, each fibre of …W zX ! V G is G–stable and the G–equivariant elliptic
fibration parametrized by � 2 V G represents �G C expG1 .�/ 2H

1
G.
zS;J . zH/mer/. In

particular, if we forget the G–action, then the elliptic fibration parametrized by � 2V G

represents �C exp1.�/ 2H
1. zS;J . zH/mer/. Let �0 2H 1. zS;J . zH/W / be the image

of �0G . Since the multiplication by m induces a generically finite dominant map
zXÜW �0 and zX is bimeromorphic to a compact Kähler manifold, so is W �0 . So
c.�0/ is torsion by Theorem 3.20 and, up to replacing m with a larger multiple, we
may assume that �0 D exp.�0/ for some �0 2 V G by the long exact sequence coming
from (5). By Corollary 3.27, the preimages †0 �H 1. zS;L zH= zS /

G of torsion points of
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H 1. zS;J . zH/W / under the restriction of the exponential map V !H 1. zS;J . zH/W /

to V G form a dense subset in V G, the image of H 1. zS; j� zH/
G in V G contains a

lattice ƒ of V G. Hence, up to replacing m with a larger multiple, we may assume
that �0 is close enough to ƒ by Kronecker’s theorem. As ƒ parametrizes elliptic
fibrations isomorphic to W ! zS and W is Kähler, it follows that W �0 , being a small
deformation of W , is also Kähler. Since there is a finite holomorphic map zX 0!W �0

obtained by gluing the �i W Wi !Wi using (20), zX 0 is also Kähler by Remark 2.2.

There is a dense subset † of V G parametrizing fibres of zX ! V G which are algebraic.
Indeed, as we already saw in the proof of Lemma 4.1 that †0 is dense in V G,

† WD f� 2 V G j exp.�0Cm�/ is torsiong D 1

m
.†0��0/

is also a dense subset of V G, where we recall that �0 2 V G is an element such that
�0D exp.�0/ and �0 2H 1. zS;J . zH/W / is an element lifting m�. Since � 2† implies
that �Cexp1.�/ 2H

1. zS;J . zH/mer/ is torsion, fibres of zX ! V G parametrized by †
are algebraic by [40, Proposition 5.5.4].

By Lemma 4.1, the quotient zX=G ! S � V G is a locally trivial family of elliptic
fibrations over S parametrized by V G. Let X be the functorial desingularization
of zX=G. The family X !V G is an algebraic approximation of the central fibre, which
is smooth by Lemma 3.29, and is bimeromorphic to X, again by Lemma 4.1.

This concludes the proof of Theorem 1.4.

Proof of Corollary 1.5 By Theorem 1.4, X is bimeromorphic to a compact Kähler
manifold X 0 which has an algebraic approximation. In particular, �1.X 0/ is projective.
Since the fundamental group of a compact Kähler manifold is invariant under bimero-
morphic transformations, we have �1.X/D �1.X 0/.

4B Proof of Theorem 1.2

Let X be a compact Kähler manifold, and consider gW X ! Y a fibration onto a
compact Kähler manifold Y . If F is a general fibre, denote by �1.F /X the image of
the morphism �1.F /! �1.X/. Up to blowing up X and Y we can suppose that the
fibration g is neat in the sense of [12, Definition 1.2]. By [13, Corollary 11.9] we then
have an exact sequence

(21) 1! �1.F /X ! �1.X/! �1.Y;�/! 1;

where � is the orbifold divisor defined in (1).
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Let us also recall that by [10; 34] every compact Kähler manifold X admits a (unique
up to bimeromorphic equivalence of fibrations) almost holomorphic fibration

gW X ! �.X/

with the following property: Let Z be a subspace with normalization Z0!Z passing
through a very general point x 2 X. Then Z is contained in the fibre through x if
and only if the natural map �1.Z0/! �1.X/ has finite image. This fibration is called
the � –reduction of X (Shafarevich map in the terminology of [34]). Up to replacing
 by some neat holomorphic model we thus obtain a fibration such that �1.F /X is
finite and such that the dimension of the base is minimal among all fibrations with this
property. We call  -dim.X/ WD dim.�.X// the  –dimension of X.

In geometric situations it is often necessary to replace X by some étale cover. It is
easily seen that the situation can be made equivariant under the Galois group of the
cover.

Lemma 4.2 Let X be a compact Kähler manifold acted upon by a finite group G.
Then there exists a proper modification �W zX !X and a holomorphic map gW zX ! Y

such that :

(i) zX and Y are compact Kähler manifolds.

(ii) G acts on zX and Y .

(iii) � and g are G–equivariant for these actions.

(iv) g is a neat model [12, Definition 1.2] of the � –reduction of X.

