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Euler characteristics of Gothic Teichmüller curves
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We compute the Euler characteristics of the recently discovered series of Gothic
Teichmüller curves. The main tool is the construction of “Gothic” Hilbert modular
forms vanishing at the images of these Teichmüller curves.

Contrary to all previously known examples, the Euler characteristic is not proportional
to the Euler characteristic of the ambient Hilbert modular surfaces. This results in
interesting “varying” phenomena for Lyapunov exponents.
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1 Introduction

Teichmüller curves are complex geodesics in the moduli space of curves Mg . They
arise as the SL2.R/–orbits of flat surfaces with optimal dynamics, called Veech surfaces.
If the Veech surface is not obtained by a covering construction from a lower-genus
surface, it is called primitive and the resulting Teichmüller curve is called primitive too.
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There are very few constructions of primitive Teichmüller curves (see Möller [20] for a
list of known examples). Each infinite collection of primitive Teichmüller curves in a
fixed genus stems from an invariant submanifold “like the minimal stratum �M2.2/”
in genus two (see Section 2.2), by the finiteness results from Eskin, Filip and Wright [6].
While the geometry of �M2.2/ and of the Prym loci is well understood now, the
geometry of the two invariant submanifolds “like �M2.2/” recently discovered by
Eskin, McMullen, Mukamel and Wright in [8] is basically unexplored. Here we focus
on the Gothic locus �G��M4.2; 2; 2/ of flat genus four surfaces, introduced already
in McMullen, Mukamel and Wright [16].

While interest in Teichmüller curves originates from dynamics, their geometry is
strongly determined by modular forms. Teichmüller curves in an infinite series of
fixed genus always map via the Torelli map to the locus of real multiplication, ie to a
Hilbert modular surface (see Möller [17] together with [6]). Conversely, the intersection
of �G with the locus of real multiplication by the order OD is a union of Teichmüller
curves GD . These Teichmüller curves are primitive if and only if D is not a square,
which we assume in the rest of this paper. The modular forms in question are thus
Hilbert modular forms, supposed to cut out the Teichmüller curves GD inside the
Hilbert modular surface.

Contrary to the expectation from the situation in genus two and in the Prym loci of genus
three and four, there is no Hilbert modular form whose vanishing locus is precisely
equal to the Gothic Teichmüller curves GD ! Yet, there is a “Gothic” Hilbert modular
form GD whose vanishing locus is only slightly larger than GD , the difference being a
collection of modular curves, whose parameters can all be computed.

In order to state the results, we roughly recall the definition of �G ; see Section 2.1
for more details. A flat surface .X; !/ in the stratum �M4.2; 2; 2/ is Gothic if it
admits an involution J leaving ! antiinvariant and fixing the zeros of ! and an “odd”
degree three map X ! B to an elliptic curve B mapping all the zeros to a single
point. The involution J induces a degree two map X !A to another elliptic curve A.
The complement of both A and B in the Jacobian of X inherits a polarization of
type .1; 6/, as we show in Section 3. Consequently, the number 6 plays a prominent
role in the paper: the Gothic Teichmüller curves GD naturally live on Hilbert modular
surfaces XD.b/, where b is an OD –ideal of norm 6.

Our first goal is to give a natural decomposition of GD into (perhaps still reducible)
components and to compute explicitly their Euler characteristics. They can be written
in terms of Euler characteristics of those Hilbert modular surfaces and of the reducible
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locus Red23 , parametrizing .2; 3/–polarized products of elliptic curves with real
multiplication by OD .

Theorem 1.1 Let D be a nonsquare discriminant. The Gothic Teichmüller curve GD

is nonempty if and only if D � 0; 1; 4; 9; 12; 16 mod 24.

In this case, GD consists of different subcurves GD.b/ corresponding to different
OD –ideals b of norm 6. The Euler characteristics of all these subcurves agree and are
equal to

��.GD.b//D
3
2
�.XD.b//C 2�.Red23.b//:

We give a completely explicit formula in Theorem 11.1, and a table for small discrimi-
nants (Table 1) can be found at the end of the paper. The Euler characteristic of the
Hilbert modular surface XD.b/ is equal to the Euler characteristic of a standard Hilbert
modular surface if D is fundamental, and differs by a simple factor in general; see
Proposition 4.3 for the complete formula. In any case, �.XD.b// is independent of the
choice of the ideal of norm 6. We strongly suspect the subcurves GD.b/ defined in
the theorem to be irreducible but we do not attempt to prove this here.

The presence of modular curves in the vanishing locus of the Hilbert modular form GD

has another consequence that makes characteristic invariants of the Gothic Teichmüller
curves behave differently than all the examples known so far. We phrase this in terms
of Lyapunov exponents in Section 11 and restate it geometrically here.

Teichmüller curves are Kobayashi geodesic algebraic curves C in Hilbert modular sur-
faces. If z 7! .z; '.z// is the universal covering map of a Kobayashi geodesic, then for
any M 2GL2.Q.

p
D// the map z 7! .M z;M �'.z// descends to another Kobayashi

geodesic. All modular curves arise by this twisting procedure from the diagonal and the
twists of Teichmüller curves are interesting special curves on Hilbert modular surfaces.
However, this twisting does not change the most basic algebraic invariant,

�2.C /D
C � Œ!2�

C � Œ!1�
;

where Œ!i � are the foliation classes on the Hilbert modular surface. For modular curves
�2 D 1 and, in general, the list of known �2.C / of Kobayashi geodesics C was a
rather short (and finite) list (see the summary in Möller and Zagier [21, Section 1]). As
a consequence of the decomposition of fGD D 0g into several components we obtain:

Corollary 1.2 The sequence of invariants �2.GD/ is infinite and tends to 3
13

for
D!1.
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This corollary is proved in the equivalent formulation of Theorem 11.2; see also
Proposition 11.3. It is an open question whether for a fixed Hilbert modular surface the
set of �2.C / for all its Kobayashi geodesics C is finite or infinite.

We next summarize the main steps in the proof of Theorem 1.1 and explain the origin of
the Gothic modular form GD . Analyzing the definition of the Gothic locus (Section 2),
we obtain that the image of a Gothic Veech surface in its .1; 6/–polarized Prym abelian
surface is a curve with a triple point at the origin and horizontal tangents at three
nonzero 2–torsion points (Section 6). To construct these images as the vanishing
locus of a theta function, we need to impose five conditions, two stemming from the
multiplicity at the origin and the rest from the behavior at the 2–torsion points. The
(odd) theta functions vary in a 3–dimensional projective space, so we can impose the
first three conditions and, by restricting to a divisor fGD D 0g in the Hilbert modular
surface, we can also satisfy the last two conditions. Teichmüller curves exist due to
dimension miracles. From our point of view this is manifested by the last two conditions
holding simultaneously along fGD D 0g, due to theta value relations at 2–torsion points
(Section 5).

Contrary to the previous known cases in �M2.2/ and the Prym locus, the vanishing
locus of the Gothic modular form GD contains some “spurious” components apart from
the Gothic Teichmüller curves. These components form the .2; 3/–reducible locus,
points in the Hilbert modular surface corresponding to products of elliptic curves with
the natural .2; 3/–product polarization (Section 7). By studying the vanishing order
of the modular form along both the Gothic Teichmüller curve and the reducible locus
(Section 8), we can finally relate their Euler characteristics with the Euler characteristic
of the Hilbert modular surface in which they live (Section 11). This also allows us to
give a formula for the Lyapunov exponents of the individual Gothic Teichmüller curves
and to compute those of the Gothic locus.

Acknowledgements The authors thank Ronen Mukamel for sharing insights, in par-
ticular his program to compute Veech groups [22] that provided valuable cross-checks,
recorded in Table 1 on page 1208. The authors also thank Don Zagier for useful
conversations, in particular in connection with Section 10, and the referee for many
helpful suggestions.
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Strukturen in Arithmetik und Geometrie and from the DFG-Projekt Classification of
Teichmüller curves MO 1884/2–1.
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2 Examples of Gothic Teichmüller curves

In this section we introduce the Gothic locus and the Gothic Teichmüller curves,
following [16]. Not all Gothic Teichmüller curves can be presented in the shape of a
Gothic cathedral. In fact, the simplest example of a Gothic Teichmüller curve already
appeared in work of Ward [24] on triangular billiards.

2.1 The Gothic locus

Given a Riemann surface X with an involution J we say that a map �BW X!B is odd
if there exists an involution j W B! B such that �B ıJ D j ı�B. Following [16] we
define the Gothic locus �G to be the set of Riemann surfaces .X; !/ 2�M4.2

3; 03/

such that

(i) there exists an involution J 2 Aut.X / whose fixed points are the six marked
points, the zeros Z D Z.!/D fz1; z2; z3g and the marked regular points P D

fp1;p2;p3g,

(ii) the one-form ! is J –antiinvariant, that is, J�! D�! , and

(iii) there exists a genus one curve B and an odd map �BW X !B of degree 3 such
that j�B.Z/j D 1.

Every flat surface .X; !/ 2�G in the Gothic locus thus comes with maps

(1)

X

A B

P1

�A �B

p r
h

where

� �AW X !X=J ŠA is of degree 2,

� �BW X ! B is an odd, degree 3 ramified covering such that j�B.Z/j D 1,

� r W B! B=j Š P1 is the quotient map, and

� pW A! P1 is the degree 3 ramified covering that makes the diagram commuta-
tive.

These maps can be illustrated on the hexagon form in Figure 1. It admits an automor-
phism R of order 6 with R�!D �6! . Then J DR3 and �A and �B are the quotients
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Figure 1: The hexagon form in the Gothic locus (from [16]).

by R3 and R2 , respectively. Note, however, that the map �B will not be Galois
in general. The reason for the definition is that �G turns out to be an unexpected
SL2.R/–orbit closure.

Theorem 2.1 [16] The Gothic locus is a closed irreducible variety of dimension 4,
locally defined by linear equations in period coordinates.

In fact, v1; : : : ; v6; w1; : : : ; w6 are periods on the 10–dimensional space �M4.2; 2; 2/,
and

P6
iD1 vi D 0D

P6
iD1wi by construction. In fact, v1; : : : ; v5; w1; : : : ; w5 form a

coordinate system. In this coordinates �G is cut out by the conditions

(2) viC3 D�vi ; wiC3 D�wi ; v1C v3C v5 D 0; w1Cw3Cw5 D 0

for i D 1; 2; 3.

The branch points of the maps in the diagram (1) give a collection of special points. We
introduce notation for later use. Given a point x 2X we will denote the other points in
the same �B –fiber by ��1

B
.�B.x//DfxDW x

.1/;x.2/;x.3/g and hD r ı�BDpı�A .
The preimages of the ramification points of h and their behavior under the maps �A

and �B can be described in the following way:

� The image point e0
4
D �B.Z/ is fixed by j, since each zi is fixed by J. This

point is therefore sent by r to a ramification point e4D r.e0
4
/ of h. In particular

we can choose the group law on B so that e0
4

agrees with the origin O.

� The image points e0i D �B.pi/ for i D 1; 2; 3 are also fixed by j, giving rise to
the other three points of order 2 in B. Their preimages under �B are given by
��1

B
.e0i/D fpi ; qi ;J.qi/g.
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� There exist three other ramification points of the map h, among the preimages
of which there exist points fyi ;J.yi/g for i D 1; 2; 3 with ramification index 2

with respect to h each.

In summary, we have

(3)

fpi ; qi ;J.qi/g

f xpi ; xqig e0i

ei

�A �B

p r
h

fz1; z2; z3g

fxz1;xz2;xz3g e0
4

e4

�A �B

p r
h

Recall that the stratum �Mg.2; 2; 2/ has two connected components, distinguished
by the parity of the spin structure. One can take a flat surface in �G (eg the hexagon
form) and compute the winding numbers of a symplectic basis to prove that the Gothic
locus lies in the component �Meven

g .2; 2; 2/ with even spin structure (see also the
argument using �null in [16, Section 4]). We will however not use this fact when cutting
out, in Section 6, the image of the Veech surfaces in their Prym varieties with theta
functions.

The one-form ! obviously belongs to the tangent space to a three-dimensional sub-
variety of Jac.X /, the complement of A, since ! is J –invariant. We can reduce the
considerations to abelian surfaces, the complement of both A and B, thanks to the
following observation:

Lemma 2.2 [16] For .X; !/ 2�G the �B –pushforward is zero.

Proof The differential .�B/�.!/ vanishes at e0
4

, since all the �B –preimages of that
point are zeros of ! , and this pushforward differential is holomorphic. On the elliptic
curve B this implies .�B/�.!/D 0.

2.2 Gothic Teichmüller curves: cathedrals and semiregular hexagons

The Gothic locus �G is “like �M2.2/” in a precise sense: it is an affine invariant
manifold of dimension four and rank two (in the sense of [26]). In this situation, the
intersection with the locus where the Prym variety (as defined in detail in Section 3)
has real multiplication by a quadratic field is a union of Teichmüller curves. That is, if
we let

�GDDf.X; !/2�G W! is an eigenform for real multiplication by OD on Prym X g;
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Figure 2: A cathedral-shaped surface in the Gothic locus.

the image GD �M4 is a finite union of Teichmüller curves by [16, Theorem 1.7]. We
give flat pictures of some of these Teichmüller curves.

The first flat picture is the Gothic cathedral, Figure 2. It was obtained in [16] by shearing
jointly the light gray cylinders in Figure 1 (which preserves membership in �G ) and a
cut-and-paste operation until these light gray cylinders become the ones containing the
sides e , f and g and the dark gray cylinders transform into the cylinders containing
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Figure 3: A duck-shaped surface in the Gothic locus
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the sides i and j. After normalizing in the horizontal and vertical directions, one can
furthermore assume that the periods have the form

aD dD 1
2
.1C i/; bD cD 1

2
.1� i/; hD i; eD fD 1

2
gD ˛; iD jD ˇi

for some ˛; ˇ 2R. For appropriate values of ˛ and ˇ the ratios of the moduli of all
vertical and of all horizontal cylinders are commensurable and, therefore, the Veech
group of the cathedral contains parabolic elements fixing the vertical and horizontal
direction. In fact, this happens whenever ˛D xCy

p
d and ˇD�3x� 3

2
C3y
p

d for
d > 0 and x;y 2Q. The product of such parabolic elements is then hyperbolic and
has quadratic trace field Q.

p
d/ and, consequently, Figure 2 generates a Teichmüller

curve [16, Section 9].

A more precise computation shows that eg for x D 0, y D 1
2

and d D 2 the period
matrix of Prym.X; �A; �B/ (see Section 3) is equivalent to

…D

�
�3
p

2 �3
p

2� 1C 3i �3C 3i 3i
p

2� 3i

3
p

2 3
p

2� 1C 3i �3C 3i �3i
p

2� 3i

�
:

This abelian variety admits real multiplication by O288 , as can by seen by the analytic
and rational representations

Ap
288=2

D

 p
288
2

0

0 �

p
288
2

!
and Rp

288=2
D

0BB@
18 11 �3 �9

�18 �9 9 9

18 15 �3 �3

0 6 6 �6

1CCA ;
ie the identity Ap

288=2
…D…Rp

288=2
holds.

Alternatively, one can move the corners of the hexagon while maintaining the rela-
tions (2) and the surface becomes horizontally and vertically periodic with cylinders as
in Figure 3. Concretely, we may take

(4)
v1 D xCyi; v2 D 2x; v3 D x�yi;

w1 D 1� i; w2 D 1C i; w3 D 2i

for x;y 2R.

Proposition 2.3 Let x;y 2Q.
p

d/ be such that

1C 3x

y.1Cx/
;
x.yC 3/

yC 1
2Q:

Then the flat surface in Figure 3 generates a Teichmüller curve in GD for some D such
that Q.

p
D/DQ.

p
d/.
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Proof The coordinates in (4) are chosen so that the flat surface admits a horizontal
and a vertical cylinder decomposition. The moduli of the horizontal cylinders are given
by .m1;m2/ D .2.1C 3x/=y; 2.1C x// while the moduli of vertical cylinders are
.m0

1
;m0

2
/D .2.yC 1/=x; 2.yC 3//, the commensurability of which is given by the

above conditions on x and y .

It is amusing to note that a curve in this series of Teichmüller curves in GD was in the
literature long before the discovery of the whole series. The (irreducible) curve G12 will
be our second running example. We recall the notation T .m; n/ of Wright [25] for the
Veech–Ward–Bouw–Möller curve generated by the unfolding of the .m; n;1/–triangle
(see also [24]), and the “semiregular polygons” decomposition of the corresponding
Veech surface .Ym;n; �m;n/ of Hooper [13].

Proposition 2.4 The Teichmüller curve G12 agrees with the Veech–Ward–Bouw–
Möller curve T .3; 6/. It is generated by the flat surface in Figure 3 with x D

p
3

3
and

y D�
p

3, which agrees with the semiregular polygon decomposition of .Y3;6; �3;6/

after scaling the axes by 3
4

and 4p
3

. The Veech group of G12 is the triangle group
�.3; 6;1/, hence �.G12/D�

1
2

.

