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Euler characteristics of Gothic Teichmiiller curves
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We compute the Euler characteristics of the recently discovered series of Gothic
Teichmiiller curves. The main tool is the construction of “Gothic” Hilbert modular
forms vanishing at the images of these Teichmiiller curves.

Contrary to all previously known examples, the Euler characteristic is not proportional
to the Euler characteristic of the ambient Hilbert modular surfaces. This results in
interesting “varying” phenomena for Lyapunov exponents.
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1 Introduction

Teichmiiller curves are complex geodesics in the moduli space of curves M. They
arise as the SL, (R)—orbits of flat surfaces with optimal dynamics, called Veech surfaces.
If the Veech surface is not obtained by a covering construction from a lower-genus
surface, it is called primitive and the resulting Teichmiiller curve is called primitive too.
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There are very few constructions of primitive Teichmiiller curves (see Moller [20] for a
list of known examples). Each infinite collection of primitive Teichmiiller curves in a
fixed genus stems from an invariant submanifold “like the minimal stratum QM (2)”
in genus two (see Section 2.2), by the finiteness results from Eskin, Filip and Wright [6].
While the geometry of Q2M5,(2) and of the Prym loci is well understood now, the
geometry of the two invariant submanifolds “like 2.M;(2)” recently discovered by
Eskin, McMullen, Mukamel and Wright in [8] is basically unexplored. Here we focus
on the Gothic locus QG C QM4 (2,2, 2) of flat genus four surfaces, introduced already
in McMullen, Mukamel and Wright [16].

While interest in Teichmiiller curves originates from dynamics, their geometry is
strongly determined by modular forms. Teichmiiller curves in an infinite series of
fixed genus always map via the Torelli map to the locus of real multiplication, ie to a
Hilbert modular surface (see Moller [17] together with [6]). Conversely, the intersection
of 2G with the locus of real multiplication by the order Op is a union of Teichmiiller
curves Gp. These Teichmiiller curves are primitive if and only if D is not a square,
which we assume in the rest of this paper. The modular forms in question are thus
Hilbert modular forms, supposed to cut out the Teichmiiller curves Gp inside the
Hilbert modular surface.

Contrary to the expectation from the situation in genus two and in the Prym loci of genus
three and four, there is no Hilbert modular form whose vanishing locus is precisely
equal to the Gothic Teichmiiller curves Gp! Yet, there is a “Gothic” Hilbert modular
form Gp whose vanishing locus is only slightly larger than G p, the difference being a
collection of modular curves, whose parameters can all be computed.

In order to state the results, we roughly recall the definition of Q2G; see Section 2.1
for more details. A flat surface (X, ) in the stratum QMy4(2,2,2) is Gothic if it
admits an involution J leaving w antiinvariant and fixing the zeros of w and an “odd”
degree three map X — B to an elliptic curve B mapping all the zeros to a single
point. The involution J induces a degree two map X — A to another elliptic curve 4.
The complement of both A and B in the Jacobian of X inherits a polarization of
type (1, 6), as we show in Section 3. Consequently, the number 6 plays a prominent
role in the paper: the Gothic Teichmiiller curves G p naturally live on Hilbert modular
surfaces Xp(b), where b is an Op—ideal of norm 6.

Our first goal is to give a natural decomposition of Gp into (perhaps still reducible)
components and to compute explicitly their Euler characteristics. They can be written
in terms of Euler characteristics of those Hilbert modular surfaces and of the reducible
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locus Red,3, parametrizing (2, 3)—polarized products of elliptic curves with real
multiplication by Op.

Theorem 1.1 Let D be a nonsquare discriminant. The Gothic Teichmiiller curve Gp
is nonempty if and only if D =0,1,4,9,12,16 mod 24.

In this case, Gp consists of different subcurves Gp(b) corresponding to different
Op —ideals b of norm 6. The Euler characteristics of all these subcurves agree and are
equal to

—x(Gp(b)) = 2 x(Xp(b)) + 2x(Redy3 (b)).

We give a completely explicit formula in Theorem 11.1, and a table for small discrimi-
nants (Table 1) can be found at the end of the paper. The Euler characteristic of the
Hilbert modular surface X p(b) is equal to the Euler characteristic of a standard Hilbert
modular surface if D is fundamental, and differs by a simple factor in general; see
Proposition 4.3 for the complete formula. In any case, x(Xp (b)) is independent of the
choice of the ideal of norm 6. We strongly suspect the subcurves Gp(b) defined in
the theorem to be irreducible but we do not attempt to prove this here.

The presence of modular curves in the vanishing locus of the Hilbert modular form Gp
has another consequence that makes characteristic invariants of the Gothic Teichmiiller
curves behave differently than all the examples known so far. We phrase this in terms
of Lyapunov exponents in Section 11 and restate it geometrically here.

Teichmiiller curves are Kobayashi geodesic algebraic curves C in Hilbert modular sur-
faces. If z +— (z, ¢(z)) is the universal covering map of a Kobayashi geodesic, then for
any M € GL,(Q(+/D)) the map z +— (M z, M°¢(z)) descends to another Kobayashi
geodesic. All modular curves arise by this twisting procedure from the diagonal and the
twists of Teichmiiller curves are interesting special curves on Hilbert modular surfaces.
However, this twisting does not change the most basic algebraic invariant,

C o]

C o]

where [w;] are the foliation classes on the Hilbert modular surface. For modular curves

A (C) =

Ao = 1 and, in general, the list of known A,(C) of Kobayashi geodesics C was a
rather short (and finite) list (see the summary in Moller and Zagier [21, Section 1]). As
a consequence of the decomposition of {Gp = 0} into several components we obtain:

Corollary 1.2 The sequence of invariants A,(Gp) is infinite and tends to 13—3 for
D — .

Geometry & Topology, Volume 24 (2020)



1152 Martin Moller and David Torres-Teigell

This corollary is proved in the equivalent formulation of Theorem 11.2; see also
Proposition 11.3. It is an open question whether for a fixed Hilbert modular surface the
set of A,(C) for all its Kobayashi geodesics C is finite or infinite.

We next summarize the main steps in the proof of Theorem 1.1 and explain the origin of
the Gothic modular form Gp. Analyzing the definition of the Gothic locus (Section 2),
we obtain that the image of a Gothic Veech surface in its (1, 6)—polarized Prym abelian
surface is a curve with a triple point at the origin and horizontal tangents at three
nonzero 2-torsion points (Section 6). To construct these images as the vanishing
locus of a theta function, we need to impose five conditions, two stemming from the
multiplicity at the origin and the rest from the behavior at the 2—torsion points. The
(odd) theta functions vary in a 3—dimensional projective space, so we can impose the
first three conditions and, by restricting to a divisor {Gp = 0} in the Hilbert modular
surface, we can also satisfy the last two conditions. Teichmiiller curves exist due to
dimension miracles. From our point of view this is manifested by the last two conditions
holding simultaneously along {Gp = 0}, due to theta value relations at 2—torsion points
(Section 5).

Contrary to the previous known cases in 2M5,(2) and the Prym locus, the vanishing
locus of the Gothic modular form Gp contains some “spurious” components apart from
the Gothic Teichmiiller curves. These components form the (2, 3)-reducible locus,
points in the Hilbert modular surface corresponding to products of elliptic curves with
the natural (2, 3)—product polarization (Section 7). By studying the vanishing order
of the modular form along both the Gothic Teichmiiller curve and the reducible locus
(Section 8), we can finally relate their Euler characteristics with the Euler characteristic
of the Hilbert modular surface in which they live (Section 11). This also allows us to
give a formula for the Lyapunov exponents of the individual Gothic Teichmiiller curves
and to compute those of the Gothic locus.
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2 Examples of Gothic Teichmiiller curves

In this section we introduce the Gothic locus and the Gothic Teichmiiller curves,
following [16]. Not all Gothic Teichmiiller curves can be presented in the shape of a
Gothic cathedral. In fact, the simplest example of a Gothic Teichmiiller curve already
appeared in work of Ward [24] on triangular billiards.

2.1 The Gothic locus

Given a Riemann surface X with an involution J we say thatamap ng: X — B is odd
if there exists an involution j: B — B such that wg o J = j o wpg. Following [16] we
define the Gothic locus QG to be the set of Riemann surfaces (X, w) € QM4(23,03)
such that

(i) there exists an involution J € Aut(X) whose fixed points are the six marked
points, the zeros Z = Z(w) = {z1, z2, z3} and the marked regular points P =

{pl » P2, P3 } ’
(ii) the one-form w is J—antiinvariant, that is, J*w = —w, and
(iii) there exists a genus one curve B and an odd map np: X — B of degree 3 such

that |[mg(Z)|=1.

Every flat surface (X, w) € QG in the Gothic locus thus comes with maps

1)

P 1
where

e w4y X = X/J = A is of degree 2,
e mp: X — B isan odd, degree 3 ramified covering such that |7p(Z)| =1,
e r: B— B/j =P! is the quotient map, and

e p: A— P! is the degree 3 ramified covering that makes the diagram commuta-
tive.

These maps can be illustrated on the hexagon form in Figure 1. It admits an automor-
phism R of order 6 with R*® = {¢w. Then J = R? and 74 and mp are the quotients
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Figure 1: The hexagon form in the Gothic locus (from [16]).

by R3 and R?, respectively. Note, however, that the map 7z will not be Galois
in general. The reason for the definition is that 2G turns out to be an unexpected
SL, (R)—orbit closure.

Theorem 2.1 [16] The Gothic locus is a closed irreducible variety of dimension 4,
locally defined by linear equations in period coordinates.

Infact, vq,...,vg, Wy, ..., ws are periods on the 10—dimensional space Q2My4(2, 2, 2),
and Z?Zl v, =0= 21'6=1 w; by construction. In fact, vy, ..., vs, wq,...,ws form a
coordinate system. In this coordinates 2G is cut out by the conditions

2 vigz=-vi, wiyz=-w;, vV +v3+vs=0, w;t+w3+ws=0
fori =1,2,3.

The branch points of the maps in the diagram (1) give a collection of special points. We
introduce notation for later use. Given a point x € X we will denote the other points in
the same 7 g—fiber by ngl(nB(x)) ={x=:x, x® xOYVand h=rong=pony.
The preimages of the ramification points of /4 and their behavior under the maps 7 4
and g can be described in the following way:

* The image point e}, = wp(Z) is fixed by j, since each z; is fixed by J. This

point is therefore sent by r to a ramification point e4 = r(e}) of /. In particular
we can choose the group law on B so that e} agrees with the origin O.

* The image points ¢; = wg(p;) for i =1,2,3 are also fixed by j, giving rise to
the other three points of order 2 in B. Their preimages under g are given by
ngte) ={pi.qi. J(qi)}.

Geometry & Topology, Volume 24 (2020)
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e There exist three other ramification points of the map /, among the preimages
of which there exist points {y;, J(y;)} for i = 1,2, 3 with ramification index 2
with respect to /2 each.

In summary, we have

HA{Pi,CIi,J((Ii)} s {21,22,23}71
/ K / x
3 {pi.a) /ei- {Z1.%2.%3) / ¢
Recall that the stratum Mg (2,2,2) has two connected components, distinguished
by the parity of the spin structure. One can take a flat surface in QG (eg the hexagon
form) and compute the winding numbers of a symplectic basis to prove that the Gothic
locus lies in the component QMg"(2,2,2) with even spin structure (see also the
argument using G,y in [16, Section 4]). We will however not use this fact when cutting

out, in Section 6, the image of the Veech surfaces in their Prym varieties with theta
functions.

The one-form w obviously belongs to the tangent space to a three-dimensional sub-
variety of Jac(X), the complement of A4, since w is J—invariant. We can reduce the
considerations to abelian surfaces, the complement of both 4 and B, thanks to the
following observation:

Lemma 2.2 [16] For (X,w) € QG the ng—pushforward is zero.

Proof The differential (rp)«(w) vanishes at e}, since all the 77 p—preimages of that
point are zeros of w, and this pushforward differential is holomorphic. On the elliptic
curve B this implies (7p)«(w) = 0. a

2.2 Gothic Teichmiiller curves: cathedrals and semiregular hexagons

The Gothic locus QG is “like 2M,(2)” in a precise sense: it is an affine invariant
manifold of dimension four and rank two (in the sense of [26]). In this situation, the
intersection with the locus where the Prym variety (as defined in detail in Section 3)
has real multiplication by a quadratic field is a union of Teichmiiller curves. That is, if
we let

QGp ={(X,w) e QG :w is an eigenform for real multiplication by Op on Prym X},
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Figure 2: A cathedral-shaped surface in the Gothic locus.

the image Gp C My is a finite union of Teichmiiller curves by [16, Theorem 1.7]. We
give flat pictures of some of these Teichmiiller curves.

The first flat picture is the Gothic cathedral, Figure 2. It was obtained in [16] by shearing
jointly the light gray cylinders in Figure 1 (which preserves membership in Q2G) and a
cut-and-paste operation until these light gray cylinders become the ones containing the
sides e, f and g and the dark gray cylinders transform into the cylinders containing

Figure 3: A duck-shaped surface in the Gothic locus
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the sides i and j. After normalizing in the horizontal and vertical directions, one can
furthermore assume that the periods have the form

a=d=1(14i), b=c=4(1-i), h=i, e=f=ig=0a, i=j=pi

for some «, € R. For appropriate values of @ and 8 the ratios of the moduli of all
vertical and of all horizontal cylinders are commensurable and, therefore, the Veech
group of the cathedral contains parabolic elements fixing the vertical and horizontal
direction. In fact, this happens whenever o = x + y\/g and f = —-3x— % +3 y\/g for
d >0 and x, y € Q. The product of such parabolic elements is then hyperbolic and
has quadratic trace field Q(~/d) and, consequently, Figure 2 generates a Teichmiiller
curve [16, Section 9].

A more precise computation shows that eg for x =0, y = % and d = 2 the period
matrix of Prym(X, 74, wp) (see Section 3) is equivalent to

qo (73V2 3V2-1430 3430 3iV2-3i
T\ 3V2 321430 3430 =3iv2-3i)

This abelian variety admits real multiplication by O,gg, as can by seen by the analytic
and rational representations

18 11 =3 =9
y (43 0 4 R =18 -9 9 9
vasse T\ g _wvass] vass/2 T |18 15 =3 =3 |”
2
0 6 6—6

ie the identity Am/zn = l'[R\/m/2 holds.

Alternatively, one can move the corners of the hexagon while maintaining the rela-
tions (2) and the surface becomes horizontally and vertically periodic with cylinders as
in Figure 3. Concretely, we may take
@ Uy =x—i—'yl', vy = 2X, | v3=x.—yz',

w;=1-—1i, wy =141, w3=2i
for x, y e R.

Proposition 2.3 Let x, y € Q(+/d) be such that

14+3x x(y+3)
yAd+x) y+1

Then the flat surface in Figure 3 generates a Teichmiiller curve in Gp for some D such

that Q(v/'D) = Q(V/d).

Q.
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1158 Martin Moller and David Torres-Teigell

Proof The coordinates in (4) are chosen so that the flat surface admits a horizontal
and a vertical cylinder decomposition. The moduli of the horizontal cylinders are given
by (my,my) = 2(1 +3x)/y,2(1 + x)) while the moduli of vertical cylinders are
(m'|,m’)) = 2(y + 1)/x.2(y + 3)). the commensurability of which is given by the
above conditions on x and y. a

It is amusing to note that a curve in this series of Teichmiiller curves in Gp was in the
literature long before the discovery of the whole series. The (irreducible) curve G, will
be our second running example. We recall the notation 7 (1, n) of Wright [25] for the
Veech—Ward-Bouw-Moller curve generated by the unfolding of the (m, n, oo)—triangle
(see also [24]), and the “semiregular polygons” decomposition of the corresponding
Veech surface (Yo, m,n) of Hooper [13].

