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DR/DZ equivalence conjecture and tautological relations

ALEXANDR BURYAK
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We present a family of conjectural relations in the tautological ring of the moduli
spaces of stable curves which implies the strong double ramification/Dubrovin–Zhang
equivalence conjecture introduced by the authors with Dubrovin (Comm. Math. Phys.
363 (2018) 191–260). Our tautological relations have the form of an equality between
two different families of tautological classes, only one of which involves the double
ramification cycle. We prove that both families behave the same way upon pullback
and pushforward with respect to forgetting a marked point. We also prove that our
conjectural relations are true in genus 0 and 1 and also when first pushed forward
from Mg;nCm to Mg;n and then restricted to Mg;n for any g; n;m� 0 . Finally we
show that, for semisimple CohFTs, the DR/DZ equivalence only depends on a subset
of our relations, finite in each genus, which we prove for g � 2 . As an application we
find a new formula for the class �g as a linear combination of dual trees intersected
with kappa- and psi-classes, and we check it for g � 3 .
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1 Introduction

A cohomological field theory (CohFT) cg;n is a family of cohomology classes on the
moduli spaces Mg;n of genus g stable curves with n marked points (parametrized by n
tensor copies of a vector space) which satisfy certain compatibility axioms with respect
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to the natural morphisms among different moduli spaces. They were introduced by
Kontsevich and Manin [20] to axiomatize the properties of Gromov–Witten classes for a
given smooth projective variety, but have since then also proved to be a powerful probe
for the cohomology and Chow rings of Mg;n itself, and their tautological subrings in
particular; see Janda, Pandharipande, Pixton and Zvonkine [22; 18; 19].

Recall that the tautological rings R�.Mg;n/ for g; n � 0 satisfying 2g� 2C n > 0
are the smallest Q–subalgebras of H�.Mg;n;Q/ closed under pushforward along the
morphisms forgetting marked points and gluing two marked points together to form a
node. R�.Mg;n/ is much smaller than the full cohomology ring, but still has a rich
structure and contains most of the natural and geometrically interesting classes. The
ring structure of R�.Mg;n/, however, is not yet completely under control. We know
a system of additive generators, the so-called strata algebra, formed by basic classes
which are represented by the closure of the loci of curves with fixed dual stable graph
intersected with a given monomial in kappa- and psi-classes. The product of basic
classes is explicitly described, but the full system of relations is still unknown, although
Pixton has found a large set of relations that is conjectured to be complete; see [22].

In this paper we present a new family of conjectural relations in the form of an equality
between two families of tautological classes. We denote these classes in R�.Mg;n/

by Ag
d1;:::;dn

and Bg
d1;:::;dn

, where the n integer nonnegative parameters d1; : : : ; dn
satisfy 2g� 1�

P
di � 3g� 3Cn. Their precise definition is given in Sections 2.2

and 2.3, respectively, but here we stress that they can be described as two different
linear combinations of stable trees with psi-classes at the half-edges and, moreover, for
the A–classes only, a double ramification cycle times the Hodge class �g is attached
at each vertex.

The motivation for this conjecture comes from the study of the double ramification
(DR) hierarchy, an integrable system of Hamiltonian PDEs associated to a CohFT
and involving the geometry of the DR cycle, introduced by the first author in [1] and
further studied by the authors and Dubrovin in [8; 7; 5; 3; 4] (see also Buryak [2] and
Rossi [23] for a review). In [3], sharpening a conjecture from [1], it was conjectured
that the (logarithm of the) tau-function of (a particular solution of) the DR hierarchy
coincides with the reduced potential of the CohFT. The reduced potential is obtained
from the full potential, ie the generating series of the intersection numbers of the CohFT
with monomials in the psi-classes, by an explicit procedure, also described in [3], which
only depends on the potential itself and which ultimately forgets part of the information.
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If the CohFT is semisimple (a technical condition on its genus 0 part), the conjecture
translates into a statement about the relation between the DR hierarchy and the Dubrovin–
Zhang hierarchy, another, more classical, construction associating an integrable system
to a semisimple CohFT for which we have the Witten-type result that the (logarithm of
the) tau-function of (a special solution of) the DZ hierarchy coincides with the potential
of the CohFT.

In this case the strong DR/DZ equivalence conjecture states that the two hierarchies
are related by a normal Miura transformation, ie a change of coordinates preserving
the tau-structure, and hence acting in particular on the tau-functions. This action on
the tau-functions precisely corresponds to the reduction procedure described above for
the potential of the CohFT.

As we have seen, the DR/DZ equivalence conjecture is about intersection numbers,
not cohomology classes. However, in Section 3 we show how the coefficients of the
two involved generating series, the (logarithm of the) DR tau-function and the reduced
potential of the CohFT, are the intersection numbers of the CohFT with two different
families of cohomology classes. These two families are precisely the A– and B –classes
above. So the DR/DZ equivalence conjecture states that the intersection numbers of
the A– and B –classes with any (possibly nontautological) CohFT are equal:Z

Mg;n

A
g

d1;:::;dn
cg;n D

Z
Mg;n

B
g

d1;:::;dn
cg;n:

This motivates us to conjecture that the A– and B –classes themselves are equal:

A
g

d1;:::;dn
D B

g

d1;:::;dn
:

In the rest of the paper we work towards the proof of this conjecture. In Section 4 we
prove the string and dilaton equations for both A– and B –classes, establishing that their
behaviour upon pullback and pushforward along the morphism � WMg;nC1!Mg;n

that forgets the last marked point is the same.

The string equation allows us to prove that the conjecture is true if and only if it is true
when all the parameters d1; : : : ; dn are strictly positive. This in turn yields a full proof
of the conjecture in genus 0 and genus 1.

The dilaton equation is used to show that the relations in R�.Mg;n/ obtained by
pushing forward our conjectural relations from R�.Mg;nCm/ to R�.Mg;n/ and then
restricting them to R�.Mg;n/ are valid. This is what we mean by saying that the
conjecture is valid on Mg;n .
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We then show that our relations imply in particular a new expression for the top Chern
class of the Hodge bundle �g as a linear combination of basic classes whose dual
graph is a tree (with psi- and kappa-classes). No expression of this type for �g was
known before. We check its validity for g � 3.

Finally, in Section 5 we show that, for semisimple CohFTs, the DR/DZ equivalence
conjecture actually depends on just a subset of our conjectural relations, namely the
ones for which

P
di D 2g and di > 0. This means that the number of relations one

needs to check is finite in each genus, and equal to the number of partitions of 2g .

In the appendix we check this finite subset of relations for g D 2, thereby proving the
strong DR/DZ equivalence conjecture in genus g � 2 for any semisimple CohFT.

Acknowledgements

We would like to thank Boris Dubrovin, Rahul Pandharipande, Sergey Shadrin and
Dimitri Zvonkine for useful discussions.

Buryak received funding from the European Union’s Horizon 2020 research and
innovation programme under the Marie Skłodowska-Curie grant agreement No. 797635,
was supported by Grant ERC-2012–AdG-320368–MCSK in the group of Rahul Pand-
haripande at ETH Zürich and Grant RFFI-16-01-00409. Guéré was supported by the
Einstein Foundation. Rossi was partially supported by a Chaire CNRS/Enseignement
superieur 2012-2017 grant.

Part of the work was completed during the visit of Guéré and Rossi to the Forschungs-
institut für Mathematik at ETH Zürich in 2017.

2 Tautological relations

In this section we present our conjectural tautological relations.

2.1 Tautological ring of Mg;n

Here we fix notation concerning tautological cohomology classes on Mg;n . We will
use the notation from [22, Sections 0.2 and 0.3].

Recall that for any stable graph � we have the associated moduli space

M� WD

Y
v2V.�/

Mg.v/;n.v/

Geometry & Topology, Volume 23 (2019)



DR/DZ equivalence conjecture and tautological relations 3541

and the canonical morphism

�� WM� !Mg.�/;jL.�/j:

Recall [22] that given numbers xi Œv�; yŒh�� 0, i � 1, v 2 V.�/ and h 2H.�/, we
can define a basic cohomology class on M� by

(1) 
 D
Y

v2V.�/

Y
i�1

�i Œv�
xi Œv� �

Y
h2H.�/

 
yŒh�

h
2H�.M� ;Q/;

where �i Œv� is the i th kappa-class on the space Mg.v/;n.v/ and  h is the psi-class on
Mg.v.h//;n.v.h// . A cohomology class on Mg;n of the form ���.
/, where � is a
stable graph of genus g with n legs and 
 is a basic class on M� , will be called a basic
tautological class. Denote by R�.Mg;n/ the subspace of H�.Mg;n;Q/ spanned by
all basic tautological classes. The subspace R�.Mg;n/ is closed under multiplication
and is called the tautological ring of the moduli space of curves. Let

Ri .Mg;n/ WDR
�.Mg;n/\H

2i .Mg;n;Q/:

Denote by Mct
g;n �Mg;n the moduli space of curves of compact type and by Mg;n �

Mg;n the moduli space of smooth curves. We will use the notation

Ri .Mct
g;n/ WDR

i .Mg;n/jMct
g;n
; Ri .Mg;n/ WDR

i .Mg;n/jMg;n
:

Linear relations between basic tautological classes are called tautological relations.
The class ���.1/ 2RjE.�/j.Mg.�/;jL.�/j/ will be called a boundary stratum.

We will represent a basic tautological class ���.
/ on Mg.�/;jL.�/j by a picture of
the graph � , where we put the monomial

Q
i�1 �i Œv�

xi Œv� next to each vertex v and

the power of the psi-class  yŒh�
h

next to each half-edge h. For example, we have the
well-known formulas

 1 D
1

2

3

4

0 0 2R1.M0;4/; �1 D
1
24

1 0 2R1.M1;1/;

where we denote by �i 2 H 2i .Mg;n;Q/ the i th Chern class of the Hodge vector
bundle over Mg;n . It is well-known that the class �i is tautological (see eg [12]).

Suppose �1 and �2 are two stable graphs, both of genus g and with n legs. They are
called isomorphic if there exists a pair f D .f1; f2/ of set isomorphisms f1W V.�1/!
V.�2/ and f2W H.�1/!H.�2/ that preserve all the additional structure of the stable
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graphs. Suppose 
1 and 
2 are two basic classes on the spaces M�1 and M�2 ,
respectively,


1 D
Y

v2V.�1/

Y
i�1

�i Œv�
x1;i Œv� �

Y
h2H.�1/

 
y1Œh�

h
;


2 D
Y

v2V.�2/

Y
i�1

�i Œv�
x2;i Œv� �

Y
h2H.�2/

 
y2Œh�

h
:

We will say that the pairs .�1; 
1/ and .�2; 
2/ are combinatorially equivalent if there
exists a pair of maps f D .f1; f2/ with f1W V.�1/! V.�2/ and f2W H.�1/!H.�2/

that defines an isomorphism between the stable graphs �1 and �2 and also satisfies the
properties

x1;i Œv�D x2;i Œf1.v/� for any i � 1 and v 2 V.�1/;

y1Œh�D y2Œf2.h/� for any h 2H.�1/:

Obviously, if the pairs .�1; 
1/ and .�2; 
2/ are combinatorially equivalent, then
��1�.
1/D ��2�.
2/.

Consider the set of stable graphs of genus g with n legs. Suppose I is a subset of
f1; 2; : : : ; ng. The symmetric group SjI j acts on our set of stable graphs by permutations
of markings from the set I. This gives an SjI j–action on the set of pairs .�; 
/,
where � is a stable graph and 
 is a basic class on M� . Let us fix some stable
graph � and a basic class 
 . The sum of the basic tautological classes corresponding
to combinatorially nonequivalent pairs in the SjI j–orbit of the pair .�; 
/ will be
represented by the picture corresponding to the class ���.
/, where we erase the labels
from the set I. Let us give two examples in order to illustrate this rule:

1 2 3 4

0 1 0
D

1 2 3 4

0 1 0
C

1 3 2 4

0 1 0
C

1 4 2 3

0 1 0
;

1

1 1
 D

3 1 2

1 1
 C

2 1 3

1 1
 :

As another useful example, we can write the topological recursion relations in genus 0
and 1:

 1 D
X

iCjDn�3
i�1; j�0

1

2

3

0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

2R1.M0;n/; n� 4;(2)
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 1 D
1
24

1 0

:::„ƒ‚…
n�1 legs

C

X
iCjDn�1
i�1; j�0

1 0 1

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

2R1.M1;n/:(3)

By stable tree we mean a stable graph � with the first Betti number b1.�/ equal to
zero. Suppose � is a stable tree. Let

H e.�/ WDH.�/ nL.�/:

A path in � is a sequence of pairwise distinct vertices v1; v2; : : : ; vk 2 V.�/ such that
for any 1� i � k� 1 the vertices vi and viC1 are connected by an edge. For a vertex
v 2 V.�/ define a number r.v/ by

r.v/ WD 2g.v/� 2Cn.v/:

Denote by STmg;n the set of stable trees of genus g with m vertices and with n legs
marked by numbers 1; : : : ; n. For a stable tree � 2 STmg;n denote by li .�/ the leg in �
that is marked by i . For a leg l 2 L.�/ denote by 1� i.l/� n its marking.

A stable rooted tree is a pair .�; v1/, where � is a stable tree and v1 2 V.�/. The
vertex v1 is called the root. Denote by HC.�/ the set of half-edges of � that are
directed away from the root v1 . Clearly, L.�/�HC.�/. Let

H e
C.�/ WDHC.�/ nL.�/:

A vertex w is called a descendant of a vertex v if v is on the unique path from the
root v1 to w . Note that according to our definition the vertex v is a descendant of
itself. Denote by DescŒv� the set of all descendants of v . A vertex w is called a direct
descendant of v if w 2 DescŒv�, w ¤ v and w and v are connected by an edge. In
this case the vertex v is called the mother of w .

2.2 Double ramification cycle and the definition of the A–class

Consider integers a1; : : : ; an such that a1 C � � � C an D 0. The double ramifica-
tion cycle DRg.a1; : : : ; an/ is a cohomology class in H 2g.Mg;n;Q/. If not all of
the ai are equal to zero, then the restriction DRg.a1; : : : ; an/jMg;n

can be defined
as the Poincaré dual to the locus of pointed smooth curves .C; p1; : : : ; pn/ satisfying
OC

�Pn
iD1 aipi

�
ŠOC , and we refer the reader, for example, to [9] for the definition

of the double ramification cycle on the whole moduli space Mg;n . We will often
consider the Poincaré dual to the double ramification cycle DRg.a1; : : : ; an/. It is an
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element of H2.2g�3Cn/.Mg;n;Q/ and, abusing our notation a little bit, it will also be
denoted by DRg.a1; : : : ; an/.

The double ramification cycle DRg.a1; : : : ; an/ is a tautological class on Mg;n [13]. A
simple explicit formula for the restriction DRg.a1; : : : ;an/jMct

g;n
was derived in [16; 21]:

(4) DRg.a1; : : : ; an/jMct
g;n

D
1

gŠ

� nX
iD1

a2i  i

2
�
1

2

X
I�f1;:::;ng
jI j�2

a2I ı
I
0 �

1

4

X
I�f1;:::;ng

g�1X
hD1

a2I ı
I
h

�g
;

where for a subset I � f1; 2; : : : ; ng and a number 0� h� g we use the notation

aI WD
X
i2I

ai ;

ıIh WD
h h0

:::„ƒ‚…
I

:::„ƒ‚…
Ic

2R1.Mg;n/; I c WD f1; 2; : : : ; ng n I; h0 WD g� h:

From (4), which is known as Hain’s formula, we see that the class DRg.a1; : : : ;an/jMct
g;n

is a polynomial in the variables a1; : : : ; an homogeneous of degree 2g . We obtain from
�g jMg;nnMct

g;n
D 0 that the class �g DRg.a1; : : : ; an/ 2R2g.Mg;n/ is a polynomial

in a1; : : : ; an homogeneous of degree 2g . The full double ramification cycle is also
polynomial, but not necessarily homogeneous [19].

The following properties of the double ramification cycle will be useful for us. Let
�i WMg;nC1!Mg;n be the forgetful map that forgets the i th marked point. Then

DRg.a1; : : : ; an; 0/D ��nC1 DRg.a1; : : : ; an/:

Let � WMg;nCg !Mg;n be the forgetful map that forgets the last g marked points.
Then we have [9, Example 3.7]

(5) ��DRg.a1; : : : ; anCg/D gŠa2nC1 � � � a
2
nCg ŒMg;n�:

It is also useful to remember that (see eg [19])

DRg.0; 0; : : : ; 0/D .�1/g�g 2Rg.Mg;n/:

We denote by DRg.a1; : : : ; zai ; : : : ;an/ the class �i�DRg.a1; : : : ;an/2Rg�1.Mg;n�1/.
Recall the following important divisibility property:
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Lemma 2.1 [3] Let g; n� 1. Then the polynomial class

DRg
�
�

X
ai ; a1; a2; : : : ; zan

�ˇ̌̌
Mct
g;n

2Rg�1.Mct
g;n/

is divisible by a2n .

