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Isotopies of surfaces in 4–manifolds
via banded unlink diagrams
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We study surfaces embedded in 4–manifolds. We give a complete set of moves
relating banded unlink diagrams of isotopic surfaces in an arbitrary 4–manifold. This
extends work of Swenton and Kearton–Kurlin in S4 . As an application, we show
that bridge trisections of isotopic surfaces in a trisected 4–manifold are related by
a sequence of perturbations and deperturbations, affirmatively proving a conjecture
of Meier and Zupan. We also exhibit several isotopies of unit surfaces in CP 2 (ie
spheres in the generating homology class), proving that many explicit unit surfaces
are isotopic to the standard CP 1 . This strengthens some previously known results
about the Gluck twist in S4 , related to Kirby problem 4.23.
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1 Introduction

Knotted surfaces in 4–manifolds play an important role in smooth 4–dimensional
topology, analogous to the part played by classical knots in 3–dimensional topology.
Much like in the 3–dimensional case, there are a number of surgery operations and
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invariants for a smooth 4–manifold X4 which are defined in terms of embedded
surfaces inside X4 .

Because of their importance in 4–manifold topology, it is useful to have concrete ways
of describing these embedded surfaces and their isotopies. When X4 D S4 , there are
several ways to describe embedded surfaces and isotopies between them. These include
broken surface diagrams with Roseman moves [26]; motion picture presentations with
movie moves — see Carter and Saito [1; 2] — and braid charts with chart moves — see
Kamada [12; 13].

In this paper we consider two additional methods for describing surfaces in a 4–
manifold. When the underlying 4–manifold is S4 , a complete set of moves to describe
isotopies of these surfaces has already been established. We focus here on establishing
complete sets of moves to describe surface isotopies in an arbitrary 4–manifold.

The first method we consider to describe a surface † in a 4–manifold X4 is via banded
unlink diagrams. When X4 D S4 , this construction involves putting † into Morse
position with respect to a standard height function h on S4 , and then encoding the
index-0 and index-1 critical points of hj† as a classical unlink in S3 with a collection
of embedded bands attached (see Section 3 for a more detailed description). In [33],
Yoshikawa presents a set of moves on banded unlink diagrams for surfaces in S4

which are realizable by isotopies of the underlying surface, and asks if these moves
are sufficient to relate banded unlink diagrams of any pair of isotopic surfaces. This
question was affirmatively answered by Swenton [29], with an alternative proof being
given by Kearton and Kurlin [16].

In this paper we study a generalization of banded unlink diagrams to embedded surfaces
in an arbitrary 4–manifold X4 equipped with a Morse function, where we encode
the Morse function by a Kirby diagram K . We describe a set of moves on banded
unlinks, called band moves, which can be realized by isotopies of the underlying
surface †. These consist of Yoshikawa’s original moves, as well as additional moves
which describe the interaction of the surface † with the handle structure on X4 . The
main theorem we prove is the following:

Theorem 4.3 Let X4 be a smooth 4–manifold with Kirby diagram K , and suppose
that † and †0 are embedded surfaces in X4 . Let .K; L; v/ and .K; L0; v0/ be banded
unlink diagrams for † and †0, respectively. Then † and †0 are isotopic if and only if
.K; L; v/ can be transformed into .K; L0; v0/ by a finite sequence of band moves.
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The second method we consider to represent an embedded surface † is by using a bridge
trisection of †, which allows one to present † in terms of intersections with a given
trisection of the ambient manifold X4 . Bridge trisections for surfaces in S4 were in-
troduced by Meier and Zupan in [21], where they provide a stabilization/destabilization
move which they prove is sufficient to relate any two bridge trisections of isotopic
surfaces. In [22] the same authors generalize this notion of bridge trisections to surfaces
in an arbitrary 4–manifold X4 , and prove that every surface †�X4 can be put into
bridge trisected position with respect to any given trisection on X4 . They similarly
define a stabilization/destabilization move and conjecture that these moves are sufficient
to relate any two bridge trisections of isotopic surfaces in X4 . Using Theorem 4.3,
we affirmatively answer this conjecture. We give the relevant definitions and some
exposition on trisections and bridge trisections in Section 5.