Proposition 2.4 The Teichmiiller curve G, agrees with the Veech—Ward—Bouw—

f
y = —+/3, which agrees with the semiregular polygon decomposition of (Y3,6, 13, 6)

Moller curve T (3, 6). It is generated by the flat surface in Figure 3 with x =

after scaling the axes by 3 7 and } The Veech group of G, is the triangle group
A(s’ 6, OO), hence X(Gl2) = —%

Proof The equivalence of the flat presentation is a straightforward check using the
notation conventions given in the references. To see that this example corresponds to
discriminant D = 12 in the Gothic series it is enough to check that

B ((18i—6)(ﬁ+1)/(ﬁ+ 3) 12i(V3+1)/(V3+3) 6i—6 4)
“\U8i —6)(V3-1)/(v3=3) 12i(~3-1)/(v/3—=3) 6i—

gives the period matrix of the corresponding Prym variety Prym(X, w4, wp) (see
Section 3) and it admits real multiplication by O;, defined by the analytic and rational

representation
00 3 =2
Y12 00 -3 3
— 2 _
AM/2—<O _~/_T2) and Ry2=132 0 o .
? 33 0 0

3 Prym varieties for two maps

Given a finite collection of maps m;: X — Y; between curves, the Prym variety
Prym(X, 7y, ..., m,) (in a generalized sense) is the complementary abelian variety

Geometry & Topology, Volume 24 (2020)
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to the image of the maps 7/*: Jac ¥; — Jac X, that is, the perpendicular space to the
tangent spaces P Q\;’ divided by its intersection with the period lattice. The main
goal of this section is to determine the signature of the polarization on this Prym variety
Prym(X) = Prym(X, n4, wp) in the case of a Gothic flat surface.

Proposition 3.1 The restriction of the principal polarization on Jac(X') is a polariza-
tion on Prym X of type (1, 6). Consequently, the dual Prym variety Prym” X has a
natural polarization of type (1, 6), too.

We first recall an equivalent definition of complementary abelian subvarieties in terms
of endomorphisms. Let (7', £) be an abelian variety, that is, a complex torus 7=V /A
together with a positive-definite line bundle £. Given an abelian subvariety ¢: ¥ — T,
one can define its exponent ey as the exponent e(L£) of the induced polarization ¢* L,
and its norm endomorphism Ny € End(7") and symmetric idempotent ey € Endg(7")
as

v 1
(5) NY = Llﬂt*ﬁt¢g and gy = ;NY,

respectively, where ¢.: T — T is the isogeny associated to a line bundle £ and
Ve = e(ﬁ)qﬁ;l (see [3, Section 5.3]). In the case of £ being a principal polarization,
the exponent of Y is precisely ey = min{n > 0:ney € End(T)} (see Proposition 12.1.1
of [3]).

The assignment Y +— ey and its inverse ¢ — X¢ := im(ne), for any n > 0 such that
ne € End(T), induce a bijection between the set of abelian subvarieties of 7' and the set
of symmetric (with respect to the Rosati involution f +> f’ = qbzl f ¢ ) idempotents
in Endg (7). Accordingly, the canonical involution & — 1 —¢ on the set of symmetric
idempotents induces an involution Y > Z := X !7¢Y on the set of abelian subvarieties.
The abelian subvariety Z is called the complementary abelian subvariety of Y, and
the exponent ez agrees with ey in the case of £ being a principal polarization. The
map (Ny,Nz): X — Y x Z is an isogeny and the identities

Ny|y=€yld, Ny|Z=O=NyNz=O, eyNz +ezNy =eyez1d
hold [3, Section 5.3].

Now let 7: X — Y be a morphism between curves. The pullback map defines a
homomorphism 7*: JacY — Jac X. This map is, moreover, injective whenever
does not factor through a cyclic étale cover of degree > 2. Under these conditions,
the Prym variety Prym(X, ) of the map n is defined as the complementary abelian
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variety of 7*(JacY) (or, equivalently, as the connected component of the identity
of the kernel ker Ny« (j,cy)). The Jacobian of X decomposes, up to isogeny, as
Jac X ~ n*(JacY) x Prym(X, ). Note that, in general, Prym(X, ) is not a Prym
variety in the classical sense (see [3, Section 12]), as the induced polarization will not
be a multiple of the principal polarization.

Consider now a pair of morphisms of curves 7;: X — Y; and my: X — Y>, together
with the corresponding homomorphisms 7{: Jac Y1 — Jac X and 7} Jac Y, — Jac X.
Assume moreover that there exist morphisms gq: Y; — Y and g,: ¥, — Y to some
curve Y such that the diagram

commutes. Under a mild nonfactorization condition, one can decompose Jac X further
in terms of Jacobians.

Proposition 3.2 [14] Suppose g1 and g, do not both factorize via the same mor-
phism Yo — Y of degree > 2. Then n5 Prym(Y;, g5) is an abelian subvariety of
Prym(X, 7ry). In particular, Jac X decomposes, up to isogeny, as

Jac X ~ h*(JacY) x 7y Prym(Y7, g1) X 7wy Prym(Y>, g2) X P
for some subvariety P of Jac X.
The subvariety P is called the Prym variety Prym(X, 71, 5) of the pair of coverings

(71, 7). In the case that Y = P!, the summand /*(JacY) is of course trivial and
Prym(Y;, gj) =JacY;.

We now specialize to the Gothic situation and give explicitly the various norm en-
domorphisms for later use. We write AY and BY for the image of n} and 7y,
respectively.

Proposition 3.3 Let T be a principally polarized abelian variety and AY, BY C T
be abelian subvarieties with coprime exponents e 4 and ep and such that N4Np = 0.
Then Y = AY x BY is a subvariety of T. Moreover, the norm endomorphisms of Y
and its complementary abelian variety P satisfy

Ny =epNg4+e4Np and Np =ey epld—Ny.

Geometry & Topology, Volume 24 (2020)
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Proof Injectivity of ¥ — T follows from coprimality. Writing N =epN4+e4Np,
one has N2 = e egN and N|y = ey epldy. The idempotent ¢ = (1/e4ep)N
corresponds to the abelian subvariety Y and it is of exponent e ep since ey =
min{n > 0 :ney € End(7T)} and (e4,ep) = 1. The rest of the claims follow. o

Proof of Proposition 3.1 Thanks to diagram (1) and since gcd(2, 3) = 1 the hypoth-
esis of Proposition 3.2 is met. Moreover, AY x BY has a polarization of type (1, 6)
and, by [3, Corollary 12.1.5], the same holds for the complementary abelian variety. O

4 Hilbert modular surfaces and modular embeddings

The Prym-Torelli map ¢ associates with a flat surfaces in the Gothic locus, or more
generally with any genus four surface admitting maps 74 and mp that fit into the
diagram (1), the dual Prym variety Prym" (X, w4, wg). (The reason for dualizing will
become apparent in Section 6.) By Proposition 3.1 this gives a map ¢: QG — A; (1,6)
to the moduli space of (1, 6)—polarized abelian surfaces. The goal of this section is to
recall some basic properties of Hilbert modular surfaces that arise from the following
observation:

Proposition 4.1 The Prym-Torelli image t (G p) of the Gothic locus is contained in the
image of a Hilbert modular surface Xp(b) inside the moduli space of (1, 6)—polarized
abelian surfaces, where b is an Op —ideal of norm 6.

We compute here the Euler characteristics of these Hilbert modular surfaces Xp (b)
and discuss the modular embeddings that induce the map Xp(b) — A; (1,6)-

4.1 Hilbert modular surfaces

For any positive discriminant D = 0, 1 mod4, write D = b? — 4ac for suitable
a,b,c € Z. The (unique) quadratic order of discriminant D is defined as Op =
Z[T]/(@T? + bT + c). This order agrees with Op = Z @& ypZ inside the quadratic
field K = Q(+/D), where y := yp = %(D + /D), provided that D is not a square.

For any fractional ideal ¢ C K, we denote by ¢V the dual with respect to the trace
pairing, ie ¢V ={x € K : trg (x¢) C Z}. In particular, O} = «/LEOD.

Let b be an Op—ideal. The Op-module b & O} is preserved by the Hilbert modular

group /D
@) Db
VD b
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Associated with b we can construct the Hilbert modular surface

Xp(b) = SL(b® O))\H?.
4.2 Abelian surfaces with real multiplication and a (1, n)—polarization

An abelian surface T admits real multiplication by Op if there exists an embedding
Op = End(T) by self-adjoint endomorphisms. We will always assume that the action
is proper, in the sense that it cannot be extended to an action of a larger quadratic
discriminant O D Op.

The different components of the moduli space of (1,7n)—polarized abelian varieties
with a choice of real multiplication by Op are parametrized by certain Hilbert modular
surfaces (see [12, Chapter 7]).

More precisely, suppose that (T = C2/A, £) is an abelian variety with a (1,7)—
polarization £ and a choice of real multiplication by Op. Then A is a rank-two
Op-module with symplectic pairing of signature (1,#). By [2] such a lattice splits as
a direct sum of Op-modules. Moreover, although Op is not a Dedekind domain for
nonfundamental discriminants D, any rank-two Op-module is isomorphic to b & (’)Z)
for some Op—ideal b. The isomorphism can moreover be chosen so that the symplectic
form is mapped to the trace pairing ((a, b)T, (@, 5)T) = trg (ag —ab). The type of
such a polarization is (dy, d), where d; € N are uniquely determined by d; | d, and
OD/b = Z/dIZ XZ/dzZ

In the case of a polarization of type (1, n), it follows (see for example Proposition 5.2.1
of [5]) that the ideal b can be generated as a Z—module by (%(r + «/5), n) for some
0 <r < 2n. In particular, Ng(b) =n.

Conversely, for any ideal b of norm 7 and 7 = (11, 1) € H?, we define the lattice
Aoz ={(a+b11,a° +b°12)T |aeb, beOV}.

The quotient 7 = C2/Ay ¢ is an abelian surface with a (1, n)—polarization (given
by the trace pairing) and real multiplication by Op. The isomorphism class of 77
depends only on the image of 7 in Xp(b).

The proof of Proposition 4.1 follows from this observation and the real multiplication
built into the definition of the Gothic curves Gp .

It also follows that the locus of (1,n)—polarized abelian varieties with a choice of
real multiplication by Op has as many components as ideals b of norm » in Op,
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each of these components being parametrized by the Hilbert modular surface Xp(b).
Concretely, for the case we are interested in:

Proposition 4.2 The moduli space of (1, 6)—polarized abelian surfaces with a choice
of real multiplication by Op is empty for D =5 mod 8 or D =2 mod 3.

It is nonempty and irreducible for D =0, 12 mod 24, it has two irreducible components
for D =4,9,16 mod 24 and four for D = 1 mod 24.

Proof By the preceding discussion, the locus of (1, 6)—polarized abelian varieties
with a choice of real multiplication by Op is nonempty if and only if there is an
Op—ideal b with N (b) = 6, ie if and only if D =0,1,4,9,12,16 mod 24.

Each connected component of this locus is parametrized by a Hilbert modular surface
Xp(b) for an Op—ideal b of norm 6. For D =0, 12 mod 8 there is exactly one prime
ideal b, of norm 2 and one prime ideal b3 of norm 3, so that the locus is connected.
For D =9 mod 24 the prime 2 splits (but 3 is ramified) and for D =4, 16 mod 24
the prime 3 splits (but 2 is ramified), resulting in two connected components. For
D =1 mod 24 both primes split. a

Note, however, that the locus of real multiplication in A, (; ¢) has in general fewer
components than the moduli space of abelian surfaces with a chosen real multiplication
by Op. In fact, the abelian varieties parametrized by Xp(b) and by Xp(b%) map to
the same subsurface in A3 (1,6)-

4.3 Euler characteristics

The notion of Euler characteristic (of curves and of Hilbert modular surfaces) refers
throughout to orbifold Euler characteristics. Let D = f2 Dy be the factorization of the
discriminant into a fundamental discriminant Dy and a square of f € N. The Euler
characteristic of Hilbert modular surfaces has been computed by Siegel [23] for the
more usual Hilbert modular surface Xp = Xp(Op). A reference including also the
case of nonfundamental discriminants is [1, Theorem 2.12]. Altogether,

D
X(Xp) = 2f3§@(@)(—1)(2(7°) & )),
rif

where p is the Mobius function and (%) is the Jacobi symbol. The case we are
interested in can be deduced from this formula.
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Proposition 4.3 The Euler characteristics of Xp(b) for b of norm 6 and of Xp are
related by

_ x(Xp(®) _ |5 if ged(6, /) =2,
2

if ged(6, f) =o.

Proof The groups SL(Op & O))) and SL(b& O})) are commensurable. To determine
the indices in their intersection, we conjugate both groups by (*/O5 (1’) This takes the
first group into SL(Op @ Op) and the second group into SL,(b @ Op). The two

images under conjugation contain
T, ={(25) eSLa(K):a,d € Op, b b, c € Op},

with a finite index that we now calculate. We factorize b = p,p3 into the primes of
norm 2 and 3 and consider the action of SL(Op @ Op) on P1(Op /) xP1(Op/p3).
This action is transitive, in fact elementary matrices in SL,(Op/p,) and SL,(Op/p3)
generate a transitive group and elementary matrices can obviously be lifted. Since Tj
is precisely the stabilizer of ((0:1),(0:1)), we conclude

[SL(Op ® Op) : Ty] = I[P (Op /p2) x P (Op/p3)| = 12.

If b is an invertible ideal, we use SL(b @ Op) = SL(Op @ b~1) and consider the
projection

pr: SL(Op ®b~") — SL(Op/p3 ® b~ /p;") x SL(Op/p2 ® b~ /p3 1),

where in the range the modules are considered as an Op /p3—module and an Op /p,—
module (ie as vector spaces), respectively. Even the smaller group I}, contains the
kernel of pr, and in fact I} is precisely the stabilizer of ((0:1), (0:1)). We conclude
that its index is 12 in SL(b & Op) and this completes the case ged(6, ) = 1.

If ged(6, ) =2, we use that p;l = Op/4 and consider SL(Op & b~1) as a subgroup
of SL(Op/4 ® ]3'3_1), where the tilde indicates that we now extended scalars of p3_1 to
form an Op/4-module. We consider the projection

pr: SL(Op/a ®95") = SL(Op/a/P3 B3 ' /Op/a) x SL(Op,a/p2 ®75 " /023 ).

Again, even the smaller group I}, contains the kernel of pr. The image of SL(Op @b~ 1)
under pr is contained in the full first factor times the lower-triangular matrices in the
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second factor, as can be checked using a set of generators for these groups consisting
of elementary matrices. The image of [}, under pr is the stabilizer of (0:1) in the first
factor times the lower-triangular matrices with Op /py C Op/4/p2 = ]3'3_1 / pz'p“;l in
the lower-left corner in the second factor. This subgroup is of index 4 -2 = § and this
concludes the case gcd(6, ) = 2.

The remaining cases are similar, using p;l =Opyg if ged(6, /) =3 and bl = Op/36
if ged(6, f) = 6. a

4.4 Siegel modular embeddings

Let Xp(b) parametrize a component of the moduli space of (1, n)—polarized abelian
varieties with a choice of real multiplication by Op as above. The forgetful map
Xp(b) = A (4,,d,) to the moduli space of (dy,d»)—polarized abelian varieties can
be lifted to a holomorphic map y: H? — H, which is equivariant with respect to a
homomorphism W: SL(b@® O})) — Gp, where P:= Py, 4, = (a(')1 ;2) and Gp is the
symplectic group for the polarization type (d1, d») (see [3, Section 8.2]),

Gp={M eSp,(Q): MT (22 9)z* (%2 9)z*}.

Such a lift (¥, W) is called a Siegel modular embedding, and will be used to pull
back classical theta functions, given in standard coordinates on the universal family
over H,/Gp, to Xp(b). We note in passing that there are two useful conventions
for symplectic groups in the case of nonprincipal polarizations. The other symplectic
group

Spag(Z) = {M €2 : M- (_ §)-M" =(_3¢)}

is convenient, since it has integral entries. Conjugation by (102 g) takes Spf g (z)
into G,. Whereas the action of Gp is the standard action, the group Spf g (Z) acts
on H, by

Z > (AZ+BP)(P7'CZ+P7'DP)™" for M = (4 58)eSps,(Z).

In order to construct Siegel modular embeddings, one needs to find an appropriate
Z-basis of b @ O}/). Let ¢ be any fractional Op—ideal and 5§ = (1, 12) an ordered
basis of ¢V, and define the matrices

n n¢ 1 o T vy v?
6) B=BHB _—( 1) and C=(B, P ——( 1).
g 12 ng ( n ) vy v‘27
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We say that (11, 17) is a basis symplectically adapted to P (ora (dy, d»)—symplectically
adapted basis) if (vy,v;,) is the basis of an Op—ideal. In this case we may factor
the ideal as cb, where b is necessarily an ideal of norm n = d; - d,. Accordingly,
the basis 7 determines the rank-2 Op-module ¢b @ ¢V that, provided with the trace
pairing, becomes a (dy, d,)—polarized module with symplectic basis

(UI?O)? (VZ’O)’ (0? 7’1)’ (Ov 772)

We do not necessarily assume d | d, here.

To give an example in the particular case of ¢ = Op and b = (%(r + /D), n) an ideal
of norm n, we can always use the basis y = #(1, %(—r + x/ﬁ)) of O}, which is
(1, n)-symplectically adapted to Py , and such that the first column of (B 1 Pl,,,)T
agrees with the given basis of b.