Consider a stable tree � 2 STmg;n and integers a1; : : : ; an such that a1C� � �Can D 0.
To each half-edge h2H.�/ we assign an integer a.h/ in such a way that the following
conditions hold:

(a) If h 2 L.�/, then a.h/D ai.h/ .

(b) If h 2H e.�/, then a.h/C a.�.h//D 0.

(c) For any vertex v 2 V.�/, we have
P
h2HŒv� a.h/D 0.

Clearly, such a function aW H.�/ ! Z exists and is uniquely determined by the
numbers a1; : : : ; an . For each moduli space Mg.v/;n.v/ , v 2 V.�/, the numbers a.h/
for h 2HŒv� define the double ramification cycle

DRg.v/.AHŒv�/ 2R
g.v/.Mg.v/;n.v//:

Here AHŒv� denotes the list a.h1/; : : : ; a.hn.v//, where fh1; : : : ; hn.v/g D HŒv�. If
we multiply all these cycles, we get the classY

v2V.�/

DRg.v/.AHŒv�/ 2H
2g.M� ;Q/:

We define a class DR�.a1; : : : ; an/ 2RgCm�1.Mg;n/ by

DR�.a1; : : : ; an/ WD ���

� Y
v2V.�/

DRg.v/.AHŒv�/
�
:

Clearly, the class

�g DR�.a1; : : : ; an/ 2R2gCm�1.Mg;n/

is a polynomial in a1; : : : ; an homogeneous of degree 2g .

Suppose now that a1; : : : ; an are arbitrary integers and let a0 WD �
Pn
iD1 ai . Consider

the set of stable trees STmg;nC1 . It would be convenient for us to assume that the legs of
stable trees from STmg;nC1 are marked by 0; 1; : : : ; n. Let � 2 STmg;nC1 be an arbitrary
stable tree. Consider it as a rooted tree with the root v1.�/ WD v.l0.�//. As above, the
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numbers a0; a1; : : : ; an define a function aW H.�/!Z. Define a coefficient a.�/ by

a.�/ WD

� Y
h2He

C
.�/

a.h/

�� Y
v2V.�/

r.v/P
zv2DescŒv� r.zv/

�
:

Let � WMg;nC1 !Mg;n be the forgetful map that forgets the first marked point.
Define a class zAg;m.a1; : : : ; an/ 2R2gCm�2.Mg;n/ by

zAg;m.a1; : : : ; an/ WD
X

�2STm
g;nC1

a.�/�g��DR�.a0; a1; : : : ; an/:

We know that this class is a polynomial in a1; : : : ; an homogeneous of degree 2gCm�1.
Note that the expression for the class zAg;1.a1; : : : ; an/ is actually very simple:

zAg;1.a1; : : : ; an/D �g DRg.za0; a1; : : : ; an/:

Lemma 2.2 The polynomial class zAg;m.a1; : : : ; an/ is divisible by
Pn
iD1 ai .

Proof If m D 1, then the lemma follows from Lemma 2.1. Suppose m � 2 and
a0 D�

Pn
iD1 ai D 0. We have to prove that

zAg;m.a1; : : : ; an/D 0:

Consider a stable tree � 2 STmg;nC1 . If g.v1.�//� 1, then, again by Lemma 2.1,

�g��DR�.0; a1; : : : ; an/D 0:

If g.v1.�//D 0, then ��DR�.0; a1; : : : ; an/, unless n.v1.�//D 3. We obtain

(6) zAg;m.a1; : : : ; an/D
X

�2STm
g;nC1

g.v1.�//D0
n.v1.�//D3

a.�/�g��DR�.0; a1; : : : ; an/:

Let us define certain maps

STm�1g;n ! f� 2 STmg;nC1 j g.v1.�//D 0; n.v1.�//D 3g:

Note that we mark the legs of stable trees from STm�1g;n by 1; : : : ; n and the legs of
stable trees from STmg;nC1 by 0; 1; : : : ; n. Let � 2 STm�1g;n . Choose a leg l 2 L.�/.
Suppose that it is marked by the number 1� i � n. Let us attach to the leg l a new
vertex of genus 0 with two legs marked by numbers 0 and i . Denote the resulting
stable tree by ˆl.�/ 2 STmg;nC1 . Similarly, if we choose an edge e 2E.�/, then we
can break this edge and insert a genus 0 vertex with one leg marked by 0. Denote
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the resulting stable tree by ˆe.�/ 2 STmg;nC1 . Using these operations, we can rewrite
formula (6) as

zAg;m.a1; : : : ; an/

D

X
�2STm�1g;n

� X
l2L.�/

a.ˆl.�//C
X

e2E.�/

a.ˆe.�//

�
�g DR�.a1; : : : ; an/:

We see that it is sufficient to prove that for any stable tree � 2 STm�1g;n we have the
identity

(7)
X

l2L.�/

a.ˆl.�//C
X

e2E.�/

a.ˆe.�//D 0:

We prove (7) by induction on m. It will be convenient for us to assume that the
genus g.v/ of a vertex v2V.�/ can be a rational number such that 2g.v/�2Cn.v/>0.
So the total genus g D

P
v2V.�/ g.v/ can also be rational. If mD 2, then

X
l2L.�/

a.ˆl.�//D

nX
iD1

�ai

2g� 1Cn
D 0:

Suppose m� 3. Choose a vertex v 2 V.�/ such that jHŒv� nLŒv�j D 1. Let h be the
unique half-edge from the set HŒv� nLŒv�. Write

h0 WD �.h/; v0 WD v.h0/; r WD r.v/; r 0 WD r.v0/; R WD 2g� 2Cn:

Denote by e the edge of � corresponding the pair of half-edges .h; h0/. Let us erase
the vertex v together with all half-edges incident to it. Then the half-edge h0 becomes
a leg. Let us denote it by l 0 and mark by nC 1. Finally, let us increase the genus
of the vertex v0 by r

2
. As a result, we get a stable tree from STm�2gCr=2;n�jLŒv�jC1 ,

which we denote by � 0. Note that the legs of � 0 are marked by the numbers i.l/ for
l 2 L.�/ nLŒv� and nC 1. We want to apply the induction assumption to the tree � 0.
Naturally, we assign to a leg l 2 L.� 0/ the number ai.l/ if l ¤ l 0, and the number
a.h0/D

P
Ql2LŒv�

a. Ql/ if l D l 0. It is not hard to see that

X
l2LŒv�

a.ˆl.�//D .�a.h
0//

rr 0

.R� r/.r C r 0/
a.ˆl 0.�

0//;

a.ˆe.�//D a.h
0/

r 0R

.R� r/.r C r 0/
a.ˆl 0.�

0//:
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It is also easy to see that for any leg l 2L.� 0/ with l ¤ l 0 and for any edge e0 2E.� 0/
we have

a.ˆl.�//D
r 0

r C r 0
a.h0/a.ˆl.�

0//; a.ˆe0.�//D
r 0

r C r 0
a.h0/a.ˆe0.�

0//:

Therefore, we obtainX
l2L.�/

a.ˆl.�//C
X

e02E.�/

a.ˆe0.�//

D
r 0

r C r 0
a.h0/

� X
l2L.� 0/

a.ˆl.�
0//C

X
e02E.� 0/

a.ˆe0.�
0//

�
D 0;

where the last equality follows from the induction assumption. The lemma is proved.

The lemma allows us to define a class Ag;m.a1; : : : ; an/ by

Ag;m.a1; : : : ; an/ WD
1P
ai
zAg;m.a1; : : : ; an/ 2R

2gCm�2.Mg;n/:

It is a polynomial in a1; : : : ; an homogeneous of degree 2gCm� 2.

Definition 2.3 For any d1; : : : ; dn � 0 such that ı WD
Pn
iD1 di � 2g� 1 we define

A
g

d1;:::;dn
WD Coef

a
d1
1 ���a

dn
n

Ag;ı�2gC2.a1; : : : ; an/ 2R
ı.Mg;n/:

If
P
di D 2g� 1, then the formula for Ag

d1;:::;dn
becomes particularly simple:

A
g

d1;:::;dn
D Coef

a
d1
1 ���a

dn
n

�
1P
ai
�g DRg

��
�

X
ai; a1; : : : ; an

��
:

2.3 Definition of the B–class and the main conjecture

Let T be a stable rooted tree with at least n legs, where we split the set of legs in two
subsets:

� the legs �1; : : : ; �n corresponding to the markings;

� some extra legs, whose set is denoted by F.T /, corresponding to additional
marked points that we will eventually forget.
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We will never call marking an element of F.T / and let

H em
C .T / WDHC.T / nF.T /:

There is a natural level function l W V.T /!N� such that the root is of level 1 and if a
vertex v is the mother of a vertex v0, then l.v0/D l.v/C1. The total number of levels
in T will be denoted by deg.T / and called the degree of T . It is also convenient to
extend the level function to H em

C
.T / by taking l.h/ WD k if the half-edge h is attached

to a vertex of level k . We say that T is complete if the following conditions are
satisfied:

� every vertex has at least one of its descendants with level deg.T /;

� all the markings are attached to the vertices of level deg.T /;

� each vertex of level deg.T / is attached to at least one marking;

� there are no extra legs attached to the root;

� for every vertex except the root there is at least one extra leg attached to it.

For a complete tree T define a power function

qW H e
C.T /!N

by requiring that for a half-edge h 2 H e
C
.T / there are exactly q.h/C 1 extra legs

attached to the vertex v which is the direct descendant of h. We say that T is stable if

� for every 1� k � deg.T /, there is at least one vertex v 2 V.T / of level k such
that v remains stable once we forget all the extra legs;

� every vertex of genus 0 with exactly one half-edge h 2H em
C
.T / attached to it

has exactly q.h/C 1 extra legs attached to it;

� every vertex of genus 0 with exactly two half-edges h1; h2 2H em
C
.T / attached

to it has exactly q.h1/C q.h2/ extra legs attached to it.

We say that a stable complete tree T is admissible if for every 1 � k < deg.T / we
have the condition

(8)
X

h2He
C
.T /

l.h/Dk

q.h/� 2
X

v2V.T /
l.v/�k

g.v/� 2:

We denote by �B;g
d1;:::;dn

the set of pairs .T; q/, where T is an admissible stable complete
tree with total genus g and n markings, and qW H em

C
.T /!N is the extension of the
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power function from above defined by q.�i / WD di . We denote by

ŒT; q� WD �T�

� Y
h2H em

C
.T /

 
q.h/

h

�
2R�.Mg;nC#F.T //

and by

eWMg;nC#F.T /!Mg;n

the map forgetting all the extra legs.

Definition 2.4 For any d1; : : : ; dn � 0 with ı WD d1C � � �C dn , we define

(9) B
g

d1;:::;dn
D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� 2Rı.Mg;n/:

Conjecture 2.5 Suppose g�0, n�1 and 2g�2Cn>0. Then for any d1; : : : ; dn�0
such that

P
di � 2g� 1, we have

(10) A
g

d1;:::;dn
D B

g

d1;:::;dn
:

Remark 2.6 Let us show how to express the B –class in terms of basic tautological
classes. Let T be a stable complete tree with n markings. For a vertex v 2 V.T /
denote by F Œv� the set of extra legs incident to v and by H em

C
Œv� the set of half-edges

h 2H em
C
.T / incident to v . The vertex v will be called strongly stable if it remains

stable once we forget all the extra legs. Otherwise, we call it weakly stable. Clearly,
the vertex v is weakly stable if and only if g.v/D 0 and jH em

C
Œv�j D 1. The set of all

strongly stable vertices of T will be denoted by V ss.T /.

For a stable complete tree T denote by st.T / the stable rooted tree obtained by
forgetting all extra legs of T and then contracting all unstable vertices. Clearly, we
can make the identification V.st.T //D V ss.T / and we also identify the set H.st.T //
with the set of half-edges h 2H.T / such that v.h/ is strongly stable.

Suppose � WMg;nCm !Mg;n is the forgetful map that forgets the last m marked
points. Then for any numbers c1; : : : ; cn � 0 we have

��. 
c1
1 � � � 

cn
n /D

X
b1;:::;bn�0
bi�ciP

biCmD
P
ci

mŠQ
.ci � bi /Š

nY
iD1

 
bi
i :
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Using this formula, it is easy to see that (9) can be rewritten as

B
g

d1;:::;dn
D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1

� �st.T /�

Y
v2V.st.T //

X
pWHCŒv�!Z�0
p.h/�q.h/P

p.h/CjF Œv�jD
P
q.h/

jF Œv�jŠQ
.q.h/�p.h//Š

Y
h2HCŒv�

 
p.h/

h
:

Let us immediately present some examples of relations (10). Consider genus 0. Then
it is easy to see that for any d1; : : : ; dn � 0 we have

B0d1;:::;dn D  
d1
1 � � � 

dn
n :

On the other hand, let us compute, for example, A01;0;0;0 . We have

zA0;3.a1; a2; a3; a4/

D ��

� X
fi;j;k;lgDf1;2;3;4g

i<j

1
6
.ai C aj /.ai C aj C ak/ 0

l k

i

j

0 0 0

C

X
fi;j;k;lgDf1;2;3;4g
i<j; k<l; i<k

1
3
.ai C aj /.akC al/ 0

i

j

k

l

0

0

0

�

D
1
3
a2 0 0 D a2

1

2

3

4

0 0 ;

where a WD
P
ai . This gives

A01;0;0;0 D
1

2

3

4

0 0 ;

which is indeed equal to  1 D B01;0;0;0 .

Consider genus 1 and the case nD 1, d1 D 1. Then we have

A11 D Coefa
�
1

a
�1��DR1.�a; a/

�
D �1 D  1; B11 D  1:

Let us give one more example with g D 2, nD 1 and d1 D 3. We compute

(11) A23 D Coefa3
�
1

a
�2 DR2.f�a; a/�; B23 D  

3
1 � 1 1

 2 :
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Now the relation A23 D B
2
3 is not so trivial, and we will prove it in the appendix.

Below we will check that the conjecture is true in genus 0 and 1 for arbitrary di , and
also in genus 2 in the case

P
di � 4.

3 DR/DZ equivalence conjecture and the new tautological
relations

In this section we explain the relation between the above Conjecture 2.5 and the strong
double ramification/Dubrovin–Zhang hierarchies equivalence conjecture from [3]. After
recalling the main notions, we prove in particular how the first implies the second.