Proof The equivalence of the flat presentation is a straightforward check using the
notation conventions given in the references. To see that this example corresponds to
discriminant D D 12 in the Gothic series it is enough to check that

…D

�
.18i � 6/.

p
3C 1/=.

p
3C 3/ 12i.

p
3C 1/=.

p
3C 3/ 6i � 6 4

.18i � 6/.
p

3� 1/=.
p

3� 3/ 12i.
p

3� 1/=.
p

3� 3/ 6i � 6 4

�
gives the period matrix of the corresponding Prym variety Prym.X; �A; �B/ (see
Section 3) and it admits real multiplication by O12 defined by the analytic and rational
representation

Ap
12=2
D

 p
12
2

0

0 �

p
12
2

!
and Rp

12=2
D

0BB@
0 0 3 �2

0 0 �3 3

3 2 0 0

3 3 0 0

1CCA :

3 Prym varieties for two maps

Given a finite collection of maps �i W X ! Yi between curves, the Prym variety
Prym.X; �1; : : : ; �n/ (in a generalized sense) is the complementary abelian variety
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to the image of the maps ��i W Jac Yi ! Jac X, that is, the perpendicular space to the
tangent spaces

L
�_

Yi
divided by its intersection with the period lattice. The main

goal of this section is to determine the signature of the polarization on this Prym variety
Prym.X /D Prym.X; �A; �B/ in the case of a Gothic flat surface.

Proposition 3.1 The restriction of the principal polarization on Jac.X / is a polariza-
tion on Prym X of type .1; 6/. Consequently, the dual Prym variety Prym_X has a
natural polarization of type .1; 6/, too.

We first recall an equivalent definition of complementary abelian subvarieties in terms
of endomorphisms. Let .T;L/ be an abelian variety, that is, a complex torus T DV =ƒ

together with a positive-definite line bundle L. Given an abelian subvariety �W Y ! T ,
one can define its exponent eY as the exponent e.L/ of the induced polarization ��L,
and its norm endomorphism NY 2 End.T / and symmetric idempotent "Y 2 EndQ.T /

as

(5) NY WD � ��LL��L and "Y WD
1

eY
NY ;

respectively, where �LW T ! T _ is the isogeny associated to a line bundle L and
 L D e.L/��1

L (see [3, Section 5.3]). In the case of L being a principal polarization,
the exponent of Y is precisely eY Dminfn>0 Wn"Y 2End.T /g (see Proposition 12.1.1
of [3]).

The assignment Y 7! "Y and its inverse " 7!X " WD im.n�/, for any n> 0 such that
n"2End.T /, induce a bijection between the set of abelian subvarieties of T and the set
of symmetric (with respect to the Rosati involution f 7! f 0 D ��1

L
yf �L ) idempotents

in EndQ.T /. Accordingly, the canonical involution " 7! 1� " on the set of symmetric
idempotents induces an involution Y 7!Z WDX 1�"Y on the set of abelian subvarieties.
The abelian subvariety Z is called the complementary abelian subvariety of Y , and
the exponent eZ agrees with eY in the case of L being a principal polarization. The
map .NY ;NZ /W X ! Y �Z is an isogeny and the identities

NY jY D eY Id; NY jZ D 0DNY NZ D 0; eY NZ C eZ NY D eY eZ Id

hold [3, Section 5.3].

Now let � W X ! Y be a morphism between curves. The pullback map defines a
homomorphism ��W Jac Y ! Jac X. This map is, moreover, injective whenever �
does not factor through a cyclic étale cover of degree � 2. Under these conditions,
the Prym variety Prym.X; �/ of the map � is defined as the complementary abelian
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variety of ��.Jac Y / (or, equivalently, as the connected component of the identity
of the kernel ker N��.Jac Y / ). The Jacobian of X decomposes, up to isogeny, as
Jac X � ��.Jac Y /� Prym.X; �/. Note that, in general, Prym.X; �/ is not a Prym
variety in the classical sense (see [3, Section 12]), as the induced polarization will not
be a multiple of the principal polarization.

Consider now a pair of morphisms of curves �1W X ! Y1 and �2W X ! Y2 , together
with the corresponding homomorphisms ��

1
W Jac Y1! Jac X and ��

2
W Jac Y2! Jac X.

Assume moreover that there exist morphisms g1W Y1! Y and g2W Y2! Y to some
curve Y such that the diagram

X

Y1 Y2

Y

�1 �2

g1 g2

h

commutes. Under a mild nonfactorization condition, one can decompose Jac X further
in terms of Jacobians.

Proposition 3.2 [14] Suppose g1 and g2 do not both factorize via the same mor-
phism Y0 ! Y of degree � 2. Then ��

2
Prym.Y2;g2/ is an abelian subvariety of

Prym.X; �1/. In particular, Jac X decomposes, up to isogeny, as

Jac X � h�.Jac Y /���1 Prym.Y1;g1/��
�
2 Prym.Y2;g2/�P

for some subvariety P of Jac X.

The subvariety P is called the Prym variety Prym.X; �1; �2/ of the pair of coverings
.�1; �2/. In the case that Y D P1 , the summand h�.Jac Y / is of course trivial and
Prym.Yj ;gj /D Jac Yj .

We now specialize to the Gothic situation and give explicitly the various norm en-
domorphisms for later use. We write A_ and B_ for the image of ��

A
and ��

B
,

respectively.

Proposition 3.3 Let T be a principally polarized abelian variety and A_;B_ � T

be abelian subvarieties with coprime exponents eA and eB and such that NANB D 0.
Then Y DA_ �B_ is a subvariety of T . Moreover, the norm endomorphisms of Y

and its complementary abelian variety P satisfy

NY D eBNAC eANB and NP D eAeB Id�NY :
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Proof Injectivity of Y ! T follows from coprimality. Writing N D eBNAC eANB ,
one has N 2 D eAeBN and N jY D eAeB IdY . The idempotent " D .1=eAeB/N

corresponds to the abelian subvariety Y and it is of exponent eAeB since eY D

minfn> 0 W n"Y 2 End.T /g and .eA; eB/D 1. The rest of the claims follow.

Proof of Proposition 3.1 Thanks to diagram (1) and since gcd.2; 3/D 1 the hypoth-
esis of Proposition 3.2 is met. Moreover, A_ �B_ has a polarization of type .1; 6/
and, by [3, Corollary 12.1.5], the same holds for the complementary abelian variety.

4 Hilbert modular surfaces and modular embeddings

The Prym–Torelli map t associates with a flat surfaces in the Gothic locus, or more
generally with any genus four surface admitting maps �A and �B that fit into the
diagram (1), the dual Prym variety Prym_.X; �A; �B/. (The reason for dualizing will
become apparent in Section 6.) By Proposition 3.1 this gives a map t W �G!A2;.1;6/

to the moduli space of .1; 6/–polarized abelian surfaces. The goal of this section is to
recall some basic properties of Hilbert modular surfaces that arise from the following
observation:

Proposition 4.1 The Prym–Torelli image t.GD/ of the Gothic locus is contained in the
image of a Hilbert modular surface XD.b/ inside the moduli space of .1; 6/–polarized
abelian surfaces, where b is an OD –ideal of norm 6.

We compute here the Euler characteristics of these Hilbert modular surfaces XD.b/

and discuss the modular embeddings that induce the map XD.b/!A2;.1;6/ .

4.1 Hilbert modular surfaces

For any positive discriminant D � 0; 1 mod 4, write D D b2 � 4ac for suitable
a; b; c 2 Z. The (unique) quadratic order of discriminant D is defined as OD D

ZŒT �=.aT 2C bT C c/. This order agrees with OD D Z˚ 
DZ inside the quadratic
field K DQ.

p
D/, where 
 WD 
D D

1
2
.DC

p
D/, provided that D is not a square.

For any fractional ideal c � K, we denote by c_ the dual with respect to the trace
pairing, ie c_ D fx 2K W trK

Q.xc/� Zg. In particular, O_
D
D

1p
D
OD .

Let b be an OD –ideal. The OD –module b˚O_
D

is preserved by the Hilbert modular
group

SL.b˚O_D/D

 
OD

p
Db

1p
D
b�1 OD

!
\SL2.K/:
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Associated with b we can construct the Hilbert modular surface

XD.b/D SL.b˚O_D/nH
2:

4.2 Abelian surfaces with real multiplication and a .1;n/–polarization

An abelian surface T admits real multiplication by OD if there exists an embedding
OD ,! End.T / by self-adjoint endomorphisms. We will always assume that the action
is proper, in the sense that it cannot be extended to an action of a larger quadratic
discriminant OE �OD .

The different components of the moduli space of .1; n/–polarized abelian varieties
with a choice of real multiplication by OD are parametrized by certain Hilbert modular
surfaces (see [12, Chapter 7]).

More precisely, suppose that .T D C2=ƒ;L/ is an abelian variety with a .1; n/–
polarization L and a choice of real multiplication by OD . Then ƒ is a rank-two
OD –module with symplectic pairing of signature .1; n/. By [2] such a lattice splits as
a direct sum of OD –modules. Moreover, although OD is not a Dedekind domain for
nonfundamental discriminants D, any rank-two OD –module is isomorphic to b˚O_

D

for some OD –ideal b. The isomorphism can moreover be chosen so that the symplectic
form is mapped to the trace pairing h.a; b/T ; .za; zb/T i D trK

Q.a
zb � zab/. The type of

such a polarization is .d1; d2/, where di 2N are uniquely determined by d1 j d2 and
OD=bŠ Z=d1Z�Z=d2Z.

In the case of a polarization of type .1; n/, it follows (see for example Proposition 5.2.1
of [5]) that the ideal b can be generated as a Z–module by

�
1
2
.r C
p

D/; n
�

for some
0� r < 2n. In particular, N K

Q .b/D n.

Conversely, for any ideal b of norm n and � D .�1; �2/ 2H2 , we define the lattice

ƒb;� D f.aC b�1; a
�
C b��2/

T
j a 2 b; b 2O_g:

The quotient T� D C2=ƒb;� is an abelian surface with a .1; n/–polarization (given
by the trace pairing) and real multiplication by OD . The isomorphism class of T�

depends only on the image of � in XD.b/.

The proof of Proposition 4.1 follows from this observation and the real multiplication
built into the definition of the Gothic curves GD .

It also follows that the locus of .1; n/–polarized abelian varieties with a choice of
real multiplication by OD has as many components as ideals b of norm n in OD ,
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each of these components being parametrized by the Hilbert modular surface XD.b/.
Concretely, for the case we are interested in:

Proposition 4.2 The moduli space of .1; 6/–polarized abelian surfaces with a choice
of real multiplication by OD is empty for D � 5 mod 8 or D � 2 mod 3.

It is nonempty and irreducible for D� 0; 12 mod 24, it has two irreducible components
for D � 4; 9; 16 mod 24 and four for D � 1 mod 24.

Proof By the preceding discussion, the locus of .1; 6/–polarized abelian varieties
with a choice of real multiplication by OD is nonempty if and only if there is an
OD –ideal b with N K

Q .b/D 6, ie if and only if D � 0; 1; 4; 9; 12; 16 mod 24.

Each connected component of this locus is parametrized by a Hilbert modular surface
XD.b/ for an OD –ideal b of norm 6. For D� 0; 12 mod 8 there is exactly one prime
ideal b2 of norm 2 and one prime ideal b3 of norm 3, so that the locus is connected.
For D � 9 mod 24 the prime 2 splits (but 3 is ramified) and for D � 4; 16 mod 24

the prime 3 splits (but 2 is ramified), resulting in two connected components. For
D � 1 mod 24 both primes split.

Note, however, that the locus of real multiplication in A2;.1;6/ has in general fewer
components than the moduli space of abelian surfaces with a chosen real multiplication
by OD . In fact, the abelian varieties parametrized by XD.b/ and by XD.b

� / map to
the same subsurface in A2;.1;6/ .

4.3 Euler characteristics

The notion of Euler characteristic (of curves and of Hilbert modular surfaces) refers
throughout to orbifold Euler characteristics. Let D D f 2D0 be the factorization of the
discriminant into a fundamental discriminant D0 and a square of f 2N . The Euler
characteristic of Hilbert modular surfaces has been computed by Siegel [23] for the
more usual Hilbert modular surface XD DXD.OD/. A reference including also the
case of nonfundamental discriminants is [1, Theorem 2.12]. Altogether,

�.XD/D 2f 3�Q.
p

D/
.�1/

�X
r jf

�
D0

r

�
�.r/

r2

�
;

where � is the Möbius function and
�

a
b

�
is the Jacobi symbol. The case we are

interested in can be deduced from this formula.
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Proposition 4.3 The Euler characteristics of XD.b/ for b of norm 6 and of XD are
related by

�D WD
�.XD.b//

�.XD/
D

8̂̂̂<̂
ˆ̂:

1 if gcd.6; f /D 1;
3
2

if gcd.6; f /D 2;

4
3

if gcd.6; f /D 3;

2 if gcd.6; f /D 6:

Proof The groups SL.OD˚O_
D
/ and SL.b˚O_

D
/ are commensurable. To determine

the indices in their intersection, we conjugate both groups by
�p

D 0
0 1

�
. This takes the

first group into SL.OD ˚OD/ and the second group into SL2.b˚OD/. The two
images under conjugation contain

�b D
˚�

a b
c d

�
2 SL2.K/ W a; d 2OD ; b 2 b; c 2OD

	
;

with a finite index that we now calculate. We factorize bD p2p3 into the primes of
norm 2 and 3 and consider the action of SL.OD˚OD/ on P1.OD=p2/�P1.OD=p3/.
This action is transitive, in fact elementary matrices in SL2.OD=p2/ and SL2.OD=p3/

generate a transitive group and elementary matrices can obviously be lifted. Since �b
is precisely the stabilizer of ..0 W 1/; .0 W 1//, we conclude

ŒSL.OD ˚OD/ W�b�D jP
1.OD=p2/�P1.OD=p3/j D 12:

If b is an invertible ideal, we use SL.b˚OD/ D SL.OD ˚ b�1/ and consider the
projection

prW SL.OD ˚ b�1/! SL.OD=p3˚ b�1=p�1
2 /�SL.OD=p2˚ b�1=p�1

3 /;

where in the range the modules are considered as an OD=p3 –module and an OD=p2 –
module (ie as vector spaces), respectively. Even the smaller group �b contains the
kernel of pr, and in fact �b is precisely the stabilizer of ..0 W 1/; .0 W 1//. We conclude
that its index is 12 in SL.b˚OD/ and this completes the case gcd.6; f /D 1.

If gcd.6; f /D 2, we use that p�1
2
DOD=4 and consider SL.OD˚b�1/ as a subgroup

of SL.OD=4˚zp
�1
3
/, where the tilde indicates that we now extended scalars of p�1

3
to

form an OD=4 –module. We consider the projection

prW SL.OD=4˚zp
�1
3 /! SL.OD=4=zp3˚zp

�1
3 =OD=4/�SL.OD=4=p2˚zp

�1
3 =p2zp

�1
3 /:

Again, even the smaller group �b contains the kernel of pr. The image of SL.OD˚b
�1/

under pr is contained in the full first factor times the lower-triangular matrices in the
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second factor, as can be checked using a set of generators for these groups consisting
of elementary matrices. The image of �b under pr is the stabilizer of .0 W 1/ in the first
factor times the lower-triangular matrices with OD=p2 �OD=4=p2 Š zp

�1
3
=p2zp

�1
3

in
the lower-left corner in the second factor. This subgroup is of index 4 � 2D 8 and this
concludes the case gcd.6; f /D 2.

The remaining cases are similar, using p�1
3
DOD=9 if gcd.6; f /D 3 and b�1DOD=36

if gcd.6; f /D 6.

4.4 Siegel modular embeddings

Let XD.b/ parametrize a component of the moduli space of .1; n/–polarized abelian
varieties with a choice of real multiplication by OD as above. The forgetful map
XD.b/!A2;.d1;d2/ to the moduli space of .d1; d2/–polarized abelian varieties can
be lifted to a holomorphic map  W H2!H2 which is equivariant with respect to a
homomorphism ‰W SL.b˚O_

D
/!GP , where P WDPd1;d2

D
�

d1 0
0 d2

�
and GP is the

symplectic group for the polarization type .d1; d2/ (see [3, Section 8.2]),

GP D
˚
M 2 Sp4.Q/ WM

T
�

I2 0
0 P

�
Z4
�
�

I2 0
0 P

�
Z4
	
:

Such a lift . ;‰/ is called a Siegel modular embedding, and will be used to pull
back classical theta functions, given in standard coordinates on the universal family
over H2=GP , to XD.b/. We note in passing that there are two useful conventions
for symplectic groups in the case of nonprincipal polarizations. The other symplectic
group

SpP
2g.Z/D

˚
M 2 Z2g�2g

WM �
�

0 P
�P 0

�
�M T

D
�

0 P
�P 0

�	
is convenient, since it has integral entries. Conjugation by

�
I2 0
0 P

�
takes SpP

2g.Z/

into Gp . Whereas the action of GP is the standard action, the group SpP
2g.Z/ acts

on H2 by

Z 7! .AZCBP /.P�1CZCP�1DP /�1 for M D
�

A B
C D

�
2 SpP

2g.Z/:

In order to construct Siegel modular embeddings, one needs to find an appropriate
Z–basis of b˚O_

D
. Let c be any fractional OD –ideal and �D .�1; �2/ an ordered

basis of c_ , and define the matrices

(6) B D B� D

�
�1 ��

1

�2 ��
2

�
and C D .B�1

� P /T D

�
�1 ��

1

�2 ��
2

�
:
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We say that .�1; �2/ is a basis symplectically adapted to P (or a .d1; d2/–symplectically
adapted basis) if .�1; �2/ is the basis of an OD –ideal. In this case we may factor
the ideal as cb, where b is necessarily an ideal of norm n D d1 � d2 . Accordingly,
the basis � determines the rank-2 OD –module cb˚ c_ that, provided with the trace
pairing, becomes a .d1; d2/–polarized module with symplectic basis

.�1; 0/; .�2; 0/; .0; �1/; .0; �2/:

We do not necessarily assume d1 j d2 here.