Theorem 5.8 Let S and S 0 be surfaces in bridge position with respect to a trisection
T of a closed 4–manifold X4 . Suppose that S is isotopic to S 0. Then S can be taken
to S 0 by a sequence of perturbations and deperturbations, followed by a T –regular
isotopy.

As a separate application of Theorem 4.3, we focus on the case of unit surfaces in CP 2 .
By Melvin [23], the study of unit surfaces is relevant to understanding the Gluck twist
surgery of [7]. Melvin showed that the Gluck twist on a sphere S � S4 yields S4

again if and only if there is a diffeomorphism from the pair .CP 2; S #CP 1/ to the pair
.CP 2;CP 1/. See Section 6, where we give the relevant definitions and exposition, for
more detail.

Theorem 6.25 Let F D S # CP 1 � CP 2 be a genus-g unit surface knot, where
S � S4 is an orientable surface that is 0–concordant to a band-sum of twist-spun knots
and unknotted surfaces. Then F is isotopic to CP 1 #gT , where CP 1 #gT indicates
the standard CP 1 trivially stabilized g times.

Outline In Section 2, we define horizontal–vertical position and some nice families of
isotopies for surfaces in 4–manifolds. In Section 3, we define banded unlink diagrams.
In Section 4, we show that any surface in a 4–manifold is described by a banded unlink
diagram which is well defined up to a certain set of moves. In Section 5, we show that
a bridge trisection of a surface in a trisected 4–manifold is unique up to perturbation.
In Section 6, we consider many examples of surfaces in the generating homology class
of CP 2 , and show explicitly that these examples are isotopic to CP 1 (perhaps with
trivial tubes attached if the original surface is of positive genus).
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2 Level sets and isotopies

2.1 Banded links

Our primary technique for studying embedded surfaces in a 4–manifold will be to
arrange them so that their intersections with the level sets of a given Morse function
are composed of disjoint unions of embedded disks and banded links.

More precisely, let M 3 be an oriented 3–manifold, and let L�M be a link. A band b
for the link L is the image of an embedding �W I � I ,!M, where I D Œ�1; 1�, and
b \LD �.f�1; 1g � I /. We call �.I � f0g/ the core of the band b . Let Lb be the
link defined by

Lb D .L n�.f�1; 1g � I //[�.I � f�1; 1g/:

Then we say that Lb is the result of performing band surgery to L along b . If v is a
finite family of pairwise disjoint bands for L, then we will let Lv denote the link we
obtain by performing band surgery along each of the bands in v . We say that Lv is
the result of resolving the bands in v . The union of a link L and a family of disjoint
bands for L is called a banded link. If L is an unlink, we call the union of L and a
family of disjoint bands a banded unlink.

2.2 Horizontal and vertical sets

Now let X4 denote a closed, oriented 4–manifold equipped with a self-indexing Morse
function hW X4! Œ0; 4�, where h has exactly one index-0 critical point and one index-4
critical point. We will write K to denote the Kirby diagram of X4 induced by h (we
explain this more precisely in Section 3.2).
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In order to study †�X4 via the level sets of h, it will be convenient to have a way
of identifying subsets of distinct level sets h�1.t1/ and h�1.t2/. Suppose then that
t1� t2 , and let x1; : : : ; xp denote the critical points of h which satisfy t1� h.xj /� t2 .
Let Xt1;t2 denote the complement in X4 of the ascending and descending manifolds
of the critical points x1; : : : ; xp . Then the gradient flow of h defines a diffeomorphism
�t1;t2 W h

�1.t1/\Xt1;t2 ! h�1.t2/\Xt1;t2 .

Definition 2.1 We call �t1;t2 the projection of h�1.t1/ to h�1.t2/. Similarly, we call
��1t1;t2 the projection of h�1.t2/ to h�1.t1/, which we likewise denote by �t2;t1 .

Note that despite calling �t1;t2 the projection from h�1.t1/ to h�1.t2/, it is only
defined on the complement of the ascending and descending manifolds of the critical
points that sit between t1 and t2 . These projection maps allow us to define local
product structures away from the ascending and descending manifolds of the critical
points of h.