Proof Let us consider S the (normalization of the) irreducible component of the
cycle space C.X/ which parametrizes the fibres of the �–reduction. By uniqueness
of the latter, the group G acts on S and the natural meromorphic map XÜ S is
G–equivariant. Now it is enough to perform G–equivariant resolution of singularities
for S and G–equivariant blowups on X in order to make the latter map holomorphic,
neat and G–equivariant.

The following remark allows us to control the extensions appearing in these covers:

Remark 4.3 Let 1!K!H !G! 1 be an exact sequence of groups. It is well
known that this extension determines a morphism 'H W G ! Out.K/ to the group
of outer automorphisms of K (induced by the conjugation in H ). To recover the
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extension, it is necessary to prescribe an additional piece of information: the class
cH 2H

2.G;Z.K// (see [6, Chapter IV, Section 6] for details).

In the reverse direction, when G is a finite group acting by homeomorphisms on a
topological space Z , we also have an induced morphism 'Z W G! Out.�1.Z//. In
this case, there is an extension

1! �1.Z/!H !G! 1

induced by the action of G on Z . It can be explicitly constructed in the following way.
By [44] there exists a projective simply connected manifold P on which G acts freely
and we can look at the natural projection Z �P ! .Z �P /=G. This is a finite étale
cover of Galois group G and the homotopy exact sequence is

(22) 1! �1.Z/' �1.Z �P /! �1..Z �P /=G/!G! 1:

This is the sought exact sequence. It is stated in [20, Lemma 3.9] that the extension (22)
does not depend on P and that this extension is the usual one if G acts freely on Z
(ie the one corresponding to Z!Z=G ).

Using the construction above we obtain the following technical result:

Lemma 4.4 Let H WD �1.X/ be a Kähler group and K GH be a finite-index normal
subgroup with quotient G WD H=K . Let us denote by zX the corresponding étale
cover of X. Assume now that there exists a continuous map gW zX !Z to a projective
manifold Z which is G–equivariant (so that G acts on Z ) and which induces an
isomorphism at the level of fundamental groups. Then H is a projective group.

Proof The G–equivariant map

zX �P
g
�!Z �P

induces an isomorphism on the fundamental group and, using Remark 4.3, we infer
that

�1.X/' �1..Z �P /=G/

is a projective group.

Let us recall that a group G is virtually torsion-free if there exist a subgroup H �G
of finite index that is torsion-free.

Lemma 4.5 Let X be a compact Kähler manifold admitting a fibration onto a curve
f W X ! C such that the fundamental group �1.F / of a general fibre F is abelian.
Then the group �1.X/ is virtually torsion-free.
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Proof Applying [11, Appendix C] we can take a finite étale cover such that �1.F /X
coincides with K WD ker.f�W �1.X/! �1.C // and the latter is thus finitely generated.
If C ' P1 , we obtain that �1.X/ ' �1.F /X is abelian, so virtually torsion-free.
We can thus suppose that g.C / � 1. By [1, Theorem 5.1] the cohomology class
e 2H 2.�1.C /;K/ corresponding to the extension

1!K! �1.X/! �1.C /! 1

is torsion. Then so is the class e0 2H 2.�1.C /;K=Ktor/ corresponding to the extension

1!K=Ktor! �1.X/=Ktor! �1.C /! 1:

Arguing as in [15, Section 2.1] we can assume that the latter cohomology class e0

vanishes (up to replacing �1.C / with a finite-index subgroup). Using the piece of the
long exact sequence of cohomology of �1.C /–modules

� � � !H 2.�1.C /;Ktor/!H 2.�1.C /;K/!H 2.�1.C /;K=Ktor/! � � � ;

we see that the cohomology class e comes from H 2.�1.C /;Ktor/. It is then easily
observed3 that this class is annihilated when restricted to a finite-index subgroup
of �1.C /. This means that the exact sequence of groups

1!Ktor! �1.X/! �1.X/=Ktor! 1

splits when restricted to a finite-index subgroup and it proves that �1.X/ is virtually
torsion-free since �1.X/=Ktor is.

Now we give some criteria to decide whether a Kähler group is projective.

Lemma 4.6 Let X be a compact Kähler manifold having  -dim.X/� 1. Its funda-
mental group is then projective.

Proof If  -dim.X/D0 its fundamental group is finite so [44] applies. If  -dim.X/D1
then we know from [19, Théorème 1.2] (which is just a rephrasing of [45]) that there
exists a finite étale Galois cover � W zX !X with group G such that the � –reduction
of zX is a fibration zgW zX!C onto a curve inducing an isomorphism �1.X/' �1.C /.
It is also G–equivariant according to Lemma 4.2. We conclude by Lemma 4.4.