To give an example in the particular case of cDOD and bD
˝
1
2
.r C
p

D/; n
˛

an ideal
of norm n, we can always use the basis �D 1p

D

˝
1; 1

2
.�r C

p
D/
˛

of O_
D

, which is
.1; n/–symplectically adapted to P1;n and such that the first column of .B�1

� P1;n/
T

agrees with the given basis of b.

The period matrix for T� DC2=ƒb;� with respect to eigenforms for the OD –action
becomes

…u D

��
�1 0

0 �2

�
�BT
�

ˇ̌̌̌
C T

�
:

We refer to the corresponding coordinates of C2 as eigenform coordinates uD .u1;u2/.
By multiplying on the left by B� , one gets the period matrix in standard coordinates
v D B� �u,

…v D

�
��

ˇ̌̌̌
1 0

0 n

�
; where �� D B� �

�
�1 0

0 �2

�
�BT
� 2H2:

Let us remark that, with the notation of Section 5.6, one can assume that the columns
of …v correspond to the lattice vectors �1 , �2 , �1 and �2 , respectively.

We claim that the following is a well-defined homomorphism:

(7) ‰W SL.b˚O_D/!GP ; ı D

�
a b

c d

�
7!

�
B� 0

0 B�T
�

��
ya yb

yc yd

��
B�1
� 0

0 BT
�

�
:

Here we denote by yk the matrix
�

k 0
0 k�

�
for k 2K. The claim can be easily checked

by studying the action on integral column vectors of the four blocks forming ‰.ı/.

It is clear that . ;‰/ defined by  W H2 ! H2 , � D .�1; �2/ 7! �� , and ‰ as
above induces the forgetful map XD.b/!A2;.1;n/ and is therefore a Siegel modular
embedding.

We finish this section with a criterion for some specific bases to be symplectically
adapted. Recall that to a given triple of integers QD .a; b; c/ such that DD b2�4ac ,
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one can associate the fractional ideal a_Dh1; �Qi of OD , where �QD
1

2a
.�bC

p
D/

is the quadratic irrationality of Q.

Lemma 4.4 Let .d1; d2/ be the type of a polarization such that gcd.d1; d2/D 1.

The basis .1; �Q/ is a .d1; d2/–symplectically adapted basis of a_ if and only if
a� 0 mod d1 and c � 0 mod d2 . Moreover, abD ap

D
hd2;�d1�

� i.

Note that the choice of the type .d1; d2/ of the polarization does not follow the usual
convention d1 j d2 except in the case d1 D 1.

Proof Let

B D

�
1 1

1
2a
.�bC

p
D/ 1

2a
.�b�

p
D/

�
and P D

�
d1 0

0 d2

�
:

The basis .1; �Q/ is a .d1; d2/–symplectically adapted basis if and only if the columns
of .B�1P /T generate an ideal. This is equivalent to the existence of an integral
matrix R satisfying�

1
2
.DC

p
D/ 0

0 1
2
.D�

p
D/

�
B�1P D B�1PR:

Now a simple calculation shows that

P�1B

�
1
2
.DC

p
D/ 0

0 1
2
.D�

p
D/

�
B�1P D

�
1
2
.DC b/ ad2=d1

�cd1=d2
1
2
.D� b/

�
:

Since b �D mod 2, the claim follows. The generators of ab correspond to the first
column of the matrix .B�1P /T .

4.5 Cusps of XD.b/

Cusps of XD.b/ are orbits of P1.K/ under the action of SL.b˚O_
D
/. Via the map

.˛ Wˇ/ 7! aD ˛OD Cˇ
p

Db�1 , they correspond to ideal classes of invertible OD –
ideals a (see [10, Section I.4]). In order to study the behavior of modular forms around
the different cusps and to avoid the problem of changing coordinates in SL.b˚O_

D
/nH2 ,

one can instead change the Hilbert modular surface in the following way.

Let a be an invertible OD –ideal. The trace pairing defined in the previous subsection
induces again a symplectic pairing of type .1; n/ on the “shifted” OD –module ab˚a_ .
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In particular, one can define a lattice ƒa
b;� for each � D .�1; �2/ 2H2 as above and

the Hilbert modular surface

X a
D WDX a

D.b/D SL.ab˚ a_/nH2;

where

SL.ab˚ a_/D

 
OD

p
Da2b

1p
D
a�2b�1 OD

!
\SL2.K/;

parametrizes .1; n/–polarized abelian surfaces with a choice of real multiplication
by OD too. In fact, for any element

(8) M D

�
˛ ˇ


 ı

�
2

 
a

p
Dab

1p
D
.ab/�1 a�1

!
\SL2.K/;

the map
�W H2

!H2; .�1; �2/ 7! .M �1;M
��2/;

is equivariant with respect to the action of U 2 SL.b ˚ O_
D
/ on its domain and

M UM�12SL.ab˚a_/ on its range. Via the map � , the cusp of XD.b/ corresponding
to a is sent to the cusp at infinity of X a

D
.b/.

The matrices defined in the last section for the usual Hilbert modular group can
be changed accordingly. Let � D .�1; �2/ now be an ordered basis of a_

D
that is

symplectically adapted to P and such that the first column of .B�1
�

P /T forms a basis
of the ideal ab. Then the matrix B� determines a Siegel modular embedding . a; ‰a/

by setting  a.�1; �2/D B�
�
�1 0
0 �2

�
BT
�

and by defining ‰a as in (7).

As expected, by changing the cusp at infinity we are changing the Hilbert modular
surface, but the Siegel modular embedding . a; ‰a/ and the general one . ;‰/
constructed in the last section are compatible.

Proposition 4.5 Let �D .�1; �2/ and � D .�1; �2/ be symplectically adapted bases
of O_

D
and a_ determining the OD –modules b˚ O_

D
and ab˚ a_ , respectively.

Moreover, let M be the matrix in (8) and define the matrix �M D � a b
c d

�
by

aD B� y̨B
�1
� ; b D B� y̌B

T
� ; c D B�T

� y
B�1
� ; d D B�T

�
yıBT
� :

Then �M belongs to the symplectic group GP and the left action map

z .�/D �M �� WD .a�C b/.c�C d/�1

lifts the map � to the Siegel upper halfspace, ie z ı D  a ı� .
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Proof Proceeding as in the last section, one can easily check that �M 2GP . Now, by
definition and using the abbreviation � D .�1; �2/ we have

 a ı�.�1; �2/D B�
��
˛ 0
0 ˛�

��
�1 0
0 �2

�
C
�
˛ 0
0 ˛�

��
�
�� 
 0

0 
�

��
�1 0
0 �2

�
C
�
ı 0
0 ı�

���1
BT
�

D .B� y̨B
�1
�  .�/CB� y̌B

T
� / � .B

�T
� y
B�1

�  .�/CB�T
�
yıBT
� /
�1

and thus the map z has the required commutation property.

5 Line bundles on .1;n/–polarized abelian surfaces

Classical theta functions are sections of line bundles on the abelian surface T DC2=ƒ,
where ƒD…Z4 is the period lattice generated by the period matrix …D .�;P1n/.
They are given by the Fourier expansion

#

�
c1

c2

�
W H2 �C2

!C; #

�
c1

c2

�
.�; v/D

X
x2Z2Cc1

e.xT�x/e.2xT .vC c2//;

where e.t/D e�it . (We consider all vectors inside the formula as column vectors). The
argument c is called the characteristic of the theta functions. Theta functions that differ
only in their characteristics correspond to sections of line bundles that are translates of
each other. For the moment we think of � fixed and consider the dependence on � in
the image of a Siegel modular embedding starting from Section 5.3

The purpose of this section is to give a basis of sections of a line bundle on a .1; n/–
polarized abelian surface for a characteristic chosen with the application in Lemma 6.5
in mind. Moreover we compute the Fourier expansions of these line bundles with
respect to a symplectically adapted basis. The main goal are consequently the Fourier
expansions in Proposition 5.5 and the relation among the values of these theta functions
at 2–torsion points in (16). The miraculous reduction of the number of constraints
appearing in the next section relies on this.

Most statements in this section are essentially in Sections 3.1, 4.6 and 4.7 of [3] and
which we rewrite for our purposes. Since this reference uses the (equivalent) language
of canonical (as opposed to classical) theta functions, we provide a short introduction
and conversion between the languages.

5.1 Canonical theta functions

Let V be a complex vector space and let ƒ be a lattice in V . To a line bundle L on the
complex torus T DV =ƒ one associates its first Chern class H D c1.L/, which we view
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as a Hermitian form on V whose imaginary part takes integral values on ƒ. To a line
bundle L one can associate a semicharacter �W ƒ! S1 such that conversely L is the
line bundle associated with (see [3, Appendix B]) the canonical factor of automorphy

(9) aL.�;u/D �.�/ exp.�H.u; �// 2Z1.ƒ;H 0.O�T //; u 2 V; � 2ƒ:

This correspondence can be made more concrete in the case that H is positive-definite,
ie the line bundle L is ample on T and hence T an abelian variety. A decomposition
of V for H is a direct sum V D V1˚V2 such that ƒi WD Vi \ƒ are isotropic with
respect to E D Im H. For such a decomposition there is a standard semicharacter

(10) �0.u/D exp.� iE.u1;u2//; where uD u1Cu2; ui 2 Vi ;

with associated line bundle L0 D L.H; �0/. For every other line bundle L with
c1.L/ D H there is a point c 2 V such that L D t�c L0 . The point is called the
characteristic of L for the chosen decomposition. It is uniquely determined up to
translation by an element in

ƒ.H /D fu 2 V jE.u; �/ 2 Zg:

(Here and in the sequel we often write eg ƒ.L/ and ƒ.H / interchangeably for notions
depending only on the first Chern class of the line bundle.) Consequently, characteristics
for a given decomposition are in bijection with V =ƒ.H /.

For a given line bundle L the global sections H 0.T;L/ can be identified with functions
# W V !C , #.uC�/D f .�;u/#.u/, where f is a factor of automorphy for L. More
concretely, in the case f D aL as in (9) the functions

# W V !C; #.uC�/D aL.�;u/#.u/;

are called canonical theta functions for L, which we now construct. We define, for
every c 2 V ,

(11) #c.u/D exp
�
��H.u; c/� �

2
H.c; c/C �

2
B.uC c;uC c/

�
�

X
�2ƒ1

exp
�
�.H �B/.uC c; �/� �

2
.H �B/.�; �/

�
;

where B is the symmetric bilinear extension of H jV2
. For every w 2K.L/ we use the

bilinear extension

(12) aL.u; v/D �0.u/ exp
�
2� iE.c;u/C�H.v;u/C �

2
H.u;u/

�
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of aL to a function V �V !C and we set

(13) #c
w.u/D aL.w;u/

�1#c.uCw/:

Let us denote by K.H / the kernel ker.�L/ D ƒ.H /=ƒ of the canonical isogeny
�LW T ! T _ defined by L. For the following theorem we note that the choice of
a decomposition V D V1˚ V2 induces direct-sum decompositions of the lattice of
integral points ƒ.H /Dƒ.H /1˚ƒ.H /2 and of K.H /DK.H /1˚K.H /2 , where
K.H /i Dƒ.H /i=.ƒ\ƒ.H /i/. In this notation, Theorem 3.2.7 of [3] gives:

Theorem 5.1 The function #c
w is a canonical theta function for L D t�c L0 . More

precisely, if c is a characteristic with respect to a decomposition of V then the set
f#c
w W w 2K.L/1g is a basis of H 0.L/.

Next we prove that actually the theta function #c
w only depends on the K.L/1 compo-

nent of w . This fact will be crucial to get extra relations between the values of theta
functions at torsion points.

Lemma 5.2 Let w D w1Cw2 2ƒ.H /=ƒ. Then #c
w D #

c
w1

.

Proof The definition of the canonical theta function implies

#c
w.u/D exp

�
��H.u; c/� �

2
H.c; c/

�
#0
w.u/

and hence it is enough to prove the claim for the characteristic 0. By the definition (13)
of #0

w and the properties of the factor aL (see [3, Lemma 3.1.3]),

#0
w.u/D aL0

.w1Cw2;u/
�1#0

0 .uCw1Cw2/

D aL0
.w1;u/

�1aL0
.w2; w1Cu/�1#0

0 .uCw1Cw2/:

Applying the Fourier expansion (11) of #0
0

, using (12) and �0.w2/D 1, we obtain

#0
w.u/DaL0

.w1;u/
�1 exp

�
��.H�B/

�
uCw1C

1
2
w2; w2

�
C
�
2
B.uCw1;uCw1/

�
�

X
�2ƒ1

exp
�
�.H �B/.uCw1; �/C�.H �B/.w2; �/�

�
2
.H �B/.�; �/

�
:

Now [3, Lemma 3.2.2] implies �.H �B/
�
uCw1C

1
2
w2; w2

�
D 0, since w2 2V2 , and

�.H �B/.w2; �/D 2� iE.w2; �/ 2 2� iZ, since w2 2ƒ.H /. Applying (11) and (13)
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again we obtain

#0
w.u/D aL0

.w1;u/
�1 exp

�
�
2
B.uCw1;uCw1/

�
�

X
�2ƒ1

exp
�
�.H �B/.uCw1; �/�

�
2
.H �B/.�; �/

�
D aL0

.w1;u/
�1#0

0 .uCw1/D #
0
w1
.u/;

as claimed.

5.2 Specialization to .1; 6/–polarization

From now on we suppose dim.T /D 2 and that L is a line bundle of type .1; 6/, ie
there exists a decomposition V D V1˚V2 for H D c1.L/ and bases ƒ1 D h�1; �2i

and ƒ2 D h�1; �2i in which Im H has a representation

(14) Im H D

�
0 P

�P 0

�
; where P D diag.1; 6/:

Under these assumptions, ƒ.H / D
˝
�1;

1
6
�2; �1;

1
6
�2

˛
and K.H / D ƒ.H /=ƒ Š

.Z=6Z/2 .

Recall that a divisor D on T is symmetric if .�1/�DDD. A line bundle L is defined
to be symmetric if the corresponding semicharacter � takes values in ˙1. This notion
is designed so that the line bundle LDO.D/ of a symmetric divisor is symmetric (see
[3, Section 4.7]). For such a line bundle, .�1/� induces an involution on H 0.L/, and
hence on the vector space generated by canonical theta functions.

With the application to Prym varieties in mind, we focus on the line bundle LD t�c L0 of
characteristic cD 1

2
�1C

1
2
�1 . The space H 0.L/ is generated by f#c

j�2=6
Wj D0; : : : ; 5g

and, in this situation, the inverse formula [3, Formula 4.6.4] gives .�1/�#c
wD .�1/�#c

�w

for all w 2K.H /1 . Consequently, the spaces of even and odd theta functions are given
respectively by

(15)
H 0.L/CDh#c

�2=6
�#c

5�2=6
; #c

2�2=6
�#c

4�2=6
i;

H 0.L/�Dh�0D#
c
0 ; �1D#

c
�2=6
C#c

5�2=6
; �2D#

c
2�2=6

C#c
4�2=6

; �3D#
c
�2=2
i:

We will need the following result relating the values of odd theta functions at certain
2–torsion points, more precisely the set of 2–torsion points in the kernel K.H / of the
map �L to the dual torus.
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Lemma 5.3 Let �0.u/; : : : ; �3.u/ be the generators of H 0.L/� . Then

�0.u/D aL
�

1
2
�2;u

��1
�3

�
uC 1

2
�2

�
D aL

�
1
2
�2;u

��1
�0

�
uC 1

2
�2

�
;

�1.u/D aL
�

1
2
�2;u

��1
�2

�
uC 1

2
�2

�
D�aL

�
1
2
�2;u

��1
�1

�
uC 1

2
�2

�
;

�2.u/D aL
�

1
2
�2;u

��1
�1

�
uC 1

2
�2

�
D aL

�
1
2
�2;u

��1
�2

�
uC 1

2
�2

�
;

�3.u/D aL
�

1
2
�2;u

��1
�0

�
uC 1

2
�2

�
D�aL

�
1
2
�2;u

��1
�3

�
uC 1

2
�2

�
:

Proof For any w D w1Cw2 and zw D zw1C zw2 2ƒ.H /=ƒ we find, using (13) and
the transformation law of the canonical factor of automorphy (cf Exercise 3.7(2) in [3]),
that

#c
w.u/D exp.2� i Im H. zw1; zw2�w2//aLX

.w� zw;u/�1#c
zw.uCw� zw/:

The first equalities claimed in the lemma are a direct application of this formula to
zw D 1

6
j�2 and w D 1

6
.j C 3/�2 , where indices should be taken mod 6.