3.1 Dubrovin–Zhang hierarchy

Consider an arbitrary cohomological field theory (CohFT; see [20]) cg;nW V ˝n !
H even.Mg;n;C/, with V its N –dimensional vector space, e1; : : : ; eN a basis of V ,
e1 the unit and � its symmetric nondegenerate bilinear form. Let F D F.t�� ; "/ denote
its potential, ie the generating series of its intersection numbers with monomials in the
psi-classes:

h�d1.e˛1/ � � � �dn.e˛n/ig WD

Z
Mg;n

cg;n

� nO
iD1

e˛i

� nY
iD1

 
di
i

for 2g� 2Cn > 0; 1� ˛i �N;

F.t�� ; "/ WD
X
g�0

"2gFg.t
�
� /;

where

Fg.t
�
� / WD

X
n�0

2g�2Cn>0

1

nŠ

X
d1;:::;dn�0

� nY
iD1

�di .e˛i /

�
g

nY
iD1

t
˛i
di
:

When the cohomological field theory is semisimple, in [10; 6] the authors associate
to it an integrable hierarchy of Hamiltonian PDEs. Let yAŒd�w be the degree d part
of CŒŒw�� ; "��, where w˛

k
for ˛ D 1; : : : ; N and k D 0; 1; 2 : : : are formal variables

of degree degw˛
k
D k and deg " D �1. Let yƒŒd�w be its quotient with respect to

constants and the image of the operator @x D
P
k�0w

˛
kC1

@=@w˛
k

(we perform sums
over repeated Greek indices here and in what follows) and, if f 2 yAŒd�w , let Nf denote its
equivalence class in yƒŒd�w . The Dubrovin–Zhang (DZ) hierarchy consists in Hamiltonian
densities

hDZ
˛;p 2

yAŒ0�w ; 1� ˛ �N; p � �1;
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with hDZ
˛;�1 D �˛�w

� , and a Hamiltonian operator

.KDZ/�� D
X
j�0

.KDZ/
��
j @jx; .KDZ/

��
j 2

yAŒ�jC1�w ;

such that

f NhDZ
˛;p;
NhDZ
ˇ;qgKDZ WD

Z
ı NhDZ
˛;p

ıw�
.KDZ/��

�
ı NhDZ
ˇ;q

ıw�

�
dx D 0; 1� ˛; ˇ �N; p; q � �1;

where we have used the variational derivative ı Nf =ıw� WD
P
i�0.�@x/

i@f=@w
�
i . This

guarantees that solutions w˛
k
.x; t�� ; "/ D @kxw

˛.x; t�� ; "/ 2 CŒŒx; t�� ; "�� exist for the
system of Hamiltonian PDEs

@

@t
ˇ
q

w˛ D .KDZ/˛�
�
ı NhDZ
ˇ;q

ıw�

�
; 1� ˛; ˇ �N; q � 0:

Notice how this Hamiltonian system in fact only depends on the Hamiltonian functionals
NhDZ
˛;p 2

yƒ
Œ0�
w and not on the Hamiltonian densities hDZ

˛;p 2
yAŒ0�w . Nonetheless, Dubrovin

and Zhang’s construction of specific Hamiltonian densities hDZ
˛;p 2

yAŒ0�w is important
because it is a tau-structure (see [3] for details), which implies in particular that, for any
solution w˛.x; t�� ; "/ 2CŒŒx; t�� ; "��, there exists a formal series, called the (logarithm
of the) tau-function, F.t�� ; "/ 2CŒŒt�� ; "��, such that

@hDZ
˛;p�1

@t
ˇ
q

ˇ̌̌̌
w��Dw

�
� .x;t

�
� ;"/jxD0

D
@3F

@t10@t
˛
p @t

ˇ
q

; 1� ˛; ˇ �N; p; q � 0:

An important property of the DZ hierarchy is that the so-called topological solution,
ie the solution with the initial condition .wtop/˛.x; t�� ; "/jt��D0 D ı

˛;1x , has the poten-
tial F.t�� ; "/ of the underlying semisimple CohFT as the logarithm of its tau-function:

@hDZ
˛;p�1

@t
ˇ
q

ˇ̌̌̌
w��D.w

top/��.x;t
�
� ;"/jxD0

D
@3F

@t10@t
˛
p @t

ˇ
q

; 1� ˛; ˇ �N; p; q � 0:

3.2 Double ramification hierarchy

The double ramification (DR) hierarchy — see [1; 3] — is another tau-symmetric hier-
archy of Hamiltonian PDEs associated to an arbitrary CohFT, this time even without
the requirement of semisimplicity. This time it is the Hamiltonians that are constructed
as generating series of certain intersection numbers of the CohFT with psi-classes,
the �g –class and the double ramification cycle. Written in formal variables zu˛

k
for
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˛ D 1; : : : ; N and k D 0; 1; 2 : : : , it consists of differential polynomials

hDR
2 yAŒ0�
zu
; 1� ˛ �N; p � �1;

with hDR
˛;�1 D �˛�zu

� , and a Hamiltonian operator

.KDR/�� D
X
j�0

.KDR/
��
j @jx; .KDR/

��
j 2

yAŒ�jC1�
zu

;

such that

f NhDR
˛;p;
NhDR
ˇ;qgKDR WD

Z
ı NhDR
˛;p

ızu�
.KDR/��

�
ı NhDR
ˇ;q

ızu�

�
dx D 0; 1� ˛; ˇ �N; p; q � �1:

Like for the DZ hierarchy, the DR Hamiltonian densities hDR
˛;p 2

yAŒ0�
zu

form a tau-
structure and we can define the DR potential as the (logarithm of the) tau-function
of the topological solution, .zutop/˛ 2CŒŒx; t�� ; "�� with .zutop/˛.x; t�� ; "/jt��D0 D ı

˛;1x ,
ie F DR.t�� ; "/ 2CŒŒt�� ; "�� satisfies

@hDR
˛;p�1

@t
ˇ
q

ˇ̌̌̌
zu��D.zu

top/��.x;t
�
� ;"/jxD0

D
@3F DR

@t10@t
˛
p @t

ˇ
q

; 1� ˛; ˇ �N; p; q � 0:

Clearly, this equation doesn’t determine the function F DR uniquely, but we can addi-
tionally require that F DR should satisfy the string and the dilaton equations. Then this
fixes the potential F DR completely. We define the DR correlators as the coefficients of
the power series F DR.t�� ; "/,

F DR.t�� ; "/DW
X
g�0

"2gF DR
g .t�� /;

where

F DR
g .t�� / WD

X
n�0

2g�2Cn>0

1

nŠ

X
d1;:::;dn�0

� nY
iD1

�di .e˛i /

�DR

g

nY
iD1

t
˛i
di
:

3.3 Strong DR/DZ equivalence conjecture

In the effort toward understanding the relation between the DR and DZ hierarchies
associated to the same semisimple CohFT, in [3] it was conjectured that a change of
coordinates w˛ 7! zu˛ existed, transforming one hierarchy into the other and preserving
the given tau-structures. A natural family of such changes of coordinates (called normal
Miura transformations) has the form

(12) zu˛.w/D w˛C �˛�@xfP; NhDZ
�;0gKDZ ;
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where P 2 yAŒ�2�w is an arbitrary differential polynomial and

fP; NhDZ
�;0gKDZ D

X
k�0

@P
@w

�

k

@kx

�
.KDZ/��

�
ı NhDZ
�;0

ıw�

��
:

The effect of such a transformation on the topological tau-function of the DZ hierarchy
is

F 7! F CP.w�� ; "/jw��D.w top/��.x;t
�
� ;"/jxD0

:

In [3] the following results were proved:

Proposition 3.1 [3] Let g;m� 0 be such that 2g� 2Cm> 0. Then

h�d1.e˛1/ � � � �dm.e˛m/i
DR
g D 0 if

mX
iD1

di < 2g� 1:

Proposition 3.2 [3] There exists a unique differential polynomial P 2 yAŒ�2�w such
that for the power series F red 2CŒŒt�� ; "�� defined by

(13) F red
WD F CP.w�� ; "/jw��D.w top/��.x;t

�
� ;"/jxD0

;

the correlators

h�d1.e˛1/ � � � �dn.e˛n/i
red
g WD Coef"2g

@nF red

@t
˛1
d1
� � � @t

˛n
dn

ˇ̌̌̌
t��D0

satisfy the following vanishing property:

(14) h�d1.e˛1/ � � � �dn.e˛n/i
red
g D 0 if

nX
iD1

di < 2g� 1:

In light of these two results the following conjecture was formulated in [3]:

Conjecture 3.3 (strong DR/DZ equivalence) Consider a semisimple cohomological
field theory and the associated DZ and DR hierarchies. Then the normal Miura transfor-
mation (12) defined by the differential polynomial P of Proposition 3.2 maps the DZ
hierarchy to the DR hierarchy respecting their tau-structures.

As proved in [3] this conjecture is equivalent to saying that F red D F DR . This last
form of the conjecture can be generalized to arbitrary CohFTs, forgetting about the DZ
hierarchy and concentrating on the reduced and DR potentials.

Conjecture 3.4 (generalized strong DR/DZ equivalence) For an arbitrary cohomo-
logical field theory we have F DR D F red .
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3.4 From intersection numbers to cohomology classes

The following result makes the relation between Conjectures 2.5 and 3.4 explicit,
showing in particular how the first implies the second.

Proposition 3.5 Consider an arbitrary cohomological field theory cg;nW V
˝n !

H even.Mg;n;C/. Then for any g; n�0 with 2g�2Cn>0 and numbers d1; : : : ; dn�0
such that

P
di � 2g� 1, we have

h�d1.e˛1/ � � � �dn.e˛n/i
DR
g D

Z
Mg;n

A
g

d1;:::;dn
cg;n.e˛1 ˝ � � �˝ e˛n/;(15)

h�d1.e˛1/ � � � �dn.e˛n/i
red
g D

Z
Mg;n

B
g

d1;:::;dn
cg;n.e˛1 ˝ � � �˝ e˛n/:(16)

Proof In [4] the authors proved that for any d � 2g� 1 we haveX
d1;:::;dn�0P

diDd

h�d1.e˛1/ � � � �dn.e˛n/i
DR
g a

d1
1 � � � a

dn
n

D
1P
ai

X
�2STd�2gC2

g;nC1

a.�/

Z
Mg;nC1

DR�
�
�

X
ai ; a1; : : : ; an

�
�gcg;nC1

�
e1˝

nO
iD1

e˛i

�

D

Z
Mg;n

Ag;d�2gC2.a1; : : : ; an/cg;n

� nO
iD1

e˛i

�
:

Equation (15) is proved.

Let us prove (16). The reduced potential F red can be constructed in the following way.
Let us recursively construct a sequence of power series

F .0;�2/ D F; F .1;0/; F .2;0/; F .2;1/; F .2;2/; : : : ; F .j;0/; F .j;1/; : : : ; F .j;2j�2/; : : :

2CŒŒt�� ; "��:

Suppose that a series F .j;k/ is already defined. Introduce correlators

h�d1.e˛1/ � � � �dn.e˛n/i
.j;k/
g WD Coef"2g

@nF .j;k/

@t
˛1
d1
� � � @t

˛n
dn

ˇ̌̌̌
t��D0

:

If k < 2j � 2, then we define the series F .j;kC1/ by

(17) F .j;kC1/ WD F .j;k/�
X
n�0

X
d1;:::;dn�0P
diDkC1

"2j

nŠ

DY
�di .e˛i /

E.j;k/
j

�

Y
..wtop/

˛i
di
� ı˛i ;1ıdi ;1/jxD0:
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If k D 2j � 2, then we define the series F .jC1;0/ by an analogous formula

F .jC1;0/ WD F .j;2j�2/�
X
n�0

"2jC2

nŠ

� nY
iD1

�0.e˛i /

�.j;2j�2/
jC1

Y
.wtop/˛i jxD0:

Recall that
.wtop/˛ D �˛�

@2F

@t
�
0 @t

1
0

ˇ̌̌̌
t10 7!t

1
0Cx

:

The string equation for the potential F ,

@F

@t10
D

X
n�0

t˛nC1
@F

@t˛n
C
1

2
�˛ˇ t

˛
0 t
ˇ
0 C "

2
h�0.e1/i1;

implies that the function .wtop/˛njxD0 has the form

.wtop/˛njxD0 D ı
˛;1ın;1C t

˛
n C r

˛
n CO."

2/;

where the power series r˛n 2 CŒŒt�� �� doesn’t contain monomials tˇ1
b1
� � � t

ˇm
bm

withP
bi � n. Clearly, if g � j , then we have the property

h�d1.e˛1/ � � � �dn.e˛n/i
.j;k/
g D 0 if

X
di �

�
2g� 2 if g < j ;
k if g D j :

Define a series F 0 by F 0 WD limj!1 F .j;2j�2/ . The series F 0 has the form

F 0 D F CP 0.wtop; w
top
x ; : : : ; "/jxD0

for some nonhomogeneous differential polynomial P 0 D
P
i��2 P

0
i with P 0i 2 yA

Œi�
w .

Moreover, we have the property

Coef"2g
@nF 0

@t
˛1
d1
� � � @t

˛n
dn

ˇ̌̌̌
t��D0

D 0 if
X

di � 2g� 2:

One can notice that the recursive construction, described above, is slightly different
from the recursive construction of the reduced potential F red presented in the proof of
Proposition 7.2 in [3]. However, using the uniqueness argument given there we can see
that F 0 D F red and that actually P 0 2 yAŒ�2�w .

For a stable complete tree T and 1�m� deg.T /, let

gm.T / WD
X

v2V.T /
l.v/�m

g.v/:

Before we proceed, let us prove the following simple lemma:
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Lemma 3.6 Let d1; : : : ; dn � 0, .T; q/ 2�B;g
d1;:::;dn

and 1 � m < deg.T /. Suppose
that gmC1.T /D gm.T / and e�ŒT; q�¤ 0. ThenX

h2He
C
.T /

l.h/DmC1

q.h/ >
X

h2He
C
.T /

l.h/Dm

q.h/:

Proof Consider a half-edge h2H e
C
.T / with l.h/Dm and let v WD v.�.h//. We have

g.v/D 0 and the map e forgets all q.h/C1 extra legs incident to v . Therefore, if v is
strongly stable, then

P
h02He

C
Œv� q.h

0/ > q.h/. If v is weakly stable, then jH e
C
Œv�j D 1

and q.h0/ D q.h/, where h0 2 H e
C
Œv�. Since at least one vertex of level mC 1 is

strongly stable, the lemma is true.

A stable complete tree T will be called .j; k/–admissible if for any 1�m< deg.T /
we have gm.T /� j andX

h2He
C
.T /

l.h/Dm

q.h/�

�
2gm.T /� 2 if gm.T / < j ;
k if gm.T /D j :

Let �B;g;.j;k/
d1;:::;dn

WD f.T; q/ 2�
B;g

d1;:::;dn
j T is .j; k/–admissibleg. Define the class

B
g;.j;k/

d1;:::;dn
WD

X
.T;q/2�

B;g;.j;k/

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� 2R
P
di .Mg;n/:

Clearly, Bg;.j;k/
d1;:::;dn

D B
g

d1;:::;dn
if j > g .

In order to prove (16), it is sufficient to prove that for any pair .j; k/ from the sequence

(18) .0;�2/; .1; 0/; .2; 0/; .2; 1/; .2; 2/; : : : ; .j; 0/; .j; 1/; : : : ; .j; 2j � 2/; : : :

we have

(19) h�d1.e˛1/ � � � �dn.e˛n/i
.j;k/
g D

Z
Mg;n

B
g;.j;k/

d1;:::;dn
cg;n.e˛1 ˝ � � �˝ e˛n/

if either g > j , or g � j andX
di >

�
2g� 2 if g < j ;
k if g D j :

We proceed by induction. Obviously, (19) is true for .j; k/D .0;�2/. Suppose that
(19) is true for a pair .j; k/ from the sequence (18). Let us check it for the next pair.
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Suppose k < 2j � 2. For any d1; : : : ; dn � 0 we have �B;g;.j;k/
d1;:::;dn

� �
B;g;.j;kC1/

d1;:::;dn
.

Using the induction assumption and formula (17), we see that it remains to check that

(20)
X
g;n�0

"2g

nŠ

X
d1;:::;dn�0

X
.T;q/2�

B;g;.j;kC1/

d1;:::;dn
n�

B;g;.j;k/

d1;:::;dn

.�1/deg.T /

�

�Z
Mg;n

e�ŒT; q�cg;n

� nO
iD1

e˛i

��Y
t
˛i
di

D

X
n�0

X
d1;:::;dn�0P
diDkC1

"2j

nŠ

DY
�di.e˛i /

E.j;k/
j

�Y
..wtop/

˛i
di
�ı˛i ;1ıdi ;1/jxD0�

Y
t
˛i
di

�
:

Consider a pair .T; q/ 2�B;g;.j;kC1/
d1;:::;dn

n�
B;g;.j;k/

d1;:::;dn
such that e�ŒT; q�¤ 0. Then there

exists 1�m< deg.T / such that gm.T /D j and
P
h2He

C
.T /; l.h/Dm q.h/D kC1. By

Lemma 3.6, mD deg.T /� 1. Denote by T 0 the stable rooted tree obtained by erasing
all vertices in T of level mC 1 together with half-edges incident to them. Half-edges
h2H e

C
.T / with l.h/Dm become marked legs of T 0. Clearly, T 0 is a stable complete

tree. By Lemma 3.6, the tree T 0 is .j; k/–admissible. Using the induction assumption,
we conclude that (20) is true. This completes the induction step in the case k < 2j �2.
The case k D 2j � 2 is analogous. The proposition is proved.