3If A is any finite �1.C /–module then there is a finite-index subgroup �1.C
0/ of �1.C / such

that the whole of the cohomology group H2.�1.C /; A/ vanishes when restricted to �1.C 0/ . This is a
consequence of the fact that a curve of positive genus admits finite étale covers of any given degree.
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Lemma 4.7 Let X be a compact Kähler manifold such that  -dim.X/D 2. If �1.X/
is virtually torsion-free, it is a projective group.

Proof Let K G�1.X/ be a finite-index subgroup which is normal and torsion-free,
and set G WD �1.X/=K . Applying Lemma 4.2 to the finite étale cover corresponding
to G, we know that we can find zX !X which is a composition of a finite étale cover
and a modification such that the  –reduction gW zX! Y is neat, Y is a smooth Kähler
surface and g is equivariant for the natural actions of G on zX and Y . Consider now
the exact sequence (21): the group �1. zX/ is torsion-free and �1.F /X is finite, so we
have �1.F /X D 1. Thus �1. zX/' �1.Y;��.g// is torsion-free; by Remark 2.8, this
implies that

�1. zX/' �1.Y;�
�.g//' �1.Y /:

We can now argue according to the algebraic dimension of Y :

(1) If a.Y / D 0 then, by the classification of surfaces, �1.Y / is abelian. Thus
�1.X/ is virtually abelian and [3, Theorem 1.4] applies.

(2) If a.Y / D 1 then the algebraic reduction Y ! C is an elliptic fibration over
a curve C. Since the algebraic reduction is unique, it is G–equivariant. By
[33, Theorems 14.1, 14.3 and 14.5] we know that there exists a G–equivariant
deformation of Y to an algebraic elliptic surface, so we can again conclude by
Lemma 4.4.

(3) If a.Y /D 2 then the surface Y is projective and Lemma 4.4 applies.

Remark Although Lemmas 4.6 and 4.7 are stated in a very similar manner, they are
of different nature: the former is a group-theoretic statement whereas the latter is not.
Indeed, as a consequence of [45] it is known that the property d.X/D 1 is equivalent
to having a fundamental group commensurable with the fundamental group of a curve;
this property does thus depend only on the fundamental group. In general it is however
possible to realize a given Kähler group as the fundamental group of several manifolds
having different  –dimensions.

Proof of Theorem 1.2 We argue according to the algebraic dimension of X, the case
a.X/D 3 being trivial since a Kähler Moishezon manifold is projective:

(1) If a.X/D 0 then X is special in the sense of Campana. Thus the fundamental
group is virtually abelian [14, Theorem 1.1] and thus projective [3, Theorem 1.4].
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(2) If a.X/D 1, we replace X by some blowup such that the algebraic reduction
is a holomorphic fibration f W X ! C onto a curve. By [17] the general fibre
of F is bimeromorphic to a K3 surface, torus or ruled surface over an elliptic
curve, so its fundamental group is abelian. By Lemma 4.5 the group �1.X/ is
virtually torsion free. If  -dim.X/� 2 we can thus apply Lemmas 4.6 and 4.7.
If  -dim.X/ D 3, it is shown in [18, Theorem 1] that, up to bimeromorphic
transformations and étale cover, f is a smooth morphism. Thus we can apply
[20, Corollary 1.2].

(3) If a.X/D 2, the algebraic reduction makes X into an elliptic fibre space over a
projective surface and we can apply Corollary 1.5.

Appendix Elliptic surfaces

Proposition A.1 Let S be a nonalgebraic compact Kähler surface that admits an
elliptic fibration f W S ! P1 . Then f has at least three singular fibres.

Proof We can suppose without loss of generality that f is relatively minimal, namely
KX is Q–Cartier and there exists a line bundle L on S such that mKX ' f �L for
some m 2N� . Thus we know by the canonical bundle formula [24, formula (1)] that

KS ' f
�

�
KP1 CM C

X
c2P1

mcSc

�
;

where M is the modular part defined by the j –function and
P
c2P1 mcSc the dis-

criminant divisor.

Let C � S be an irreducible curve. If f .C /D P1 , then the surface S is connected
by curves, hence algebraic by a theorem of Campana. By our assumption this shows
that f .C / is a point. Thus KS � C � 0 since f is relatively minimal. Recall that
a nonalgebraic Kähler surface has a pseudoeffective canonical bundle. Thus KS is
pseudoeffective and nonnegative on all curves, hence it is nef.

Suppose first that f is isotrivial, ie we have M � 0. By [24, formula (2)], one
has mc < 1. Since KP1 'OP1.�2/, we see that there are at least 3 singular fibres.

Suppose now that f is not isotrivial. Then we can use the argument from Proposition 1
of [4]: Let C ?�P1 be the maximal open set over which f is smooth. The j –function
defines a nonconstant holomorphic map zC ?!H from the universal cover zC ?! C ?

to the upper half-plane H . In particular, zC ? is not C or P1 , hence P1 nC ? has at
least three points.
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