The second ones follow from the same formula applied to zw D 1
6
j�2 and w D

1
6
j�2C

1
2
�2 together with the fact that, by Lemma 5.2, �c

zw
D �c

w .

5.3 Partial derivatives at 2–torsion points

So far the computations were for a general abelian surface and we now restrict to
real multiplication loci, ie to a period matrix �� D  .�/ in the image of a Siegel
modular embedding determined by a .d1; d2/–symplectically adapted basis .!1; !2/ as
in Section 4.4. Since on a surface with real multiplication there are two eigendirections,
which we have given the coordinates ui , for a general theta function # the partial
derivatives

Di#.�;u0/ WD
@

@ui
#.�;u/juDu0

will be of particular interest in the sequel. As a direct consequence of Lemma 5.3
together with the vanishing of the �j at the given 2–torsion points we obtain the
analogous results for the derivatives Di�j for i D 1; 2,

(16)

Di�0.0/D aL
�

1
2
�2; 0

��1
Di�3

�
1
2
�2

�
D aL

�
1
2
�2; 0

��1
Di�0

�
1
2
�2

�
;

Di�1.0/D aL
�

1
2
�2; 0

��1
Di�2

�
1
2
�2

�
D�aL

�
1
2
�2; 0

��1
Di�1

�
1
2
�2

�
;

Di�2.0/D aL
�

1
2
�2; 0

��1
Di�1

�
1
2
�2

�
D aL

�
1
2
�2; 0

��1
Di�2

�
1
2
�2

�
;

Di�3.0/D aL
�

1
2
�2; 0

��1
Di�0

�
1
2
�2

�
D�aL

�
1
2
�2; 0

��1
Di�3

�
1
2
�2

�
:
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Another consequence is that an odd theta function behaves near those nontrivial 2–
torsion points like an odd function in the following sense:

Corollary 5.4 Let f 2 H 0.L/� be an odd theta function, let Q be one of the 2–
torsion points

˚
0; 1

2
�2;

1
2
�2;

1
2
.�2C�2/

	
and fix i D 1 or i D 2. If D2k�1

i f .Q/D 0

for all k D 1; : : : ; n, then D2n
i f .Q/D 0.

Proof The proof is trivial for QD 0 since f is an odd function of C2 . To discuss
the other 2–torsion points, write f D f1Cf2 , where f1 2 h�0; �2i and f2 2 h�1; �3i.
For QD 1

2
�2 we can write, for each N > 0,

DN
i f

�
1
2
�2

�
D

NX
jD0

�N

j

�
D

N�j
i aL

�
1
2
�2; 0

�
.D

j
i f1.0/�D

j
i f2.0//

by Lemma 5.3. Since we work with a space of odd theta functions, D2k
i �j .0/ D 0

for every k and j 2 f0; 1; 2; 3g. Consequently, we can use this formula inductively to
show that the hypothesis D2k�1

i f
�

1
2
�2

�
D 0 for all k D 1; : : : ; n holds if and only if

D2k�1
i f1.0/�D2k�1

i f2.0/D 0 for all k D 1; : : : ; n. As a consequence,

D2n
i f

�
1
2
�2

�
D

nX
kD1

� 2n

2k�1

�
D2n�2kC1

i aL
�

1
2
�2; 0

�
.D2k�1

i f1.0/�D2k�1
i f2.0//D0:

For Q D 1
2
�2 , we write zfj for fj with �0 and �1 exchanged with �3 and �2 ,

respectively. With this notation,

DN
i f

�
1
2
�2

�
D

NX
jD0

�N

j

�
D

N�j
i aL

�
1
2
�2; 0

�
.D

j
i
zf1.0/�D

j
i
zf2.0//:

Again, the hypothesis D2k�1
i f

�
1
2
�2

�
D 0 for all k D 1; : : : ; n holds if and only if

D2k�1
i

zf1.0/�D2k�1
i

zf2.0/D 0 for all k D 1; : : : ; n. Consequently,

D2n
i f

�
1
2
�2

�
D

nX
kD1

� 2n

2k�1

�
D2n�2kC1

i aL
�

1
2
�2; 0

�
.D2k�1

i
zf1.0/�D2k�1

i
zf2.0//D0:

The proof for QD 1
2
.�2C�2/ follows the same lines.

5.4 Fourier expansions

For a .1; 6/–symplectically adapted basis � D .�1; �2/ we define ��.x1;x2/ D

x1�1Cx2�2 , hence xT B� D .��.x/; �
�
� .x// for the matrix B� used in (6) to define
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a Siegel modular embedding of the Hilbert modular surface XD.b/. Recall that the
choice of such a basis also determines a decomposition of V using

(17) V1 D h.�1; 0/; .�2; 0/iR; V2 D h.0; �1/; .0; �2/iR:

We moreover define the shifted lattice ƒ�;ı DZ2C .�; ı/T and abbreviate �D �� if �
has been fixed.

Proposition 5.5 The Nullwerte of the derivatives of the theta functions �j for j 2

f0; 1; 2; 3g, as defined in (15), have the Fourier expansion

(18)

@

@u1
�j .�; 0/D 2� i

X
x2ƒ1=2;j=6

e.x1/�.x/q
�.x/2

1
q
�� .x/2

2
;

@

@u2
�j .�; 0/D 2� i

X
x2ƒ1=2;j=6

e.x1/�
� .x/q

�.x/2

1
q
�� .x/2

2
;

where qi D e.�i/ and e. � /D exp.� i � /.

Proof By [3, Lemma 8.5.2], the canonical theta function with characteristic c is given
by

#c.�; v/D e�=2B.v;v/��icT
1

c2#

�
c1

c2

�
.�; v/

in terms of classical theta functions. We differentiate this, use that the �j are odd,
hence vanish at zero, and use the Fourier expansions

@

@u1
#

��1
2
; 1

6
j
��

1
2
; 0
� �.�; 0/D 2� i

X
x2ƒ3j

e.x1/�.x/q
�.x/2

1
q
�� .x/2

2
;

@

@u2
#

��1
2
; 1

6
j
��

1
2
; 0
� �.�; 0/D 2� i

X
x2ƒ3j

e.x1/�
� .x/q

�.x/2

1
q
�� .x/2

2
:

This immediately gives the expansions for �0 and �3 . For the two remaining generators
we moreover use that

@

@ui
#

��1
2
;�1

6
j
��

1
2
; 0
� �

.�; 0/D
@

@ui
#

��1
2
; 1

6
j
��

1
2
; 0
� �.�; 0/ for j D 1; 2;

as we see by changing the order of summation in (18) using the observation that � is
odd.
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5.5 Derivatives of theta functions as Hilbert modular forms

The set of all Siegel theta functions for characteristics in 1
N

Z (with N fixed) satisfies a
modular transformation law (see [3, Section 8.4] for the complete formula). This implies
that the restriction via a Siegel modular embedding satisfies a modular transformation
law for the Hilbert modular group. In general, this action still permutes characteristics,
but here we make use of the following fact:

Lemma 5.6 The space H 0.L/ of theta functions of characteristic c D 1
2
�1C

1
2
�1 is

preserved by the whole modular group SL.b˚O_
D
/.

Proof The action of the modular group on characteristics preserves the set of charac-
teristics corresponding to symmetric line bundles, and the action on theta functions
preserves the even and odd subspaces. Let L be a symmetric line bundle of characteristic
c that provides the .1; 6/–polarization. Since h0.L/ D 6, the space of odd theta
functions of L has dimension

h0
� D

1
2
.6� #S/C #S�;

by [3, Proposition 4.6.5], where

S DfSw 2K.L/1 W 2SwD 2xc1g and S�DfSw 2S W e.4� i Im H.wCc1; c2//D�1g:

One now computes that the line bundle of characteristic 1
2
�1C

1
2
�1 is the only one

with a 4–dimensional space of odd theta functions. Thus every element of the modular
group fixes this characteristic.

Recall that a Hilbert modular form f of biweight .k; `/ with character � for the
subgroup � of a Hilbert modular group is a holomorphic function f W H2!C with
the transformation law

f .
 �1; 

��2/D �.
 /.c�1C d/k.c��2C d� /`f .�1; �2/

for all
�

a b
c d

�
2 � . The specialization of the theta transformation law implies that for

an even theta function # of characteristic c the Nullwert #.�; 0/ is a Hilbert modular
form of biweight

�
1
2
; 1

2

�
with some finite character for some finite-index subgroup of

the Hilbert modular group. The partial derivatives D1#.�; 0/ and D2#.�; 0/ of odd
theta functions are modular forms of biweight

�
3
2
; 1

2

�
and

�
1
2
; 3

2

�
, respectively; see

[21, Section 9] for the details.
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5.6 Line bundles of type .2 ; 3/

The usual convention for the type .d1; d2/ of a polarization is that d1 j d2 . However,
it will be convenient in our particular case to consider also the polarization type .2; 3/
rather than just of type .1; 6/. In this subsection we translate the results between the
two different conventions.

Let L be a line bundle of type .1; 6/ and let V D V1˚V2 be a decomposition for L,
so that ƒDƒ1˚ƒ2Dh�1; �2i˚h�1; �2i gives a symplectic basis of the lattice with
canonical .1; 6/–symplectic matrix, ie the nontrivial intersection are E.�1; �1/D 1

and E.�2; �2/D 6.

The matrices R� D
�

2 1
3 1

�
and R� D

�
�2 1

3 �1

�
give a change of basis to a symplectic

basis hz�1; z�2i˚ hz�1; z�2i with canonical .2; 3/–symplectic matrix while preserving
the chosen decomposition of V . In particular we may identify the characteristics in the
two situations and we may identify the basis elements of H 0.L/ named in (15) in the
two conventions. The distinguished characteristic c D 1

2
�1C

1
2
�1 2

1
2
ƒ.H /=ƒ.H / is

expressed in the new basis as c D 1
6
z�2C

1
6
z�2 since ƒ.H /D

˝
1
2
z�1;

1
3
z�2;

1
2
z�1;

1
3
z�2

˛
.

Now let �D .�1; �2/ be a .2; 3/–symplectically adapted basis of a_ , determining the
OD –module ab˚a_ , and consider the Siegel modular embedding given by the matrix
B WDB� D

� �1 �
�
1

�2 �
�
2

�
as in Section 4.5, so that the cusp a of XD.b/ corresponds to the

cusp at infinity of X a
D
.b/. Then �R�1

� is .1; 6/–symplectically adapted, and this base
change together with the action of R�1

�
on � preserves the decomposition (17), so that

we are in indeed in the situation considered above.

Lemma 5.7 With �.x/D ��.x/ WD x1�1Cx2�2 stemming from a .2; 3/–symplec-
tically adapted basis, the global sections �j 2 H 0.L/ of the line bundle with char-
acteristic c D 1

6
z�2 C

1
6
z�2 have Fourier expansions as in (18) with the lattice coset

ƒ1=2;j=6 for the series �j replaced by ƒj=2;.2jC3/=6 and the character e.x1/ replaced
by e.x2/.

Proof By definition, the lattice coset is
�

1
2
; 1

6
j
�

in the basis �1 , �2 , which is equal
to
�

1
2
j ; 1

6
.2j C 3/

�
in the basis z�1 , z�2 and the character is determined by the �–

component of the characteristic.

6 The Gothic modular form and the Gothic theta function

We now specialize again to curves .X; �A; �B/ in the Gothic locus. Abel–Prym maps
denote, in analogy to the classical Abel–Jacobi map from a curve to its Jacobian, the
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map from X to its Prym variety. Since the Prym variety is not principally polarized,
there are two natural choices that we analyze here: to the Prym variety and to its
dual. The main player is the pre-Abel–Prym map 'W X ! Prym_.X; �A; �B/ to
the dual Prym variety defined in Section 3. Since the Prym variety Prym_.X / of a
point in GD admits real multiplication by OD , we can see the Teichmüller curve GD

inside some Hilbert modular surface XD.b/. Let us denote by GD.b/ the union of
those components of the Torelli-image of GD in XD.b/ for which du1 induces the
eigenform ! at each point .X; !/.

Our goal is to describe '.X / in terms of theta functions and nearly determine the
Torelli-image of GD .

Theorem 6.1 The Torelli-image GD.b/ is contained in the vanishing locus of the
Hilbert modular form

GD.�/ WDD2�0.�; 0/ �D2�1.�; 0/�D2�2.�; 0/ �D2�3.�; 0/

of biweight .1; 3/. Consider the locus

eRed23.b/D fGD.�/D 0g\ fFa.�/D 0g\ fFb.�/D 0g;

where we define the modular forms

Fa.�/DD1�0.�; 0/ �D2�2.�; 0/�D1�2.�; 0/ �D2�0.�; 0/;

Fb.�/DD1�1.�; 0/ �D2�3.�; 0/�D1�3.�; 0/ �D2�1.�; 0/:

Then, for all points in fGD.�/D 0g neRed23.b/, the theta function

�X .u/D

ˇ̌̌̌
ˇ̌̌̌ �0.u/ �1.u/ �2.u/ �3.u/

D1�0.0/ D1�1.0/ D1�2.0/ D1�3.0/

D2�0.0/ 0 D2�2.0/ 0

0 D2�1.0/ 0 D2�3.0/

ˇ̌̌̌
ˇ̌̌̌

is nonzero and the vanishing locus of this theta function is equal to the pre-Abel–Prym
image '.X / of a Gothic Veech surface X.

We will discuss the exceptional set where the modular forms GD , Fa and Fb jointly
vanish in Section 7. It is part of the reducible locus, as suggested by the notation and
as we will see in Proposition 8.6.
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6.1 The Abel–Prym map and the pre-Abel–Prym map

Let .X; !; �A; �B/ be a flat surface in the Gothic locus �G. For each choice of a
“basepoint” p 2X there is the usual Abel–Jacobi map p̨W X ! Jac X centered at p .
We will fix once and for all the center of the Abel–Jacobi map to be p D p1 , one of
the fixed points of J where ! does not vanish.

We have defined Prym.X /D Prym.X; �A; �B/ as the subvariety complementary to
A_ �B_ , hence there is a natural inclusion �W Prym.X /! Jac.X /. Its dual is thus a
quotient map �_W Jac.X /! Prym_.X / and the norm endomorphism NP defined in
Proposition 3.3 is also such a quotient map. Using (5) we conclude that they fit into
the commutative diagram

X Jac X Prym X

Prym_X

˛p

x'

NP

L�
 L

'

The composition x' WD NP ı p̨1
is called the Abel–Prym map and the composition

' WD L� p̨1
is called the pre-Abel–Prym map centered at p1 . By Proposition 3.3 we can

write the Abel–Prym map in terms of divisors as

x'.x/D Œx.1/� 3J.x.1//� 2x.2/� 2x.3/C 2p1C 2q1C 2J.q1/�:

Moreover, x'.x/D x'.y/ if and only if

(19) x.1/� 3J.x.1//� 2x.2/� 2x.3/�y.1/C 3J.y.1//C 2y.2/C 2y.3/ � 0:

As a consequence of this formula we obtain:

Lemma 6.2 The Abel–Prym map x' maps Z [P to a single point, ie

x'.zi/D x'.pi/D 0 for i D 1; 2; 3:

Proof Using (19) and the fact that points in Z [P are fixed under J, the claim is
equivalent to

2p
.1/
i C 2p

.2/
i C 2p

.3/
i � 2p

.1/
j C 2p

.2/
j C 2p

.3/
j

and
2p

.1/
i C 2p

.2/
i C 2p

.3/
i � 2z

.1/
j C 2z

.2/
j C 2z

.3/
j

for any pi ;pj 2 P and zj 2Z . This follows from the preimage diagram (3) and the
fact that each of the points involved appears with coefficient 2 in h�.ei/.
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6.2 The natural line bundles on Prym_.X/

There are several natural line bundles on the Prym varieties. The restriction of the prin-
cipal polarization on Jac X to Prym X via � yields a polarization of type .1; 6/ given
by a line bundle, which we denote by L. But we are rather interested in Prym_.X /.
There, we first have the bundle LX WDOPrym_X .'.X // generated by the image of the
Gothic Veech surface that we are mainly interested in. Second, there is the following
general construction.

Let H D c1.L) and let �LW Prym X ! Prym_X be the isogeny associated with L.
Since L is of type .1; 6/ there is an isogeny  W Prym_X ! Prym X such that
 ı �L D Œ6� (see [3, Section 14.4]). More precisely,  D  LL for a line bundle LL
on Prym_X, well defined only up to translations, with the same polarization H D c1. LL/.
To fix a precise point of reference, we fix a decomposition for the universal covering
V of Prym_X in which Im H has the form (14). Such a decomposition distin-
guishes a line bundle in the algebraic class of LL, namely the symmetric line bundle
LL0 DL.H; �0/ of characteristic 0 (see Section 5.1) associated to the semicharacter
�0.v1C v2/D e.� i Im H.v1; v2//.