The period matrix for 7, = C?/ Ayp,r with respect to eigenforms for the Op —action

c7)

We refer to the corresponding coordinates of C? as eigenform coordinates u = (uy, us).

becomes

By multiplying on the left by By, one gets the period matrix in standard coordinates
v=DB,-u,
10 71 0 T

Let us remark that, with the notation of Section 5.6, one can assume that the columns

Hv - (QT

of IT, correspond to the lattice vectors Ay, Ay, ;1 and p,, respectively.

We claim that the following is a well-defined homomorphism:

' v _(ab By 0 \(ab\(B' 0

Here we denote by k the matrix (15 kof, ) for k € K. The claim can be easily checked
by studying the action on integral column vectors of the four blocks forming W(J).

It is clear that (v, ¥) defined by v: H? — H,, 7 = (11, 72) — R, and ¥ as
above induces the forgetful map Xp(b) — A, (1 ,) and is therefore a Siegel modular
embedding.

We finish this section with a criterion for some specific bases to be symplectically
adapted. Recall that to a given triple of integers Q = (a, b, ¢) such that D = h% —4ac,
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one can associate the fractional ideal a¥ = (1,Ap) of Op, where Lo = ﬁ(—b ++/D)
is the quadratic irrationality of Q.

Lemma 4.4 Let (dy, d;) be the type of a polarization such that ged(dy,d,) = 1.

The basis (1,Ag) is a (dy, d,)-symplectically adapted basis of a" if and only if

a=0modd, and ¢ =0 mod d,. Moreover, ab = Jiﬁ(dz, —dA%).

Note that the choice of the type (d;, d») of the polarization does not follow the usual
convention d; | d, except in the case d; = 1.

Proof Let

1 1 di 0
B = and P = .
(%(—b—l—«/D) ﬁ(—b—\/D)) (O dz)
The basis (1,Ag) is a (dy, d»)-symplectically adapted basis if and only if the columns

of (B~'P)T generate an ideal. This is equivalent to the existence of an integral
matrix R satisfying

(%(DJM/B) 0
0 1(D—~/D)

Now a simple calculation shows that

g (%(DJM/B) 0 )B_IP _ (%(D—i—b) ad,/d; )

) B~'P=B"'PR.

0 H(D— /D) ~ \—cdi/dy L(D-b)
Since b = D mod 2, the claim follows. The generators of ab correspond to the first
column of the matrix (B~! P)T . a

4.5 Cuspsof Xp(b)

Cusps of Xp(b) are orbits of P! (K) under the action of SL(b @ O},). Via the map
(@:B)—a=aOp + B~/Db™", they correspond to ideal classes of invertible Op—
ideals a (see [10, Section 1.4]). In order to study the behavior of modular forms around
the different cusps and to avoid the problem of changing coordinates in SL(b 69(9){,)\1%1[2 ,
one can instead change the Hilbert modular surface in the following way.

Let a be an invertible Op—ideal. The trace pairing defined in the previous subsection
induces again a symplectic pairing of type (1, 7) on the “shifted” Op-module ab®a" .
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In particular, one can define a lattice A} , for each T = (71,13) € H? as above and
the Hilbert modular surface

X3 = X5 (b) = SL(ab® a¥)\H?,

9 Da?b
La—Dzbq c )ﬂSLz(K),
JD D

parametrizes (1,n)—polarized abelian surfaces with a choice of real multiplication

where
SL(ab®a’) = (

by Op too. In fact, for any element
o a v Dab
(3) M =( ?) S A R NSL2(K),
y 75 @ ) a
the map
¢: H> > H?, (11.12) > (M11. M7 13),

is equivariant with respect to the action of U € SL(b @ O})) on its domain and
MUM ! eSL(ab@®a") onits range. Via the map ¢, the cusp of Xp (b) corresponding
to a is sent to the cusp at infinity of X (b).

The matrices defined in the last section for the usual Hilbert modular group can
be changed accordingly. Let & = (£1.£,) now be an ordered basis of ay) that is
symplectically adapted to P and such that the first column of (B,},_1 P)T forms a basis
of the ideal ab. Then the matrix Bg determines a Siegel modular embedding (4, Wq)
by setting Va(71.72) = Be () rOZ)BgT and by defining W, as in (7).

As expected, by changing the cusp at infinity we are changing the Hilbert modular
surface, but the Siegel modular embedding (4, ¥,) and the general one (v, V)
constructed in the last section are compatible.

Proposition 4.5 Let n = (n1,1n;) and & = (&1, &) be symplectically adapted bases
of (92/) and a" determining the Op-modules b & (’)}/) and ab @ a", respectively.
Moreover, let M be the matrix in (8) and define the matrix M = (if Z) by

~p—1 2pT —T -~ p—1 -T¢npT
a= BgaB, ", b:B;;-,BBﬂ, C:BE yB, ", cf:B“E 5Bn.
Then M belongs to the symplectic group G p and the left action map
V(Q) =M -Q:=@Q+b)(cQ+d)!

lifts the map ¢ to the Siegel upper halfspace, ie 1; oY =yYg00¢.
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Proof Proceeding as in the last section, one can easily check that MeG p. Now, by
definition and using the abbreviation T = (71, t,) we have

Vaod (1, 12) = B (&%) (3 o) +(&2))-((5,2) (5 o)+ (52)) B
= (Bg@ By, 'v(v)+ B¢BBL) - (By "9 By 'y (r) + By T6BD)™!

and thus the map 1} has the required commutation property. a

5 Line bundles on (1, n)—polarized abelian surfaces

Classical theta functions are sections of line bundles on the abelian surface 7 = C2 /A,
where A = T1Z* is the period lattice generated by the period matrix IT = (Q, Py,).
They are given by the Fourier expansion

15‘|:C:1i|:H2x((32—>(C, ﬁ[i;](Q,v)z Z e(xTQx)e(2xT (v + ¢2)),

C2
X €Z2+Cl

where e (¢) = e™* . (We consider all vectors inside the formula as column vectors). The
argument c is called the characteristic of the theta functions. Theta functions that differ
only in their characteristics correspond to sections of line bundles that are translates of
each other. For the moment we think of €2 fixed and consider the dependence on €2 in
the image of a Siegel modular embedding starting from Section 5.3

The purpose of this section is to give a basis of sections of a line bundle on a (1,7n)—
polarized abelian surface for a characteristic chosen with the application in Lemma 6.5
in mind. Moreover we compute the Fourier expansions of these line bundles with
respect to a symplectically adapted basis. The main goal are consequently the Fourier
expansions in Proposition 5.5 and the relation among the values of these theta functions
at 2—torsion points in (16). The miraculous reduction of the number of constraints
appearing in the next section relies on this.

Most statements in this section are essentially in Sections 3.1, 4.6 and 4.7 of [3] and
which we rewrite for our purposes. Since this reference uses the (equivalent) language
of canonical (as opposed to classical) theta functions, we provide a short introduction
and conversion between the languages.

5.1 Canonical theta functions

Let V' be a complex vector space and let A be a lattice in V. To a line bundle £ on the
complex torus 7=V /A one associates its first Chern class H = ¢ (L), which we view

Geometry & Topology, Volume 24 (2020)



1170 Martin Moller and David Torres-Teigell

as a Hermitian form on V' whose imaginary part takes integral values on A. To a line
bundle £ one can associate a semicharacter y: A — S! such that conversely £ is the
line bundle associated with (see [3, Appendix B]) the canonical factor of automorphy

©)  ac(h,u) = x(\)exp(rH(u,A) € Z' (A, H(0})), ueV,reA.

This correspondence can be made more concrete in the case that H is positive-definite,
ie the line bundle £ is ample on 7" and hence T  an abelian variety. A decomposition
of V for H is adirect sum V = V; & V, such that A; := V; N A are isotropic with
respect to £ = Im H. For such a decomposition there is a standard semicharacter

(10) Xo(u) =exp(wiE(uy,uz)), where u=uy+us, u; €V;,

with associated line bundle £y = L(H, xo). For every other line bundle £ with
c1(£) = H there is a point ¢ € V such that £ = t7Ly. The point is called the
characteristic of L for the chosen decomposition. It is uniquely determined up to
translation by an element in

AH)={ueV |Ewuh el

(Here and in the sequel we often write eg A(L£) and A(H) interchangeably for notions
depending only on the first Chern class of the line bundle.) Consequently, characteristics
for a given decomposition are in bijection with V /A(H).

For a given line bundle £ the global sections H° (T, £) can be identified with functions
P V—->C,%u+2)= f(A,u)d(u), where f is a factor of automorphy for £. More
concretely, in the case f = a, as in (9) the functions

9V >C, d@+r) =ac(,u)d ),

are called canonical theta functions for £, which we now construct. We define, for
every c € 'V,

(1) O°(u) =exp(—7H(u,c)—ZH(c,c)+ ZBu+c,u +c))

- Y exp(m(H—B)(u+c. ) —F(H—B)(A. 1)),
XEAI

where B is the symmetric bilinear extension of H|y,. For every w € K(£) we use the
bilinear extension

(12) ag(u,v) = xo(u)exp(2riE(c.u)+nH(v,u) + % H(u,u))
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of a, to a function V x V' — C and we set
(13) 0 (u) = as(w, u) 19 (u + w).

Let us denote by K(H) the kernel ker(¢:) = A(H)/A of the canonical isogeny
¢r: T — TV defined by L. For the following theorem we note that the choice of
a decomposition V = V; @ V, induces direct-sum decompositions of the lattice of
integral points A(H) = A(H); & A(H), and of K(H) = K(H); & K(H),, where
K(H); = A(H);/(AN A(H);). In this notation, Theorem 3.2.7 of [3] gives:

Theorem 5.1 The function ¥, is a canonical theta function for £ = t} L. More

precisely, if ¢ is a characteristic with respect to a decomposition of V' then the set
{9¢ - w € K(L),} is a basis of H(L).

Next we prove that actually the theta function ¥, only depends on the K(£); compo-
nent of w. This fact will be crucial to get extra relations between the values of theta
functions at torsion points.

Lemma 5.2 Let w=w; +wy € A(H)/A. Then ¥y, = b, .

Proof The definition of the canonical theta function implies
95, (u) = exp(—w H(u, ¢) — 3 H(c,¢)) Oy, ()

and hence it is enough to prove the claim for the characteristic 0. By the definition (13)
of 15‘3) and the properties of the factor a, (see [3, Lemma 3.1.3]),

90 () = agy(wy + wz,”)_lﬁg(” +w;p + wy)

=ag,(wy, u)_lal;o(wz, wq + ll)_lﬁ(())(ll + wy + wy).
Applying the Fourier expansion (11) of 2, using (12) and xo(w,) = 1, we obtain

O0 ) =agy(wy.u)"" exp(—w(H—B)(u+wi+3ws, wr)+ZBu+wi, u+w))

Y exp(w(H = B)(u + wy, A) + w(H — B)(wy. 1) — 5 (H — B)(A. 1)).
AEA

Now [3, Lemma 3.2.2] implies 7 (H — B) (u +wp + %wz, wz) =0, since w, € V>, and
w(H—B)(wy, ) =2wi E(w,,A) € 2wiZ, since w, € A(H). Applying (11) and (13)
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again we obtain

80 (u) = agy(wy, u)~! exp(5B(u+wy,u+wy))

Y exp(r(H—B)(u+wy, &) — 5 (H - B)(X. 1))
AEA

=ac,(wi.0) 'O (w4 wy) =09 (w),

as claimed. O

5.2 Specialization to (1, 6)—polarization

From now on we suppose dim(7") = 2 and that £ is a line bundle of fype (1,6), ie
there exists a decomposition V = V; @ V, for H = ¢1(£) and bases A1 = (A1, A7)
and A, = (i1, 2) in which Im H has a representation

0P

(14) ImH=(_P 0

) ,  where P = diag(1,6).
Under these assumptions, A(H) = (kl, %)\2,111»%/12) and K(H) = A(H)/A =
(Z/6Z).

Recall that a divisor D on T is symmetric if (—1)* D = D. A line bundle £ is defined
to be symmetric if the corresponding semicharacter y takes values in 1. This notion
is designed so that the line bundle £ = O(D) of a symmetric divisor is symmetric (see
[3, Section 4.7]). For such a line bundle, (—1)* induces an involution on H°(£), and

hence on the vector space generated by canonical theta functions.

With the application to Prym varieties in mind, we focus on the line bundle £ =1t} L of
characteristic ¢ = %)\1 —|—%/L1 . The space H°(L) is generated by {15‘1?)‘2/6 :j=0,...,5}
and, in this situation, the inverse formula [3, Formula 4.6.4] gives (—1)*95 = (—1)-0¢,,
for all w € K(H ). Consequently, the spaces of even and odd theta functions are given
respectively by

(15) HO (L) = (03,6051, /6+ D50276~Dinass)-
HO (L) = {80 =95, 61 =5, 6+05, /6 02 = D30, 16+ 000,60 03 =01, 2)-

We will need the following result relating the values of odd theta functions at certain
2—torsion points, more precisely the set of 2—torsion points in the kernel K(H) of the
map ¢, to the dual torus.
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Lemma 5.3 Let 0y(u),...,05(u) be the generators of H°(L)_. Then

Oo(w) =ag(§ho,u)” O3(u+3h2) = ac(Fpa.u)” 90( + S12),
91(”)=a£(%)\2,u)_192(u+ )\2) (2M2, ) 191( 2#2),
92(")2615(%)»2,”)_191("4- Fha) = ac(3p2.u)” 192( 142).
60) (i) o+ 1) = (L) + ).

Proof For any w = w; + wy and W = w; + Wy € A(H)/A we find, using (13) and
the transformation law of the canonical factor of automorphy (cf Exercise 3.7(2) in [3]),
that

V5 () = exp(2wi Im H(Wy, Wy — w3))dcy (w— W, u)_lﬁ%(u +w—1).

The first equalities claimed in the lemma are a direct application of this formula to
W= %jkz and w = %(j + 3)A,, where indices should be taken mod 6.

The second ones follow from the same formula applied to w = % jiy and w =
% Jha+ % W2 together with the fact that, by Lemma 5.2, 6% = 6. O

5.3 Partial derivatives at 2—torsion points

So far the computations were for a general abelian surface and we now restrict to
real multiplication loci, ie to a period matrix 2, = ¥ (t) in the image of a Siegel
modular embedding determined by a (d1, d,)—symplectically adapted basis (wq, w,) as
in Section 4.4. Since on a surface with real multiplication there are two eigendirections,
which we have given the coordinates u;, for a general theta function ¢ the partial

derivatives 9
D% (t,up) := Wﬁ(r, u)|u=u,
1

will be of particular interest in the sequel. As a direct consequence of Lemma 5.3
together with the vanishing of the 6; at the given 2—torsion points we obtain the
analogous results for the derivatives D;0; fori =1,2,

D;i0(0) = ag(342.0)" 'D;6,

(272 (2142,0) (2142),

16) D;61(0) = ar(§r2.0)" 'D; 02(312) = —aa(%uz,o)_lDﬂl(%ﬂz),
Dib5(0) = ar(342.0)" 'D i01(312) = ac(%uz,o)_ll)iez(%ﬂz),

D;05(0) = ag(342.0)" ID 0o (322) = —aa(%uz,o)_lDi%(%ﬂz)-
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Another consequence is that an odd theta function behaves near those nontrivial 2—
torsion points like an odd function in the following sense:

Corollary 5.4 Let f € H°(L)— be an odd theta function, let Q be one of the 2—
torsion points {0, 1Az, 1pa, 2 (Ao 4+ p2)} and fix i =1 ori =2. If D=1 f(Q)=0
forall k =1,...,n, then D?" f(Q) =0.