4 Further structure of the relations

In this section we discuss the structure of the conjectural relations (10) in more details.
In Section 4.1 we recall the formulas for the intersections of the double ramification
cycle with a  –class and with a boundary divisor on Mg;n . In Section 4.2 we show
that for a fixed g � 1 all relations Ag

d
DB

g

d
with d � 2g� 1 follow from the relation

A
g
2g�1 D B

g
2g�1 . In Section 4.3 we prove that the A– and the B –class behave in

the same way upon the pullback along the forgetful map. We then use this result in
Section 4.4 in order to show that Conjecture 2.5 is true if and only if it is true when all
the di are positive. In Section 4.5 we prove that the classes Ag

d1;:::;dn;1
and Bg

d1;:::;dn;1

behave in the same way upon the pushforward along the map forgetting the last marked
point. Using this result, in Section 4.6 we show that Conjecture 2.5 is valid on Mg;n .
In Section 4.7 we show that the conjectural relations (10) give a new formula for the
class �g 2Rg.Mg/ and check the resulting formula for g � 3.
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4.1 Formulas with the double ramification cycles

First of all, let us recall the formula from [9] for the product of the double ramification
cycle with a  –class. Denote by

glk WMg1;n1Ck �Mg2;n2Ck!Mg1Cg2Ck�1;n1Cn2

the gluing map that glues a curve from Mg1;n1Ck to a curve from Mg2;n2Ck along
the last k marked points on the first curve and the last k marked points on the second
curve. Introduce the notation

DRg1.a1; : : : ;an/�kDRg2.b1; : : : ;bm/ WDglk�.DRg1.a1; : : : ;an/�DRg2.b1; : : : ;bm//

2Rg1Cg2Ck.Mg1Cg2Ck�1;nCm�2k/:

Let a1; : : : ; an be a list of integers with vanishing sum. For a subset I Dfi1; : : : ; ikg�
f1; : : : ; ng with i1 < i2 < � � � < ik , let us denote by AI the list ai1 ; : : : ; aik and
by aI the sum

P
i2I ai . Assume that as ¤ 0 for some 1 � s � n. Then we have

[9, Theorem 4]

(21) as s DRg.a1; : : : ; an/

D

X
ItJDf1;:::;ng

aI>0

X
p�1

X
g1;g2�0

g1Cg2Cp�1Dg

X
k1;:::;kp�1P

kjDaI

�

r

Qp
iD1 ki

pŠ

�DRg1.AI ;�k1; : : : ;�kp/�p DRg2.AJ ; k1; : : : ; kp/;

where r WD 2g� 2Cn and

� WD

�
2g2� 2CjJ jCp if s 2 I I

�.2g1� 2CjI jCp/ if s 2 J :

Let us also recall the formula for the intersection of the double ramification cycle with
a boundary divisor on Mg;n . For 0� h� g and a subset I � f1; : : : ; ng we have [9]

ıIh �DRg.a1; : : : ; an/D DRh.AI ;�aI /�1 DRg�h.AIc ; aI /;

where I c WD f1; 2; : : : ; ng n I.

4.2 One-point case

Lemma 4.1 Let g � 1. Then for any k � 0 we have Ag
2g�1Ck

D  k1A
g
2g�1 .
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Proof Let � WMg;2!Mg;1 be the forgetful map that forgets the second marked
point. We compute

a 1A
g;1.a/D  1�g DRg.a;f�a/D ��.�� 1 ��g DRg.a;�a//

D ��. 1 ��g DRg.a;�a//���.ı
f1;2g
0 ��g DRg.a;�a//

D

X
g1;g2�1
g1Cg2Dg

g2

g
��.�g DRg1.a;�a/�1 DRg2.�a; a//

���.�g DRg.0/�1 DR0.a;�a; 0//

D Ag;2.a/;

where we used that �g DRg.0/D .�1/g�2g D 0. If k D 1, then the lemma is proved.
If k � 2, then we write the equation .a1 1/kAg;1.a/D .a1 1/k�1Ag;2.a/ and apply
formula (21) to the right-hand side of it k� 1 times. The lemma is proved.

On the other hand, it is not hard to get an explicit expression for the class Bg
d

. Let
g1; g2; : : : ; gk � 1 and d1; : : : ; dk � 0. Introduce a class

C
g1;:::;gk
d1;:::;dk

WD g1 g2 gk
 d1  d2 :::  dk

2R
P
diCk�1.MP

gi ;1/:

Then it is easy to see that for g � 1 and d � 2g� 1 we have

B
g

d
D

gX
kD1

X
g1;:::;gk�1P

giDg

X
d1;:::;dk

.�1/k�1C
g1;:::;gk
d1;:::;dk

;

where the last sum is taken over all nonnegative integers d1; : : : ; dk satisfying

lX
iD1

di C l � 1� 2

lX
iD1

gi � 2 if 1� l � g� 1;
kX
iD1

di C k� 1D d:

We see that Bg
d
D  

d�2gC1
1 B

g
2g�1 . Thus, for nD 1, Conjecture 2.5 is equivalent to

the sequence of relations

A
g
2g�1 D B

g
2g�1; g � 1:

4.3 String equation

In this section we prove that the A– and the B –class behave in the same way upon the
pullback along the forgetful map � WMg;nC1!Mg;n .
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Proposition 4.2 Denote by � WMg;nC1!Mg;n the forgetful map that forgets the
last marked point. Then we have

(22) A
g

d1;:::;dn;0

D

(
��A

g

d1;:::;dn
if
P
di D 2g� 1;

��A
g

d1;:::;dn
C

X
1�i�n
di�1

ı
fi;nC1g
0 ��A

g

d1;:::;di�1;:::;dn
if
P
di � 2g:

Proof Let m WD
P
di � 2gC 2. The proposition is equivalent to the equation

(23) zAg;m.a1; : : : ; an; 0/

D

�
�� zAg;m.a1; : : : ; an/ if mD 1;
�� zAg;m.a1; : : : ; an/C

Pn
iD1 aiı

fi;nC1g
0 �� zAg;m�1.a1; : : : ; an/ if m� 2;

where a1; : : : ; an are arbitrary integers. Let a0 WD �
Pn
iD1 ai . Introduce a class

yAg;m.a0; a1; : : : ; an/ by

yAg;m.a0; a1; : : : ; an/ WD
X

�2STm
g;nC1

a.�/�g DR�.a0; a1; : : : ; an/:

Formula (23) follows from the equation

(24) yAg;m.a0; : : : ; an; 0/

D

�
�� yAg;m.a0; : : : ; an/ if mD 1;
�� yAg;m.a0; : : : ; an/C

Pn
iD1 aiı

fi;nC1g
0 �� yAg;m�1.a0; : : : ; an/ if m� 2;

where the map � WMg;nC2!Mg;nC1 forgets the last marked point.

For m D 1, equation (24) is clear. Suppose that m � 2. Consider a stable tree
� 2 STmg;nC2 . Recall that we denote by li .�/ the leg of � marked by 0� i � nC 1.
We will call a vertex v 2 V.�/ exceptional if g.v/D 0, n.v/D 3 and the leg lnC1.�/
is incident to v . An exceptional vertex v 2 V.�/ will be called bad if it is not incident
to any leg li .�/, where 1� i � n. We will call the tree � bad if it has a bad vertex.
Otherwise, it will be called good. For a vertex v 2 V.�/ let

r 0.v/ WD

�
2g.v/Cn.v/� 2 if lnC1.�/ is not incident to v;
2g.v/Cn.v/� 3 if lnC1.�/ is incident to v:

For a good stable tree � 2 STmg;nC2 introduce a constant a0.�/ by

a0.�/ WD

� Y
h2He

C
.�/

a.h/

� Y
v2V.�/

v is not exceptional

r 0.v/P
zv2DescŒv� r

0.zv/
:
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Using this notation, we can rewrite the right-hand side of (24) as

�� yAg;m.a0; : : : ; an/C

nX
iD1

aiı
fi;nC1g
0 �� yAg;m�1.a0; : : : ; an/

D

X
�2STm

g;nC2

� is good

a0.�/�g DR�.a0; a1; : : : ; an; 0/:

On the other hand, by definition,

yAg;m.a0; : : : ; an; 0/D
X

�2STm
g;nC2

a.�/�g DR�.a0; a1; : : : ; an; 0/:

We see that we have to prove the equation

(25)
X

�2STm
g;nC2

a.�/�g DR�.a0; a1; : : : ; an; 0/

D

X
�2STm

g;nC2

� is good

a0.�/�g DR�.a0; a1; : : : ; an; 0/:

Let us prove equation (25). Suppose � is a bad stable tree. Let us show how to
express the class a.�/�g DR�.a0; a1; : : : ; an; 0/ as a linear combination of the classes
�g DRz�.a0; a1; : : : ; an; 0/, where the stable trees z� are good. Suppose that s � 2
and b1; : : : ; bs are integers with vanishing sum. We have the following relation in the
cohomology of Mg;sC2 (see eg [1, equation (5.2)]):

(26) �g
X

ItJDf1;:::;sg
I;J¤∅

X
g1Cg2Dg

bI DRg1.0; BI ;�bI /�1 DRg2.0; BJ ;�bJ /D 0:

Suppose that the point with the zero multiplicity in the second double ramification
cycle is marked by sC 2. Let us multiply relation (26) by  sC2 and push it forward
to Mg;sC1 by forgetting the last marked point:

(27) �g
X

ItJDf1;:::;sg
I;J¤∅

X
g1Cg2Dg

2g2CjJ j�1>0

bI .2g2CjJ j � 1/

�DRg1.0; BI ;�bI /�1 DRg2.BJ ;�bJ /D 0:

Suppose that the level of the bad vertex in our bad stable tree � is equal to k . Then
relation (27) allows us to express the class a.�/�g DR�.a0; : : : ; an; 0/ in terms of the
classes �g DRz�.a0; : : : ; an; 0/, where the tree z� is good or bad with the bad vertex
of level kC1. Therefore, applying relation (27) sufficiently many times, we come to a
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lnC1

r1 rk�1 rk

r1
kC1

r l
kC1

: : : :::

A1 Ak�1

A1
kC1

Al
kC1

: : :

L0‚…„ƒ

Figure 1: Stable tree � .

decomposition

a.�/�g DR�.a0; : : : ; an; 0/D
X

z�2STm
g;nC2

z� is good

a.�; z�/�g DRz�.a0; : : : ; an; 0/;

where a.�; z�/ are certain coefficients. We see that for any good graph � we have to
prove the identity

(28) a.�/C
X

z�2STm
g;nC2

z� is bad

a.z�; �/D a0.�/:

Let us prove (28). Suppose that the leg lnC1 D lnC1.�/ is incident to a vertex of
level k . Denote it by vk . Denote by v1 the root of � . Let v1; v2; : : : ; vk be the unique
path connecting v1 and vk . Denote by v1

kC1
; : : : ; vl

kC1
, l � 0, the direct descendants

of vk . Let L0 WD LŒvk� n flnC1g. In Figure 1 we draw our tree � . Note that each
vertex v in the picture is decorated by the number r.v/, instead of the genus. This is
more convenient for the computations. We use the notation ri WD r.vi / for 1� i � k
and rj

kC1
WD r.v

j

kC1
/ for 1� j � l . The symbols Ai and Aj

kC1
indicate the pieces

of the tree � that don’t contain the vertices vi and vj
kC1

. Let us also introduce the
notation

Ri WD
X

v2DescŒvi �

r.v/; 1� i � k;

R
j

kC1
WD

X
v2DescŒvj

kC1
�

r.v/; 1� j � l;

za WD a.�/
.� kY

iD1

ri

Ri

lY
jD1

r
j

kC1

R
j

kC1

�
:
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lnC1

r1 ri�1 11 ri rk�2 zr

r1
kC1

r l
kC1

: : : : : : :::

A1 Ai�1 Ai Ak�2 Ak�1

A1
kC1

Al
kC1

: : :
L0‚…„ƒ

Figure 2: Bad stable tree of the first type.

There are two cases: the vertex vk can be exceptional or not.

Suppose that vk is not exceptional. Then

a0.�/D za
r1 � � � rk�1.rk � 1/

.R1� 1/ � � � .Rk � 1/

lY
jD1

r
j

kC1

R
j

kC1

:

It is not hard to understand the structure of bad stable trees z� such that a.z�; �/¤ 0.
These trees are of two types. A bad tree of the first type is shown in Figure 2, where
1 � i � k � 1 and zr D rk�1 C rk � 1. A bad tree of the second type is shown in
Figure 3, where 1� i � k , 1� j � l and zr D rkC r

j

kC1
�1. It is not hard to see that

a.z�; �/D za
r1 � � � rk�1

R1 � � �Ri .Ri � 1/ � � � .Rk�1� 1/

lY
jD1

r
j

kC1

R
j

kC1

if z� is of the first type, and

a.z�; �/D�za
r1 � � � rk�1

R1 � � �Ri .Ri � 1/ � � � .Rk � 1/
R
j

kC1

lY
mD1

rm
kC1

Rm
kC1

if z� is of the second type.

lnC1

r1 ri�1 11 ri rk�1 zr

r1
kC1

r l
kC1

: : : : : :

:::

:::
A1 Ai�1 Ai Ak�1

A1
kC1

Al
kC1

: : :

A
j

kC1

L0‚…„ƒ

Figure 3: Bad stable tree of the second type.
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Therefore, (28) follows from the identity

kY
iD1

ri

Ri
C

k�1X
iD1

r1 � � � rk�1

R1 � � �Ri .Ri � 1/ � � � .Rk�1� 1/

�

kX
iD1

lX
jD1

r1 � � � rk�1

R1 � � �Ri .Ri � 1/ � � � .Rk � 1/
R
j

kC1

D
r1 � � � rk�1.rk � 1/

.R1� 1/ � � � .Rk � 1/
;

or, equivalently,

(29)
rk

R1 � � �Rk
C

k�1X
iD1

1

R1 � � �Ri .Ri � 1/ � � � .Rk�1� 1/

�

kX
iD1

Rk � rk

R1 � � �Ri .Ri � 1/ � � � .Rk � 1/

D
rk � 1

.R1� 1/ � � � .Rk � 1/
:

Note that
rk

R1 � � �Rk
�

Rk � rk

R1 � � �Rk.Rk � 1/
D

rk � 1

R1 � � �Rk�1.Rk � 1/
;

1

R1 � � �Ri .Ri � 1/ � � � .Rk�1� 1/
�

Rk � rk

R1 � � �Ri .Ri � 1/ � � � .Rk � 1/

D
rk � 1

R1 � � �Ri .Ri � 1/ � � � .Rk � 1/
;

where 1� i � k� 1. Therefore, (29) is equivalent to the equation

(30)
1

R1 � � �Rk�1
C

k�1X
iD1

1

R1 � � �Ri .Ri �1/ � � � .Rk�1�1/
D

1

.R1�1/ � � � .Rk�1�1/
;

which can be easily proved by induction on k .

Suppose that vk is exceptional. Then l D 0, the set L0 consists of only one leg and
rk DRk D 1. We have

a0.�/D za
r1 � � � rk�1

.R1� 1/ � � � .Rk�1� 1/
:
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A bad stable tree z� with a.z�; �/ ¤ 0 should necessarily be of the first type (see
Figure 2) and then we have

a.z�; �/D za
r1 � � � rk�1

R1 � � �Ri .Ri � 1/ � � � .Rk�1� 1/
:

We immediately see that again (28) follows from the elementary identity (30). The
proposition is proved.

Proposition 4.3 Denote by � WMg;nC1!Mg;n the forgetful map that forgets the
last marked point. Then we have

(31) B
g

d1;:::;dn;0
D

(
��B

g

d1;:::;dn
if
P
di D 2g� 1;

��B
g

d1;:::;dn
C

X
1�i�n
di�1

ı
fi;nC1g
0 ��B

g

d1;:::;di�1;:::;dn
if
P
di � 2g:

Proof Let .T; q/ 2�B;g
d1;:::;dn

be an admissible and stable complete tree with a power
function

qW H em
C .T /!N;

as in Definition 2.4. We denote by deg.T / its number of levels. In particular, there
are extra legs at every vertex (except the root) that we will eventually forget when
computing the B –class.

Choose a vertex v 2 V.T /. Let C D .eC1 ; v
C
1 ; : : : ; e

C
deg.T /�l.v/; v

C
deg.T /�l.v/; �nC1/ be

a chain of weakly stable vertices with a new marking �nC1 . Precisely, the edge eC1
is attached to the vertex vC1 , the edge eC

k
links the vertex vC

k�1
to vC

k
, and the leg

�nC1 is attached to the vertex vCdeg.T /�l.v/ . Moreover, every vertex is of genus 0 and
contains an extra leg. We construct a tree Tv , obtained from T by gluing the edge eC1
(and thus the chain C ) to the vertex v . We have H em

C
.T /�H em

C
.Tv/ and we extend

the power function q into a function qvW H em
C
.Tv/!N by taking

qv.h
C
k / WD 0 and qv.�nC1/ WD 0;

where hC
k

is the half-edge in H em
C
.Tv/ contained in the edge eC

k
. It is easy to see that

we get
.Tv; qv/ 2�

B;g

d1;:::;dn;0
:

Choose a half-edge h 2 H em
C
.T / attached to the vertex v and such that q.h/ > 0.

We construct a tree T.v;h/ , obtained from T by adding an extra level between the
levels l.v/ and l.v/C 1 of T as follows:
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� denote by h0; : : : ; hm 2H em
C
.T / the half-edges of level l.v/, with h0 WD h;

� insert a pair .ek; vk/ between the half-edge hk and the vertex it is attached to,
where ek D .h0k; h

00
k
/ is an edge and vk is a vertex of genus 0;

� glue the half-edge hC1 from the chain C to the vertex v0 ;

� add q.h/ extra legs to the vertex v0 and q.hk/C 1 extra legs to the vertex vk
for 1� k �m.