Lemma 6.3 The line bundles LX and LL0 are algebraically equivalent.

Proof We use the endomorphism ı.C;D/ associated with a curve C and a divisor
D of an abelian variety T . It is defined by mapping a 2 T to the sum of the inter-
section points of the curve C translated by a and the divisor D ; see [3, Sections 5.4
and 11.6]. By [3, Theorem 11.6.4] we need to show that ı.'.X /; LL/D ı. LL; LL/. By
[3, Proposition 5.4.7] and Riemann–Roch, ı. LL; LL/D�6 idPrym_X . On the other hand,

ı.'.X /; LL/D�L� ı � ı LL D��L ı LL D�6 idPrym_X

by [3, Proposition 11.6.1].

6.3 The pre-Abel–Prym map

Next, we study the pre-Abel–Prym map. We write Prym_X D V =ƒ.

Lemma 6.4 The pre-Abel–Prym map ' with basepoint p1 sends the pi to zero, ie

'.p1/D '.p2/D '.p3/D 0 for i D 1; 2; 3:
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The points in Z are sent to three different nontrivial 2–torsion points in a Lagrangian
subspace of ƒ, ie '.Z/D

˚
1
2
�2;

1
2
�2;

1
2
.�2C�2/

	
for some decomposition of V .

Moreover, the endomorphism .�1/ of Prym_X induces the involution J on '.X /
and ' is injective on X nP.

Proof The inclusion A_ �B_ � Jac X is given in terms of degree-zero divisors D

and E by .D;E/ 7!DC J.D/CE.1/CE.2/CE.3/ . In particular, on the images
of qi in A and B (as in (3)) this inclusion map is given by .xq1 � xqi ; e

0
i � e0

1
/ 7!

Œpi �p1�D '.pi/. This proves that the points pi are sent to zero.

Next, for each x 2X the divisor xCJ.x/�2p1 belongs to ��
A

Div0.A/, hence maps
to zero in Prym_X and therefore

'.x/D Œx�p1�D Œ�J.x/Cp1�D�'.J.x//:

In particular, the points '.zi/D Œzi �p1� have order 2 and

3X
iD1

'.zi/D Œz1C z2C z3� 3p1�D 0:

As a consequence, all three of the zi are 2–torsion points and by Lemma 6.2 they
moreover lie in ƒ.H /. It remains to exclude that '.Z/D 0.

By the preceding Lemma 6.3 and Riemann–Roch, the curve '.X / is of arithmetic
genus 7. If '.X / is generically injective then '.Z/D 0 would imply that there are
6 branches passing through zero and the arithmetic genus had to be larger than 7, a
contradiction. On the other hand, the geometric genus of '.X / is at least 2, since
this curve generates Prym_X, hence the degree of ' is at most 3. In this case, the
differential ! has to be a pullback of a differential on (the normalization of) the genus 2

curve Prym_X. This is impossible, as discussed in [16, Lemma 6.2].

We can now complete the identification of the line bundles begun in Lemma 6.3.

Lemma 6.5 Let .X; !/ 2�G. With the above choice of a decomposition of V , the
line bundles LX and LL0 differ by the characteristic c D 1

2
�1C

1
2
�1 , ie LX D t�c LL0 .

Proof To compute the characteristic, note that by Lemma 6.4 the image '.X / is a
symmetric divisor, that is, .�1/�'.X /D '.X /. The requirement on a line bundle in
the algebraic class of LL0 to be symmetric, narrows the number of choices down to
24 possibilities, which agree with the translates of LL0 by half-integral points. As a
consequence, LX D t�c LL0 for some half-integral character c 2 1

2
ƒ.H /=ƒ.H /.
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In order to compute explicitly the characteristic of LX , let us first note that by
Lemma 6.4 the only 2–torsion points in '.X / are '.zi/ for i D 1; 2; 3, all of them
with multiplicity 1. By [3, Proposition 4.7.2] the semicharacter � associated to the
line bundle LX takes the value

�.�/D .�1/mult�=2.'.X //�mult0.'.X //

for each lattice element � 2 ƒ. Since mult0.'.X // D 3, we deduce that � takes
values C1 at �2 , �2 and �2C�2 and �1 at �1 , �1 and �1C�1 .

Recall that ƒ.H /D
˝
�1;

1
6
�2; �1;

1
6
�2

˛
, and let c D a1�1C

1
6
a2�2Cb1�1C

1
6
b2�2 ,

where a1; a2; b1; b2 2
˚
0; 1

2

	
. Using the fact that � D �0 � exp.2� i Im H.c; � // and

the expression (10) for �0 , one gets a1 D b1 D
1
2

and a2; b2 D 0.

6.4 Identifying the theta function

Our main objective now is to describe '.X / as the vanishing locus of some theta
function �X in H 0.LX /. For this purpose, we restrict furthermore to the case that
.X; !/ is a Gothic eigenform for real multiplication by OD . This implies that on the
Prym variety we have the distinguished eigenform coordinates introduced in Section 4.4.

Lemma 6.6 Let .X; !/ 2�GD for some D. Then '.X / is the vanishing locus of a
global section �X 2H 0.LX /� satisfying

(C1) D1�X .0/D 0,

(C2) D2�X .0/D 0,

(C3) D2�X
�

1
2
�2

�
D 0,

(C4) D2�X
�

1
2
�2

�
D 0,

(C5) D2�X
�

1
2
.�2C�2/

�
D 0.

Proof By definition and Lemma 6.5, '.X / is the vanishing locus of some theta
function �X 2H 0.LX /. Since mult0.'.X //D 3, this theta function is necessarily odd
by [3, Lemma 4.7.1] and the comments after that lemma.

Since �X is an odd function, both �X and its second derivatives vanish at 0. Since
mult0.'.X //D3, also its first derivatives must vanish, that is, D1�X .0/DD2�X .0/D0.

Let us assume that du1 is the eigenform in �M4.2
3; 03/. Note that the condition

of this eigenform having a zero of order k at a point p translates into @j�X =@u
j
2

vanishing at '.p/ for j D 0; : : : ; k .
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Recall the definition of the generators �0 , �1 , �2 and �3 of H 0.LX /� from (15), and
let �X .u/D

P
i ai�i.u/ be a theta function cutting out '.X /. By (16), the conditions

in Lemma 6.6 correspond to the system of equations

a0D1�0.0/C a1D1�1.0/C a2D1�2.0/C a3D1�3.0/D 0;(C1)

a0D2�0.0/C a1D2�1.0/C a2D2�2.0/C a3D2�3.0/D 0;(C2)

a0D2�0.0/� a1D2�1.0/C a2D2�2.0/� a3D2�3.0/D 0;(C3)

a0D2�3.0/C a1D2�2.0/C a2D2�1.0/C a3D2�0.0/D 0;(C4)

a0D2�3.0/� a1D2�2.0/C a2D2�1.0/� a3D2�0.0/D 0:(C5)

Note that conditions (C2)–(C3) and conditions (C4)–(C5) can be rephrased as

(20)
�

a0D2�0.0/C a2D2�2.0/D 0;

a1D2�1.0/C a3D2�3.0/D 0;
and

�
a0D2�3.0/C a2D2�1.0/D 0;

a1D2�2.0/C a3D2�0.0/D 0;

respectively. This already allows us to get some necessary conditions on the derivatives
of theta functions for a point to belong to the Gothic locus.

Proposition 6.7 If the point � 2H2 has the property that there is a nonzero odd theta
function �X .u/ D

P
i ai.�/�i.u/ on T� satisfying (C2)–(C5), then GD.�/ D 0. In

particular, for any .X; !/ 2�GD , the Prym variety Prym_X belongs to the vanishing
locus of the Gothic modular form GD.�/.

Proof By (20), the coefficients must satisfy

M

0BB@
a0

a1

a2

a3

1CCA WD
0BB@

D2�0.0/ 0 D2�2.0/ 0

0 D2�1.0/ 0 D2�3.0/

D2�3.0/ 0 D2�1.0/ 0

0 D2�2.0/ 0 D2�0.0/

1CCA
0BB@

a0

a1

a2

a3

1CCAD
0BB@

0

0

0

0

1CCA :
This system of equations must have a nontrivial solution, and therefore

det.M /D .D2�0.0/ �D2�1.0/�D2�2.0/ �D2�3.0//
2
D GD.�/

2
D 0:

The second claim follows from Lemma 6.6.

6.5 The vanishing locus of the Gothic modular form

We now start in the converse direction and analyze the vanishing locus of the Gothic
modular form GD . For this purpose we note that the theta function �X defined in
Theorem 6.1 equals

�X .u/D‚aFb �‚bFa;
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where
‚a.�;u/D �0.�;u/ �D2�2.�; 0/� �2.�;u/ �D2�0.�; 0/;

‚b.�;u/D �1.�;u/ �D2�3.�; 0/� �3.�;u/ �D2�1.�; 0/

and where Fa.�/DD1‚ajuD0 and Fb.�/DD1‚bjuD0 as defined in Theorem 6.1,
too.

Proof of Theorem 6.1 The nonvanishing of �X on the complement of eRed23 follows
from the factorization given above and the linear independence of the �i . Given
Proposition 6.7 it remains to show that on the complement of eRed23 the divisor
Y D Y� WD f�X D 0g is indeed the '–image of a Gothic Veech surface.

We first check the conditions (C1)–(C5) for Y . Differentiating �X implies that Y

satisfies (C1) using the second row of the defining matrix, and Y satisfies (C2) and (C3)
in the reformulation (20), as can be seen from the last two rows. From (16) we deduce

D2�X
�

1
2
�2

�
D

ˇ̌̌̌
ˇ̌̌̌D2�3.0/ D2�2.0/ D2�1.0/ D2�0.0/

D1�0.0/ D1�1.0/ D1�2.0/ D1�3.0/

D2�0.0/ 0 D2�2.0/ 0

0 D2�1.0/ 0 D2�3.0/

ˇ̌̌̌
ˇ̌̌̌D .FbCFa/GD ;

D2�X
�

1
2
.�2C�2/

�
D

ˇ̌̌̌
ˇ̌̌̌�D2�3.0/ D2�2.0/ �D1�3.0/ D2�0.0/

D1�0.0/ D1�1.0/ D1�2.0/ D1�3.0/

D2�0.0/ 0 D2�2.0/ 0

0 D2�1.0/ 0 D2�3.0/

ˇ̌̌̌
ˇ̌̌̌D .Fb �Fa/GD :

We deduce that for Y the conditions (C4)–(C5) hold as well.

Since �X is a section of the line bundle LX of characteristic c D 1
2
�1 C

1
2
�1 , the

argument in Lemma 6.5 implies that the multiplicity of Y� at each point in the set
SC D

˚
1
2
�2;

1
2
�2;

1
2
.�2 C �2/

	
is odd, in particular Y contains these points. By

[3, Proposition 4.7.5(a)] each of the other 2–torsion points is not contained in Y or Y

has even multiplicity there.

The case Y reduced with zero as its only singular point Then X� D Y norm
� is the

desingularization at zero. We check the properties of a Gothic eigenform. Since Y� is
nonsingular at SC in the case under consideration, the one-form du1 is an eigenform
for real multiplication and has double zero at each of the three the points in SC .

The involution .�1/ on T� induces an involution J on X� that has six fixed points.
The quotient ADA� DX�=J is therefore a smooth curve of genus 1. The comple-
ment T?� of T� in Jac.X / is .1; 6/–polarized (see [3, Corollary 12.1.5] or the proof
of Proposition 3.1). The pullback of the theta divisor on Jac.X / to A_ has degree 2
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since X� !A� is a double covering. We claim that the restriction of the theta divisor
on Jac.X / to the complement B_ of A_ in T?� has degree 3. In fact, we may view
B_ as the complement to the image of the addition map CW A_ �T?� ! Jac.X /. If
C factors through an isogeny (necessarily of exponent 2), then the image is .1; 1; 3/–
polarized, hence B_ has a polarization of type .3/, again by [3, Corollary 12.1.5]. The
case that C is injective, hence that the image is .1; 2; 6/–polarized, contradicts loc. cit.
Consequently, the map �BW X ! Jac.X /! B is a covering of degree 3.

We claim that the map �BW X� !B� is odd. In fact, writing j D .�1/ on the elliptic
curve B� we compute that

j ı�B.x/D Œp1�x�D Œp1�x�C ŒJ.x/Cx� 2p1�D ŒJ.x/�p1�D �B.J.x//;

since xCJ.x/� 2p1 2A_ . This argument also shows that the images of the points
in P and Z are 2–torsion points in any quotient of Jac.X� /=.A_� /, in particular in B� .
Since j�B.Z/j D 1 on points in the Gothic locus, we deduce that j�B.Z/j D 1 over all
of XD . We have indeed checked that .X; du1; �A; �B/ has all the Gothic properties
under our assumptions on Y .

The case Y reduced with other singularities besides zero This does not occur. In
fact, if Y D

P
Yi then Y 2 D 12 for a line bundle of type .1; 6/ by Riemann–Roch.

A triple point such as zero contributes 6 to Y 2 . Each of the points in SC is either a
triple point or du1 has a double zero there, contributing 2 to Y 2 by increasing the
genus of the component passing through this point. The total count implies that Y is
nonsingular at SC and also nonsingular elsewhere besides zero, since the three double
zeros at SC and the contribution at 0 2 T� already add up to 12.

The case Y nonreduced The above counting argument has to be refined for Y non-
reduced, since eg a triple point might consist of 2Y1 and Y2 intersecting transversally,
hence contributing only 4 to Y 2 . We first note that there are at most two branches
through zero, since if Y contained nonreduced a1Y1C a2Y2C a3Y3 all meeting at
zero, the odd multiplicity at the origin implies that a1C a2C a3 is at least 5, and
therefore Y 2 > 12.

We now write Y D a1Y1Ca2Y2CYR with a1 � a2 , with Y1 and Y2 irreducible and
passing through zero while YR is potentially reducible with no component passing
through zero. In particular, a1C a2 is odd.

Case .a1; a2/ D .3; 2/ In this case 0 is the only intersection point of Y1 and Y2

and Y 2
i D 0, so both components are elliptic curves. Consider the product Y1 � Y2
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with the polarization 2p�
1
OY1

.0/˝ 3p�
2
OY2

.0/. The addition map Y1 �Y2! T� is
an isomorphism at the level of complex tori since Y1 � Y2 D 1, and the pullback of
LX DOT�

.Y / agrees with the .2; 3/–product polarization. In particular, the map is
an isomorphism of abelian surfaces and hence we are in eRed23 (see Proposition 8.6).

Case .a1; a2/D .6; 1/ Again 0 is the only intersection point, and Y 2
i D 0, so both

components are again elliptic curves. Odd parity of the theta function implies that
SC � Y2 , but then du1 induces an abelian differential on Y2 with three zeroes of
order � 2, which is a contradiction.

Case .a1; a2/D .4; 1/ Again 0 is the only intersection point, and the case Y 2
i D 0

for i D 1; 2 yields the same contradiction as in the case before. Hence we have Y 2
2
D 4

and SC � Y2 . This implies that on the one hand Y2 has genus 3, and on the other
du1 induces an abelian differential on Y2 with three zeroes of order � 2, which is
again a contradiction.

Case .a1; a2/D .2 ; 1/ We have the following possibilities:

(1) Y1 �Y2 D 1, Y 2
2
D 4 The curve Y2 has genus 3 and du1 induces an abelian

differential on it with three zeroes of order � 2.

(2) Y1 �Y2 D 2, Y 2
2
D 0 or 2 The curve Y2 has genus 1 (or 2) and du1 induces

an abelian differential on it with two zeroes of order � 2.

(3) Y1 �Y2 D 3, Y 2
2
D 0 The curve Y2 has genus 1 and du1 induces an abelian

differential on it with a zero of order � 2.

All these cases yield contradictions with the genus of the curve Y2 and this completes
the claim.

7 Modular curves and the reducible locus

The main result in this section is an explicit parametrization of the reducible locus, the
locus where the .1; 6/–polarized abelian varieties with real multiplication split as a
product of two elliptic curves E1 and E2 , which are necessarily isogenous. This locus
is a union of modular curves (also known as Hirzebruch–Zagier cycles or Shimura
curves), in fact exclusively noncompact modular curves.

There are interesting similarities and differences to the reducible locus in the principally
polarized case and the well-studied case of genus 2 Teichmüller curves. The main
similarity is that the Teichmüller curves are disjoint from the reducible locus in both
situations, Gothic and genus 2. The two cases also agree in the fact that the reducible
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locus has many components, several but not all of which can be distinguished by the
precise endomorphism ring.