Definition 2.2 Let W be a subset of X4 , and let J either be the closed interval
Œt1; t2� or the open interval .t1; t2/. Then we say that W is vertical on the interval J
if W �Xt1;t2 and if �t;t 0.h�1.t/\W /D h�1.t 0/\W for all t; t 0 2 J.

In Sections 3 and 4, we will construct isotopies of surfaces in X4 . In this paper,
every isotopy of a surface will always extend to ambient isotopy. We generally write
“f W F �I !X4�I is an isotopy” with the understanding that there is in fact a smooth
family of diffeomorphisms gsW X4!X4 with g0D id such that gsıprX4ıf .F �0/D

f .F � s/ for s 2 Œ0; 1�. Here we use prX W X
4 � I !X4 to denote projection to the

first factor.

We consider a few special types of isotopy which behave well with respect to h.

Definition 2.3 Let †�X4 be a smoothly embedded surface. Let f W F �I!X4�I

be a smooth isotopy of †, so that †D f .F �f0g/. If the image of prX ıf is disjoint
from the critical points of h, then we say that f is h–disjoint.

We say that f is horizontal with respect to h if h
�
prX .f .x; s//

�
is independent of s

for all x 2 F . We say that f is vertical with respect to h if for each x 2 F the image
of fxg � I under prX ı f is contained in a single orbit of the flow of rh. Finally, we
say that f is h–regular if for each s 2 I, hjprX .F�fsg/ is Morse. (See Figure 1 for
schematics of horizontal and vertical isotopies.)
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horizontal isotopy vertical isotopy

Figure 1: The horizontal planes represent h�1.t/ for various values of t .
Left: a horizontal isotopy of † preserves hj† pointwise. Right: a vertical
isotopy of † moves each x 2† within a single orbit flow of rh .

Intuitively, one should think of h as a height function whose level sets are horizontal. A
horizontal isotopy of † moves †\h�1.t/ within h�1.t/, preserving hj† . A vertical
isotopy of † changes hj† , but preserves the projection of † onto each level set h�1.t/.
We will usually just say that f is horizontal or vertical, omitting “with respect to h”.

Note that a surface isotopy is generically h–disjoint. We will often explicitly require
isotopies to be h–disjoint because we will be interested in how isotopy affects the
projection of surfaces to h�1

�
3
2

�
, which can be complicated when the isotopy takes

the surface through a critical point. The definitions of horizontal and vertical isotopy
naturally motivate a “nice” position of a surface embedded in X4 if we are willing to
allow the surface embedding to have corners.

Definition 2.4 Let †�X4 be a PL embedded surface. We say that † is in horizontal–
vertical position with respect to h if there exists a set T D ft1; : : : ; tng disjoint from
f0; 1; 2; 3; 4g, with t1 < t2 < � � �< tn , such that the following are true:

� For each 1� i � n� 1 the surface † is vertical on the interval .ti ; tiC1/.

� For each 1� j �n the intersection †\h�1.tj / consists of the disjoint union of a
(possibly empty) banded link and a (possibly empty) union of disjoint embedded
disks.

In other words, † is vertical away from a finite number of nonsingular level sets h�1.ti /,
while it intersects the h�1.ti / in a collection of horizontal disks and a banded link.
When h is clear, we may simply say that † is horizontal–vertical.

Note that from the definition of vertical, a horizontal–vertical surface must be disjoint
from critical points of h. Note furthermore that, by an arbitrarily small perturbation in
a neighborhood of the level sets h�1.t1/; : : : ; h�1.tn/, a horizontal–vertical surface †
may be isotoped to a surface †0 with hj†0 Morse. This perturbation can be chosen so
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that each horizontal band of † gives rise to a nondegenerate saddle point in †0, and
each horizontal disk in † gives rise to a nondegenerate maximum or minimum point
in †0. We will thus work largely with nonsmooth surfaces that are horizontal–vertical
when constructing isotopies, with the understanding that they may be isotoped into
smooth surfaces in Morse position as described above.