Proof The proof is trivial for Q = 0 since f is an odd function of C2. To discuss
the other 2—torsion points, write ' = f; + f», where f1 € (89, 6,) and f, € (01, 63).
For QO = %/Lz we can write, for each N > 0,

N
N7 (huz) = 30 (V) DY (42 0D} £10)~ D] f2(0)

j=o 7

by Lemma 5.3. Since we work with a space of odd theta functions, Dl.zk 0;(0) =0
for every k and j € {0, 1,2, 3}. Consequently, we can use this formula inductively to
show that the hypothesis Dl?k_l f(%,uz) =0 forall kK =1,...,n holds if and only if
Di2k_1f1 (0) — Dl.zk_lfz(O) =0 forall k =1,...,n. As a consequence,

D2 f(hi) =3 () D3 g (s 0) (P 1(0)~ DF fa(0)) =0
k=1

For Q = %)\2, we write ];; for f; with 6y and 6; exchanged with 63 and 0,,
respectively. With this notation,

N
N Ne—i .~ .
pYr(3h2) = Y- (5 ) D ac(322.0)(D] i@ - Df 12(0).
j=0
Again, the hypothesis D2~ f(11,) = 0 for all k = 1,...,n holds if and only if
DiZk_lfl 0)— D?k_lfz(O) =0 forall k =1,...,n. Consequently,
n
2n _ 1z 1z
DFf(532) =" (g1 ) DI 2 a (322, 0) (D Fi0)= D (0 =0,
k=1

The proof for Q = %(A 2 + o) follows the same lines. a

5.4 Fourier expansions

For a (1,6)-symplectically adapted basis y = (11,12) we define py(x;,x;2) =
X111 + X213, hence xTB,, = (pn(x), py (x)) for the matrix By used in (6) to define
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a Siegel modular embedding of the Hilbert modular surface Xp(b). Recall that the
choice of such a basis also determines a decomposition of V' using

(17) Vi={((v1.0),(v2,0)r, V2=((0,11),(0,n2))r

We moreover define the shifted lattice A¢ 5 = 72+ (e, 8)T and abbreviate p = pop if g
has been fixed.

Proposition 5.5 The Nullwerte of the derivatives of the theta functions 0; for j €
{0, 1,2, 3}, as defined in (15), have the Fourier expansion

d , P p(x) ”<x)2
Gl =2mi ) ex)p(x)q] ,

x€A1/2.j/6

Jd 4, P p(x) “(x)z
agl@0=2mi ) el )@, :

x€A1/2,j/6

(18)

where ¢; = e(t;) and e(-) = exp(mwi-).

Proof By [3, Lemma 8.5.2], the canonical theta function with characteristic ¢ is given
by
190(_[’ v) = n/2B(v v)—micj 0219|: i|(_r v)

in terms of classical theta functions. We differentiate this, use that the 6; are odd,
hence vanish at zero, and use the Fourier expansions

1 1
iﬁ[(i’gj)](.[’o)zznl Z e(Xl),O(X)qp(x)z U(x)z’

aul (%’0) xEA3J

0 L[5 o027 ()
8—0[ 2 ° ](r 0)=27i ) e(x1)p”(x)qy

“2 (5’0 xEA3

This immediately gives the expansions for 8y and 65 . For the two remaining generators
we moreover use that

a%l’[(%(’;; o=t [(é%))](’ O forJ=12

as we see by changing the order of summation in (18) using the observation that p is
odd. a
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5.5 Derivatives of theta functions as Hilbert modular forms

The set of all Siegel theta functions for characteristics in %Z (with N fixed) satisfies a
modular transformation law (see [3, Section 8.4] for the complete formula). This implies
that the restriction via a Siegel modular embedding satisfies a modular transformation
law for the Hilbert modular group. In general, this action still permutes characteristics,
but here we make use of the following fact:

Lemma 5.6 The space H°(L) of theta functions of characteristic ¢ = %kl + % ny is
preserved by the whole modular group SL(b & Oy)).

Proof The action of the modular group on characteristics preserves the set of charac-
teristics corresponding to symmetric line bundles, and the action on theta functions
preserves the even and odd subspaces. Let £ be a symmetric line bundle of characteristic
c that provides the (1, 6)—polarization. Since h°(L) = 6, the space of odd theta
functions of L has dimension

hY = 1(6—#S)+#5™,
by [3, Proposition 4.6.5], where
S={weK(L);:2w=2¢;} and S ={weS:e(dnilmH(w+cy,cr))=—1}

One now computes that the line bundle of characteristic %)»1 + %,ul is the only one
with a 4—dimensional space of odd theta functions. Thus every element of the modular
group fixes this characteristic. a

Recall that a Hilbert modular form f of biweight (k,{) with character x for the
subgroup I' of a Hilbert modular group is a holomorphic function f: H? — C with
the transformation law

Fyt, v’ n) = x() (et + d)* (%t +d) f (1, 12)

for all (¢ 5) € I'. The specialization of the theta transformation law implies that for
an even theta function ¢ of characteristic ¢ the Nullwert (7, 0) is a Hilbert modular
form of biweight (% %) with some finite character for some finite-index subgroup of
the Hilbert modular group. The partial derivatives D9 (t,0) and D,9(t,0) of odd
theta functions are modular forms of biweight (%, %) and (%, %), respectively; see
[21, Section 9] for the details.
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5.6 Line bundles of type (2, 3)

The usual convention for the type (dy, d,) of a polarization is that d; | d,. However,
it will be convenient in our particular case to consider also the polarization type (2, 3)
rather than just of type (1, 6). In this subsection we translate the results between the
two different conventions.

Let £ be a line bundle of type (1,6) and let V = V; & V, be a decomposition for L,
sothat A=A1 DAy =(A1,A2) D {1, 2) gives a symplectic basis of the lattice with
canonical (1, 6)—symplectic matrix, ie the nontrivial intersection are E(Aq, 1) =1
and E(Ay, ) =6.

The matrices R; = (31)and R, = ("2 _!l) give a change of basis to a symplectic
basis (A1,Ap) @ (L1, lio) with canonical (2, 3)—symplectic matrix while preserving
the chosen decomposition of V. In particular we may identify the characteristics in the
two situations and we may identify the basis elements of H°(£) named in (15) in the
two conventions. The distinguished characteristic ¢ = %)\1 + % w1 € %A(H )/A(H) is
expressed in the new basis as ¢ = %Xz + %[12 since A(H) = (%Xl, %Xz, %[11, %ﬁ2>
Now let = (71, 72) be a (2, 3)—symplectically adapted basis of a", determining the
Op-module ab D a¥, and consider the Siegel modular embedding given by the matrix
B:=B,= (zl Zé, ) as in Section 4.5, so that the cusp a of Xp(b) corresponds to the
cusp at infinity of X (b). Then nR;l is (1, 6)—symplectically adapted, and this base
change together with the action of R;l on v preserves the decomposition (17), so that
we are in indeed in the situation considered above.

Lemma 5.7 With p(x) = py(x) := x11n1 + X212 stemming from a (2, 3)—symplec-
tically adapted basis, the global sections 0; € H 9(L) of the line bundle with char-
acteristic ¢ = kz + 5 Mz have Fourier expansions as in (18) with the lattice coset
A1/2,j/6 for the series 0; replaced by A /> (2j+3)/6 and the character e (x1) replaced

by e(x;).

Proof By definition, the lattice coset is (3. %) in the basis A, A,, which is equal
(2 J % Laj+ 3)) in the basis Ay, A, and the character is determined by the u—
component of the characteristic. a

6 The Gothic modular form and the Gothic theta function

We now specialize again to curves (X, 4, wpg) in the Gothic locus. Abel-Prym maps
denote, in analogy to the classical Abel-Jacobi map from a curve to its Jacobian, the
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map from X to its Prym variety. Since the Prym variety is not principally polarized,
there are two natural choices that we analyze here: to the Prym variety and to its
dual. The main player is the pre-Abel-Prym map ¢: X — Prym" (X, 4, mp) to
the dual Prym variety defined in Section 3. Since the Prym variety Prym" (X) of a
point in G p admits real multiplication by Op, we can see the Teichmiiller curve Gp
inside some Hilbert modular surface Xp(b). Let us denote by Gp(b) the union of
those components of the Torelli-image of Gp in Xp(b) for which du; induces the
eigenform w at each point (X, w).

Our goal is to describe ¢(X) in terms of theta functions and nearly determine the
Torelli-image of Gp.

Theorem 6.1 The Torelli-image Gp(b) is contained in the vanishing locus of the
Hilbert modular form

Gp(t) := Dy0o(7,0)- D261 (z,0) — D265(7,0) - D265(7,0)

of biweight (1, 3). Consider the locus
Redas (b) = {Gp (v) = 0} N {Fu(r) = 0} N {Fp(7) =0},

where we define the modular forms

Fa(t) = D16p(7,0) - D265(7,0) — D162(7,0) - D26p(7,0),

Fp(t) = D161(7,0)- D265(t,0) — D165(7,0)- D26,(7,0).
Then, for all points in {Gp(t) = 0} \ @23(5), the theta function

Oo(w)  01(u)  O2(u)  Os(u)

D16o(0) D16,(0) D162(0) D165(0)

D,600(0) 0 D,6,(0) 0
0 D01(0) 0  Dy0;(0)

Ox (u) =

is nonzero and the vanishing locus of this theta function is equal to the pre-Abel-Prym
image ¢(X) of a Gothic Veech surface X.

We will discuss the exceptional set where the modular forms Gp, F; and F jointly
vanish in Section 7. It is part of the reducible locus, as suggested by the notation and
as we will see in Proposition 8.6.
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6.1 The Abel-Prym map and the pre-Abel-Prym map

Let (X,w, 4, ) be a flat surface in the Gothic locus 2G. For each choice of a
“basepoint” p € X there is the usual Abel-Jacobi map «,: X — Jac X centered at p.
We will fix once and for all the center of the Abel-Jacobi map to be p = p;, one of
the fixed points of J where @ does not vanish.

We have defined Prym(X) = Prym(X, 4, wp) as the subvariety complementary to
AY x BY, hence there is a natural inclusion ¢: Prym(X) — Jac(X). Its dual is thus a
quotient map ¢V: Jac(X) — Prym" (X) and the norm endomorphism Np defined in
Proposition 3.3 is also such a quotient map. Using (5) we conclude that they fit into
the commutative diagram

ap Np
X —JacX —— Prym X

L
e T I
¢ Prym" X

The composition ¢ := Np oayp, is called the Abel-Prym map and the composition
¢ 1= lap, is called the pre-Abel-Prym map centered at p;. By Proposition 3.3 we can
write the Abel-Prym map in terms of divisors as

7(x) =[xD =37 M) —2x@ —2x® 4 2p + 241 +2J(q1)].
Moreover, ¢(x) = @(y) if and only if
19)  xW —37(xM)—2x® —2x® O L 37,V £ 2@ L2, L,
As a consequence of this formula we obtain:
Lemma 6.2 The Abel-Prym map ¢ maps Z U P to a single point, ie
@(zi)=@(pi)=0 fori=1,2,3.

Proof Using (19) and the fact that points in Z U P are fixed under J, the claim is

equivalent to
1 (3 ey

2 2
2p; +2p§)+2pi ~2pj +2pj(.)

+2p
and

2p +2p2 +2pP ~ 22V 42 422
for any p;, pj € P and z; € Z. This follows from the preimage diagram (3) and the
fact that each of the points involved appears with coefficient 2 in 4*(e;). a
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6.2 The natural line bundles on Prym" (X)

There are several natural line bundles on the Prym varieties. The restriction of the prin-
cipal polarization on Jac X to Prym X via ¢ yields a polarization of type (1, 6) given
by a line bundle, which we denote by £. But we are rather interested in Prym" (X).
There, we first have the bundle Ly := Opyyv x (¢(X)) generated by the image of the
Gothic Veech surface that we are mainly interested in. Second, there is the following
general construction.

Let H = ¢;(£) and let ¢,: Prym X — Prym" X be the isogeny associated with L.
Since £ is of type (1,6) there is an isogeny v¥: Prym¥X — Prym X such that
Y o ¢, = [6] (see [3, Section 14.4]). More precisely, ¥ = ¥ for a line bundle L
on Prym" X, well defined only up to translations, with the same polarization H = ¢; (Z) .
To fix a precise point of reference, we fix a decomposition for the universal covering
V of PrymYX in which Im H has the form (14). Such a decomposition distin-
guishes a line bundle in the algebraic class of L, namely the symmetric line bundle
EO = L(H, xo) of characteristic 0 (see Section 5.1) associated to the semicharacter
Xo(v1 +v2) = e(wi Im H(vy, v2)).

Lemma 6.3 The line bundles Lx and L, are algebraically equivalent.

Proof We use the endomorphism §(C, D) associated with a curve C and a divisor
D of an abelian variety 7. It is defined by mapping @ € T to the sum of the inter-
section points of the curve C translated by a and the divisor D; see [3, Sections 5.4
and 11.6]. By [3, Theorem 11.6.4] we need to show that §(¢(X), L) = §(L, £). By
[3, Proposition 5.4.7] and Riemann—Roch, §(Z, £) = —6 idprymv x - On the other hand,

8(p(X), L) =—lotoyp =—¢roV; = —6idpymv x

by [3, Proposition 11.6.1]. O

6.3 The pre-Abel-Prym map

Next, we study the pre-Abel-Prym map. We write Prym” X = V/A.

Lemma 6.4 The pre-Abel-Prym map ¢ with basepoint p; sends the p; to zero, ie

o(p1) =o(p2) =@(p3) =0 fori=1,2,3.
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The points in Z are sent to three different nontrivial 2—torsion points in a Lagrangian
subspace of A, ie ¢(Z) = {%kz, %,uz, %(kz + ,uz)} for some decomposition of V.

Moreover, the endomorphism (—1) of Prym" X induces the involution J on ¢(X)
and ¢ is injective on X \ P.

Proof The inclusion AY x BY C Jac X is given in terms of degree-zero divisors D
and E by (D,E)—~ D+ J(D)+ EM + E® 4 E®) In particular, on the images
of g; in A and B (as in (3)) this inclusion map is given by (71 — gi.e; —e])
[pi — p1] = ¢(p;). This proves that the points p; are sent to zero.

Next, for each x € X the divisor x + J(x) —2p; belongs to JT;;DiVO (A), hence maps
to zero in Prym" X and therefore

9(x) =[x —pil=[-J(x) + pil = —o(J(x)).

In particular, the points ¢(z;) = [z; — p1] have order 2 and

3
> 0G) =[z1+22+23—3p1] =0.
i=1
As a consequence, all three of the z; are 2—torsion points and by Lemma 6.2 they
moreover lie in A(H). It remains to exclude that ¢(Z) = 0.

By the preceding Lemma 6.3 and Riemann—Roch, the curve ¢(X) is of arithmetic
genus 7. If ¢(X) is generically injective then ¢(Z) = 0 would imply that there are
6 branches passing through zero and the arithmetic genus had to be larger than 7, a
contradiction. On the other hand, the geometric genus of ¢(X) is at least 2, since
this curve generates Prym"“ X, hence the degree of ¢ is at most 3. In this case, the
differential w has to be a pullback of a differential on (the normalization of) the genus 2
curve PrymY X This is impossible, as discussed in [16, Lemma 6.2]. O

We can now complete the identification of the line bundles begun in Lemma 6.3.

Lemma 6.5 Let (X, w) € QG. With the above choice of a decomposition of V, the
line bundles Ly and EO differ by the characteristic ¢ = %M + %,ul ,le Ly = Z:EO.

Proof To compute the characteristic, note that by Lemma 6.4 the image ¢(X) is a
symmetric divisor, that is, (—1)*@(X) = ¢(X). The requirement on a line bundle in
the algebraic class of Lo to be symmetric, narrows the number of choices down to
24 possibilities, which agree with the translates of Lo by half-integral points. As a
consequence, Ly =t} Lo for some half-integral character ¢ € %A(H )/ A(H).
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In order to compute explicitly the characteristic of Ly, let us first note that by
Lemma 6.4 the only 2—torsion points in ¢(X) are ¢(z;) for i = 1,2, 3, all of them
with multiplicity 1. By [3, Proposition 4.7.2] the semicharacter x associated to the
line bundle Lx takes the value

x(h) = (- 1)multx/z(w(X))—multo((0(X))

for each lattice element A € A. Since multy(¢(X)) = 3, we deduce that x takes
values +1 at Ay, up and Ay + pp and —1 at Ay, pq and Ay + g

Recall that A(H) = ()\1, %)\2,#1, %/Lz), and let c = ajAq + %Clz)xz +b1/L1 + %bz/iz,
where a1, az,b1,b; € {0, 1}. Using the fact that x = o -exp(27i Im H(c,-)) and
the expression (10) for xo, one gets a; = by = % and a5, by = 0. |

6.4 Identifying the theta function

Our main objective now is to describe ¢(X) as the vanishing locus of some theta
function 0y in H°(Ly). For this purpose, we restrict furthermore to the case that
(X, w) is a Gothic eigenform for real multiplication by Op. This implies that on the
Prym variety we have the distinguished eigenform coordinates introduced in Section 4.4.

Lemma 6.6 Let (X,w) € QGp for some D. Then ¢(X) is the vanishing locus of a
global section Oy € H®(Ly)_ satisfying

(C1) D.6x(0) =0,

(C2) Dy0x(0) =0,

(C3) Dabx(z12) =0,

(C4) Drfx(312) =0,

(C5) Dax(3(h2 + p2)) =0.