Therefore, the number of levels of the tree T.v;h/ is deg.T /C 1, the vertex v0 2

V.T.v;h// is the only strongly stable vertex at its level, and we have a natural inclusion
H em
C
.Tv/ � H

em
C
.T.v;h//. Then, we extend the power function qv into a function

q.v;h/W H
em
C
.T.v;h//!N by taking

q.v;h/.h
0
k/ WD

�
q.hk/� 1 if k D 0,
q.hk/ if k ¤ 0.

The complete tree T.v;h/ is obviously stable, but not necessarily admissible. We get

.T.v;h/; q.v;h// 2�
B;g

d1;:::;dn;0
() l.v/¤ deg.T / or

nX
iD1

di D 2g� 1:

Furthermore, observe that when l.v/ D deg.T /, the half-edge h corresponds to a
marking �i and we get

e�ŒT.v;h/; q.v;h/�D �i�e�ŒT; qi �D ı
fi;nC1g
0 ���e�ŒT; qi � 2R�.Mg;nC1/;

where the morphism �i denotes here the section of the i th marking in the universal
curve Cg;n 'Mg;nC1 , and where qi W H em

C
.T /!N is defined by

qi .h/ WD

�
di � 1 if hD �i ,
q.h/ otherwise.

Conversely, let .T 0; q0/ 2�B;g
d1;:::;dn;0

and denote by v the first strongly stable ancestor
of the marking �nC1 . In particular, the marking �nC1 is attached to the vertex v via a
chain C of weakly stable vertices and we denote by h.nC1/ 2H em

C
.T 0/ the half-edge

from C attached to v . We have two possibilities:

(1) v is a vertex of genus 0 with exactly two half-edges h; h.nC1/ 2 H em
C
.T 0/

attached to it and v is the only strongly stable vertex of level l.v/;

(2) v is another type of vertex.
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Denote by T the tree obtained from T 0 by forgetting the chain C containing the
marking �nC1 , and contracting the level l.v/ in case (1). In particular, the power
function q0 restricts to a function q and we get

.T; q/ 2�
B;g

d1;:::;dn
and .T 0; q0/D

�
.T.v;h/; q.v;h// in case (1),
.Tv; qv/ in case (2):

Furthermore, from the formula

(32) �� v

q1���qr

D
nC1

v

q1���qr

�

X
1�i�r
qi>0

v

q1���yqi ���qr i

nC1

0
qi�1

expressing the pullback of  –classes via the map � , we obtain

e��
�.ŒT; q�/D

X
v2T

e�

�
ŒTv; qv��

X
h2H em

C
.T /

h!v;q.h/>0

ŒT.v;h/; q.v;h/�

�

for every .T; q/ 2�B;g
d1;:::;dn

and where h! v means that the half-edge h is incident
to the vertex v . As a consequence, when d1C � � �C dn � 2g , we obtain

��.B
g

d1;:::;dn
/D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1��e�ŒT; q�

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e���ŒT; q�;

where the second equality comes from the general fact that Mg;nC2 is birational to
the fibre product Mg;nC1 �Mg;n

Mg;nC1 , and then

��.B
g

d1;:::;dn
/

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1
X
v2T

�
e�ŒTv; qv��

X
h2H em

C
.T /

h!v;q.h/>0

e�ŒT.v;h/; q.v;h/�
�

D

X
.T 0;q0/2�

B;g

d1;:::;dn;0

.�1/deg.T 0/�1e�ŒT 0; q0�

�

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1
X
v2T

l.v/Ddeg.T /

X
h2H em

C
.T /

h!v;q.h/>0

e�ŒT.v;h/; q.v;h/�
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D B
g

d1;:::;dn;0
�

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1
X
1�i�n
di>0

ı
fi;nC1g
0 ���e�ŒT; qi �

D B
g

d1;:::;dn;0
�

X
1�i�n
di>0

ı
fi;nC1g
0 ���B

g

d1;:::;di�1;:::;dn
:

When d1C � � �Cdn D 2g� 1, we have seen that .T.v;h/; q.v;h// is always admissible,
so that the first three equalities are the same, but there is no second term in the last
three equalities. Hence we get

��B
g

d1;:::;dn
D B

g

d1;:::;dn;0
:

4.4 Reduction of the conjecture

Proposition 4.4 Conjecture 2.5 is true if and only if it is true when all the di are
positive. Furthermore, Conjecture 2.5 is true in genus 0 and in genus 1.

Proof The first statement follows immediately from Propositions 4.2 and 4.3.

Assume g D 0. Since dimM0;n D n � 3, the classes A0
d1;:::;dn

and B0
d1;:::;dn

are
nontrivial only if

P
di � n�3. Therefore, we can always apply formulas (22) and (31)

to them, unless nD 3 and d1 D d2 D d3 D 0, where we get

A00;0;0 D B
0
0;0;0 D 1 2H

0.M0;3;Q/:

Assume gD 1. Since dimM1;nDn, the classes A1
d1;:::;dn

and B1
d1;:::;dn

are nontrivial
only if

P
di � n. Therefore, we can always apply formulas (22) and (31) to them,

unless d1 D d2 D � � � D dn D 1. In order to prove that A11;1;:::;1 D B11;1;:::;1 , it is
sufficient to check that

R
M1;n

A11;1;:::;1D
R
M1;n

B11;1;:::;1 . Note that these two integrals
are equal to h�1.e1/niDR

1 and h�1.e1/nired
1 , respectively, for the trivial cohomological

field theory. The equality F DR D F red for the trivial cohomological field theory was
checked in [3]. Therefore, Conjecture 2.5 is true in genus 1.

4.5 Dilaton equation

Here we prove that the classes Ag
d1;:::;dn;1

and Bg
d1;:::;dn;1

behave in the same way
upon the pushforward along the map forgetting the last marked point.
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Proposition 4.5 Denote by � WMg;nC1!Mg;n the forgetful map that forgets the
last marked point. Then we have

(33) ��.A
g

d1;:::;dn;1
/D

�
.2g� 2Cn/A

g

d1;:::;dn
if
P
di > 2g� 2;

0 if
P
di D 2g� 2:

Before proving the proposition let us formulate three auxiliary statements. Recall that
for a stable tree � 2 STmg;nC1 we denote by v1.�/ the root of � and by li .�/ for
0� i � n the leg of � marked by i .

Lemma 4.6 Let a0; : : : ; an with n � 1 be integers with vanishing sum and m � 2.
Then we have

yAg;m.a0; : : : ; an/� a1 1 yA
g;m�1.a0; : : : ; an/

D

X
�2STm

g;nC1

v.l1.�//Dv1.�/

2g� 1Cn

r.v1.�//
a.�/�g DR�.a0; : : : ; an/:

Proof Using formula (21), for an arbitrary stable tree � 2 STm�1g;nC1 we can write a
decomposition

a1 1 � a.�/�g DR�.a0; : : : ; an/D
X

z�2STm
g;nC1

a.�; z�/�g DRz�.a0; : : : ; an/;

where a.�; z�/ are certain coefficients. Let � 2 STmg;nC1 . The statement of the lemma
is equivalent to the equation

(34) a.�/�
X

z�2STm�1
g;nC1

a.z�; �/D

(2g�1Cn
r.v1.�//

if l1.�/ is incident to v1.�/;

0 otherwise:

Let v 2 V.�/ be the vertex incident to l1 D l1.�/. Denote by v001 ; : : : ; v
00
l

with
l � 0 the direct descendants of v . Let L0 WD LŒv� n fl1g, r WD r.v/, r 00i WD r.v

00
i /,

R WD
P
zv2DescŒv� r.zv/ and R00i WD

P
zv2DescŒv00

i
� r.zv/.

Suppose that v ¤ v1.�/. Denote by v0 2 V.�/ the mother of v and let r 0 WD r.v0/
and R0 WD

P
zv2DescŒv0� r.zv/. We draw the stable tree � in Figure 4. Similarly to the

figures in the proof of Proposition 4.2, we decorate a vertex w of � by number r.w/.
It is not hard to see that there are exactly l C 1 stable trees z� 2 STm�1g;nC1 such that
a.z�; �/¤ 0. The first one is shown on the left-hand side of Figure 5, and the other l
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l1

r 0 r

r 001

r 00
l

:::

A0

A001

A00
l

: : :

L0‚…„ƒ

Figure 4: Stable tree � .

trees are on the right-hand side, where 1� j � l . Let

za WD a.�/
.� r 0

R0
r

R

lY
jD1

r 00j

R00j

�
:

The coefficient a.z�; �/ for the left tree in Figure 5 is equal to .zar 0=R0/
Ql
kD1 r

00
k
=R00

k

and for the right tree in Figure 5 it is equal to �.zar 0R00j =R
0R/

Ql
kD1 r

00
k
=R00

k
. We

computeX
z�2STm�1

g;nC1

a.z�; �/D za

�
r 0

R0
�

lX
jD1

r 0R00j

R0R

� lY
kD1

r 00
k

R00
k

D za
r 0r

R0R

lY
kD1

r 00
k

R00
k

D a.�/:

Therefore, formula (34) is proved in the case when l1 is not incident to v1.�/.

Suppose that v D v1.�/. The tree � and stable trees z� such that a.z�; �/ ¤ 0 are
shown in Figure 6.

l1 r0Cr

r 001

r 00
l

:::

A0

A001

A00
l

: : :

L0‚…„ƒ

l1

r 0 rCr00
j

r 001

r 00
l

:::

:::

A0

A001

A00
l

: : :

A00j

L0‚…„ƒ

Figure 5: Stable trees z� such that a.z�; �/¤ 0 .
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l1

r

r 001

r 00
l

:::

A001

A00
l

: : :

L0‚…„ƒ

�

l1

rCr00
j

r 001

r 00
l

:::

:::

A001

A00
l

: : :

A00j

L0‚…„ƒ

z�

Figure 6: Stable tree � and stable trees z� such that a.z�; �/¤ 0 .

Let

za WD a.�/
.�

r

R

lY
jD1

r 00j

R00j

�
:

The coefficient a.z�; �/ for the right tree in Figure 6 equals �.zaR00j =R/
Ql
kD1 r

00
k
=R00

k
.

So we compute

a.�/�
X

z�2STm�1
g;nC1

a.z�; �/D za

�
r

R
C

lX
jD1

R00j

R

� lY
kD1

r 00
k

R00
k

D za

lY
kD1

r 00
k

R00
k

D
R

r
a.�/:

The lemma is proved.

Lemma 4.7 Let a0; : : : ; an , n� 1, be integers with vanishing sum and m� 2. Then
we have

yAg;m.a0; : : : ; an/� a0 0 yA
g;m�1.a0; : : : ; an/

D

X
�2STm

g;nC1

2g� 1Cn

r.v1.�//
a.�/�g DR�.a0; : : : ; an/:

Proof The proof is analogous to the proof of the previous lemma.

Corollary 4.8 Let a1; : : : ; an with n � 1 be arbitrary integers and m � 2. Denote
by � WMg;nC1!Mg;n the forgetful map that forgets the first marked point. Then we
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have

(35) Ag;m.a1; : : : ; an/� a1 1A
g;m�1.a1; : : : ; an/

D

X
�2STm

g;nC1

v.l1.�//Dv1.�/
g.v1.�//�1

2g� 1Cn

r.v1.�//

a.�/P
ai
�g��DR�

�
�

X
ai ; a1; : : : ; an

�
C yAg;m�1

�
�

nX
iD2

ai ; a2; : : : ; an

�
:

Proof The corollary is an elementary exercise that uses the two previous lemmas and
the fact that

Ag;m.a1; : : : ; an/D
1P
ai
�� yA

g;m
�
�

X
ai ; a1; : : : ; an

�
:

Proof of Proposition 4.5 Let m WD
P
di � 2gC 3. Let us prove that

(36) @

@anC1
��A

g;m.a1; : : : ; anC1/
ˇ̌̌
anC1D0

D

�
0 if mD 1;

��. nC1A
g;m�1.a1; : : : ; an; 0// if m� 2:

For mD 1 this equation immediately follows from Lemma 2.1. Suppose m� 2. Let
us rewrite (35) in the way that is more suitable for us:

(37) Ag;m.a1; : : : ; anC1/� anC1 nC1A
g;m�1.a1; : : : ; anC1/

D

X
�2STm

g;nC2

v.lnC1.�//Dv1.�/
g.v1.�//�1

2gCn

r.v1.�//

a.�/P
ai
�g�0�DR�

�
�

X
ai ; a1; : : : ; anC1

�
C yAg;m�1

�
�

nX
iD1

ai ; a1; : : : ; an

�
;

where the map �0WMg;nC2!Mg;nC1 forgets the first marked point. The last term
on the right-hand side of this equation doesn’t depend on anC1 . Note also that, by
Lemma 2.1, after applying the pushforward �� each term in the sum on the right-hand
side of (37) becomes divisible by a2nC1 . This proves (36).

Equation (36) immediately implies the statement of the proposition for mD 1. In the
case m� 2, (36) yields

��A
g

d1;:::;dn;1
D ��. nC1A

g

d1;:::;dn;0
/ (by Proposition 4.2)

D ��. nC1�
�A
g

d1;:::;dn
/

D .2g� 2Cn/A
g

d1;:::;dn
:
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Proposition 4.9 Denote by � WMg;nC1!Mg;n the forgetful map that forgets the
last marked point. Then we have

(38) ��.B
g

d1;:::;dn;1
/D

�
.2g� 2Cn/B

g

d1;:::;dn
if
P
di > 2g� 2;

0 if
P
di D 2g� 2:

Proof Let .T; q/ 2�B;g
d1;:::;dn

be an admissible and stable complete tree with a power
function

qW H em
C .T /!N;

as in Definition 2.4. We denote by �W f1; : : : ; deg.T /� 1g !N the function

�.k/ WD 2
X

v2V.T /
l.v/�k

g.v/�
X

h2H em
C
.T /

l.h/Dk

q.h/� 2

measuring the distance to nonadmissibility at the level k . As in the proof of Proposition
4.3, we have two possible ways to add a new marking labelled by nC 1.

First, choose a vertex v2V.T /. Let C D.eC1 ; v
C
1 ; : : : ; e

C
deg.T /�l.v/; v

C
deg.T /�l.v/; �nC1/

be a chain of weakly stable vertices with a new marking �nC1 . Precisely, the edge
eC1 is attached to the vertex vC1 , the edge eC

k
links the vertex vC

k�1
to vC

k
, and the

leg �nC1 is attached to the vertex vCdeg.T /�l.v/ . Moreover, every vertex is of genus 0
and contains two extra legs. We construct a tree Tv , obtained from T by gluing the
edge eC1 (and thus the chain C ) to the vertex v . We have H em

C
.T /�H em

C
.Tv/ and

we extend the power function q into a function qvW H em
C
.Tv/!N by taking

qv.h
C
k / WD 1 and qv.�nC1/ WD 1;

where hC
k

is the half-edge in H em
C
.Tv/ contained in the edge eC

k
. It is easy to see that

we get

.Tv; qv/ 2�
B;g

d1;:::;dn;1
() �.k/� 1 for all k 2 Œl.v/; deg.T /� 1�:

In particular, when the vertex v is at the maximal level deg.T /, then the tree Tv is
always admissible.

Second, choose a half-edge h 2 H em
C
.T / attached to the vertex v . We construct a

tree T.v;h/ , obtained from T by adding an extra level between the levels l.v/ and
l.v/C 1 of T as follows:

� denote by h0; : : : ; hm 2H em
C
.T / the half-edges of level l.v/, with h0 WD h;
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� insert a pair .ek; vk/ between the half-edge hk and the vertex it is attached to,
where ek D .h0k; h

00
k
/ is an edge and vk is a vertex of genus 0;

� glue the half-edge hC1 from the chain C to the vertex v0 ;

� add q.hk/C 1 extra legs to the vertex vk for 0� k �m.

Therefore, the number of levels of the tree T.v;h/ is deg.T /C 1, the vertex v0 2

V.T.v;h// is the only strongly stable vertex at its level, and we have a natural inclusion
H em
C
.Tv/ � H

em
C
.T.v;h//. Then, we extend the power function qv into a function

q.v;h/W H
em
C
.T.v;h//!N by taking

q.v;h/.h
0
k/ WD q.hk/:

We obtain

.T.v;h/; q.v;h// 2�
B;g

d1;:::;dn;1
()

�
�.k/� 1 for all k 2 Œl.v/; deg.T /� 1�

and
�
l.v/¤ deg.T / or

Pn
iD1 di D 2g� 2

�
:

In particular, when the vertex v is at the maximal level deg.T /, the tree T.v;h/ is
admissible if and only if d1C � � �C dn D 2g� 2.

