Volume 24, issue 3 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Euler characteristics of Gothic Teichmüller curves

Martin Möller and David Torres-Teigell

Geometry & Topology 24 (2020) 1149–1210
Bibliography
1 M Bainbridge, Euler characteristics of Teichmüller curves in genus two, Geom. Topol. 11 (2007) 1887 MR2350471
2 H Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962) 319 MR140542
3 C Birkenhake, H Lange, Complex abelian varieties, 302, Springer (2004) MR2062673
4 C Bonatti, A Eskin, A Wilkinson, Projective cocycles over SL(2, )–actions : measures invariant under the upper triangular group, preprint (2017) arXiv:1709.02521
5 H Cohen, A course in computational algebraic number theory, 138, Springer (1993) MR1228206
6 A Eskin, S Filip, A Wright, The algebraic hull of the Kontsevich–Zorich cocycle, Ann. of Math. 188 (2018) 281 MR3815463
7 A Eskin, M Kontsevich, A Zorich, Sum of Lyapunov exponents of the Hodge bundle with respect to the Teichmüller geodesic flow, Publ. Math. Inst. Hautes Études Sci. 120 (2014) 207 MR3270590
8 A. Eskin, C. McMullen, R. Mukamel, A. Wright, Billiards, quadrilaterals and moduli spaces, J. Amer. Math. Soc. (2020)
9 A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit closures for the SL(2, ) action on moduli space, Ann. of Math. 182 (2015) 673 MR3418528
10 G van der Geer, Hilbert modular surfaces, 16, Springer (1988) MR930101
11 F E P Hirzebruch, Hilbert modular surfaces, Enseign. Math. 19 (1973) 183 MR393045
12 F Hirzebruch, G van der Geer, Lectures on Hilbert modular surfaces, 77, Presses de l’Université de Montréal (1981) 193 MR639898
13 W P Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. 2013 (2013) 2657 MR3071661
14 H Lange, S Recillas, Prym varieties of pairs of coverings, Adv. Geom. 4 (2004) 373 MR2071812
15 C T McMullen, Foliations of Hilbert modular surfaces, Amer. J. Math. 129 (2007) 183 MR2288740
16 C T McMullen, R E Mukamel, A Wright, Cubic curves and totally geodesic subvarieties of moduli space, Ann. of Math. 185 (2017) 957 MR3664815
17 M Möller, Variations of Hodge structures of a Teichmüller curve, J. Amer. Math. Soc. 19 (2006) 327 MR2188128
18 M Möller, Teichmüller curves, mainly from the viewpoint of algebraic geometry, from: "Moduli spaces of Riemann surfaces" (editors B Farb, R Hain, E Looijenga), IAS/Park City Math. Ser. 20, Amer. Math. Soc. (2013) 267 MR3114688
19 M Möller, Prym covers, theta functions and Kobayashi curves in Hilbert modular surfaces, Amer. J. Math. 136 (2014) 995 MR3245185
20 M Möller, Geometry of Teichmüller curves, from: "Proceedings of the International Congress of Mathematicians" (editors B Sirakov, P N d Souza, M Viana), World Sci. (2018) 2017 MR3966840
21 M Möller, D Zagier, Modular embeddings of Teichmüller curves, Compos. Math. 152 (2016) 2269 MR3577896
22 R E Mukamel, Fundamental domains and generators for lattice Veech groups, Comment. Math. Helv. 92 (2017) 57 MR3615035
23 C L Siegel, The volume of the fundamental domain for some infinite groups, Trans. Amer. Math. Soc. 39 (1936) 209 MR1501843
24 C C Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle, Ergodic Theory Dynam. Systems 18 (1998) 1019 MR1645350
25 A Wright, Schwarz triangle mappings and Teichmüller curves : the Veech–Ward–Bouw–Möller curves, Geom. Funct. Anal. 23 (2013) 776 MR3053761
26 A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol. 19 (2015) 413 MR3318755
27 D Zagier, On the values at negative integers of the zeta-function of a real quadratic field, Enseign. Math. 22 (1976) 55 MR406957
28 A Zorich, Flat surfaces, from: "Frontiers in number theory, physics, and geometry, I" (editors P Cartier, B Julia, P Moussa, P Vanhove), Springer (2006) 437 MR2261104