Proof By definition and Lemma 6.5, ¢(X) is the vanishing locus of some theta
function Oy € H°(Ly). Since multy(p(X)) = 3, this theta function is necessarily odd
by [3, Lemma 4.7.1] and the comments after that lemma.

Since Oy is an odd function, both fx and its second derivatives vanish at 0. Since
multy (¢ (X)) =3, also its first derivatives must vanish, thatis, D6y (0) = D,0x (0)=0.

Let us assume that du; is the eigenform in QM4(23,03). Note that the condition
of this eigenform having a zero of order k at a point p translates into 376y / aué
vanishing at ¢(p) for j =0,... k. a
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Recall the definition of the generators 6, 0;, 6> and 63 of H°(Ly)_ from (15), and
let Ox (u) =) _; a;0;(u) be a theta function cutting out ¢(X). By (16), the conditions
in Lemma 6.6 correspond to the system of equations

(C1) agD169(0) + a1 D161(0) + a2 D162(0) + a3 D163(0) =0,
(C2) aoD200(0) + a1 D261(0) + a2 D26,(0) + a3 D263(0) =0,
(C3) a9 D260(0) — a1 D201 (0) +az D26,(0) — a3 D2603(0) =0,
(C4) agD7203(0) +ay D26,(0) +ay D61 (0) + az D,0y(0) =0,
(Cs) agD203(0) —ay1 D26,(0) + az D261 (0) —a3 D260(0) = 0.

Note that conditions (C2)—(C3) and conditions (C4)—(C5) can be rephrased as

agD200(0) +az; D26,(0) =0, and {00D293 (0) +axD,60,(0) =0,
a1 D201(0) + a3 D,03(0) =0, a1 D20,(0) + a3z D20p(0) =0,

respectively. This already allows us to get some necessary conditions on the derivatives

(20) {

of theta functions for a point to belong to the Gothic locus.

Proposition 6.7 If the point T € H? has the property that there is a nonzero odd theta
function Ox (u) = ) ; ai(t)6;(u) on Ty satisfying (C2)—~(C5), then Gp(t) = 0. In
particular, for any (X, ) € QGp, the Prym variety Prym” X belongs to the vanishing
locus of the Gothic modular form Gp(t).

Proof By (20), the coefficients must satisfy

do D2 9() (0) 0 D292 (0) 0 do 0
M ar | . 0 D291 (O) 0 D203(O) aq _ 0
aj o D293 (0) 0 D291 (0) 0 ajs - 0
as 0 D292(O) 0 Dz@o(O) as 0

This system of equations must have a nontrivial solution, and therefore

det(M) = (D26o(0) - D261(0) — D26,(0) - D263(0))* = Gp(z)* = 0.
The second claim follows from Lemma 6.6. a
6.5 The vanishing locus of the Gothic modular form

We now start in the converse direction and analyze the vanishing locus of the Gothic
modular form Gp. For this purpose we note that the theta function 0y defined in
Theorem 6.1 equals

Ox (u) = OgFp — Op Fg,
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where
Oa(r,u) =0p(z,u)- D26h(7,0) —ba(7,u) D2bh(7,0),

Op(t,u) = 01(7,u)- D203(7,0) — 03(z,u)- D20:(z,0)

and where F,(t) = D104|y=0 and Fp(t) = D10Op|y=¢ as defined in Theorem 6.1,
t0o.

Proof of Theorem 6.1 The nonvanishing of 8y on the complement of @23 follows
from the factorization given above and the linear independence of the 6;. Given
Proposition 6.7 it remains to show that on the complement of 1/2?:?123 the divisor
Y =Y; :={0x = 0} is indeed the p—image of a Gothic Veech surface.

We first check the conditions (C1)—(C5) for Y. Differentiating 6y implies that Y
satisfies (C1) using the second row of the defining matrix, and Y satisfies (C2) and (C3)
in the reformulation (20), as can be seen from the last two rows. From (16) we deduce

D;605(0) D20,(0) D261(0) D60(0)
D160(0) D161(0) D162(0) D;163(0)

D, 60,(0) 0 D;0,(0) 0
0 D01(0) 0  Dy03(0)
—D303(0) D26>(0) —D165(0) D260(0)
D169(0) D16,(0) D16,(0) D163(0)

Dy0o(0) 0 Dybr(0) 0
0 Dy6,(0) 0 Dy65(0)

We deduce that for Y the conditions (C4)—(C5) hold as well.

Dy0x (11,) = = (Fp» + Fa)Gp.

Dr0x (3(ha + p2)) = = (Fp —Fa)9p-

Since Ox is a section of the line bundle Ly of characteristic ¢ = %)»1 + %/«H , the
argument in Lemma 6.5 implies that the multiplicity of Y7 at each point in the set
St = {3A2, 312, 3(A2 + p2)} is 0dd, in particular ¥ contains these points. By
[3, Proposition 4.7.5(a)] each of the other 2—torsion points is not contained in ¥ or Y
has even multiplicity there.

The case Y reduced with zero as its only singular point Then X; = Y]°™ is the
desingularization at zero. We check the properties of a Gothic eigenform. Since Y7 is
nonsingular at S in the case under consideration, the one-form du; is an eigenform
for real multiplication and has double zero at each of the three the points in S .

The involution (—1) on 77 induces an involution J on X that has six fixed points.
The quotient A = A; = X;/J is therefore a smooth curve of genus 1. The comple-
ment 7, TJ- of Ty in Jac(X) is (1, 6)—polarized (see [3, Corollary 12.1.5] or the proof
of Proposition 3.1). The pullback of the theta divisor on Jac(X) to 4" has degree 2
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since X7y — A is a double covering. We claim that the restriction of the theta divisor
on Jac(X) to the complement BY of 4" in TTJ- has degree 3. In fact, we may view
BY as the complement to the image of the addition map +: 4" x TTJ- — Jac(X). If
+ factors through an isogeny (necessarily of exponent 2), then the image is (1, 1, 3)—
polarized, hence BY has a polarization of type (3), again by [3, Corollary 12.1.5]. The
case that + is injective, hence that the image is (1, 2, 6)—polarized, contradicts loc. cit.
Consequently, the map wg: X — Jac(X') — B is a covering of degree 3.

We claim that the map wp: X7 — B¢ is odd. In fact, writing j = (—1) on the elliptic
curve By we compute that

Jorp(x)=[p1—=x]=[p1 =x]+[J(x) +x =2p1] = [J(x) = p1] = wB(J (X)),

since x + J(x) —2p; € AY. This argument also shows that the images of the points
in P and Z are 2-torsion points in any quotient of Jac(X7)/(AY), in particular in By .
Since |7 p(Z)| =1 on points in the Gothic locus, we deduce that |7 g(Z)| =1 over all
of Xp. We have indeed checked that (X, duy, w4, wg) has all the Gothic properties
under our assumptions on Y.

The case Y reduced with other singularities besides zero This does not occur. In
fact, if ¥ =) Y; then Y2 = 12 for a line bundle of type (1, 6) by Riemann—Roch.
A triple point such as zero contributes 6 to Y. Each of the points in ST is either a
triple point or du; has a double zero there, contributing 2 to Y2 by increasing the
genus of the component passing through this point. The total count implies that Y is
nonsingular at ST and also nonsingular elsewhere besides zero, since the three double
zeros at ST and the contribution at 0 € T, already add up to 12.

The case Y nonreduced The above counting argument has to be refined for ¥ non-
reduced, since eg a triple point might consist of 2Y7 and Y intersecting transversally,
hence contributing only 4 to Y'2. We first note that there are at most two branches
through zero, since if Y contained nonreduced a;Y; + a,Y, + a3 Y3 all meeting at
zero, the odd multiplicity at the origin implies that a; + a, + a3 is at least 5, and
therefore Y2 > 12.

We now write ¥ = a;Y; +a,Y, + Yg with a; > a,, with Y; and Y) irreducible and
passing through zero while Yx is potentially reducible with no component passing
through zero. In particular, a; + a, is odd.

Case (a1,a3) = (3,2) In this case 0 is the only intersection point of Y; and Y,
and Yl.2 = 0, so both components are elliptic curves. Consider the product Y; x ¥,
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with the polarization 2p} Oy, (0) ® 3p5 Oy, (0). The addition map Y; x Y, — Ty is
an isomorphism at the level of complex tori since Y; - Y, = 1, and the pullback of
Ly = Or,(Y) agrees with the (2, 3)—product polarization. In particular, the map is
an isomorphism of abelian surfaces and hence we are in Red,3 (see Proposition 8.6).

Case (ay1,a3) = (6,1) Again 0 is the only intersection point, and Yl.2 = 0, so both
components are again elliptic curves. Odd parity of the theta function implies that
ST C Y5, but then du; induces an abelian differential on Y, with three zeroes of
order > 2, which is a contradiction.

Case (ay1,a3) = (4,1) Again 0 is the only intersection point, and the case Yi2 =0
for i =1, 2 yields the same contradiction as in the case before. Hence we have Y22 =4
and ST C Y,. This implies that on the one hand Y, has genus 3, and on the other
duq induces an abelian differential on Y, with three zeroes of order > 2, which is
again a contradiction.

Case (a1,a3) = (2,1) We have the following possibilities:

1) Y1-Y=1, Y22 =4 The curve Y, has genus 3 and du; induces an abelian
differential on it with three zeroes of order > 2.

2) Y1-Y,=2, Y22 =0or2 The curve Y, has genus 1 (or 2) and du; induces
an abelian differential on it with two zeroes of order > 2.

3) Y1-Y,=3, Y22 =0 The curve Y, has genus 1 and du; induces an abelian
differential on it with a zero of order > 2.

All these cases yield contradictions with the genus of the curve Y, and this completes
the claim. |

7 Modular curves and the reducible locus

The main result in this section is an explicit parametrization of the reducible locus, the
locus where the (1, 6)—polarized abelian varieties with real multiplication split as a
product of two elliptic curves E; and E;, which are necessarily isogenous. This locus
is a union of modular curves (also known as Hirzebruch—Zagier cycles or Shimura
curves), in fact exclusively noncompact modular curves.

There are interesting similarities and differences to the reducible locus in the principally
polarized case and the well-studied case of genus 2 Teichmiiller curves. The main
similarity is that the Teichmiiller curves are disjoint from the reducible locus in both
situations, Gothic and genus 2. The two cases also agree in the fact that the reducible

Geometry & Topology, Volume 24 (2020)



Euler characteristics of Gothic Teichmiiller curves 1187

locus has many components, several but not all of which can be distinguished by the
precise endomorphism ring.

The main difference starts with the fact that the reducible locus decomposes into two
subloci that can already be distinguished by degree of restriction of the polarization
line bundle to £ and E,. Since the product of these degrees is 6, the reducible locus
decomposes into Red,3 and Red;¢, where the indices give the degree of the restricted
line bundles. These loci are indeed disjoint, as we show in Section 7.3. The main result
of this section is a description of the components of Red,3 and a computation of their
volumes.

7.1 Modular curves on Hilbert modular surfaces

The reducible locus consists of modular curves (also known as Hirzebruch—Zagier cycles
or Shimura curves). Modular curves are the images of graphs of Mobius transformations
in H? that descend to algebraic curves in the Hilbert modular surface. We recall the
precise definition, adapted to our Hilbert modular surfaces X, (b) = SL(ab ® a¥)\H?2.

Let us define the ideal M = /D a%b. We say that U € SL,(K) is a generator matrix
for the Hilbert modular group SL(ab & aV) if it is of the form
y_ (D n
o —u° AbND

and we define the modular curves Fy to be the image in X, (b) of the set

), where a,b€Z, pe M and A = N(M),

{(T],‘L'z) eH?: (1, l)U(Tll) =avDrity—pu°1 + pta + AbVD = 0}.

The generator matrix U is primitive if it is not divisible by any natural number m > 1.
For any integer N > 0, the modular curve F) is defined as the union

Fv= |J Fu
U primitive

det(U)=AN
The components of F and their geometry (cusps, fixed points) were intensely studied
by Hirzebruch and his students (see the survey in [10, Chapter V]). Most notably the

volumes of the union
™= |J Fu=J Fye
det(U)=AN 2|N

are the coefficients of a modular form, in fact an Eisenstein series of weight 2 for some
character.

Geometry & Topology, Volume 24 (2020)



1188 Martin Moller and David Torres-Teigell

This however does not yet yield formulas for the volume of Red,3, since the latter
turns out to be a union of modular curves, but not of the entire curves Fp . In fact, Fr
can be decomposed as the union of the curves Fy (v) for v e M/~/ DM, where

Fy(v) = | J{Fy : U is primitive with det(U) = AN and v(U) = v}.

In the case of abelian surfaces with principal polarization the reducible locus was written
in terms of F (v) by [15]. However, the F (v) are sometimes still reducible and this
decomposition does not directly yield a volume formula, so we proceed differently for
our (1, 6)—polarization.

7.2 The (2, 3)-reducible locus

Let us define the (2, 3)-reducible locus Red,3 as the locus inside the moduli space
A3 (2,3) of (2, 3)—polarized abelian surfaces consisting of products E; x E5 of elliptic
curves with the natural (2, 3)—polarization 2p7Og, (0) ® 3p3 O, (0). For each Op—
ideal b of norm 6, we will write Red,3(b) for the pullback of Red,3 to Xp(b).

Theorem 7.1 Let D = 2Dy be a positive quadratic discriminant with conductor f.
There is a bijective correspondence between irreducible components of the (2,3)—
reducible locus with a chosen proper real multiplication by Op and the set of prototypes

Pp={[l.e.ml€Z>:£,m>0, D=e?+240*m and gcd(e, £, f) = 1}.

More precisely, the component parametrized by the prototype P = [€, e, m] is the image
of a Shimura curve in the Hilbert modular surface X, (b) corresponding to the ideals
a= j—5(25, 3(e+~/D)) and b = (6, 3(r + /D)), where
{e if D =0mod?2,
e+6 if D=1mod?2.
The image in A, (5 3) of the Shimura curve given by P = [{, e, m] is isomorphic
to To(m)\H.

We split the proof into a series of lemmas.

Lemma 7.2 The period matrix of an abelian surface parametrizing a point in Red,3
with real multiplication can be assumed to be

2t 0 (20

H”'(T):(o 3mz |0 3

) forsome teH and 0 <m e Z

with the polarization given by the standard form (_1(32g P 5 )
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Proof Since we will be interested in the components of this locus that lie in some
Hilbert modular surface, let us assume furthermore that £; and E, are isogenous
elliptic curves, so the left block of the period matrix I1,, ,(7) is a diagonal matrix
with entries (27, 3(mt 4+ n)) with m,n € Q. Positive-definiteness of the period matrix
implies m > 0. We define the matrices

a 0 b 0 x 0y 0
0 aU4+cV 0 (dV+b)/L 0 xqg 0 yp

M - M =
=1 0 dU 0 and - Mx={ 0 40
0 cL 0 d 01 0 1

We first argue that we can take n = 0. Write m = U/L and n = V /L with
gcd(U, V, L) = 1. Take d such that gcd(dU, L —dV) = 1. (To show the existence,
consider d; with ged(d;, L) = 1. Among a collection of d; with ged(d; —d;,U) =1
with more elements than B has divisors, one will work.) Let b = L —dV and take a
and ¢ such that adU —c(L —dV') = 1. Then the matrix M has integral coefficients,
belongs to the symplectic group Spfg(Z) and takes Iy, ,(7) to I1,, ¢(z") for some 7’.

To show that we may assume m € Z, we write m = p/q and take x, y € Z such
that xg — yp = 1. Then the matrix M, belongs to Spfg(Z) and takes IT,/, ,(7) to
I ,4,0(t") for some 7'. O

Lemma 7.3 An abelian surface in the (2, 3) —reducible locus contains a unique elliptic
curve with a polarization of type (2) and a unique elliptic curve with a polarization of

type (3).

In particular, a matrix M € Spfg(Z) taking the locus {I1,,(t) : T € H} into some
locus {I1;,(7), T € H} consists of matrices diagonal in each of its four blocks (like
the matrices M; and M, above).

Proof The type of a polarization is translation invariant. So we may assume that
the elliptic curve in question passes through the origin. Such an elliptic curve E in a
product of elliptic curves is determined by a rational slope in the universal cover. We
may assume this slope is (2x, 3y) with x, y € Z coprime and both different from zero,
since we already know the polarizations of the curves with slope (1,0) and (0, 1). If
we denote by a1, a,, by, by the symplectic basis corresponding to the column vectors
of T1,,(7), lattice points in E are given by the multiples of f| = xa; + (y/m)a,
and f> = xb; + yb, that have integral coefficients. This implies that m | y and that
the type of the polarization on E is {fi, f2) = 2x2 + 3my?, therefore proving the
claim. a

Geometry & Topology, Volume 24 (2020)



1190 Martin Moller and David Torres-Teigell

Lemma 7.4 The analytic representation of real multiplication by y = %(D + /D)
on an abelian surface with period matrix I1,,(t) with m € Z is given by

4 :(%(D—i—e) 20 )
v 3¢m %(D—e) ’

with e, £ € 7 and D = e% +240%m.