Let lT 2 Œ1; deg.T /� be the smallest integer such that

�.k/� 1 for all k 2 ŒlT ; deg.T /� 1�:

When d1C� � �Cdn>2g�2 (resp. when d1C� � �CdnD 2g�2), the two constructions

.T; q; v/ 7! .Tv; qv/ and .T; q; v; h/ 7! .T.v;h/; q.v;h//

give a bijection from the setG
.T;q/2�

B;g

d1;:::;dn

fv 2 V.T / j l.v/� lT g

t f.v; h/ 2 V.T /�H em
C .T / j h! v; lT � l.v/ < deg.T /g

(resp. the same set with the inequality lT � l.v/ � deg.T /) to the set �B;g
d1;:::;dn;1

.
Furthermore, we get the contributions

e���.ŒTv; qv�/D .2g.v/� 2Cn.v/C q.v/C 1/e�ŒT; q�;(39)

e���.ŒT.v;h/; q.v;h/�/D .q.h/C 1/e�ŒT; q�;(40)

where q.v/ denotes the value of the power function qW H em
C
.T /!N at the (half-)edge

linking the mother of the vertex v to the vertex v and n.v/ denotes the number of
half-edges attached to the vertex v , without counting the extra legs. Thus, the total
number of half-edges attached to the vertex v is indeed n.v/C q.v/C 1.
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Finally, when d1C � � �C dn > 2g� 2, we get

��.B
g

d1;:::;dn;1
/

D

X
.T;q/2�

B;g

d1;:::;dn;1

.�1/deg.T /�1��e�ŒT; q�

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1
� X

v2V.T /
l.v/Ddeg.T /

��e�ŒTv; qv�

C

X
v2V.T /

lT�l.v/<deg.T /

�
��e�ŒTv; qv��

X
h2H em

C
.T /

h!v

��e�ŒT.v;h/; q.v;h/�
��

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1
� X

v2V.T /
l.v/Ddeg.T /

e���ŒTv; qv�

C

X
v2V.T /

lT�l.v/<deg.T /

�
e���ŒTv; qv��

X
h2H em

C
.T /

h!v

e���ŒT.v;h/; q.v;h/�
��
;

where the minus sign in the second line of the second equality comes from the fact that
the number of levels in the tree T.v;h/ is deg.T /C1; the third equality comes from the
relation eı� D � ı e among the forgetful maps. Using equations (39) and (40), we get

��.B
g

d1;:::;dn;1
/

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� �
� X

v2V.T /
l.v/Ddeg.T /

.2g.v/� 2Cn.v/C q.v/C 1/

C

X
v2V.T /

lT�l.v/<deg.T /

�
2g.v/� 1Cn.v/C q.v/�

X
h2H em

C
.T /

h!v

.q.h/C 1/

��

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� �
� X

v2V.T /
l.v/Ddeg.T /

.2g.v/Cn.v/� 1C q.v//

C

X
v2V.T /

lT�l.v/<deg.T /

�
2g.v/C q.v/�

X
h2H em

C
.T /

h!v

q.h/

��
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D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q�

�

�
2
X

v2V.T /
l.v/�lT

g.v/CnC

� X
v2V.T /
l.v/�lT

q.v/�
X

v2V.T /
lT�l.v/<deg.T /

X
h2H em

C
.T /

h!v

q.h/

��

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� �
�
2
X

v2V.T /
l.v/�lT

g.v/CnC
X

v2V.T /
l.v/DlT

q.v/

�
:

We conclude using the equality �.lT � 1/D 0:

��.B
g

d1;:::;dn;1
/

D

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� �
�
2
X

v2V.T /
l.v/�lT

g.v/CnC 2
X

v2V.T /
l.v/<lT

g.v/� 2

�

D .2g� 2Cn/
X

.T;q/2�
B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q�D .2g� 2Cn/B
g

d1;:::;dn
:

When d1 C � � � C dn D 2g � 2, we have the same sequence of equalities with the
additional term

�

X
.T;q/2�

B;g

d1;:::;dn

X
v2V.T /

l.v/Ddeg.T /

X
h2H em

C
.T /

h!v

.�1/deg.T /�1e���ŒT.v;h/; q.v;h/�

D�

X
.T;q/2�

B;g

d1;:::;dn

.�1/deg.T /�1e�ŒT; q� � .nC d1C � � �C dn/

D�.2g� 2Cn/B
g

d1;:::;dn
;

coming from the fact that .T.v;h/; q.v;h// 2�
B;g

d1;:::;dn;1
when l.v/D deg.T /.

4.6 Validity of the conjecture on Mg;n

Let g; n;m� 0 be such that 2g� 2Cn > 0 and denote by �.m/WMg;nCm!Mg;n

the map forgetting the last m markings. By definition, the restriction of Conjecture 2.5
to Mg;n is the following statement:
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Proposition 4.10 The restriction of Conjecture 2.5 to Mg;n is true. Precisely, for all
integers d1; : : : ; dnCm � 1 such that

d1C � � �C dnCm > 2g� 2;

we have

.�
.m/
� .A

g

d1;:::;dnCm
//jMg;n

D .�
.m/
� .B

g

d1;:::;dnCm
//jMg;n

2R�.Mg;n/:

Proof Using Propositions 4.5 and 4.9, we can assume that dnC1; : : : ; dnCm � 2.
Furthermore, the Chow degree of the two classes in the statement is

ı WD d1C � � �C dnC .dnC1� 1/C � � �C .dnCm� 1/:

We get
ı > 2g� 2�m and ı � nCm:

Summing these two inequalities yields

ı > gC 1
2
n� 1� g� 1:

We conclude with the following result from [17]:

Rp.Mg;n/D 0 for all p > g� 1:

4.7 New expression for �g

Let us show that our conjectural relations (10) give a new formula for the class �g 2
Rg.Mg/.

Let g � 2 and consider the class

Ag;1.a1; : : : ; ag�1/D �g
1P
ai

DRg
��
�

X
ai; a1; : : : ; ag�1

�
:

Let � WMg;g�1 !Mg be the forgetful map that forgets all marked points. Then,
by (5),

��A
g;1.a1; : : : ; ag�1/D gŠ�ga

2
1 � � � a

2
g�1

X
ai :

Thus,
�g D

1

gŠ
��A

g
3;2;:::;2 2R

g.Mg/:

So, Conjecture 2.5 implies that

(41) �g D
1

gŠ
��B

g
3;2;:::;2 2R

g.Mg/:
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We can easily see that the expression on the right-hand side of this equation is a
linear combination of basic tautological classes ���.
/, where � is a tree. No such
expressions for the class �g were known before. Let us write explicitly and prove the
resulting formulas in genus 2 and 3.

4.7.1 Genus 2 We already wrote the expression for B23 in (11). Pushing it forward
to M2 and dividing by 2, we get that Conjecture 2.5 implies

(42) �2 D
1
2
�2�

1
2
1 1

�1
:

The relation A23 D B
2
3 is proved in the appendix, so formula (42) is true.

4.7.2 Genus 3 We compute

B33;2 D‰
3
1 

2
2�10

1

2

3 0
 4

�

1

2

2 1
  

 2
�2

1

2

2 1
  2

 
�

1

2

2 1
  3

�

1

2

2 1
 2

 2

�3

1

2

2 1
 2

 

 

�3

1

2

2 1
 2

 2

� 1

2

2 1
 2

 2
�

1

2

1 2
 3

 
�

1

2

1 2
 2

 2

C10

1

2

2 1 0
  2

C10

1

2

2 1 0
  2

C 1

2

2 0 1
  2

C

1

2

1 1 1

 

 2
C2

1

2

1 1 1
 2

 
C

1

2

1 1 1
 3

C

1

2

1 1 1
 

 2

C3

1

2

1 1 1
 

 

 

C3

1

2

1 1 1
  2

C 1

2

1 1 1
 2

 

C10

1

2

1 2 0
 3

�10

1

2

1 1 1 0
 2

�10

1

2

1 1 1 0
  

� 1

2

1 1 0 1
 2

:

Pushing forward this expression to M3 and dividing it by 6, we get that Conjecture 2.5
implies

(43) �3 D�
3
2
�3C

1
6
�1�2C

2
3
2 1
 

�1
�
1
6
2 1

�1 �1
C
5
6
2 1

�2
�
1
6
2 1

�21

�
1
3
1 1 1

�1
:
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Let us prove this equation. In [11], C Faber proved that the whole cohomology ring
of M3 is tautological and that it is generated by the classes

ı0 WD 2 ; ı1 WD 2 1 ; �1; �2:

There are 13 monomials of cohomological degree 6 in these classes. Faber proved
that dimR3.M3/ D 10 and found 3 relations between the 13 monomials (see [11,
page 407]). These relations easily imply that the following 10 classes form a basis in
R3.M3/:

ı20�1; ı0ı1�1; ı0�
2
1; ı0�2; ı31 ; ı21�1; ı1�

2
1; �31; ı1�2; �1�2:

It is not hard to check that each of these 10 classes has the same intersection numbers
with both sides of equation (43). So, formula (43) is true.

5 Restricted set of relations

In this section we show that the strong DR/DZ equivalence conjecture for semisimple
cohomological field theories follows from the restricted set of relations (10), whereP
di D 2g and di � 1.

Consider an arbitrary cohomological field theory in genus 0,

c0;nW V
˝n
!H�.M0;n;C/:

Let F0.t�� / be its potential. Suppose we have a deformation F.t�� ; "/ of F0 the form

F D F0C
X
g�1

"2gFg ; Fg 2CŒŒt�� ��:

Introduce formal power series .wsol/˛.x; t�� ; "/ by

.wsol/˛ WD �˛�
@2F

@t
�
0 @t

1
0

ˇ̌̌̌
t10 7!t

1
0Cx

;

and let .wsol/˛n WD @
n
x.w

sol/˛ . We will use the notation

h�d1.e˛1/ � � � �dn.e˛n/ig WD
@nFg

@t
˛1
d1
� � � @t

˛n
dn

ˇ̌̌̌
t��D0

:

A correlator h�d1.e˛1/ � � � �dn.e˛n/ig will be called admissible if
P
di � 2g .

Lemma 5.1 Suppose that the following conditions are satisfied :
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� we have the vanishing property

(44) h�d1.e˛1/ � � � �dn.e˛n/ig D 0 if
X

di � 2g� 2I

� the string and the dilaton equations hold :

@F

@t10
D

X
n�0

t˛nC1
@F

@t˛n
C
1

2
�˛ˇ t

˛
0 t
ˇ
0 ;

@F

@t11
D "

@F

@"
C

X
n�0

t˛n
@F

@t˛n
� 2F C "2

N

24
I

� for each � there exists a differential polynomial �1;1I�;0 2 yA
Œ0�
w such that

(45) �1;1I�;0jw
nD.wsol/


n
D

@2F

@t11@t
�
0

ˇ̌̌̌
t10 7!t

1
0Cx

:

Then all correlators h�d1.e˛1/ � � � �dn.e˛n/ig are uniquely determined by the admissible
correlators.

Proof The topological recursion relation in genus zero implies that the primary
correlators h�0.e˛1/ � � � �0.e˛n/i0 determine all correlators in genus zero. Denote by
Rd the subspace of CŒŒt�� �� defined by

Rd WD
nX

cd1;:::;dn˛1;:::;˛n

Y
t
˛i
di
2CŒŒt�� ��

ˇ̌
cd1;:::;dn˛1;:::;˛n

D 0 if
X

di � d � 1
o
:

From the string equation and the vanishing property (44) it follows that the function
.wsol/˛njxD0 has the form

(46) .wsol/˛njxD0D ı
˛;1ın;1C t

˛
n Cr

˛
n C

X
g�1

q˛g;n"
2g ; r˛n 2RnC1; q

˛
g;n 2R2gCn:

Introduce a grading in the ring CŒŒt�� �� by deg t˛
d
WD d and consider the expansion

q˛g;n D
X
k�0

q˛g;n;k; deg q˛g;n;k D 2gCnC k:

Note that the functions q˛g;n;0 and q˛g;n;1 are determined by the admissible correlators.

Let us show that @2�1;1I�;0=@.w1x/
2 D 0. Consider a monomial f of the form

(47) f D "2h.w1x/
lw
˛1
d1
� � �w

˛n
dn
; l C

X
di D 2h; .˛i ; di /¤ .1; 1/:
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Then property (46) implies that

(48) .f jw˛nD.wsol/˛n
/jxD0 D "

2h.t
˛1
d1
� � � t

˛n
dn
C h0/C

X
k�1
m�0

"2hC2khk;m;

where h0 2 R2h�lC1 , deg hk;m D 2h C 2k � l C m and the functions hk;0 and
hk;1 are completely determined by the admissible correlators. Suppose now that
@2�1;1I�;0=@.w

1
x/
2 ¤ 0. Consider monomials f as in (47) with the minimal h such

that l � 2 and such that the coefficient of f in the differential polynomial �1;1I�;0 is
nonzero. Let us choose such a monomial with l as big as possible. Then using (45)
we can see that

h�0.e�/
Y

�di .e˛i /ih D
1

2h�1Cn
h�1.e1/�0.e�/

Y
�di .e˛i /ih ¤ 0:

This contradicts the vanishing property (44), because
P
di D 2h� l � 2h� 2. We

conclude that @2�1;1I�;0=@.w1x/
2 D 0.

Let us now prove that the differential polynomial �1;1I�;0 is completely determined
by the admissible correlators. Let

cd1;:::;dngI˛1;:::;˛n
WD Coef"2g

@n�1;1I�;0

@w
˛1
d1
� � � @w

˛n
dn

;
X

di D 2g:

Let us prove by induction on g that all coefficients cd1;:::;dngI˛1;:::;˛n are uniquely determined
by the admissible correlators. We already know it for g D 0. Suppose g � 1. Using
property (48) we see that if .ˇi ; qi /¤ .1; 1/ and

P
qi D 2g� 1, then the differenceD

�1.e1/�0.e�/
Y

�qi .eˇi /
E
g
� c

1;q1;:::;qm
gI1;ˇ1;:::;ˇm

can be expressed in terms of the admissible correlators and the coefficients cr1;:::;ri
hI
1;:::;
i

with h < g . Similarly, if .ˇi ; qi /¤ .1; 1/ and
P
qi D 2g , then the differenceD

�1.e1/�0.e�/
Y

�qi .eˇi /
E
g
� c

q1;:::;qm
gIˇ1;:::;ˇm

can be expressed in terms of the admissible correlators, the coefficients cr1;:::;ri
hI
1;:::;
i

with
h < g and the coefficients c1;s1;:::;sjgI1;�1;:::;�j

. We conclude that the differential polynomial
�1;1I�;0 is completely determined by the admissible correlators.

We see that the functions .wsol/˛ are solutions of the system of partial differential
equations

@w˛

@t11
D �˛�@x�1;1I�;0; 1� ˛ �N:
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The argument from the proof of Proposition 5.2 in [5] shows that using this system
together with the string and the dilaton equations for F one can uniquely reconstruct
the whole solution .wsol/˛ starting from the dispersionless part .wsol/˛j"D0 . After that
using the string and the dilaton equations it is easy to reconstruct the whole function F .
The lemma is proved.

Proposition 5.2 Suppose that all relations (10) with
P
di D 2g and di � 1 are true.

Then the strong DR/DZ equivalence conjecture is true for any semisimple cohomologi-
cal field theory.

Proof Consider an arbitrary semisimple cohomological field theory. Propositions 4.2,
4.3, 4.5 and 4.9 imply that all relations (10) with

P
di � 2g are true. Therefore,˝Q

�di .e˛i /
˛DR
g
D
˝Q
�di .e˛i /

˛red
g

if
P
di � 2g . Both potentials F DR and F red satisfy

the assumptions of Lemma 5.1 (see [3]). Therefore, the lemma implies that F DRDF red .
So the strong DR/DZ equivalence conjecture is true.

In the appendix we will prove that relations (10) are true when g D 2, di � 1 andP
di �4. Therefore, the strong DR/DZ equivalence conjecture is true for all semisimple

cohomological field theories at the approximation up to genus 2.

Appendix Proof of the restricted genus 2 relations

Here we prove relations (10) when g D 2, di � 1 and
P
di � 4.