The main difference starts with the fact that the reducible locus decomposes into two
subloci that can already be distinguished by degree of restriction of the polarization
line bundle to E1 and E2 . Since the product of these degrees is 6, the reducible locus
decomposes into Red23 and Red16 , where the indices give the degree of the restricted
line bundles. These loci are indeed disjoint, as we show in Section 7.3. The main result
of this section is a description of the components of Red23 and a computation of their
volumes.

7.1 Modular curves on Hilbert modular surfaces

The reducible locus consists of modular curves (also known as Hirzebruch–Zagier cycles
or Shimura curves). Modular curves are the images of graphs of Möbius transformations
in H2 that descend to algebraic curves in the Hilbert modular surface. We recall the
precise definition, adapted to our Hilbert modular surfaces X a

D
.b/D SL.ab˚a_/nH2 .

Let us define the ideal M D
p

Da2b. We say that U 2 SL2.K/ is a generator matrix
for the Hilbert modular group SL.ab˚ a_/ if it is of the form

U D

�
a
p

D �

��� Ab
p

D

�
; where a; b 2 Z; � 2M and ADN.M /;

and we define the modular curves FU to be the image in X a
D
.b/ of the set�

.�1; �2/ 2H2
W . �2 1 /U

�
�1

1

�
D a
p

D�1�2��
��1C��2CAb

p
D D 0

�
:

The generator matrix U is primitive if it is not divisible by any natural number m> 1.
For any integer N > 0, the modular curve FN is defined as the union

FN D

[
U primitive

det.U /DAN

FU :

The components of FN and their geometry (cusps, fixed points) were intensely studied
by Hirzebruch and his students (see the survey in [10, Chapter V]). Most notably the
volumes of the union

TN D

[
det.U /DAN

FU D

[
`2 jN

FN=`2

are the coefficients of a modular form, in fact an Eisenstein series of weight 2 for some
character.

Geometry & Topology, Volume 24 (2020)



1188 Martin Möller and David Torres-Teigell

This however does not yet yield formulas for the volume of Red23 , since the latter
turns out to be a union of modular curves, but not of the entire curves FN . In fact, FN

can be decomposed as the union of the curves FN .�/ for � 2M=
p

DM, where

FN .�/D
[
fFU W U is primitive with det.U /DAN and �.U /D �g:

In the case of abelian surfaces with principal polarization the reducible locus was written
in terms of FN .�/ by [15]. However, the FN .�/ are sometimes still reducible and this
decomposition does not directly yield a volume formula, so we proceed differently for
our .1; 6/–polarization.

7.2 The .2 ; 3/–reducible locus

Let us define the .2; 3/–reducible locus Red23 as the locus inside the moduli space
A2;.2;3/ of .2; 3/–polarized abelian surfaces consisting of products E1�E2 of elliptic
curves with the natural .2; 3/–polarization 2p�

1
OE1

.0/˝ 3p�
2
OE2

.0/. For each OD –
ideal b of norm 6, we will write Red23.b/ for the pullback of Red23 to XD.b/.

Theorem 7.1 Let D D f 2D0 be a positive quadratic discriminant with conductor f .
There is a bijective correspondence between irreducible components of the .2; 3/–
reducible locus with a chosen proper real multiplication by OD and the set of prototypes

PD D fŒ`; e;m� 2 Z3
W `;m> 0; D D e2

C 24`2m and gcd.e; `; f /D 1g:

More precisely, the component parametrized by the prototype PD Œ`; e;m� is the image
of a Shimura curve in the Hilbert modular surface X a

D
.b/ corresponding to the ideals

aD 1p
D

�
2`; 1

2
.eC
p

D/
�

and bD
�
6; 1

2
.r C
p

D/
�
, where�

e if D � 0 mod 2;

eC 6 if D � 1 mod 2:

The image in A2;.2;3/ of the Shimura curve given by P D Œ`; e;m� is isomorphic
to �0.m/nH .

We split the proof into a series of lemmas.

Lemma 7.2 The period matrix of an abelian surface parametrizing a point in Red23

with real multiplication can be assumed to be

…m.�/D

�
2� 0

0 3m�

ˇ̌̌̌
2 0

0 3

�
for some � 2H and 0<m 2 Z

with the polarization given by the standard form
�

0 P23

�P23 0

�
.
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Proof Since we will be interested in the components of this locus that lie in some
Hilbert modular surface, let us assume furthermore that E1 and E2 are isogenous
elliptic curves, so the left block of the period matrix …m;n.�/ is a diagonal matrix
with entries .2�; 3.m�Cn// with m; n 2Q. Positive-definiteness of the period matrix
implies m> 0. We define the matrices

M1 D

0BB@
a 0 b 0

0 aU C cV 0 .dV C b/=L

b 0 dU 0

0 cL 0 d

1CCA and M2 D

0BB@
x 0 y 0

0 xq 0 yp

p 0 q 0

0 1 0 1

1CCA :
We first argue that we can take n D 0. Write m D U=L and n D V =L with
gcd.U;V;L/D 1. Take d such that gcd.dU;L� dV /D 1. (To show the existence,
consider di with gcd.di ;L/D 1. Among a collection of di with gcd.di �dj ;U /D 1

with more elements than B has divisors, one will work.) Let b DL� dV and take a

and c such that adU � c.L�dV /D 1. Then the matrix M1 has integral coefficients,
belongs to the symplectic group SpP

2g.Z/ and takes …m;n.�/ to …m;0.�
0/ for some � 0.

To show that we may assume m 2 Z, we write m D p=q and take x;y 2 Z such
that xq�yp D 1. Then the matrix M2 belongs to SpP

2g.Z/ and takes …p=q;n.�/ to
…pq;0.�

0/ for some � 0.

Lemma 7.3 An abelian surface in the .2; 3/–reducible locus contains a unique elliptic
curve with a polarization of type .2/ and a unique elliptic curve with a polarization of
type .3/.

In particular, a matrix M 2 SpP
2g.Z/ taking the locus f…m.�/ W � 2 Hg into some

locus f…m2
.�/; � 2Hg consists of matrices diagonal in each of its four blocks (like

the matrices M1 and M2 above).

Proof The type of a polarization is translation invariant. So we may assume that
the elliptic curve in question passes through the origin. Such an elliptic curve E in a
product of elliptic curves is determined by a rational slope in the universal cover. We
may assume this slope is .2x; 3y/ with x;y 2Z coprime and both different from zero,
since we already know the polarizations of the curves with slope .1; 0/ and .0; 1/. If
we denote by a1 , a2 , b1 , b2 the symplectic basis corresponding to the column vectors
of …m.�/, lattice points in E are given by the multiples of f1 D xa1 C .y=m/a2

and f2 D xb1Cyb2 that have integral coefficients. This implies that m jy and that
the type of the polarization on E is hf1; f2i D 2x2C 3my2 , therefore proving the
claim.
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Lemma 7.4 The analytic representation of real multiplication by 
 D 1
2
.DC

p
D/

on an abelian surface with period matrix …m.�/ with m 2 Z is given by

A
 D

�
1
2
.DC e/ 2`

3`m 1
2
.D� e/

�
;

with e; ` 2 Z and D D e2C 24`2m.

The real multiplication defined by Œ`; e;m� and Œ�`; e;m� are equivalent, whereas the
real multiplication defined by Œ`; e;m� and Œ�`;�e;m� are Galois conjugate.

Proof The abelian surface T�;m given by the period matrix …m.�/ admits real
multiplication by OD , if and only if there are matrices A
 2 GL2.Q/ and R
 2

Sp.4;Z/ that are the analytic and rational representations of 
 D 1
2
.DC

p
D/, ie such

that A…m.�/D…m.�/R
 , tr.A
 /DD and det.A
 /D 1
4
.D2�D/. Together with

the self-adjointness of R
 this implies that

A
 D

�
a b

c d

�
; R
 D

0BBB@
a 3

2
bm 0 0

2c
3m

d 0 0

0 0 a 3
2
b

0 0 2
3
c d

1CCCA ;
where d D D � a and ad � bc D 1

4
.D2 �D/, and moreover that c D 3

2
bm 2 3Z.

Integrality of R
 implies that a; d; `D 1
2
b 2 Z and we set e D 2a�D.

Finally, the real multiplications defined by Œ`; e;m� and Œ�`; e;m� are conjugate under
the isomorphism �IdjE2

. The claim about Galois conjugation is obvious.

Proof of Theorem 7.1 Suppose we are given a tuple Œ`; e;m� as in the theorem. We
check that the real multiplication on the locus of matrices …m.�/ given by Lemma 7.4
is indeed proper. The action is not proper if 
=k also acts for some 1< k 2 Z, ie if
all the entries of R
 are divisible by k . This implies k j gcd.e; `; f / and conversely
this divisibility is also sufficient for the action to be nonproper.

Next we show that the images in A2;.2;3/ of the loci given by …m.�/ for m 2 Z are
pairwise disjoint. Otherwise there exists a symplectic matrix taking the locus …m.�/

into …m2
.�/. By Lemma 7.3 this matrix is diagonal in each block. It suffices thus

consider only matrices of the form

M D

0BB@
a 0 b 0

0 ka=m 0 kb

b 0 d 0

0 c=k 0 md=k

1CCA
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with integral entries and ad � bc D 1, where a priori k 2Q and m2 D k2=m, which
implies k 2 Z. Since c and d have no common divisor, this implies k jm, hence
k DmDm2 .

This argument also gives the stabilizer of the locus f…m.�/ W � 2Hg in the symplectic
group. Such a matrix is of the form of M with k Dm and integrality of the entries
implies that the quotient curve is isomorphic to �0.m/nH .

Finally, we determine for each component in Red23 with chosen real multiplication
given by prototype P D Œ`; e;m� a Hilbert modular surface and a Siegel modular
embedding that maps to this component. To exhibit a Siegel modular embedding,
we need to find eigenform coordinates, ie a matrix that diagonalizes the analytic
representation of real multiplication given by A
 in Lemma 7.4. Such a matrix is given
by

VP D

�
1 1

� ��

�
; where � WD �P D

�eC
p

D

4`
:

Indeed, associated to the prototype P one can produce the quadratic form QP D

Œ2`; e;�3`m� of discriminant D, so that � is precisely the quadratic irrationality
of QP , and Lemma 4.4 ensures that the first column .1; �/ of the matrix VP D B� is
a .2; 3/–symplectically adapted basis for a fractional ideal a_ of OD , and the first
column of the matrix .V �1

P P23/
T is a basis 1p

D
.�4`�� ; 6`/ of the ideal ab. A simple

calculation shows that aD 1p
D
h2`;�2`�� i and therefore, writing bD

˝
6; 1

2
.rC
p

D/
˛

for r 2 Z, the following equality of ideals determines r :
p

DabD h4`�� ; 6i

D h2`;�2`�� i
˝
6; 1

2
.r C
p

D/
˛

D
˝
12`;�12`�� ; `.r C

p
D/; 1

4
..DC er/C

p
D .eC r//

˛
:

To verify this, it is enough to prove that the second ideal lies in the first one, and one
checks that this holds for r as stated in the theorem.

In order to translate the theorem into Euler characteristics, we define another set
of prototypes, closely related to standard quadratic irrationalities. For a quadratic
discriminant D D f 2D0 with conductor f , we let

(21) Pk.D/D
˚
Œa; b; c�2Z3

W a> 0> c; DD b2
�4 �k �ac and gcd.f; b; c=c0/D 1

	
;

where c0 is the square-free part of c .
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The following result gives an explicit formula for the Euler characteristics of the
reducible loci Red23.b/ in terms of prototypes.

Lemma 7.5 The Euler characteristic of the reducible locus Red23.b/ in the Hilbert
modular surface XD.b/ is given by

�.Red23.b//D�
1

6k

X
Œa;b;c�2P6.D/

a

for each of the ideals b of norm 6 in OD , where k is the number of OD –ideals of
norm 6.

Proof By Theorem 7.1, the different components of Red23 in A2;.2;3/ are isomorphic
to certain �0.m/nH . Note that

�.�0.m//D�
m

6

Y
p jm

p prime

�
1C

1

p

�
:

Moreover, it is easy to show that, for each D,X
Œ`;e;m�2PD

�.�0.m//D�
1

6

X
Œa;b;c�2P6.D/

a:

Let us now suppose that D � 4; 9; 16 mod 24, so that there exist two ideals b¤ b� of
norm 6. This implies that precomposition of a chosen real multiplication OD!EndT�

with Galois conjugation gives a point on a different Hilbert modular surface, the one
with the conjugate b� . Each component of PD is in the image of some Hilbert modular
surface X a

D
.b/ with b determined in Theorem 7.1 and thus, by the change of cusp

explained in Section 4.5, also on the standard Hilbert modular surface XD.b/. Precom-
position with Galois conjugation corresponds to e 7! �e . Consequently, on X a

D
.b/,

�.Red23.b//D
1

2

X
Œ`;e;m�2PD

�.�0.m//D�
1

2
�
1

6

X
Œa;b;c�2P6.D/

a:

In the case D�0; 12 mod 24 there exists only one ideal bDb� of norm 6, and thus the
map XD.b/!A2;.2;3/ is generically two-to-one onto its image. In the particular case
of Red23.b/, components corresponding to prototypes Œ`; e;m� and Œ`;�e;m� are sent
to the same component of Red23 , whereas components corresponding to prototypes
Œ`; 0;m� lie in the ramification locus of XD.b/!A2;.2;3/ . As a consequence,

�.Red23.b//D
X

Œ`;e;m�2PD

�.�0.m//D�
1

6

X
Œa;b;c�2P6.D/

a:
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Finally, if D� 1 mod 24, there exist four ideals b1 , b�
1

, b2 and b�
2

of norm 6. For the
same reason as above, the forgetful map from Red23.bi/ to A2;.2;3/ is an isomorphism
onto its image. Precomposition with Galois conjugation corresponds again to e 7! �e .
We conclude

�.Red23.b1//C�.Red23.b2//D
1

2

X
Œ`;e;m�2PD

�.�0.m//D�
1

2
�
1

6

X
Œa;b;c�2P6.D/

a:

Using Lemma 7.6, we deduce that �.Red23.b1// D �.Red23.b2// and the result
follows.

Lemma 7.6 For D � 1 mod 24 not a square,X
b�1;11 mod 12

0<b<
p

D

�1

�
1

24
.D� b2/

�
D

X
b�5;7 mod 12

0<b<
p

D

�1

�
1

24
.D� b2/

�
:

Proof Recall the definition

�.q/D q1=24
1Y

nD1

.1� qn/D
X
b�1

�
12

b

�
qb2=24

of the Dedekind �–function and recall that

E2.q/D�
1

24
C

X
n�1

�1.n/q
n
D
�0.q/

�.q/
;

where 0 D q @
@q

. The statement of the lemma is now equivalent to

0D ŒqD=24�.E2.q/�.q//D Œq
D=24��0.q/;

which obviously holds for D nonsquare by definition of �.

Finally, we relate the components given by prototypes at least coarsely to the usual
classification of modular curves.

Proposition 7.7 Let P D Œ`; e;m� 2 PD be a prototype for real multiplication by OD

belonging to X a
D
.b/. The corresponding component FP of Red23.b/ is an irreducible

component of the modular curve Fg2m.�/, where � D g.eC
p

D/=
p

D and g D

gcd.e; `/.
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Proof By the proof of Theorem 7.1, we know that the Siegel modular embedding
determined by this prototype is given by VP , and therefore one has�

2� 0

0 3m�

�
D VP

�
�1 0

0 �2

�
V T
P D

�
�1C �2 ��1C�

��2

��1C�
��2 �2�1C .�

� /2�2

�
for a curve .�1; �2/D .�1.�/; �2.�// in H2 , where � WD �P D .�eC

p
D/=.4`/.

In particular, this curve necessarily lies in the curve ��1C�
��2 D 0, which obviously

agrees with Fg2m.�/. The only thing left to prove is that � is primitive in M and
N.�/DN.M /g2m.

From the calculations in the proof of Theorem 7.1, one gets

M D
p

Da2bD
4`
p

D
h3`; `�� ; e�� i;

and N.M /D 24`2=D. Since �D .4`=
p

D/g�� , it is clear that � is primitive in M,
and N.�/D 24`2g2m=D.

7.3 The .1; 6/–reducible locus

To put the results of the previous section in perspective we compare here loci of
reducible abelian surfaces according to their polarization. The moduli space A2;.1;6/

of .1; 6/–polarized abelian surfaces is of course isomorphic to A2;.2;3/ used in the
previous section, an isomorphism being induced by multiplication of period matrices
by diag

�
1
2
; 2
�

from the left.

In A2;.1;6/ (and by the above isomorphism thus also in A2;.2;3/ ) one can similarly de-
fine the .1; 6/–reducible locus Red16 of products E1�E2 of isogenous elliptic curves
with the natural .1; 6/–polarization p�

1
OE1

.0/˝ 6p�
2
OE2

.0/. With the arguments of
Lemma 7.2 we can put period matrices in Red16 in the form

…�;m D

�
� 0

0 m�

ˇ̌̌̌
1 0

0 6

�
for some � 2H and 0<m 2Q;

with the polarization given by the standard form
�

0 P16

�P16 0

�
. The remaining arguments

in the previous section work verbatim in this case as well and yield:

Theorem 7.8 Let D D f 2D0 be a positive quadratic discriminant with conductor f .
There is a bijective correspondence between irreducible components of the .1; 6/–
reducible locus admitting proper real multiplication by OD and the set of prototypes PD

as defined in Theorem 7.1.
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In particular, Red23 and Red16 have the same Euler characteristics. However:

Proposition 7.9 The loci Red23 and Red16 are disjoint in A2;.2;3/ .