The real multiplication defined by [£, e, m] and [—£, e, m] are equivalent, whereas the
real multiplication defined by [{, e, m] and [—{, —e, m] are Galois conjugate.

Proof The abelian surface 77, given by the period matrix IT,(7) admits real
multiplication by Op, if and only if there are matrices 4, € GL,(Q) and R, €
Sp(4, Z) that are the analytic and rational representations of y = %(D ++/D), ie such
that A1y, (t) = I,u(v)Ry, tr(4y) = D and det(4,) = %(D2 — D). Together with
the self-adjointness of R, this implies that

a %bm 0 0
ab 2 g 0 0
A, = R,=|3m
Y (c d)’ ¥ 0 0 a %b ’
0 0 2¢d

where d = D —a and ad — bc = %(D2 — D), and moreover that ¢ = %bm € 37Z.
Integrality of R, implies that a,d,{ = %b € Z and we set e =2a — D.

Finally, the real multiplications defined by [, e, m] and [—£, e, m] are conjugate under
the isomorphism —Id| g, . The claim about Galois conjugation is obvious. a

Proof of Theorem 7.1 Suppose we are given a tuple [€, e, m] as in the theorem. We
check that the real multiplication on the locus of matrices I1,,(t) given by Lemma 7.4
is indeed proper. The action is not proper if y/k also acts for some 1 < k € Z, ie if
all the entries of R, are divisible by k. This implies k | gcd(e, £, /) and conversely
this divisibility is also sufficient for the action to be nonproper.

Next we show that the images in A, (, 3y of the loci given by IT,,(t) for m € Z are
pairwise disjoint. Otherwise there exists a symplectic matrix taking the locus IT,,(7)
into I1,,, (7). By Lemma 7.3 this matrix is diagonal in each block. It suffices thus
consider only matrices of the form

a 0 b O
|0 ka/m 0 kb
M=1y 0 a o

0 c/k 0 md/k
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with integral entries and ad — bc = 1, where a priori k € Q and m, = k?/m, which
implies k € Z. Since ¢ and d have no common divisor, this implies k |m, hence
k=m=m,.

This argument also gives the stabilizer of the locus {I1,,(7) : T € H} in the symplectic
group. Such a matrix is of the form of M with kK = m and integrality of the entries
implies that the quotient curve is isomorphic to I () \H.

Finally, we determine for each component in Red,3 with chosen real multiplication
given by prototype P = [{, e, m] a Hilbert modular surface and a Siegel modular
embedding that maps to this component. To exhibit a Siegel modular embedding,
we need to find eigenform coordinates, ie a matrix that diagonalizes the analytic
representation of real multiplication given by A, in Lemma 7.4. Such a matrix is given

by
—e+\/5

11
Vp = here A 1= Ap =
P ( ), where P 47

A AC
Indeed, associated to the prototype P one can produce the quadratic form Qp =
[2¢,e,—3¢m] of discriminant D, so that A is precisely the quadratic irrationality
of Op, and Lemma 4.4 ensures that the first column (1, A) of the matrix Vp = By is
a (2, 3)-symplectically adapted basis for a fractional ideal a¥ of Op, and the first
column of the matrix (1/7;1 P,3)T is abasis ﬁ(—%k", 6f) of the ideal ab. A simple
calculation shows that a = %5(26, —2¢\%) and therefore, writing b = (6, %(r + \/5))
for r € Z, the following equality of ideals determines r:
VDab = (417, 6)

= (2¢,-201°)(6, 1 (r + v/ D))

= (12, 12009 £(r + VD), 1((D + er) + VD (e +1))).
To verify this, it is enough to prove that the second ideal lies in the first one, and one
checks that this holds for r as stated in the theorem. O

In order to translate the theorem into Euler characteristics, we define another set
of prototypes, closely related to standard quadratic irrationalities. For a quadratic
discriminant D = f2D, with conductor f, we let

21) Pr(D)= {[a,b,c] €Z?*:a>0>c, D=b*>—4-k-ac and ged(f,b,c/co) = 1},

where ¢g is the square-free part of c.
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The following result gives an explicit formula for the Euler characteristics of the
reducible loci Red;3(b) in terms of prototypes.

Lemma 7.5 The Euler characteristic of the reducible locus Red,3(b) in the Hilbert
modular surface Xp(b) is given by

__ L
ARedp3(0) =~ ) a
[a,b,clePe(D)

for each of the ideals b of norm 6 in Op, where k is the number of Op—ideals of
norm 6.

Proof By Theorem 7.1, the different components of Red,3 in Aj; (5, 3) are isomorphic
to certain I'o(m)\H. Note that

x@om) =—2 [T (1+2).

plm P
D prime

Moreover, it is easy to show that, for each D,

1
To(m)) =—= a.
[e,eJnX]:EPD Ko 6 [a,b,C]Ze;’s(D)
Let us now suppose that D = 4,9, 16 mod 24, so that there exist two ideals b # b° of
norm 6. This implies that precomposition of a chosen real multiplication Op — Endr,
with Galois conjugation gives a point on a different Hilbert modular surface, the one
with the conjugate b . Each component of Pp is in the image of some Hilbert modular
surface X, (b) with b determined in Theorem 7.1 and thus, by the change of cusp
explained in Section 4.5, also on the standard Hilbert modular surface Xp (b). Precom-
position with Galois conjugation corresponds to e — —e. Consequently, on X (b),

Red3@) =3 > x(Toom) =— > o

[Z,e,m]GPD [a,b,C]GPG(D)

| —
AN —

In the case D =0, 12 mod 24 there exists only one ideal b = b° of norm 6, and thus the
map Xp(b) — A3 (2,3) is generically two-to-one onto its image. In the particular case
of Red,3(b), components corresponding to prototypes [£, e, m] and [£, —e, m] are sent
to the same component of Red,3, whereas components corresponding to prototypes
[£,0,m] lie in the ramification locus of Xp(b) — A, (2,3). As a consequence,

xRedys®) = Y xMoem)=—¢ Y a

[£,e,m]ePp [a,b,cl€Ps(D)
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Finally, if D =1 mod 24, there exist four ideals by, b7, by and b§ of norm 6. For the
same reason as above, the forgetful map from Red»3(b;) to A3 (2 3y is an isomorphism
onto its image. Precomposition with Galois conjugation corresponds again to e — —e.
We conclude

X(Redas (b1)) + x(Redas (02)) = 3 > x(To(m)) = Y

[£,e,mlePp [a,b,c]lePs (D)

=
N —

Using Lemma 7.6, we deduce that y(Red;3(by)) = x(Red,3(by)) and the result
follows. u

Lemma 7.6 For D = 1 mod 24 not a square,

Yo oi(mD=-b)) = > oi(HD-bY).

b=1,11mod 12 b=5,7mod 12

0<b<+/D 0<b<+D

Proof Recall the definition
e 12 2
nq)=q¢"*[[(1-¢" = Z(;)qb /24
n=1 b>1

of the Dedekind n—function and recall that

Eag) =55+ o =1 9.
n>1

where ' = q%. The statement of the lemma is now equivalent to

0= [¢P?(E2(9)n(q)) = [¢P** ] (@),

which obviously holds for D nonsquare by definition of 7. |

Finally, we relate the components given by prototypes at least coarsely to the usual
classification of modular curves.

Proposition 7.7 Let P =[{, e, m] € Pp be a prototype for real multiplication by Op
belonging to X, (b). The corresponding component Fp of Redy3(b) is an irreducible
component of the modular curve Fy2,,(1), where u = g(e + VD)/~D and g =
ged(e, £).
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Proof By the proof of Theorem 7.1, we know that the Siegel modular embedding
determined by this prototype is given by Vp, and therefore one has

2t 0 v 71 0 VT _ 71+ 12 AT +A%1,
0 3mrt P\o )P AT + A% A2t + (A9)21,
for a curve (71, 72) = (11 (1), 72(7)) in H2, where A := Ap = (—e + v/ D)/ (4L).

In particular, this curve necessarily lies in the curve Aty + A% 7, = 0, which obviously
agrees with Fy2,,(i). The only thing left to prove is that u is primitive in M and
N(u) = N(M)g*m.

From the calculations in the proof of Theorem 7.1, one gets

4/
M =~'Da*b = ——(3(,L1%,eA%),
VD
and N(M) = 2402/ D. Since u = (4¢/~/D)gA°, it is clear that s is primitive in M,
and N(u) = 24£2g%m/D. a

7.3 The (1, 6)-reducible locus

To put the results of the previous section in perspective we compare here loci of
reducible abelian surfaces according to their polarization. The moduli space A; (1)
of (1, 6)—polarized abelian surfaces is of course isomorphic to A; (5 3) used in the
previous section, an isomorphism being induced by multiplication of period matrices
by diag(%, 2) from the left.

In A (1,6) (and by the above isomorphism thus also in A, (5 3)) one can similarly de-
fine the (1, 6)—reducible locus Red;¢ of products E; x E, of isogenous elliptic curves
with the natural (1, 6)—polarization pTOE, (0) ® 6p5 Ok, (0). With the arguments of
Lemma 7.2 we can put period matrices in Red¢ in the form

T 0[10
H”’"_(o mt |0 6

) for some T € H and 0 <m € Q,

with the polarization given by the standard form (_216 P o°

in the previous section work verbatim in this case as well and yield:

) . The remaining arguments

Theorem 7.8 Let D = f2 D, be a positive quadratic discriminant with conductor f.
There is a bijective correspondence between irreducible components of the (1,6)—
reducible locus admitting proper real multiplication by Op and the set of prototypes Pp
as defined in Theorem 7.1.
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In particular, Red;3 and Red;¢ have the same Euler characteristics. However:
Proposition 7.9 The loci Red,3 and Red¢ are disjointin Ay (23).

Proof The degrees of elliptic curves on an abelian surface in Red;3 are the values of
the quadratic form 2x2 4 3my? for x, y, € Z, as computed in the proof of Lemma 7.3.
This form never takes the value 1. a

8 The divisor of the Gothic modular form

In this section we calculate the vanishing locus of the Gothic modular form.

Theorem 8.1 Let Gp(b) denote the union of components of the Torelli-image of Gp
lifted to Xp(b) such that du induces the eigenform w at each point (X, w). Then

div(Gp) = Gp(b) + 2 Red,s(b).

The theorem will be a direct consequence of Propositions 8.3 and 8.4 below, together
with Theorem 6.1.

8.1 The Fourier expansion of the Gothic modular form

For each cusp a € Xp(b) let n = (11, n) be abasis of a¥ thatis (2, 3)-symplectically
adapted, determining the Op-module ab @ a" .

We want to write down the Fourier expansion of Gp around this cusp using the Siegel
nt ny

n2 N5
the cusp a of Xp(b) corresponds to the cusp at infinity of iYg (b). The stabilizer of oo

agrees with the subgroup

SL(ab® a")eo = {(8 8/_11) re€Oh, peM:= «/Bazb}.

modular embedding given by the matrix B := By = ( ) as in Section 4.5, so that

For any Hilbert modular form f one has f(t + 1) = f(zr) for u € M, and therefore
one can write the Fourier expansion

f@ =Y aye(r(vr)),

veMY
where tr(vt) = vty +1v°1, and MY = (V' Da?b)¥ = \L@av(ab)_l.

Write py(x) 1= x1n1 + X212 for x = (x1,x2) € Q2. We will drop the subindex
from p, whenever the choice of basis is clear.
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Proposition 8.2 The Fourier expansion of Gp around the cusp a is given by

2. on @24y (B)2 0§ (@)*+p5 (b)?
Gp(r) =8n"i- Z ka,bqln ! qzn !
baeAAO’l/2 (@)2+py(b)2 PG (@)>+pF (b)?
€ . on(@)+p Py (@)=+p
1/2,1/6 _ Z ka,bqln n qzn n )’
achi/2.1/2
b€A0!1/6

where kg p = (—1)92702p% (@) p9 (b) and A5 = Z* + (€, 8)T .
8.2 Vanishing order along Red;3

The reducible loci Red;3(b) turn out to lie in the vanishing locus of the Gothic modular
form Gp. We next calculate the corresponding vanishing order.

Recall that, by the results of Section 7.1, the reducible loci Red;3(b) decompose into
different components Fp indexed by prototypes in Pp.

Proposition 8.3 The Gothic modular form Gp vanishes to order 2 along the reducible
locus Red,3(b).

Proof Let P =[{,e, m] e Pp be the prototype corresponding to a component Fp C
Fg2,, (1) of Redy3(b) as in Proposition 7.7. Recall from Theorem 7.1 that the curve Fp
lives in the Hilbert modular surface Xp(b) determined by the (2, 3)—symplectically
adapted basis a¥ = (1, 1), where A = (—e + v/ D)/(4£). Note that A is precisely the
irrationality associated to the quadratic form Qp = [2€, e, —3{m] of discriminant D.
Moreover, by Proposition 7.7 the curve Fp can be parametrized by 7 — (at,2%7),

where o = —ﬁu =1%//D.

In the chosen basis for a¥, one has p(x1,x;) = x; + x2A and therefore
1
tr(ap(xq, x2)?) = ﬂ(xf + 2mx3).

Now, restricted to Fp the coordinates ¢; and ¢, become g% and q“a, respectively,
where ¢ = e(7). In particular, up to an 87%i factor, the expression for Gp from
Proposition 8.2 along Fp reads

Gp(®) = Y (=DPPar +azh?) by +bya%)g /O TIDe )

acho.1/2
beAiy2.1/6

- Z (_1)a2+b2(a1 +azka)(b1 +bzko)q(l/g)(a(a%-i—b%)—c(a%—i—b%))‘

achi/2,1/2
bEA0_1/6
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Due to the symmetries of the lattices considered, the g—exponents of the terms cor-
responding to different choices of the signs £a; and +b; are the same. More-
over, the flip (a1, a3;b1,b3) — (b1,ay;ay,b,) gives a bijection between the lattice
No,172 X A1)2,1/6 appearing in the first summand and the lattice A/ 1/2 X Ag,1/6
appearing in the second one.

As a consequence, the coefficients of the terms corresponding to (a1, a»; by, by) and

(—ay,az;—by,by) in the first lattice and their flipped images (by,az;a;,b;) and

(=by,as;—ay, by) in the second one give (up to a (—1)?2752 factor)

(@11 +azb2(A°)%) + A% (a1by +azby) + (arby + azby(A)?) = A (ay by + azhy)
—(a1by+azby(A7)?) =A% (b1by +ayaz)—(a1by +azba(A7)?)+ 1% (byby +ayaz).

which sums up to zero, and therefore Gp vanishes along Fp.

In order to determine the vanishing order, we will study the highest order & such that
all the k—derivatives of Gp vanish along Fp. The Fourier expansions of the restriction
of the derivatives 9%Gp / 8t{‘ and 9XGp/ 8r§ to the Shimura curve Fp are given by
the same series as above, with the coefficients replaced by

(—=D)*Tb2(ay +a,1)(by + b217) (p(@)? + p(b)*)F
in the case of 9KG D/ Btfc and the equivalent expression with (o° (a)2 + p° (b)z)k for
*Gp/otk.
The coefficients of dGp/dt; corresponding to (ay,as; by,by) and (—aq,ay; —by,by)
in the first lattice and their flipped images (b, a,;a1,b) and (—bq,a,; —ay, by) in
the second one are given this time by
(@)% +ay) - (baA® +by) -[(@2 + b} + a5 + b3A?) + 2h(araz + by by)]
+ (@2A% —ay) - (baA% —by) - [(af + bT +a5)* + b3)%) —2h(aras + by by)]
— (@M% +ay) - (baA° + by) -[(@% 4+ b? + a3A* 4+ b3A?) + 20(b1ay + a1by)]
— (@)% —ay) - (baA% —by) -[(@% + b} + aZA* + b3A*) —2A(byas +ayby)],

which again sums up to zero. The same calculation for the derivative dGp/dt, shows
that it is zero too, and the vanishing order of Gp along Fp is therefore at least 2.