A.1 Relation A2
d

DB2
d

As we know from Section 4.2, in order to prove that A2
d
D B2

d
for any d � 3, it is

sufficient to prove that A23 D B
2
3 . We have

B23 D  
3
1 � 1 1

 2 ;

and A23 D Coefa4.�2 DR2.e�a; a//. The group H 2.M2;1;Q/ has dimension 3 and a
basis is given by (see eg [15])

 1 ı0 WD 1 ı1 WD 1 1 :

So it is sufficient to check that the intersection of the difference A23�B
2
3 with these

three classes is zero. We computeZ
DR2.e�a;a/ �2 1 D 1

1152
a4 D)

Z
M2;1

A23 1 D
1

1152
;
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Z
DR2.e�a;a/ �2ı0 D 0 D)

Z
M2;1

A23ı0 D 0;Z
DR2.e�a;a/ �2ı1 D 1

576
a4 D)

Z
M2;1

A23ı1 D
1
576
;

and Z
M2;1

B23 1 D

Z
M2;1

 41 D
1

1152
;Z

M2;1

B23ı0 D 1
 3
� 0 1

 2
D 0;Z

M2;1

B23ı1 D 1 1
 2 
D

1
576
:

Thus, A23 D B
2
3 .

A.2 Relation A2
2;1

DB2
2;1

We have

(49) B22;1D 
2
1 2�3

1

2

2 0
 2

�

1

2

1 1

 

 
�

1

2

1 1
 2

C3

1

2

1 1 0
 

:

In [15], E Getzler proved that H�.M2;2;Q/DR�.M2;2/. Moreover, he proved that
the group R2.M2;2/ has dimension 14 with a basis given by

(50)

ı22 WD

1

2

2 0
 

ı11j WD
1 2

1 0 1
ı11j1 WD

1 2

1 0 1

ı11j2 WD

2 1

1 0 1

ı11j12 WD

1

2

1 1 0 ı01j WD

1 2

0 1

ı01j1 WD

2 1

0 1 ı01j2 WD

1 2

0 1 ı01j12 WD

1

2

0 1

ı0j WD

1

2

1 0 ı0j1 WD 1 21 0 ı0j2 WD 2 11 0

ı0j12 WD

1

2

1 0 ı00 WD 12 0
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We computeZ
DR2.B�a1�a2;a1;a2/

�2ı22

D

Z
DR2.B�a1�a2;a1Ca2/

�2 1 D
1

1152
.a1C a2/

4
D)

Z
M2;2

A22;1ı22 D
1
384
;Z

DR2.B�a1�a2;a1;a2/
�2ı11j D 0 D)

Z
M2;2

A22;1ı11j D 0;Z
DR2.B�a1�a2;a1;a2/

�2ı11j1 D
1
576
a21.a1C a2/

2
D)

Z
M2;2

A22;1ı11j1 D
1
576
;Z

DR2.B�a1�a2;a1;a2/
�2ı11j2 D

1
576
a22.a1C a2/

2
D)

Z
M2;2

A22;1ı11j2 D 0;Z
DR2.B�a1�a2;a1;a2/

�2ı11j12 D
1
576
.a1C a2/

4
D)

Z
M2;2

A22;1ı11j12 D
1
192
:

Since �g jMg;nnMct
g;n
D 0, the intersections of all remaining 9 classes from (50) with

A22;1 are equal to zero. It is not hard to compute the intersections of the class B22;1
with the classes from (50) ans see that they agree with what we have just computed
for A22;1 . Thus, A22;1 D B

2
2;1 .

A.3 Relation A2
1;1;1

DB2
1;1;1

We have

B21;1;1 D  1 2 3� 2 2 0
 

 
� 6 2 0

 2
� 2 2 0

  
� 1 1

 

 
(51)

C 4 2 0 0
 

C 2 1 1 0
 

C 2 1 1 0
 

C 6 1 1 0
 

C 2 1 1 0
 
� 4 1 1 0 0 :

Introduce the notation

˛1 WD
1 0 0 1 ˛2 WD

1

1

0 0 ˛3 WD
1

1

0 0

˛4 WD 1 1 0 0 ˛5 WD
1

1

0 0 ˛6 WD 1 0 1 0
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a
i;j;k
3;2;1 WD

1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

a
i;j;k
1;4;1 WD

1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

a
i;j;k
1;2;3 WD

1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

a
i;j;k
2;3;1 WD

0 1 0

:::„ƒ‚…
j legs

:::„ƒ‚…
i legs

:::„ƒ‚…
k legs

b
i;j;k
2;3;1 WD

1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

b
i;j;k
1;3;2 WD

1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

b
i;j;k
3;2;1 WD

0 1 0

:::„ƒ‚…
k legs

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

c
1;1;1
2;2;2 WD 1

0

0

c
0;2;1
2;2;2 WD 1

0

0

Denote by L0 the subspace of R3.M2;3/ spanned by boundary strata ���.1/, where
the first Betti number of a stable graph � is equal to 2. The symmetric group S3
acts on M2;3 by permutations of marked points. This action induces an action on
R�.M2;3/. Define a map SymW R�.M2;3/!R�.M2;3/ by

Sym.˛/ WD 1

3Š

X
�2S3

�˛; ˛ 2R�.M2;3/:

Let L WD Sym.L0/ � R3.M2;3/
S3 . For two classes ˛; ˇ 2 R3.M2;3/ we will write

˛
modL
D ˇ if ˛�ˇ 2L. Using the formulas for  21 2R

2.M2;1/ and  1 2 2R2.M2;2/

from [15] and also the topological recursion relations in genus 0 and 1, after a long
computation we obtain

B21;1;1
modL
D �

3
5
˛1C

3
10
˛2C

4
5
˛3C

4
15
˛4C

1
10
˛5�

4
5
˛6C

1
360
a
0;1;2
1;2;3�

1
90
a
0;2;1
1;2;3

�
1
24
a
0;3;0
1;2;3C

1
40
a
1;1;1
1;2;3C

1
180
a
1;2;0
1;2;3 �

1
120
a
2;1;0
1;2;3 �

5
48
a
0;0;3
1;4;1�

1
80
a
0;1;2
1;4;1

�
1
144
a
1;0;2
1;4;1C

1
80
a
0;0;3
2;3;1�

7
240
a
0;1;2
2;3;1C

1
240
a
1;0;2
2;3;1C

1
90
a
0;1;2
3;2;1C

7
90
b
0;1;2
1;3;2

C
1
45
b
0;2;1
1;3;2 C

1
90
b
1;1;1
1;3;2 �

11
30
b
0;0;3
2;3;1 �

1
10
b
0;1;2
2;3;1 �

1
90
b
1;0;2
2;3;1 �

1
30
b
0;1;2
3;2;1

C
1
5
c
0;2;1
2;2;2C

2
45
c
1;1;1
2;2;2:

On the other hand, a direct computation using Hain’s formula gives

Coefa1a2a3
�

1

a1Ca2Ca3
DR2.F�a1� a2� a3; a1; a2; a3/

�ˇ̌̌
Mct
2;3

D . 1C 2C 3/� 6 2 0 � 3 2 0 �
6
5
1 1 �

1
5
1 1 :
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In this computation one should use that (see eg [15])

�1 D
7
10

1 1 C
1
10

1 2R1.M2/:

Using the formula [19]

�2 D
1
960

0 C
1
240

1 0 2R2.M2/;

we obtain the following formula for the class A21;1;1 :

A21;1;1
modL
D

1
120
a
0;1;2
1;2;3C

1
60
a
0;2;1
1;2;3C

1
40
a
0;3;0
1;2;3C

1
120
a
1;1;1
1;2;3C

1
60
a
1;2;0
1;2;3C

1
120
a
2;1;0
1;2;3

�
1
80
a
0;0;3
1;4;1�

1
240
a
0;1;2
1;4;1�

1
240
a
1;0;2
1;4;1�

1
80
a
0;0;3
2;3;1�

1
240
a
0;1;2
2;3;1�

1
240
a
1;0;2
2;3;1:

Thus,

B21;1;1�A
2
1;1;1

modL
D �

3
5
˛1C

3
10
˛2C

4
5
˛3C

4
15
˛4C

1
10
˛5�

4
5
˛6�

1
180
a
0;1;2
1;2;3

�
1
36
a
0;2;1
1;2;3�

1
15
a
0;3;0
1;2;3C

1
60
a
1;1;1
1;2;3�

1
90
a
1;2;0
1;2;3�

1
60
a
2;1;0
1;2;3

�
11
120
a
0;0;3
1;4;1�

1
120
a
0;1;2
1;4;1�

1
360
a
1;0;2
1;4;1C

1
40
a
0;0;3
2;3;1�

1
40
a
0;1;2
2;3;1

C
1
120
a
1;0;2
2;3;1C

1
90
a
0;1;2
3;2;1C

7
90
b
0;1;2
1;3;2C

1
45
b
0;2;1
1;3;2C

1
90
b
1;1;1
1;3;2

�
11
30
b
0;0;3
2;3;1�

1
10
b
0;1;2
2;3;1�

1
90
b
1;0;2
2;3;1�

1
30
b
0;1;2
3;2;1C

1
5
c
0;2;1
2;2;2C

2
45
c
1;1;1
2;2;2:

The famous Getzler relation [14] says that

(52) 
 WD 0 1 0 �
1
3
1 0 0 �

1
6
1 0 0 C

1
2
1 0 0

C
1
24 0 0 C

1
24 0 0 �

1
12

0 0

D 0 2R2.M1;4/:

We will adopt the following notation. Suppose g1; g2 � 0 and let i1; : : : ; ik and
j1; : : : ; jl be two lists of integers such that fi1; : : : ; ik; j1; : : : ; jlg D f1; 2; : : : ; kC lg.
Consider the moduli spaces Mg1;kC1 and Mg2;lC1 , but let us label the marked points
on curves from Mg1;kC1 and Mg2;lC1 by the numbers i1; : : : ; ik; k C l C 1 and
j1; : : : ; jl ; kC l C 2, respectively. Denote by

glg1jg2
i1;:::;ik jj1;:::;jl

WMg1;kC1 �Mg2;lC1!Mg1Cg2;kCl
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the gluing map that glues the marked points labelled by kC lC1 and kC lC2. From
Getzler’s relation we obtain

(53) .gl1j1
j1;2;3;4

/�.ŒM1;1�� 
/D
1
3
˛1�

1
6
˛2�˛3�

1
3
˛4C

1
2
˛5C˛6C

1
24
a
0;2;1
1;2;3

C
1
24
a
0;3;0
1;2;3C

1
24
a
0;0;3
1;4;1�

1
12
b
0;1;2
1;3;2 D 0 2R

3.M2;3/:

Notice that the WDVV relation on M0;5 implies that �1
3
˛1C

1
6
˛2C

1
2
˛5 D 0. Using

this observation and expressing the class ˛6 via formula (53), we get

B21;1;1�A
2
1;1;1

modL
D �

1
180
a
0;1;2
1;2;3C

1
180
a
0;2;1
1;2;3�

1
30
a
0;3;0
1;2;3C

1
60
a
1;1;1
1;2;3�

1
90
a
1;2;0
1;2;3(54)

�
1
60
a
2;1;0
1;2;3�

7
120
a
0;0;3
1;4;1�

1
120
a
0;1;2
1;4;1�

1
360
a
1;0;2
1;4;1C

1
40
a
0;0;3
2;3;1

�
1
40
a
0;1;2
2;3;1C

1
120
a
1;0;2
2;3;1C

1
90
a
0;1;2
3;2;1C

1
90
b
0;1;2
1;3;2C

1
45
b
0;2;1
1;3;2

C
1
90
b
1;1;1
1;3;2�

11
30
b
0;0;3
2;3;1�

1
10
b
0;1;2
2;3;1�

1
90
b
1;0;2
2;3;1�

1
30
b
0;1;2
3;2;1

C
1
5
c
0;2;1
2;2;2C

2
45
c
1;1;1
2;2;2:

Let � WM1;5 !M1;4 be the forgetful map that forgets the fifth marked point and
gl1;5WM1;5!M2;3 be the gluing map that glues the first and the fifth marked points.
Then from Getzler’s relation (52) we obtain

gl1;5�.�
�
/

modL
D

1
2
a
0;1;2
1;2;3�

1
6
a
0;2;1
1;2;3 �

1
3
a
1;1;1
1;2;3C

1
2
a
0;0;3
1;4;1�

1
6
a
0;1;2
1;4;1�

1
3
a
1;0;2
1;4;1C a

0;1;2
2;3;1

�
1
3
a
0;1;2
3;2;1C

1
2
b
0;0;3
1;3;2 C

1
3
b
0;1;2
1;3;2 �

1
6
b
0;2;1
1;3;2 �

1
3
b
1;0;2
1;3;2 �

1
3
b
1;1;1
1;3;2

C
1
2
b
0;0;3
2;3;1 �

1
2
b
0;1;2
2;3;1 �

1
3
b
1;0;2
2;3;1C b

0;1;2
3;2;1C c

0;2;1
2;2;2 �

2
3
c
1;1;1
2;2;2 2 L:

We can obtain another consequence from (52). Let gl1;2WM1;5!M2;3 be the gluing
map that glues the first two marked points. Then Getzler’s relation implies that

Sym.gl1;2�.�
�
//

modL
D

1
3
a
0;1;2
1;2;3C

5
18
a
0;2;1
1;2;3�

1
6
a
0;3;0
1;2;3C

1
18
a
1;1;1
1;2;3�

5
18
a
1;2;0
1;2;3�

2
9
a
2;1;0
1;2;3

�
1
6
a
0;0;3
1;4;1�

1
18
a
0;1;2
1;4;1�

1
18
a
1;0;2
1;4;1Ca

0;0;3
2;3;1C

1
3
a
0;1;2
2;3;1C

1
3
a
1;0;2
2;3;1

Cb
0;0;3
1;3;2C

1
9
b
0;1;2
1;3;2�

2
9
b
0;2;1
1;3;2 �

1
9
b
1;0;2
1;3;2�

1
3
b
1;1;1
1;3;2�

4
9
b
2;0;1
1;3;2

�
2
3
b
0;0;3
2;3;1�

2
9
b
0;1;2
2;3;1�

2
9
b
1;0;2
2;3;1C

4
9
c
0;2;1
2;2;2C

2
9
c
1;1;1
2;2;2 2 L:
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Adding 1
30

gl1;5�.�
�
/� 1

40
Sym.gl1;2�.�

�
// to the right-hand side of (54), we get

B21;1;1�A
2
1;1;1

modL
D

1
360
a
0;1;2
1;2;3�

1
144
a
0;2;1
1;2;3�

7
240
a
0;3;0
1;2;3C

1
240
a
1;1;1
1;2;3�

1
240
a
1;2;0
1;2;3(55)

�
1
90
a
2;1;0
1;2;3�

3
80
a
0;0;3
1;4;1�

1
80
a
0;1;2
1;4;1�

1
80
a
1;0;2
1;4;1�

1
120
b
0;0;3
1;3;2

C
7
360
b
0;1;2
1;3;2C

1
45
b
0;2;1
1;3;2�

1
120
b
1;0;2
1;3;2C

1
120
b
1;1;1
1;3;2C

1
90
b
2;0;1
1;3;2

�
1
3
b
0;0;3
2;3;1�

1
9
b
0;1;2
2;3;1�

1
60
b
1;0;2
2;3;1C

2
9
c
0;2;1
2;2;2C

1
60
c
1;1;1
2;2;2:

The WDVV relations on M0;4 , M0;5 and M0;6 imply that

c
1;1;1
2;2;2 D b

1;0;2
2;3;1;

c
0;2;1
2;2;2 D

3
2
b
0;0;3
2;3;1C

1
2
b
0;1;2
2;3;1;

a
2;1;0
1;2;3 D b

2;0;1
1;3;2 ;

b
1;0;2
1;3;2 D

1
2
a
1;1;1
1;2;3C a

1;2;0
1;2;3 �

1
2
b
1;1;1
1;3;2 ;

b
1;1;1
1;3;2 D a

1;2;0
1;2;3C a

1;0;2
1;4;1;

b
0;0;3
1;3;2 D

1
3
a
0;1;2
1;2;3C

2
3
a
0;2;1
1;2;3C a

0;3;0
1;2;3�

2
3
b
0;1;2
1;3;2 �

1
3
b
0;2;1
1;3;2 ;

b
0;2;1
1;3;2 D

1
2
a
0;2;1
1;2;3C

3
2
a
0;3;0
1;2;3C

3
2
a
0;0;3
1;4;1C

1
2
a
0;1;2
1;4;1� b

0;1;2
1;3;2 :

Using these relations, one can easily check that the right-hand side of (55) is zero. We
conclude that B21;1;1�A

2
1;1;1 2 L.