Proof The degrees of elliptic curves on an abelian surface in Red23 are the values of
the quadratic form 2x2C3my2 for x;y;2Z, as computed in the proof of Lemma 7.3.
This form never takes the value 1.

8 The divisor of the Gothic modular form

In this section we calculate the vanishing locus of the Gothic modular form.

Theorem 8.1 Let GD.b/ denote the union of components of the Torelli-image of GD

lifted to XD.b/ such that du1 induces the eigenform ! at each point .X; !/. Then

div.GD/DGD.b/C 2 Red23.b/:

The theorem will be a direct consequence of Propositions 8.3 and 8.4 below, together
with Theorem 6.1.

8.1 The Fourier expansion of the Gothic modular form

For each cusp a2XD.b/ let �D .�1; �2/ be a basis of a_ that is .2; 3/–symplectically
adapted, determining the OD –module ab˚ a_ .

We want to write down the Fourier expansion of GD around this cusp using the Siegel
modular embedding given by the matrix B WD B� D

� �1 �
�
1

�2 �
�
2

�
as in Section 4.5, so that

the cusp a of XD.b/ corresponds to the cusp at infinity of X a
D
.b/. The stabilizer of 1

agrees with the subgroup

SL.ab˚ a_/1 D

��
" �

0 "�1

�
W " 2O�D ; � 2M WD

p
Da2b

�
:

For any Hilbert modular form f one has f .�C�/D f .�/ for � 2M, and therefore
one can write the Fourier expansion

f .�/D
X
�2M_

a�e.tr.��//;

where tr.��/D ��1C �
��2 and M_ D .

p
Da2b/_ D 1p

D
a_.ab/�1 .

Write ��.x/ WD x1�1 C x2�2 for x D .x1;x2/ 2 Q2 . We will drop the subindex
from �� whenever the choice of basis is clear.
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Proposition 8.2 The Fourier expansion of GD around the cusp a is given by

GD.�/D 8�2i �

� X
a2ƒ0;1=2

b2ƒ1=2;1=6

ka;bq
��.a/

2C��.b/
2

1
q
��� .a/

2C��� .b/
2

2

�

X
a2ƒ1=2;1=2

b2ƒ0;1=6

ka;bq
��.a/

2C��.b/
2

1
q
��� .a/

2C��� .b/
2

2

�
;

where ka;b D .�1/a2Cb2��� .a/�
�
� .b/ and ƒ�;ı D Z2C .�; ı/T .

8.2 Vanishing order along Red23

The reducible loci Red23.b/ turn out to lie in the vanishing locus of the Gothic modular
form GD . We next calculate the corresponding vanishing order.

Recall that, by the results of Section 7.1, the reducible loci Red23.b/ decompose into
different components FP indexed by prototypes in PD .

Proposition 8.3 The Gothic modular form GD vanishes to order 2 along the reducible
locus Red23.b/.

Proof Let P D Œ`; e;m� 2 PD be the prototype corresponding to a component FP �

Fg2m.�/ of Red23.b/ as in Proposition 7.7. Recall from Theorem 7.1 that the curve FP

lives in the Hilbert modular surface XD.b/ determined by the .2; 3/–symplectically
adapted basis a_ D h1; �i, where �D .�eC

p
D/=.4`/. Note that � is precisely the

irrationality associated to the quadratic form QP D Œ2`; e;�3`m� of discriminant D.
Moreover, by Proposition 7.7 the curve FP can be parametrized by � 7! .˛�; ˛��/,
where ˛ D� 1

4`g
�D ��=

p
D .

In the chosen basis for a_ , one has �.x1;x2/D x1Cx2� and therefore

tr.˛�.x1;x2/
2/D

1

2`

�
x2

1 C
3
2
mx2

2

�
:

Now, restricted to FP the coordinates q1 and q2 become q˛ and q˛
�

, respectively,
where q D e.�/. In particular, up to an 8�2i factor, the expression for GD from
Proposition 8.2 along FP reads

GD.�/D
X

a2ƒ0;1=2

b2ƒ1=2;1=6

.�1/a2Cb2.a1C a2�
� /.b1C b2�

� /q.1=g/.a.a
2
1
Cb2

1
/�c.a2

2
Cb2

2
//

�

X
a2ƒ1=2;1=2

b2ƒ0;1=6

.�1/a2Cb2.a1C a2�
� /.b1C b2�

� /q.1=g/.a.a
2
1
Cb2

1
/�c.a2

2
Cb2

2
//:
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Due to the symmetries of the lattices considered, the q–exponents of the terms cor-
responding to different choices of the signs ˙a1 and ˙b1 are the same. More-
over, the flip .a1; a2I b1; b2/ 7! .b1; a2I a1; b2/ gives a bijection between the lattice
ƒ0;1=2 �ƒ1=2;1=6 appearing in the first summand and the lattice ƒ1=2;1=2 �ƒ0;1=6

appearing in the second one.

As a consequence, the coefficients of the terms corresponding to .a1; a2I b1; b2/ and
.�a1; a2I �b1; b2/ in the first lattice and their flipped images .b1; a2I a1; b2/ and
.�b1; a2I �a1; b2/ in the second one give (up to a .�1/a2Cb2 factor)

.a1b1Ca2b2.�
� /2/C�� .a1b2Ca2b1/C .a1b1Ca2b2.�

� /2/��� .a1b2Ca2b1/

�.a1b1Ca2b2.�
� /2/��� .b1b2Ca1a2/�.a1b1Ca2b2.�

� /2/C�� .b1b2Ca1a2/;

which sums up to zero, and therefore GD vanishes along FP .

In order to determine the vanishing order, we will study the highest order k such that
all the k –derivatives of GD vanish along FP . The Fourier expansions of the restriction
of the derivatives @kGD=@�

k
1

and @kGD=@�
k
2

to the Shimura curve FP are given by
the same series as above, with the coefficients replaced by

.�1/a2Cb2.a1C a2�
� /.b1C b2�

� /.�.a/2C �.b/2/k

in the case of @kGD=@�
k
1

and the equivalent expression with .�� .a/2C �� .b/2/k for
@kGD=@�

k
2

.

The coefficients of @GD=@�1 corresponding to .a1; a2I b1; b2/ and .�a1; a2I �b1; b2/

in the first lattice and their flipped images .b1; a2I a1; b2/ and .�b1; a2I �a1; b2/ in
the second one are given this time by

.a2�
�
C a1/ � .b2�

�
C b1/ � Œ.a

2
1C b2

1 C a2
2�

2
C b2

2�
2/C 2�.a1a2C b1b2/�

C .a2�
�
� a1/ � .b2�

�
� b1/ � Œ.a

2
1C b2

1 C a2
2�

2
C b2

2�
2/� 2�.a1a2C b1b2/�

� .a2�
�
C a1/ � .b2�

�
C b1/ � Œ.a

2
1C b2

1 C a2
2�

2
C b2

2�
2/C 2�.b1a2C a1b2/�

� .a2�
�
� a1/ � .b2�

�
� b1/ � Œ.a

2
1C b2

1 C a2
2�

2
C b2

2�
2/� 2�.b1a2C a1b2/�;

which again sums up to zero. The same calculation for the derivative @GD=@�2 shows
that it is zero too, and the vanishing order of GD along FP is therefore at least 2.

Finally, a simple but long calculation shows that the minimum coefficient of @2GD=@�
2
1

,
given by the terms corresponding to aD

�
0;˙1

2

�
and bD

�
˙

1
2
; 1

6

�
in the first lattice

and aD
�
˙

1
2
;˙1

2

�
and bD

�
0; 1

6

�
in the second one, is � 4

27
.�1/2=3�2.�� /2 .
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8.3 Vanishing order along GD

The modular form GD vanishes along GD.b/ by construction. We next prove that it
vanishes only with multiplicity 1.

Proposition 8.4 If the Gothic modular form GD vanishes to order > 1 at �0 , then
�0 2

eRed23.b/. In particular, GD vanishes to order 1 along the Gothic Teichmüller
curve GD.b/.

Proof Assume that GD vanishes to order strictly larger than 1 at a point �0 2GD.b/,
so that in particular �0 2 XD n

eRed23.b/. This is equivalent to both derivatives
@GD=@�1.�0/ and @GD=@�2.�0/ being zero.

Recall the theta functions �X .�;u/, ‚a.�;u/ and ‚b.�;u/ defined at the beginning
of Section 6.5, and the fact that div �X .�0/D '.X / is the pre-Abel–Prym image of a
curve X in the Gothic locus.

By (16), GD.�/ is proportional to D2‚a

�
�; 1

2
�2

�
and D2‚b

�
�; 1

2
�2

�
and therefore,

by the heat equation (see [3, Proposition 8.5.5]), one has

@

@�2
GD.�0/D

@3

@u3
2

‚a.�0;u/juD�2=2 D
@3

@u3
2

‚b.�0;u/juD�2=2:

In particular, since all the lower-order u2 –derivatives of �X vanish, one has

@3

@u3
2

�X
�

1
2
�2

�
D

@3

@u3
2

‚a

�
1
2
�2

�
�Fb �

@3

@u3
2

‚b

�
1
2
�2

�
�Fa D 0:

Therefore, the differential du1 induces an abelian differential on X with two double
zeroes at 1

2
�2 and 1

2
.�2C�2/ and a zero of order � 3 at 1

2
�2 , which is a contradiction

to X having genus 4.

Note that we have proved that not even the �2 –derivative of GD vanishes anywhere
along GD.b/. This gives actually a direct proof of the following fact, without knowing
that the curves originate as Teichmüller curves.

Corollary 8.5 The vanishing locus of GD is a union of Kobayashi geodesics.

Proof Being a Kobayashi geodesic is equivalent to always being transversal to one of
the two natural foliations of XD.b/ (see [19, Proposition 1.3]), hence modular curves
are obviously Kobayashi geodesics and the nonvanishing of the derivative @=@�2GD.�/

anywhere in GD.b/ proves the statement.
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Finally, the following result shows that the reducible locus agrees indeed with the locus
eRed23.b/ defined in Theorem 6.1:

Proposition 8.6 The two definitions of the reducible locus in XD.b/ agree, that is,

Red23.b/D fGD.�/D 0g\ fFa.�/D 0g\ fFb.�/D 0g:

Proof By the previous proposition, the only thing left to prove is that the intersection
on the right-hand side is included in the reducible locus.

Let �0 2 fGD.�/D 0g\fFa.�/D 0g\fFb.�/D 0g. Assume without loss of generality
that ‚a is nonzero, otherwise take ‚b . This theta function satisfies

� D2‚a.0/DD1‚a.0/D 0 by definition and by Fa.�0/D 0, respectively;

� D2‚a

�
1
2
�2

�
DD1‚a

�
1
2
�2

�
D 0 by translation to zero via (16);

� D2‚a

�
1
2
�2

�
D D2‚a

�
1
2
.�2C�2/

�
D 0, both by translation to zero via (16)

and GD.�0/D 0.

Thus the theta function ‚a satisfies all the conditions of �X in the proof of Theorem 6.1,
and additionally D1‚a

�
1
2
�2

�
D 0. As a consequence Y D div‚a is a divisor with

self-intersection Y 2D 12 by Riemann–Roch, and multiplicity 3 at the origin and 1
2
�2 .

Moreover, since at least the first and second (by odd parity) u2 –derivatives vanish at
1
2
�2 and 1

2
.�2C�2/, either du1 induces an abelian differential with zeroes of order

� 2 at those points, or the multiplicity of Y at them is � 3. The same analysis as
in the proof of Theorem 6.1 concludes that the only option is T�0

2 Red23.b/ (case
Y D 3Y1C 2Y2 ).

Note that the case T�0
2GD (case Y D '.X / reduced with zero as its only singular

point) is not possible due to the extra vanishing of D1‚a

�
1
2
�2

�
, which implies multi-

plicity � 3 at that point.

9 Modular embedding of G12

This section is independent of the rest of the paper and illustrates the parametrization
of the Gothic locus in the language of the modular embeddings. We illustrate this for
D D 12, the unique case where GD is a triangle curve and, therefore, the methods of
hypergeometric differential equations are available.

A modular embedding for the Fuchsian group � with quadratic invariant trace field K

is a map � 7! .�; '.�// from H to H2 such that '.
 �/ D 
 �'.�/. The universal
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covering of a map C !XD.b/ from a Teichmüller curve C with quadratic trace field
to the corresponding Hilbert modular surface gives rise to a modular embedding; see
eg [21] for more details.

The hypergeometric differential equation with parameters .a; b; c/ 2R is given by

(22) L.a; b; c/.y/D t.1� t/y00C .c � .aC bC 1/t/y0� aby D 0:

Whenever 1
l
D j1� cj, 1

m
D jc � a� bj and 1

n
D ja� bj for some l;m; n 2 Z[f1g

satisfying 1
l
C

1
m
C

1
n
< 1, the monodromy group of this equation is the Fuchsian

triangle group �.l;m; n/. If l D1, ie if c D 1, the space of solutions of (22) near
t D 0 is generated by y1.t/ and log.t/y1.t/Cy2.t/, where

y1.t/D F.a; b; cI t/ WD

1X
nD0

.a/n.b/n

.c/nn!
tn;

y2.t/D

1X
rD0

.a/r .b/r

.c/r r !

� r�1X
kD0

1

aCk
C

1

bCk
�

2

cCk

�
tr :

Here .x/n denotes the Pochhammer symbol and F is the hypergeometric function with
coefficients .a; b; c/ for c D 1.

By Proposition 2.4, the Veech group of G12 is the triangle group � D �.1; 3; 6/,
generated by the matrices

M1 D

�
1 ˛

0 1

�
; M3 D

� 1
2

p
3

2

�

p
3

2
1
2

�
; M6 D

�p
3C 1

2
5
p

3
6
C 1

�

p
3

2
�

1
2

�
;

where ˛ D 2
p

3
3
C 2. It is therefore the monodromy group of the hypergeometric

differential equation L WD L
�

5
12
; 1

4
; 1
�
D 0 corresponding to

�
1
l
; 1

m
; 1

n

�
D
�
0; 1

3
; 1

6

�
and we let y1.t/ and y2.t/ be the functions defined above. We will also identify the
quotient �nH with P1 via the function t W H! P1 sending the elliptic generators
M1 , M3 and M6 of �.1; 3; 6/ to 0, 1 and 1, respectively.

Given that the invariant trace field of � is Q.
p

3/, we will also be interested in
the “conjugate” differential equation corresponding to the triangle group �� for the
nontrivial element � 2 Gal.Q.

p
3//. One can see that the rotation numbers of the

generators of �� of order 3 and 6 are e4�i=3 and e2�i=6 , respectively. As a conse-
quence, the differential equation associated to the group �� is L� WDL

�
1
4
; 1

12
; 1
�
D 0,

which corresponds to
�

1
l�
; 1

m�
; 1

n�

�
D
�
0; 2

3
; 1

6

�
. We denote the corresponding functions

defining the solutions of L� by zy1.t/ and zy2.t/.
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By [21, Formula (52)] the modular embedding ' is given in terms of these solutions
by

(23) '.�/D
˛�

˛
� C

˛�

2� i

�
log

A

zA
C

zf2.�/

zf1.�/
C
f2.�/

f1.�/

�
for the constants A and zA, where fi.�/ D yi.t.�// and zfi.�/ D zyi.t.�//. Since
t.�/ is M1–invariant, we can express these functions in terms of the parameter
q D e2�i�=˛ . The constants A and zA are determined by Q.t/ WD tey2.t/=y1.t/ DAq

and zQ.t/ WD te zy2.t/=zy1.t/ D zAzq , where zq D e2� i'.�/=˛� . The main remaining task is
thus to determine A and zA.