Finally, a simple but long calculation shows that the minimum coefficient of 92Gp / 3T12 ,
given by the terms corresponding to a = (O, :I:%) and b = (i%, %) in the first lattice
and a = (:I:%, :I:%) and b = (O, %) in the second one, is —2;47(—1)2/3)»2()»(’)2. a
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8.3 Vanishing order along G p

The modular form Gp vanishes along Gp(b) by construction. We next prove that it
vanishes only with multiplicity 1.

Proposition 8.4 If the Gothic modular form Gp vanishes to order > 1 at tq, then
70 € Redy3(b). In particular, Gp vanishes to order 1 along the Gothic Teichmiiller
curve Gp(b).

Proof Assume that Gp vanishes to order strictly larger than 1 at a point T¢ € Gp(b),
so that in particular Tg € Xp \ Red,3(b). This is equivalent to both derivatives
dGp/dt1(1o) and dGp/d1(To) being zero.

Recall the theta functions Oy (t,u), O4(z,u) and Op(t, u) defined at the beginning
of Section 6.5, and the fact that div Oy (t¢) = ¢(X) is the pre-Abel-Prym image of a
curve X in the Gothic locus.

By (16), Gp(t) is proportional to D,0, (r, %)\2) and D,0, (r, %Az) and therefore,
by the heat equation (see [3, Proposition 8.5.5]), one has

3 3

a — —_
a__[ng(TO) = au;@a(fo,")|u=xz/z = 9l Op(To. u)|y=3,/2-

In particular, since all the lower-order u,—derivatives of 6y vanish, one has

ig (lk)_a_3@ (l)h)]:_a_3@ (lk)]-‘—()
ang22—8uga22 b8u3b22 a=V.

Therefore, the differential du; induces an abelian differential on X with two double

zeroes at % Mo and %(k 2+ 2) and a zero of order > 3 at %k 2, which is a contradiction
to X having genus 4. a

Note that we have proved that not even the 7, —derivative of Gp vanishes anywhere
along Gp(b). This gives actually a direct proof of the following fact, without knowing
that the curves originate as Teichmiiller curves.

Corollary 8.5 The vanishing locus of Gp is a union of Kobayashi geodesics.

Proof Being a Kobayashi geodesic is equivalent to always being transversal to one of
the two natural foliations of Xp(b) (see [19, Proposition 1.3]), hence modular curves
are obviously Kobayashi geodesics and the nonvanishing of the derivative d/01,Gp ()
anywhere in Gp(b) proves the statement. o
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Finally, the following result shows that the reducible locus agrees indeed with the locus
Red;3(b) defined in Theorem 6.1:

Proposition 8.6 The two definitions of the reducible locus in Xp(b) agree, that is,
Redy3(b) = {Gp () = 0} N {Fu(z) = 0} N{Fp(r) = 0}.

Proof By the previous proposition, the only thing left to prove is that the intersection
on the right-hand side is included in the reducible locus.

Let 79 € {Gp(7) =0} N{F,(7) =0} N{Fp(r) = 0}. Assume without loss of generality
that ®, is nonzero, otherwise take ® . This theta function satisfies

e D,0,(0) = D;B4(0) = 0 by definition and by F,(7¢) = 0, respectively;
o Dy04(%12) = D1O4(312) = 0 by translation to zero via (16);

o Dy0,4(312) = D204(3(A2 + 12)) = 0, both by translation to zero via (16)
and Gp(tg) =0.

Thus the theta function ®, satisfies all the conditions of 6y in the proof of Theorem 6.1,
and additionally D ®a(% /,Lz) = 0. As a consequence Y = div®, is a divisor with
self-intersection Y2 = 12 by Riemann—Roch, and multiplicity 3 at the origin and %,uz.
Moreover, since at least the first and second (by odd parity) u,—derivatives vanish at
%A > and %(k 2+ ), either du induces an abelian differential with zeroes of order
> 2 at those points, or the multiplicity of ¥ at them is > 3. The same analysis as
in the proof of Theorem 6.1 concludes that the only option is T, € Red,3(b) (case
Y =3Y, +2Y).

Note that the case Tz, € Gp (case ¥ = ¢(X) reduced with zero as its only singular
point) is not possible due to the extra vanishing of D, @a(%,uz), which implies multi-
plicity > 3 at that point. a

9 Modular embedding of G,

This section is independent of the rest of the paper and illustrates the parametrization
of the Gothic locus in the language of the modular embeddings. We illustrate this for
D =12, the unique case where Gp is a triangle curve and, therefore, the methods of
hypergeometric differential equations are available.

A modular embedding for the Fuchsian group I" with quadratic invariant trace field K
is a map 7 — (7,¢(t)) from H to H? such that ¢(y7) = y°¢(r). The universal
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covering of a map C — Xp(b) from a Teichmiiller curve C with quadratic trace field
to the corresponding Hilbert modular surface gives rise to a modular embedding; see
eg [21] for more details.

The hypergeometric differential equation with parameters (a, b, ¢) € R is given by
(22) L(a,b,o)(y)=t(1—1)y" +(c—(a+b+ 1))y —aby = 0.

Whenever % =|1-c¢|, % =|c—a—>b| and % = |a—b| for some [,m,n € Z U {0}
satisfying % + n% + ,ll < 1, the monodromy group of this equation is the Fuchsian
triangle group A(/,m,n). If [ = o0, ie if ¢ = 1, the space of solutions of (22) near
t = 0 is generated by y1(¢) and log(¢) y1(t) + y»(t), where

(@n®)n

(c)nn!

y1(t) = F(a,b,c;t) := Z

S @b (1, 1 2
_ r r _ 4
(=2 (©)rr! (Z atk Thrk c+k)t ‘
r=0 k=0
Here (x), denotes the Pochhammer symbol and F is the hypergeometric function with
coefficients (a, b, ¢) for ¢ = 1.

By Proposition 2.4, the Veech group of G, is the triangle group A = A(o0, 3, 6),

1 yo— (V3rE T
3o ) ST\ v 1 )
2 2 2 2

generated by the matrices

l o
M°°:(o 1)’ M3:(_

where o = 2*/5 + 2. It is therefore the monodromy group of the hypergeometric

N[ —

differential equatlon L := L(12 e 1) = 0 corresponding to (T ,11 n) (0, ; 6)
and we let y;(¢) and y,(¢) be the functions defined above. We will also identify the
quotient A\H with P! via the function ¢: H — P! sending the elliptic generators

Moo, M3 and Mg of A(oo,3,6) to 0, 1 and oo, respectively.

Given that the invariant trace field of A is Q(+/3), we will also be interested in
the “conjugate” differential equation corresponding to the triangle group A% for the

nontrivial element o € Gal(Q(+/3)). One can see that the rotation numbers of the

4mi/3 27wi/6

generators of A of order 3 and 6 are e and e , respectively. As a conse-

quence, the differential equation associated to the group A% is Ly := L( g 12, ) =0,
which corresponds to ( o ml , no) (O, % é) We denote the corresponding functions

defining the solutions of Ly by y;(¢) and y,(¢).
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By [21, Formula (52)] the modular embedding ¢ is given in terms of these solutions
by

_a%  af A h@ | A0
9 o=t ?(l i 70 7i(0) * fl(f))

for the constants A and A, where fi(r) = yi(t(r)) and ﬁ(r) = y;(t(r)). Since
t(t) is Mqo—invariant, we can express these functions in terms of the parameter
g = e2™17/2 The constants 4 and A are determined by Q(¢) := re?2(/310) = 44
and O(t) 1= te?2O/71(0) = 47 where § = ¢271¢(D/2°  The main remaining task is
thus to determine A and A.

Due to the chosen normalization, the function #(7) takes the value 1 at the point i
with multiplicity 3 and 7(t) # | whenever im(z) > 1. It follows that the function
1/(t(r) — 1) has a triple pole at T =i and that, as a power series in ¢ (resp. Q), the
closest singularity to the origin is given by go = e 2/ (resp. Qg = Aqg). This
implies that, if one writes 1/(z(Q) —1)!/3 = > b, Q™" as a power series in Q, the
quotients b, /b,+1 will tend exponentially fast to Q¢. This yields a high-precision
approximation

A = 33.9797081543461844465412173813877 .. ..
The same calculations for Q = /Té' yield
A =~ 3254.6483182744669365311774168770392 . . . .
These constants can be recognized as the “conjugate-in-exponent™ pair
— 2+ V3) V31 +V3)°G + V3)3,
=2+ V3) V31 +V3)° 3+ V3).

The resulting modular embedding from formula (23) is approximately

¢(f)=—2(1;—;/_3)log(2+«/§) +Q2=V3)Tr+ +\/_( %Aq == A%4?

1152

3.3 713 4 4 4943 5.5

497664A 382205952A q _183458856960A q "‘)

=0.963i +0.2687 +9.243-10"7it> —1.159-10"%¢% +8.389- 10
—2.136-10777° +4.611-1077it® +9.035- 107877 + 1.630- 107"

+1.053-1077¢% +2.502- 1078 195,408 - 1078711 + ...

and the modular transformation can be checked numerically.
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Finally, note that the group A does not belong to the Hilbert modular group SL(b0OY)),
but the conjugate Ac = CAC™! by the matrix

c— (3\/%+9 —3J§1— 15)

does. Consequently, the map 7 > (7, C% o o C~1(1)), where matrices act on H by
Mobius transformations, parametrizes the Teichmiiller curve G, = Ac\H — X1, (b).
Indeed, it can be numerically checked that the image of this map lies in the vanishing
locus of the modular form Gi, and, since Red,3(b) is empty in this case, it actually
equals {Gj,2(7) = 0}.

10 Asymptotics of divisor sums

As preparation for computing the asymptotics of volumes and Lyapunov exponents in
the next section, we study here for a fundamental discriminant D the asymptotics as
D — oo of

D—b?
e(D, k)= Z 01 (T) = Z a,
b2=D mod 4k [a,b,c]ePi (D)
lb|<~/'D
where o () is the divisor sum function and where Py (D) has been introduced in (21).
Our focus is on the cases k = 1 and k = 6, but the method works for general k.

Theorem 10.1 The following asymptotic statements hold:

1
e.y= DD s,

28(=3)
e(D. 6) = %% +0(D¥*) for D =0,12 mod 24,
e(D,6) = %% + O(D**) for D=4,9,16 mod 24,
e(D,6) = %% +0(D*) for D=1 mod 24,

as D — oo among fundamental discriminants.

Note that ¢ o ﬁ)(—l) > CD3/2, so the theorem captures indeed the asymptotics for
large D. Our proof here follows closely an application of the circle method used by
Zagier in [27, Section 4]. To set the stage, we define the one-variable theta series and
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the Eisenstein series to be the modular forms

o0 o
0(r) = Z T Gy(r) = —i + Z oy (a)e*™ T,
a=1

{=—00

Then the modular form
(o,@]

F(r.k) := G2 (2k1)0(r) = Y _ e(n.k)e™"
n=0
has a Fourier expansion with coefficients that generalize the coefficients we are inter-
ested in. The basic idea is to compute the Fourier coefficients of F(t, k) by integration
at small height €. The dominating term of the asymptotics then comes from the
expansions near each rational point. Consequently, we use the modular transformation
law to obtain the expansions

0(% +iy) = 2@ ey 2 4+ 0T 2eTT/),
Go(§+iy) = —¢@)er) 2 + O™

as y — 0o, where a, ¢ € Z with gcd(a, c) =1 and where A(a, ¢) is a Legendre symbol

(24)

times a power of i, depending on the parities of @ and ¢. Here we mainly need to
know that the Gauss sum

2¢c
Ye(n) = 12 Z AMa, c)e_”i”a/c

a=1
is computed in [27, Theorem 2] for D fundamental to be a weakly multiplicative
function in ¢ given on prime powers by

1 if r €{0, 1}, 1 if r=0,
2x(2) ifr=2 if r=1
(25) 2r._> X() 1 r ’ pr X(p) 1 r ’
2 if r=3and 2| D, -1 if r=2and p|D,

0 otherwise, 0 otherwise

for odd primes p, where x(m) = (£). Define

(26) e*(n, k) =

>, ged(c, 2k)?
Y v,
c=1 ¢

Lemma 10.2 For k square-free and D a fundamental discriminant,
e* (D, k) I 1+ x(p)

* - —2
¢ (D’ 1) p | k prime tr
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Proof Since the summands in (26) are weakly multiplicative in ¢, the function
e*(D, 1) admits an Euler product expansion. For p # 2, equation (25) directly implies
that the local factor is

2_1 1— —4
1er(p)er(p) . p

P2 Pt 1l—x(p)p?¥

For p = 2 the same conclusion holds up to global factor 2 after taking the factor
ged(c, 2k)? into account. In total,

L2, %)
¢4’

where L(s, x) = Cx(s)/¢(s) is the L—series associated with the character y. The

27 e*(D,1)=2

passage from ged(c, 2) to ged(c, 2k) only changes the factors at the primes dividing k.
For p # 2 the local factor now is 14 x(p) + (x(p)*> —1) p~2, and the ratio compared
to the original factor results in the modification claimed in the lemma. For p = 2 the
same final conclusion holds. O

Proof of Theorem 10.1 Since F' is periodic under t — t + 2 we can compute the
coefficients )
1 2+ie .
e(n,k)=—/ e™" F(t, k) dy
2 ie
using Cauchy’s formula by integration at small height €. We replace the right-hand
side in a neighborhood of ¢ € [0,2) by the dominating term in

a . . . ¢(2) ng(C72k)2 —5/2 —5/2 —m/4c%y
F(5 +ivk) = 1 o5Ma )= 5y 0 Pe e,

obtained as a combination of (24). The sum over all “major arcs” of the circle method
is the summation of these neighborhoods. It is computed in [27, Equation (32)] using
the integral representation of the Gamma-function to be

71202 n3/2 & ged(c, 2k)?
16r(3) 2 2

c=1

(28) en, k) =

Ye(n).

To see that the major arcs indeed give the dominating term, we can argue as in
[27, page 81] (referring to Hardy) for any fixed k. The equations (28) and (27) can
now be combined as in [27] to the case k = 1 of the theorem. The cases for k = 6
differ by the factor 1/k? in (28) and the factors in Lemma 10.2. a
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11 Volumes and Lyapunov exponents

The results of the previous sections can now be assembled to compute the Euler
characteristic of the Gothic Teichmiiller curves and their Lyapunov exponents. We
first state a more precise version of Theorem 1.1. Recall the definition of xp in
Proposition 4.3.

Theorem 11.1 Let D be a nonsquare discriminant. The Gothic Teichmiiller curve G p
is nonempty if and only if D =0,1,4,9,12, 16 mod 24.

For D =0, 12 mod 24 the Gothic Teichmiiller curve G p has Euler characteristic
1 1
—x(Gp) = 20KD Z a—3 Z a.
[a,b,cleP; (D) [a,b,clePs (D)

For D =4,9,16 mod 24 the Gothic Teichmiiller curve Gp = G% UG }) consists of
two subcurves G, of the same volume equal to

—x(GB)=21—OKD Z a— Z a, €e{0,1}.

[a,b,clePi (D) [a,b,clePs(D)

N —

For D =1 mod 24 there is a decomposition Gp = G%o U G%l U Gll)0 U G%l of the
Gothic Teichmiiller curve into four subcurves Gi)‘s of the same volume equal to

Gy = L _ 1
x(Gp) = 20/P Z a=1; Z a, €386€{0,1}.
[a,b,clePi (D) [a,b,clePs(D)

To state the other theorems, we provide a brief introduction to Lyapunov exponents, in
particular for flat surfaces (X, w) in the Gothic locus.

Lyapunov exponents measure the growth rate of cohomology classes in H!(X,R)

under parallel transport along the geodesic flow in SL(2,R) - (X, w), the closure of
the SL(2, R)-orbit of (X,w) (see eg [28] or [18] for background). The Lyapunov
spectrum of a genus 4 surface consists of Lyapunov exponents Ay = 1> 4, > A3 > A4
and their negatives.

In the case of flat surfaces (X, w) in the Gothic locus, the existence of the maps 74
and 7p in (1) decomposes the local system V with fiber H 1(X ,R) over QG into
local subsystems V4 and Vp of rank 2, corresponding to the elliptic curves 4 and B,
and the (“Prym”) complement Vp. Since the generating differential of the Gothic form
belongs to the Prym part, the exponent A; = 1 is one of the two positive exponents
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{I,Ap} of Vp. If we denote by A4 and Ap the Lyapunov exponents from the elliptic
curves, then the sets
{1, A2, A3, Aaj ={1, A4, AB. AP}

2

coincide. Since by definition w* = 7%¢ for some quadratic differential ¢ on A4, the

double covering formula of Eskin, Kontsevich and Zorich [7] implies
MArp+dp—ha=73 (gz+=12) =1

Theorem 11.2 The Prym Lyapunov exponent Ap of a generic surface in the Gothic
locus is equal to %

This is a direct consequence of the asymptotics formulas in Theorem 10.1, the following
proposition and the convergence of individual Lyapunov exponents [4], since the
curves Gp equidistribute towards (the Lebesgue measure on) the Gothic locus by [9].