It is easy to see that the space L is spanned by the classes

ˇ1 WD 0 0 ˇ2 WD 0 0 ˇ3 WD 0 0 ˇ4 WD 0 0

ˇ5 WD 0 0 ˇ6 WD 0 0 ˇ7 WD 0 0 ˇ8 WD 0 0

ˇ9 WD 0 0

The WDVV relations on M0;7 give the relations

ˇ2�ˇ4Cˇ7�ˇ8 D 0;

ˇ1Cˇ2C 2ˇ3C
1
3
ˇ5C

1
3
ˇ7�

4
3
ˇ8�

2
3
ˇ9 D 0:

Therefore, dimL � 7. On the other hand, in Table 1 we compute the intersection
matrix of the classes ˇ1; : : : ; ˇ9 with the seven classes  31 ,  21 2 ,  1 2 3 , �3 ,
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�1�2 ,  1�2 and  21 ı , where
ı WD 1 1 :

This matrix is nondegenerate, so dimL D 7. Thus, in order to prove that A21;1;1 D
B21;1;1 it is sufficient to check that the intersections of A21;1;1�B

2
1;1;1 with the classes

 31 ,  21 2 ,  1 2 3 , �3 , �1�2 ,  1�2 and  21 ı are zero. This is a simple direct
computation. The relation A21;1;1 D B

2
1;1;1 is proved.

ˇ1 ˇ2 ˇ3 ˇ4 ˇ5 ˇ6 ˇ7 ˇ8 ˇ9

 31 0 1 0 1 1 0 0 0 2

 21 2 0 3 0 3 0 1 1 1 3

 1 2 3 0 6 0 6 0 0 6 6 0

�3 0 1 0 1 3 0 0 0 3

�1�2 1 9 1 9 27 3 3 3 27

 1�2 1 4 0 4 4 2 1 1 8

 21 ı 0 –2 1 0 2 0 2 0 2

Table 1: Intersection matrix of ˇ1; : : : ; ˇ9 with  31 ,  21 2 ,  1 2 3 , �3 ,
�1�2 ,  1�2 and  21 ı .

A.4 Relations A2
3;1

DB2
3;1

and A2
2;2

DB2
2;2

Suppose g; n� 1 and a1; : : : ; an 2 Z. Let a WD
P
ai . The following formula is the

particular case of Corollary 4.8 when mD 2:

(56) Ag;2.a1; : : : ; an/� a1 1A
g;1.a1; : : : ; an/

D �g DRg.a1� a; a2; : : : ; an/

C�g
X

g1�1; g2�0
g1Cg2Dg

X
ItJDf1;:::;ng

12I
2g2�1CjJ j>0

aJ

a
DRg1.f�a;AI ; aJ /�1 DRg2.AJ ;�aJ /:

Let us prove now that A2
d1;d2

D B2
d1;d2

, where .d1; d2/D .3; 1/ or .d1; d2/D .2; 2/.
By (56), we have

A2d1;d2 � 1A
2
d1�1;d2

D Coef
a
d1
1 a

d2
2

�
1

a1Ca2
�2 DR1.C�a1� a2; a1; a2/�1 DR1.a2;�a2/

�
D Coef

a
d1
1 a

d2
2

�
.a1C a2/a

3
2

576 1 2

0 0 0

�
D 0:
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On the other hand, it is easy to compute that

B23;1 D  
3
1 2�

1

2

1 1
 2

 
�

1

2

1 1
 3

;

B22;2 D  
2
1 

2
2 �

1

2

1 1
 2

 
�

1

2

1 1
 

 2
:

Comparing these expressions with formula (49), we can easily see that B23;1 D 1B
2
2;1

and B22;2 D  1B
2
1;2 . Since the relation A22;1 D B

2
2;1 is already checked, the relations

A23;1 D B
2
3;1 and A22;2 D B

2
2;2 are now also proved.

A.5 Relation A2
2;1;1

DB2
2;1;1

Using (56), we compute A22;1;1� 1A
2
1;1;1 as

(57)
X

ItJDf1;2;3g
12I; jJ j�1

Coef
a2
1
a2a3

�
aJP
ai
�2 DR1

��
�

X
ai; AI ; aJ

�
�1 DR1.AJ ;�aJ /

�

CCoef
a2
1
a2a3

�
a2C a3P

ai
�2 DR2

��
�

X
ai; a1; a2C a3

�
�1 DR0.a2; a3;�a2� a3/

�
:

Let us look at a term in the sum in the first line of (57). The class �1 DR1.AJ ;�aJ /
is a polynomial in the variables aj for j 2 J, and it doesn’t depend on a1 . We have

1

a1Ca2Ca3
�1 DR1.F�a1� a2� a3; AI ; aJ /D .a1C a2C a3/�1 2R1.M1;jI jC1/:

So, the polynomial class in the brackets in the first line of (57) depends on a1 at most
linearly. Therefore, the expression in the first line of (57) is equal to zero. Let us look
at the expression in the second line of (57). We can easily see that it is equal to

(58) 2 �Coefa2b2.gl2;0
1j2;3

/�

�
b

aCb
�2 DR2.B�a� b; a; b/� ŒM0;3�

�
D 2 � .gl2j0

1j2;3
/�.A

2
2;1 � ŒM0;3�/:

As a result, we obtain

A22;1;1 D  1A
2
1;1;1C 2 � .gl2j0

1j2;3
/�.A

2
2;1 � ŒM0;3�/:
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On the other hand, we have

B22;1;1 D  
2
1 2 3� 6

1

2 0
 2

 
� 3

1

2 0
 

 2
� 1 1

 
 

 
�

1

1 1
 

 2

C6
1

1 1 0
  

C 3
1

1 1 0
 

 
:

Using also formula (51), we compute

B22;1;1� 1B
2
1;1;1 D�3

1

2 0
 

 2
C 3

1

1 1 0
 

 
C 2

1

2 0
 

 2

� 2
1

1 1 0

 2
� 2

1

1 1 0
 

 

D 2
1

2 0
 

 2
� 6

1

2 0 0
 2

� 2
1

1 1 0
 

 

� 2

1

1 1 0

 2
C 6

1

1 1 0 0
 

:

Using (49) we see that the last expression is equal to 2 � .gl2j0
1j2;3

/�.B
2
2;1 � ŒM0;3�/ and

we get

B22;1;1 D  1B
2
1;1;1C 2 � .gl2j0

1j2;3
/�.B

2
2;1 � ŒM0;3�/:

Since the relations A22;1 D B
2
2;1 and A21;1;1 D B

2
1;1;1 are proved, we conclude that

relation A22;1;1 D B
2
2;1;1 is true.

A.6 Relation A2
1;1;1;1

DB2
1;1;1;1

We follow the same strategy as in the previous section. Using (56), we compute
A21;1;1;1� 1A

2
0;1;1;1 as

(59)
X

ItJDf1;2;3;4g
I31; jJ j�1

Coefa1a2a3a4

�
aJ

a
�2 DR1.f�a;AI ; aJ /�1 DR1.AJ ;�aJ /

�

C

X
ItJDf1;2;3;4g
I31; jJ j�2

Coefa1a2a3a4

�
aJ

a
�2 DR2.f�a;AI ; aJ /�1 DR0.AJ ;�aJ /

�
;
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where a WD
P4
iD1 ai . Let us look at a term in the sum in the first line of (59). We

have 1
a
�1DR1.e�a;AI ;aJ /D a�1 2R1.M1;jI jC1/ and the class �1 DR1.AJ ;�aJ /

doesn’t depend on the variables ai for i 2 I. Therefore, the coefficient of a1a2a3a4
can be nonzero only if I D f1g. So the expression in the first line of (59) is equal to

(60) .gl1j1
1j2;3;4

/�
�
�1�Coefa2a3a4..a2Ca3Ca4/�1 DR1.a2; a3; a4;�a2�a3�a4//

�
D�

1

1 1 0

�1 �1

� 3

1

1 1 0

�1 �1

C 2

1

1 0 1

�1 �1

C 3

1

1 0 1

�1 �1

C 3

1

1 0 1

�1 �1

:

The expression in the second line of (59) is equal to

(61) 6.gl2j0
1j2;3;4

/�.A
2
1;2 � ŒM0;4�/C 2

X
fi;j;kgDf2;3;4g

j<k

.gl2j0
1;i jj;k

/�.A
2
1;1;1 � ŒM0;3�/:

On the other hand, we have

B21;1;1;1 D  1 2 3 4� 6 2 0
 2

 
� 2 2 0

 

 

 
� 2 2 0

 

 

 
� 1 1

 
 
 

� 4 2

0

0

 

 
C 4 2 0 0

  
C 6 1 1 0

  
C 2 1 1 0

 

 

C 2 1 1 0
 

 
C 2 1 1 0

  
C 8 0

0

0

2
 

� 4 1 1 0 0
 
C 4 1

0

0

1
 

� 8 1 1 0

0

0

:

After a long direct computation, which uses only the genus 0 topological recursion
relation, we obtain that B21;1;1;1� 1B

2
0;1;1;1 equals

6.gl2j0
1j2;3;4

/�.B
2
1;2� ŒM0;4�/C2

X
fi;j;kgDf2;3;4g

j<k

.gl2j0
1;i jj;k

/�.B
2
1;1;1� ŒM0;3�/C .contd./
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C 6

1

1 1 0
 2

C 2

1

1 1 0
 

 � 2

1

1 1 0 0
 

�
1

1 1  
  
C

0B@
1

1 1
   � 2

1

1 1 0
  � 2

1

1 1 0
 

 

�6

1

1 1 0
 

 C 2

1

1 1 0 0
 

1CA :
Using the formula

 1 D �1C
1

2

1 0 2R1.M1;2/;

we can rewrite the expression in brackets above as

(62)

0BB@
1

1 1
  

�1

� 2

1

1 1 0
 

�1

� 2

1

1 1 0
 

�1

� 6

1

1 1 0
 

�1

C 2

1

1 1 0 0

�1

1CCA

C

1

1

0 1
  
� 2

1

1

0 1 0
 

� 2

1

1

0 1 0
 � 6

1

1

0 1 0
 

C 2

1

1

0 1 0 0 :

The expression on the right-hand side of (60) has the form .gl1j1
1j2;3;4

/�.�1�˛/, where

˛D� 4 1 0

�1

�3 4 1 0

�1

C2 4 0 1

�1

C3 4 0 1

�1

C3 4 0 1

�1

:
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The part in brackets in expression (62) has the form .gl1j1
1j2;3;4

/�.�1 �ˇ/, where

ˇD 4 1
  
�2 4 1 0

 
�2 4 1 0

 
�6 4 1 0

 
C2 4 1 0 0 :

Expressing all psi-classes using the genus 1 topological recursion relation and also
using the WDVV relation, it is easy to show that ˛ D ˇ . Since A22;1 D B

2
2;1 and

A21;1;1 D B
2
1;1;1 , we obtain

(63) B21;1;1;1�A
2
1;1;1;1 D 6

1

1 1 0
 2

C 2

1

1 1 0
 

 � 2

1

1 1 0 0
 

�
1

1 1  
  
C

1

1 0 1
  � 2

1

1 0 1 0
 

� 2

1

1 0 1 0
 

� 6

1

1 0 1 0
 

C 2

1

1 0 1 0 0
:

Define an operator SymW R�.M2;4/!R�.M2;4/ by

Sym.˛/ WD 1

4Š

X
�2S4

�˛; ˛ 2R�.M2;4/;

where the symmetric group S4 acts on M2;4 by permutations of marked points.
Applying the operator Sym to both sides of (63) we obtain that

B21;1;1;1�A
2
1;1;1;1 D

3
2 1 1 0

 2
C
1
2 1 1 0

 

 
�
1
2
1 1 0 0

 

�
1
4
1 1  

  
C
1
4
1 0 1

  �
1
2
1 0 1 0

 

�
1
2
1 0 1 0

 
�
3
2
1 0 1 0

 

C
1
2
1 0 1 0 0 :
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We see that the expression on the right-hand side has the form .gl1j1
j1;2;3;4

/�.M1;1��/,
where

�D 3
2 5 1 0

 2
C
1
2 5 1 0

 

 
�
1
2
5 1 0 0

 
�
1
4
5 1  

  

C
1
4
5 0 1

  �
1
2
5 0 1 0

 
�
1
2
5 0 1 0

 

�
3
2
5 0 1 0

 
C
1
2
5 0 1 0 0 :

It is sufficient to prove that � D 0. For this we express all the psi-classes using the
genus 1 topological recursion relation, and then prove that � D 0 using the WDVV
relation and Getzler’s relation. This computation is straightforward, but quite long, so
we present here only the most interesting parts of it. Expressing all the psi-classes, we
obtain

�D �1�1C �2;

where �1 2 R2.M1;5/ and �2 2 R3.M1;5/ are sums of boundary strata. Using the
WDVV relation it is not hard to prove that �2 D 0. For the class �1�1 we get the
expression

�1�1 D a
0;1;3
1 C

1
6
a
0;2;2
1 �

1
6
a
1;1;2
1 �

1
4
a
0;0;4
2 C

7
8
a
0;1;3
2 C

1
8
a
0;2;2
2 C

5
4
a
1;0;3
2 C

1
4
a
1;1;2
2

Ca
2;0;2
2 �

7
16
a
0;1;3
3 �

3
4
a
0;2;2
3 C

1
16
a
0;3;1
3 �

7
12
a
1;1;2
3 C

1
12
a
1;2;1
3 Cb

0;2;2
1

�
3
2
b
0;1;3
2 �

1
2
b
1;1;2
2 ;

where we use the notation

a
i;j;k
1 WD

5 1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

�1

a
i;j;k
2 WD

5

1 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

�1

a
i;j;k
3 WD

51 0 0

:::„ƒ‚…
i legs

:::„ƒ‚…
j legs

:::„ƒ‚…
k legs

�1

b
0;2;2
1 WD

5

0 1 0

�1

b
i;j;k
2 WD

5 0 1 0

:::„ƒ‚…
j legs

:::„ƒ‚…
i legs

:::„ƒ‚…
k legs

�1
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Consider Getzler’s relation (52). Let � WM1;5 !M1;4 be the forgetful map that
forgets the last marked point. We have

�1�
�
 D 1

2
a
0;1;3
1 �

1
6
a
0;2;2
1 �

1
3
a
1;1;2
1 C

1
2
a
0;1;3
2 �

1
6
a
0;2;2
2 �

1
3
a
1;1;2
2 C

1
2
a
0;1;3
3

�
1
6
a
0;2;2
3 �

1
3
a
1;1;2
3 Cb

0;2;2
1 Cb

0;2;2
2

D 0 2R3.M1;5/:

Let � 0WM1;5!M1;4 be the forgetful map that forgets the first marked point. We
assume that, after forgetting the first marked point, a point labelled by i with i � 2
on a curve from M1;5 becomes a point labelled by i�1 on a curve in M1;4 . The
symmetric group S4 acts on M1;5 by permutations of the first four marked points.
Define a map Sym0W R�.M1;5/!R�.M1;5/ by

Sym0.˛/ WD 1

4Š

X
�2S4

�˛; ˛ 2R�.M1;5/:

We have

�1Sym0..� 0/�
/D�1
4
a
0;1;3
1 �

1
6
a
0;2;2
1 �

1
12
a
1;1;2
1 C

1
2
a
0;0;4
2 �

1
12
a
0;2;2
2 �

1
8
a
1;0;3
2

�
1
8
a
1;1;2
2 �

1
6
a
2;0;2
2 C

3
8
a
0;1;3
3 C

1
6
a
0;2;2
3 �

1
8
a
0;3;1
3 �

1
24
a
1;1;2
3

�
5
24
a
1;2;1
3 �

1
6
a
2;1;1
3 C

3
4
b
0;1;3
2 C

1
2
b
0;2;2
2 C

1
4
b
1;1;2
2

D 0 2R3.M1;5/:

We compute

�1�1 D �1�1��1�
�
C2�1Sym0..� 0/�
/

D
3
4
a
0;0;4
2 C

3
8
a
0;1;3
2 C

1
8
a
0;2;2
2 Ca

1;0;3
2 C

1
3
a
1;1;2
2 C

2
3
a
2;0;2
2 �

3
16
a
0;1;3
3 �

1
4
a
0;2;2
3

�
3
16
a
0;3;1
3 �

1
3
a
1;1;2
3 �

1
3
a
1;2;1
3 �

1
3
a
2;1;1
3 :

Finally, applying the WDVV relations

a
2;1;1
3 D 2a

2;0;2
2 ;

a
1;0;3
2 D�

1
3
a
1;1;2
2 C

1
3
a
1;1;2
3 C

1
3
a
1;2;1
3 ;

a
0;0;4
2 D�

1
2
a
0;1;3
2 �

1
6
a
0;2;2
2 C

1
4
a
0;1;3
3 C

1
3
a
0;2;2
3 C

1
4
a
0;3;1
3 ;

it is easy to see that �1�1 D 0. The relation A21;1;1;1 D B
2
1;1;1;1 is proved.
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