Due to the chosen normalization, the function t.�/ takes the value 1 at the point i

with multiplicity 3 and t.�/ ¤ 1 whenever im.�/ > 1. It follows that the function
1=.t.�/� 1/ has a triple pole at � D i and that, as a power series in q (resp. Q), the
closest singularity to the origin is given by q0 D e�2�=˛ (resp. Q0 D Aq0 ). This
implies that, if one writes 1=.t.Q/� 1/1=3 D

P
bnQn as a power series in Q, the

quotients bn=bnC1 will tend exponentially fast to Q0 . This yields a high-precision
approximation

A� 33:9797081543461844465412173813877 : : : :

The same calculations for zQD zAzq yield

zA� 3254:6483182744669365311774168770392 : : : :

These constants can be recognized as the “conjugate-in-exponent” pair

AD .2C
p

3/�6�
p

3.1C
p

3/9.3C
p

3/3;

zAD .2C
p

3/�6C
p

3.1C
p

3/9.3C
p

3/3:

The resulting modular embedding from formula (23) is approximately

'.�/D�
2.1�

p
3/

� i
log.2C

p
3/C .2�

p
3/� C

3C
p

3

3� i

�
�

1
6
Aq� 5

1152
A2q2

�
61

497 664
A3q3

�
713

382 205 952
A4q4

�
4943

183 458 856 960
A5q5

C � � �
�

D 0:963i C 0:268� C 9:243 � 10�7i�2
� 1:159 � 10�6�3

C 8:389 � 10�7i�4

� 2:136 � 10�7�5
C 4:611 � 10�7i�6

C 9:035 � 10�8�7
C 1:630 � 10�7i�8

C 1:053 � 10�7�9
C 2:502 � 10�8i�105:408 � 10�8�11

C � � �

and the modular transformation can be checked numerically.
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Finally, note that the group � does not belong to the Hilbert modular group SL.b˚O_
12
/,

but the conjugate �C D C�C�1 by the matrix

C D

�
3
p

3C 9 �3
p

3� 15

0 1

�
does. Consequently, the map � 7! .�;C � ı' ıC�1.�//, where matrices act on H by
Möbius transformations, parametrizes the Teichmüller curve G12D�CnH!X12.b/.
Indeed, it can be numerically checked that the image of this map lies in the vanishing
locus of the modular form G12 and, since Red23.b/ is empty in this case, it actually
equals fG12.�/D 0g.

10 Asymptotics of divisor sums

As preparation for computing the asymptotics of volumes and Lyapunov exponents in
the next section, we study here for a fundamental discriminant D the asymptotics as
D!1 of

e.D; k/D
X

b2�D mod 4k
jbj�
p

D

�1

�
D�b2

4k

�
D

X
Œa;b;c�2Pk.D/

a;

where �1. � / is the divisor sum function and where Pk.D/ has been introduced in (21).
Our focus is on the cases k D 1 and k D 6, but the method works for general k .

Theorem 10.1 The following asymptotic statements hold :

e.D; 1/D
�Q.
p

D/
.�1/

2�.�3/
CO.D5=4/

e.D; 6/D
1

50

�Q.
p

D/
.�1/

2�.�3/
CO.D5=4/ for D � 0; 12 mod 24;

e.D; 6/D
2

50

�Q.
p

D/
.�1/

2�.�3/
CO.D5=4/ for D � 4; 9; 16 mod 24;

e.D; 6/D
4

50

�Q.
p

D/
.�1/

2�.�3/
CO.D5=4/ for D � 1 mod 24;

as D!1 among fundamental discriminants.

Note that �Q.
p

D/
.�1/ > CD3=2 , so the theorem captures indeed the asymptotics for

large D. Our proof here follows closely an application of the circle method used by
Zagier in [27, Section 4]. To set the stage, we define the one-variable theta series and
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the Eisenstein series to be the modular forms

�.�/D

1X
`D�1

e�i`2� ; G2.�/D�
1

24
C

1X
aD1

�1.a/e
2�ia� :

Then the modular form

F.�; k/ WDG2.2k�/�.�/D

1X
nD0

e.n; k/e� in�

has a Fourier expansion with coefficients that generalize the coefficients we are inter-
ested in. The basic idea is to compute the Fourier coefficients of F.�; k/ by integration
at small height � . The dominating term of the asymptotics then comes from the
expansions near each rational point. Consequently, we use the modular transformation
law to obtain the expansions

(24)
�
�

a

c
C iy

�
D �.a; c/.cy/�1=2

CO.y�1=2e��=4c2y/;

G2

�
a

c
C iy

�
D��.2/.cy/�2

CO.y�2e��=c
2y/

as y!1, where a; c 2Z with gcd.a; c/D 1 and where �.a; c/ is a Legendre symbol
times a power of i , depending on the parities of a and c . Here we mainly need to
know that the Gauss sum


c.n/D c�1=2
2cX

aD1

�.a; c/e��ina=c

is computed in [27, Theorem 2] for D fundamental to be a weakly multiplicative
function in c given on prime powers by

(25) 2r
7!

8̂̂̂<̂
ˆ̂:

1 if r 2 f0; 1g;

2�.2/ if r D 2;

2 if r D 3 and 2 jD;

0 otherwise;

pr
7!

8̂̂̂<̂
ˆ̂:

1 if r D 0;

�.p/ if r D 1;

�1 if r D 2 and p jD;

0 otherwise

for odd primes p , where �.m/D
�

D
m

�
. Define

(26) e�.n; k/D

1X
cD1

gcd.c; 2k/2

c2

c.n/:

Lemma 10.2 For k square-free and D a fundamental discriminant,

e�.D; k/

e�.D; 1/
D

Y
p jk prime

1C�.p/

1Cp�2
:
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Proof Since the summands in (26) are weakly multiplicative in c , the function
e�.D; 1/ admits an Euler product expansion. For p¤ 2, equation (25) directly implies
that the local factor is

1C
�.p/

p2
C
�.p/2� 1

p4
D

1�p�4

1��.p/p�2
:

For p D 2 the same conclusion holds up to global factor 2 after taking the factor
gcd.c; 2k/2 into account. In total,

(27) e�.D; 1/D 2
L.2; �/

�.4/
;

where L.s; �/ D �K .s/=�.s/ is the L–series associated with the character �. The
passage from gcd.c; 2/ to gcd.c; 2k/ only changes the factors at the primes dividing k .
For p¤ 2 the local factor now is 1C�.p/C .�.p/2�1/p�2 , and the ratio compared
to the original factor results in the modification claimed in the lemma. For p D 2 the
same final conclusion holds.

Proof of Theorem 10.1 Since F is periodic under � 7! � C 2 we can compute the
coefficients

e.n; k/D
1

2

Z 2Ci�

i�

e� in�F.�; k/ dy

using Cauchy’s formula by integration at small height � . We replace the right-hand
side in a neighborhood of a

c
2 Œ0; 2/ by the dominating term in

F
�

a

c
C iy; k

�
D
�.2/

16�2
�.a; c/

gcd.c; 2k/2

k2c5=2
y�5=2

CO.y�5=2e��=4c2y/;

obtained as a combination of (24). The sum over all “major arcs” of the circle method
is the summation of these neighborhoods. It is computed in [27, Equation (32)] using
the integral representation of the Gamma-function to be

(28) xe.n; k/D
�1=2�.2/

16�
�

5
2

� n3=2

k2

1X
cD1

gcd.c; 2k/2

c2

c.n/:

To see that the major arcs indeed give the dominating term, we can argue as in
[27, page 81] (referring to Hardy) for any fixed k . The equations (28) and (27) can
now be combined as in [27] to the case k D 1 of the theorem. The cases for k D 6

differ by the factor 1=k2 in (28) and the factors in Lemma 10.2.
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11 Volumes and Lyapunov exponents

The results of the previous sections can now be assembled to compute the Euler
characteristic of the Gothic Teichmüller curves and their Lyapunov exponents. We
first state a more precise version of Theorem 1.1. Recall the definition of �D in
Proposition 4.3.

Theorem 11.1 Let D be a nonsquare discriminant. The Gothic Teichmüller curve GD

is nonempty if and only if D � 0; 1; 4; 9; 12; 16 mod 24.

For D � 0; 12 mod 24 the Gothic Teichmüller curve GD has Euler characteristic

��.GD/D
1

20
�D

X
Œa;b;c�2P1.D/

a�
1

3

X
Œa;b;c�2P6.D/

a:

For D � 4; 9; 16 mod 24 the Gothic Teichmüller curve GD D G0
D
[G1

D
consists of

two subcurves G�
D

of the same volume equal to

��.G�
D/D

1

20
�D

X
Œa;b;c�2P1.D/

a�
1

6

X
Œa;b;c�2P6.D/

a; � 2 f0; 1g:

For D � 1 mod 24 there is a decomposition GD D G00
D
[G01

D
[G10

D
[G01

D
of the

Gothic Teichmüller curve into four subcurves G�ı
D

of the same volume equal to

��.G�ı
D /D

1

20
�D

X
Œa;b;c�2P1.D/

a�
1

12

X
Œa;b;c�2P6.D/

a; �; ı 2 f0; 1g:

To state the other theorems, we provide a brief introduction to Lyapunov exponents, in
particular for flat surfaces .X; !/ in the Gothic locus.

Lyapunov exponents measure the growth rate of cohomology classes in H 1.X;R/

under parallel transport along the geodesic flow in SL.2;R/ � .X; !/, the closure of
the SL.2;R/–orbit of .X; !/ (see eg [28] or [18] for background). The Lyapunov
spectrum of a genus 4 surface consists of Lyapunov exponents �1D 1� �2 � �3 � �4

and their negatives.

In the case of flat surfaces .X; !/ in the Gothic locus, the existence of the maps �A

and �B in (1) decomposes the local system V with fiber H 1.X;R/ over �G into
local subsystems VA and VB of rank 2, corresponding to the elliptic curves A and B,
and the (“Prym”) complement VP . Since the generating differential of the Gothic form
belongs to the Prym part, the exponent �1 D 1 is one of the two positive exponents
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f1; �P g of VP . If we denote by �A and �B the Lyapunov exponents from the elliptic
curves, then the sets

f1; �2; �3; �4g D f1; �A; �B; �P g

coincide. Since by definition !2 D ��
A

q for some quadratic differential q on A, the
double covering formula of Eskin, Kontsevich and Zorich [7] implies

�1C�P C�B ��A D
1
4
� 3 �

�
1

1C2
C

1
�1C2

�
D 1:

Theorem 11.2 The Prym Lyapunov exponent �P of a generic surface in the Gothic
locus is equal to 3

13
.

This is a direct consequence of the asymptotics formulas in Theorem 10.1, the following
proposition and the convergence of individual Lyapunov exponents [4], since the
curves GD equidistribute towards (the Lebesgue measure on) the Gothic locus by [9].

Proposition 11.3 The Prym Lyapunov exponent of a Gothic Veech surface on GD is
equal to

�P .GD.b//D 1C
�.XD.b//

�.GD.b//
:

Note that we do not claim that the curves GD.b/ are connected, although we expect
this to be true. Therefore, the statement of the proposition has to be interpreted as the
volume-weighted average of the �P of the connected components.

Proof of Theorem 11.1 The arguments in the following work for any good compacti-
fication XD.b/ of XD.b/ (see [19]). Since the specific choice of compactification is
not relevant, we will denote simply by ŒC � the class of the closure C in XD.b/.

Let Œ!i � be the classes of the two foliations of the Hilbert modular surface XD.b/.
Then the uniformization of XD.b/ implies �.XD.b//D Œ!1� � Œ!2� and the vanishing
locus of a modular for of biweight .k; `/ has class 1

2
.kŒ!1�C `Œ!2�/.

Theorem 6.1 and Proposition 8.3 together show that the vanishing locus of the Gothic
modular form GD is a union of Kobayashi curves and the first coordinate can be used as
parameter for each of these curves. By Theorem 8.1, div.GD/DGD.b/C 2 Red23.b/,
where GD.b/ denotes the union of those components of the Torelli-image of GD

in XD.b/ for which du1 induces the eigenform ! at each point .X; !/.

This implies that integration of !1 along div.GD/ (equivalently, the intersection product
�Œ!1� � Œdiv.GD/�) computes the sum of the Euler characteristics of these curves with
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the multiplicity determined in Propositions 8.3 and 8.4 (see [1, Corollary 10.4] or
[19, Proposition 1.3]). We obtain

(29) �
3
2
�.XD.b//D�Œ!1� �

�
1
2
Œ!1�C

3
2
Œ!2�

�
D �.GD.b//C 2�.Red23.b//:

Proposition 4.3 together with the well-known expression for the Euler characteristic
�.XD/ of standard Hilbert modular surfaces in terms of prototypes (see [11] for
example) give

�.XD.b//D
1

30
�D

X
Œa;b;c�2P1.D/

a:

Formula (29) together with Lemma 7.5 proves the result for GD.b/. The only thing
left to do is to prove the decomposition of GD into subcurves as claimed.

We claim that, for different ideals b1 and b2 , the images of GD.b1/ and GD.b2/ in
A2;.2;3/ are different. In fact, if b2 ¤ b�

1
, the images of the whole Hilbert modular

surfaces XD.b1/ and XD.b2/ are disjoint in A2;.2;3/ , since the lattices of the corre-
sponding abelian surfaces are not even isomorphic as OD –modules. On the other hand,
if b� ¤ b, the subcurves GD.b/ and GD.b

� / can both be seen in XD.b/ as Kobayashi
geodesics with !1 and !2 as parameters, respectively. In particular, if their images
under XD.b/! A2;.2;3/ agreed, their associated eigenforms for real multiplication
would map to two different eigenforms on each point X 2GD .

Finally, by construction GD , is covered by the union of the images of GD.b/ for the
different ideals b of norm 6.

Proof of Proposition 11.3 and Theorem 11.2 The Lyapunov exponent �P .C / of a
Kobayashi geodesic C in XD.b/ is given by the quotient (see [1] or [19])

�P .C /D
Œ!2� � ŒC �

Œ!1� � ŒC �
:

The reducible locus Red23.b/ is a union of Shimura curves, and therefore one has
�P .Red23.b//D 1 and �Œ!1� � ŒRed23.b/�D�Œ!2� � ŒRed23.b/�D �.Red23.b//. In the
case of the Gothic Teichmüller curves, since ŒGD.b/�D Œdiv.GD/�� 2ŒRed23.b/�, one
has

�P .GD.b//D
Œ!2� �

�
1
2
Œ!1�C

3
2
Œ!2�� 2ŒRed23.b/�

�
Œ!1� �

�
1
2
Œ!1�C

3
2
Œ!2�� 2ŒRed23.b/�

� D 1
2
�.XD.b//C 2�.Red23.b//

3
2
�.XD.b//C 2�.Red23.b//

:

By Theorem 1.1, this is exactly 1C�.XD.b//=�.GD.b//.

Theorem 11.2 follows by taking the limit and using Theorems 11.1 and 10.1
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D # �.XD.b// �.Red23.b// �.G�ı
D
/

12 1 1
3

0 �
1
2

�

24 1 1 �
1
6

�
7
6

28 2 4
3

�
1
6

�
5
3

33 2 2 �
1
6

�
8
3
�

40 2 7
3

�
1
6

�
19
6
�

48 1 4 �
1
2

�5

52 2 5 �
1
2

�
13
2

57 2 14
3

�
1
2

�6 |

60 1 4 �
1
3

�
16
3

72 1 20
3

�
2
3

�
26
3
�

73 4 22
3

�
2
3

�
29
3

|

76 2 19
3

�
2
3

�
49
6
�

84 1 10 �1 �13 |

88 2 23
3

�
5
6

�
59
6

96 1 12 �1 �16

97 4 34
3

�
7
6

�
44
3

105 2 12 �
4
3

�
46
3

108 1 12 �
4
3

�
46
3

112 2 16 �
3
2

�21 |

120 1 34
3

�1 �15 �

124 2 40
3

�
7
6

�
53
3
�

129 2 50
3

�
3
2

�22 �

132 1 18 �2 �23

136 2 46
3

�
5
3

�
59
3

145 4 64
3

�
13
6

�
83
3

148 2 25 �
5
2

�
65
2

|

153 2 80
3

�
8
3

�
104

3
�

156 1 52
3

�2 �22

160 2 28 �3 �36 |

168 1 18 �
5
3

�
71
3

172 2 21 �2 �
55
2
�

177 2 26 �
5
2

�34

180 1 40 �4 �52 |

D # �.XD.b// �.Red23.b// �.G�ı
D
/

184 2 74
3

�
7
3

�
97
3
�

192 1 32 �3 �42 |

193 4 98
3

�
10
3

�
127

3

201 2 98
3

�
7
2

�42

204 1 26 �
8
3

�
101

3

208 2 40 �4 �52

216 1 36 �
10
3

�
142

3

217 4 116
3

�
23
6

�
151

3

220 2 92
3

�
10
3

�
118

3

228 1 42 �4 �55

232 2 33 �
7
2

�
85
2

240 1 48 �5 �62

241 4 142
3

�
14
3

�
185

3

244 2 55 �
11
2

�
143

2

249 2 46 �
9
2

�60

252 1 128
3

�4 �56 �

264 1 112
3

�4 �48

265 4 160
3

�
31
6

�
209

3

268 2 41 �4 �
107

2

273 2 148
3

�5 �64

276 1 60 �6 �78

280 2 134
3

�
13
3

�
175

3

288 1 80 �8 �104 |

292 2 66 �7 �85

297 2 72 �
22
3

�
280

3

300 1 130
3

�4 �57

304 2 76 �
15
2

�99

312 1 46 �5 �59

313 4 200
3

�
41
6

�
259

3

316 2 56 �
11
2

�73

321 2 66 �
13
2

�86

328 2 54 �5 �71

336 1 80 �8 �104

Table 1: Number of OD –ideals b of norm 6 and volumes of each XD.b/ ,
Red23.b/ and GD.b/ , for D � 385 . The cross and the asterisk indicate a
Gothic or hexagons model, respectively.
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