Proposition 11.3 The Prym Lyapunov exponent of a Gothic Veech surface on Gp is

x(Xp(b))
x(Gp(b))’

Note that we do not claim that the curves G p(b) are connected, although we expect

equal to
Ap(Gp(b)) =1+

this to be true. Therefore, the statement of the proposition has to be interpreted as the
volume-weighted average of the A p of the connected components.

Proof of Theorem 11.1 The arguments in the following work for any good compacti-
fication Xp(b) of Xp(b) (see [19]). Since the specific choice of compactification is
not relevant, we will denote simply by [C] the class of the closure C in Xp(b).

Let [w;] be the classes of the two foliations of the Hilbert modular surface Xp(b).
Then the uniformization of Xp(b) implies x(Xp (b)) = [w1]-[w>] and the vanishing
locus of a modular for of biweight (k, £) has class %(k[a)l] + Lw,]).

Theorem 6.1 and Proposition 8.3 together show that the vanishing locus of the Gothic
modular form Gp is a union of Kobayashi curves and the first coordinate can be used as
parameter for each of these curves. By Theorem 8.1, div(Gp) = Gp(b) + 2Red,3(b),
where Gp(b) denotes the union of those components of the Torelli-image of Gp
in Xp(b) for which du induces the eigenform @ at each point (X, w).

This implies that integration of w; along div(Gp) (equivalently, the intersection product
—[w1]-[div(Gp)]) computes the sum of the Euler characteristics of these curves with
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the multiplicity determined in Propositions 8.3 and 8.4 (see [1, Corollary 10.4] or
[19, Proposition 1.3]). We obtain

29 —3x(Xp(6)) = —[wi]- (3@1] + 3[@2]) = x(GD (b)) + 2x(Reds3(D)).

Proposition 4.3 together with the well-known expression for the Euler characteristic
Xx(Xp) of standard Hilbert modular surfaces in terms of prototypes (see [11] for
example) give !
XXp@®) =560 Y. @
[a,b,cleP; (D)
Formula (29) together with Lemma 7.5 proves the result for Gp(b). The only thing
left to do is to prove the decomposition of Gp into subcurves as claimed.

We claim that, for different ideals b; and b,, the images of Gp(by) and Gp(b;) in
A (2,3) are different. In fact, if by # bf, the images of the whole Hilbert modular
surfaces Xp(by) and Xp(by) are disjoint in A; (5 3), since the lattices of the corre-
sponding abelian surfaces are not even isomorphic as Op-modules. On the other hand,
if b% # b, the subcurves Gp(b) and Gp(b%) can both be seen in Xp (b) as Kobayashi
geodesics with wq and w, as parameters, respectively. In particular, if their images
under Xp(b) — A; (2,3) agreed, their associated eigenforms for real multiplication
would map to two different eigenforms on each point X € Gp.

Finally, by construction Gp, is covered by the union of the images of Gp(b) for the
different ideals b of norm 6. a

Proof of Proposition 11.3 and Theorem 11.2 The Lyapunov exponent A p(C) of a
Kobayashi geodesic C in Xp(b) is given by the quotient (see [1] or [19])

[w2] - [C]

[w1]-[CT

The reducible locus Red;3(b) is a union of Shimura curves, and therefore one has
Ap(Redy3(b)) =1 and —[w;]-[Red23(b)] = —[w>]-[Red23(b)] = x(Reda3(b)). In the
case of the Gothic Teichmiiller curves, since [Gp(b)] = [div(Gp)] — 2[Red,3(b)], one
has

Ap(C) =

2] (5lo1]+ 3lwa] —2[Redy3(B)]) 5 x(Xp(D)) 4 2x(Red3(b))
[01]- (3[@1] + 3[@2] — 2[Red3(b)]) 3 x(XD (b)) 4 2x(Redy3(b))

By Theorem 1.1, this is exactly 1 + x(Xp(b))/x(Gp(b)).

Theorem 11.2 follows by taking the limit and using Theorems 11.1 and 10.1 a
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D # x(Xp(b)) x(Red(b)) x(G5)|| D # x(Xp(b) x(Reds;(b)) x(Gg)
1 1* 74 7 97

12 1 i 0 —1 184 2 I -1 —57x
24 1 1 -1 -7 192 1 32 -3 —421
4 1 5 98 10 127

28 2 3 e -3 193 4 3 -5 121
o s 1 5 Dm0
40 2 z -1 —Bx 11204 1 26 -3 —101
48 1 4 -1 -5 [|208 2 40 —4 —52
1 13 10 142

SR S A e S 1
57 2 4 2 —16: 217 4 S - -
60 1 4 -1 16 11220 2 2 -1 ~1s
72 1 e -2 —28* 11228 1 42 —4 —55
22 2 29 7 85

73 4 z -2 -21 11232 2 33 -1 -5
76 2 2 -2 —2* 11240 1 48 -5 —62
84 1 10 -1 —137 ||241 4 142 — Ll —18s
23 5 59 11 143

88 2 B -3 -2 11244 2 55 - —14
9 1 12 -1 —16 |/249 2 46 -2 —60
97 4 A -1 -2 252 1 128 —4 —56*
105 2 12 -3 —45 264 1 2 —4 —48
4 46 160 31 209

108 1 12 -3 -4 265 4 180 -3 —20
112 2 16 -3 —21T |/ 268 2 41 —4 17
120 1 4 -1 —-15*% ||273 2 1B -5 —64
124 2 2 -1 —2* 11276 1 60 —6 —78
50 3 134 13 175

129 2 2 -3 —22%* |/ 280 2 : -1 ~11s
132 1 18 -2 —23  [|288 1 80 —8 —104 T
136 2 48 -3 -2 11292 2 66 —7 —85
64 13 83 22 280

145 4 & -1 -8 11297 2 72 -2 —280
148 2 25 —% —%T 300 1 % —4 —57
153 2 8 -3 — 13411304 2 76 -L —99
156 1 2 -2 —22 ||312 1 46 -5 —59
160 2 28 -3 -367 ||313 4 20 -4 —253
168 1 18 -3 - ]|316 2 56 -4 —73
172 2 21 -2 —3* 11321 2 66 -5 —86
177 2 26 -3 —34 ||328 2 54 -5 —71
180 1 40 —4 —527 11336 1 80 -8 —104

Table 1: Number of Op—ideals b of norm 6 and volumes of each Xp(b),
Red,3(b) and Gp(b), for D < 385. The cross and the asterisk indicate a
Gothic or hexagons model, respectively.

Geometry & Topology, Volume 24 (2020)



Euler characteristics of Gothic Teichmiiller curves 1209

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

[9]

(10]

(11]
[12]

(13]

(14]

(15]

[16]

(17]

M Bainbridge, Euler characteristics of Teichmiiller curves in genus two, Geom. Topol.
11 (2007) 1887-2073 MR

H Bass, Torsion free and projective modules, Trans. Amer. Math. Soc. 102 (1962)
319-327 MR

C Birkenhake, H Lange, Complex abelian varieties, 2nd edition, Grundl. Math. Wis-
sen. 302, Springer (2004) MR

C Bonatti, A Eskin, A Wilkinson, Projective cocycles over SL(2, R)—actions: mea-
sures invariant under the upper triangular group, preprint (2017) arXiv To appear
under Astérisque

H Cohen, A course in computational algebraic number theory, Graduate Texts in
Mathematics 138, Springer (1993) MR

A Eskin, S Filip, A Wright, The algebraic hull of the Kontsevich—Zorich cocycle, Ann.
of Math. 188 (2018) 281-313 MR

A Eskin, M Kontsevich, A Zorich, Sum of Lyapunov exponents of the Hodge bundle
with respect to the Teichmiiller geodesic flow, Publ. Math. Inst. Hautes Etudes Sci. 120
(2014) 207-333 MR

A Eskin, C McMullen, R Mukamel, A Wright, Billiards, quadrilaterals and moduli
spaces, J. Amer. Math. Soc. (online publication January 2020)

A Eskin, M Mirzakhani, A Mohammadi, Isolation, equidistribution, and orbit clo-
sures for the SL(2,R) action on moduli space, Ann. of Math. 182 (2015) 673-721
MR

G van der Geer, Hilbert modular surfaces, Ergeb. Math. Grenzgeb. 16, Springer (1988)
MR

F E P Hirzebruch, Hilbert modular surfaces, Enseign. Math. 19 (1973) 183-281 MR

F Hirzebruch, G van der Geer, Lectures on Hilbert modular surfaces, Séminaire de
Mathématiques Supérieures 77, Presses de I’Université de Montréal (1981) MR

WP Hooper, Grid graphs and lattice surfaces, Int. Math. Res. Not. 2013 (2013)
2657-2698 MR

H Lange, S Recillas, Prym varieties of pairs of coverings, Adv. Geom. 4 (2004)
373-387 MR

CT McMullen, Foliations of Hilbert modular surfaces, Amer. J. Math. 129 (2007)
183215 MR

CT McMullen, R E Mukamel, A Wright, Cubic curves and totally geodesic subvari-
eties of moduli space, Ann. of Math. 185 (2017) 957-990 MR

M Moller, Variations of Hodge structures of a Teichmiiller curve, J. Amer. Math. Soc.
19 (2006) 327-344 MR

Geometry & Topology, Volume 24 (2020)


http://dx.doi.org/10.2140/gt.2007.11.1887
http://msp.org/idx/mr/2350471
http://dx.doi.org/10.2307/1993680
http://msp.org/idx/mr/140542
http://dx.doi.org/10.1007/978-3-662-06307-1
http://msp.org/idx/mr/2062673
http://msp.org/idx/arx/1709.02521
http://dx.doi.org/10.1007/978-3-662-02945-9
http://msp.org/idx/mr/1228206
http://dx.doi.org/10.4007/annals.2018.188.1.5
http://msp.org/idx/mr/3815463
http://dx.doi.org/10.1007/s10240-013-0060-3
http://dx.doi.org/10.1007/s10240-013-0060-3
http://msp.org/idx/mr/3270590
http://dx.doi.org/10.1090/jams/950
http://dx.doi.org/10.1090/jams/950
http://dx.doi.org/10.4007/annals.2015.182.2.7
http://dx.doi.org/10.4007/annals.2015.182.2.7
http://msp.org/idx/mr/3418528
http://dx.doi.org/10.1007/978-3-642-61553-5
http://msp.org/idx/mr/930101
http://msp.org/idx/mr/393045
http://msp.org/idx/mr/639898
http://dx.doi.org/10.1093/imrn/rns124
http://msp.org/idx/mr/3071661
http://dx.doi.org/10.1515/advg.2004.022
http://msp.org/idx/mr/2071812
http://dx.doi.org/10.1353/ajm.2007.0002
http://msp.org/idx/mr/2288740
http://dx.doi.org/10.4007/annals.2017.185.3.6
http://dx.doi.org/10.4007/annals.2017.185.3.6
http://msp.org/idx/mr/3664815
http://dx.doi.org/10.1090/S0894-0347-05-00512-6
http://msp.org/idx/mr/2188128

1210 Martin Moller and David Torres-Teigell

[18] M Moller, Teichmiiller curves, mainly from the viewpoint of algebraic geometry, from
“Moduli spaces of Riemann surfaces” (B Farb, R Hain, E Looijenga, editors), [AS/Park
City Math. Ser. 20, Amer. Math. Soc., Providence, RI (2013) 267-318 MR

[19] M Moller, Prym covers, theta functions and Kobayashi curves in Hilbert modular
surfaces, Amer. J. Math. 136 (2014) 995-1021 MR

[20] M Moller, Geometry of Teichmiiller curves, from “Proceedings of the International
Congress of Mathematicians” (B Sirakov, PN de Souza, M Viana, editors), volume 3,
World Sci., Hackensack, NJ (2018) 2017-2034 MR

[21] M Moller, D Zagier, Modular embeddings of Teichmiiller curves, Compos. Math. 152
(2016) 2269-2349 MR

[22] RE Mukamel, Fundamental domains and generators for lattice Veech groups, Com-
ment. Math. Helv. 92 (2017) 57-83 MR

[23] CL Siegel, The volume of the fundamental domain for some infinite groups, Trans.
Amer. Math. Soc. 39 (1936) 209-218 MR

[24] CC Ward, Calculation of Fuchsian groups associated to billiards in a rational triangle,
Ergodic Theory Dynam. Systems 18 (1998) 1019-1042 MR

[25] A Wright, Schwarz triangle mappings and Teichmiiller curves: the Veech—Ward—
Bouw-Moller curves, Geom. Funct. Anal. 23 (2013) 776-809 MR

[26] A Wright, Cylinder deformations in orbit closures of translation surfaces, Geom. Topol.
19 (2015) 413-438 MR

[27] D Zagier, On the values at negative integers of the zeta-function of a real quadratic
field, Enseign. Math. 22 (1976) 55-95 MR

[28] A Zorich, Flat surfaces, from “Frontiers in number theory, physics, and geometry, I’
(P Cartier, B Julia, P Moussa, P Vanhove, editors), Springer (2006) 437-583 MR

Institut fiir Mathematik, Goethe—Universitit Frankfurt
Frankfurt am Main, Germany

Institut fiir Mathematik, Goethe—Universitit Frankfurt
Frankfurt am Main, Germany

moeller@math.uni-frankfurt.de, torres@math.uni-frankfurt.de

Proposed: Benson Farb Received: 23 August 2018
Seconded: Anna Wienhard, Dan Abramovich Accepted: 2 June 2019

Geometry € Topology Publications, an imprint of mathematical sciences publishers :.msp


http://msp.org/idx/mr/3114688
http://dx.doi.org/10.1353/ajm.2014.0026
http://dx.doi.org/10.1353/ajm.2014.0026
http://msp.org/idx/mr/3245185
https://www.mathunion.org/fileadmin/ICM/Proceedings/ICM2018/ICM-2018-vol3-ver1-eb.pdf
http://msp.org/idx/mr/3966840
http://dx.doi.org/10.1112/S0010437X16007636
http://msp.org/idx/mr/3577896
http://dx.doi.org/10.4171/CMH/406
http://msp.org/idx/mr/3615035
http://dx.doi.org/10.2307/1989745
http://msp.org/idx/mr/1501843
http://dx.doi.org/10.1017/S0143385798117479
http://msp.org/idx/mr/1645350
http://dx.doi.org/10.1007/s00039-013-0221-z
http://dx.doi.org/10.1007/s00039-013-0221-z
http://msp.org/idx/mr/3053761
http://dx.doi.org/10.2140/gt.2015.19.413
http://msp.org/idx/mr/3318755
http://msp.org/idx/mr/406957
http://msp.org/idx/mr/2261104
mailto:moeller@math.uni-frankfurt.de
mailto:torres@math.uni-frankfurt.de
http://msp.org
http://msp.org

	1. Introduction
	2. Examples of Gothic Teichmüller curves
	2.1. The Gothic locus
	2.2. Gothic Teichmüller curves: cathedrals and semiregular hexagons

	3. Prym varieties for two maps
	4. Hilbert modular surfaces and modular embeddings
	4.1. Hilbert modular surfaces
	4.2. Abelian surfaces with real multiplication and a (1,n)–polarization
	4.3. Euler characteristics
	4.4. Siegel modular embeddings
	4.5. Cusps of X_D(b)

	5. Line bundles on (1,n)–polarized abelian surfaces
	5.1. Canonical theta functions
	5.2. Specialization to (1,6)–polarization
	5.3. Partial derivatives at 2–torsion points
	5.4. Fourier expansions
	5.5. Derivatives of theta functions as Hilbert modular forms
	5.6. Line bundles of type (2,3)

	6. The Gothic modular form and the Gothic theta function
	6.1. The Abel–Prym map and the pre-Abel–Prym map
	6.2. The natural line bundles on Prym(X)
	6.3. The pre-Abel–Prym map
	6.4. Identifying the theta function
	6.5. The vanishing locus of the Gothic modular form

	7. Modular curves and the reducible locus
	7.1. Modular curves on Hilbert modular surfaces
	7.2. The (2,3)–reducible locus
	7.3. The (1,6)–reducible locus

	8. The divisor of the Gothic modular form
	8.1. The Fourier expansion of the Gothic modular form
	8.2. Vanishing order along Red_23
	8.3. Vanishing order along G_D

	9. Modular embedding of G_12
	10. Asymptotics of divisor sums
	11. Volumes and Lyapunov exponents
	References