The following classical theorem states that arbitrary surfaces can be put into horizontal–
vertical position. This is critical to the study of surfaces embedded in 4–manifolds.
A proof for orientable surfaces is essentially contained in Section 2 of [15]; the
nonorientable case is covered in [11].

Theorem 2.5 [11; 15] Let †�X4 be a smoothly embedded surface such that hj†
is Morse and † is disjoint from the critical points of h. Then there is an h–disjoint
and h–regular isotopy f W F � I ! X4 � I with f .F � f0g/ D † such that f is a
concatenation of horizontal and vertical isotopies, f .F � f1g/ is horizontal–vertical
and hjf .F�fsg/ is Morse for all s 2 Œ0; 1/.

Both [11] and [15] consider only surfaces embedded in S4 with the standard height
function, but by applying the argument locally the theorem can be extended to surfaces
in an arbitrary 4–manifold X4 with self-indexing Morse function h. We will not cite
this theorem directly, but will implicitly prove this result in Lemma 4.9.

3 Banded unlink diagrams for surfaces in 4–manifolds

3.1 Banded unlink position

For ease of notation we let Mt D h
�1.t/ denote the (possibly singular) 3–dimensional

level set at height t for each t 2 R. By the projection maps �t1;t2 we may identify
subsets of distinct level sets Mt , provided they avoid the appropriate ascending and
descending manifolds. We will often make these identifications implicitly, so for
example, we may think of a link L as living in both Mt1 and Mt2 when there is no
risk of confusion.

Definition 3.1 We say that an embedded surface †�X4 is in banded unlink position
if

� h.†/D
�
1
2
; 5
2

�
,
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� † is vertical on the intervals
�
1
2
; 3
2

�
and

�
3
2
; 5
2

�
,

� †\M3=2 is a banded unlink disjoint from the descending manifolds of index-2
critical points of h, and

� †\M1=2 and †\M5=2 are finite collections of disjoint embedded disks.

Letting t denote the height coordinate on X4 induced by h, we can describe a surface
in banded unlink position by a movie in t as follows. Starting at t D 0 and increasing,
we first encounter a collection of minimal disks of † at height t D 1

2
. For t 2

�
1
2
; 3
2

�
,

the intersection †\Mt is an unlink in Mt , which we denote by L. The next feature
we encounter are the index-1 critical points of X4 at height t D 1, which completes
the 1–skeleton of X4 . As we continue upwards, at height t D 3

2
a family v of bands

appear, attached to the link L. Passing t D 3
2

, the resulting level set of † becomes Lv ,
which is obtained from L by resolving the bands v . We then pass the index-2 critical
points of X at height t D 2, before finally capping off the components of Lv with
maximal disks at height t D 5

2
.

Note that the link L is necessarily an unlink in Mt for t 2
�
1
2
; 3
2

�
(ie it bounds a

collection of disjoint embedded disks), and Lv will be an unlink in Mt for t 2
�
2; 5
2

�
.

3.2 Banded unlink diagrams

Surfaces in banded unlink position can be represented in terms of the associated Kirby
diagram of X4 via banded unlink diagrams. Suppose that the handle decomposition
induced by h on X4 is represented by the Kirby diagram K � S3 . More precisely,
K is a link L1 t L2 � S3 , where L1 is an unlink, and each component of L2 is
labeled with an integer framing. The components of L1 are each decorated with a
dot to distinguish them from the components of L2 , and each indicates a 1–handle
attached to the 0–handle B4 along @B4 D S3 as usual (the meridians of L1 are cores
of the 1–handles in the handle decomposition of X4 ). The labeled components of L2
each represent the framed attaching circle of a 2–handle attached to X1 .

Given such a Kirby diagram K�S3 for X4 , the sphere S3 can be identified with M1=2 ,
while the 3–manifold obtained by performing 0–surgery to S3 along L1 can be
identified with the level set M3=2 . After performing this surgery, L2 can again be
thought of as a framed link in M3=2 , and we identify the result of performing Dehn
surgery to M3=2 along the components of L2 (where the surgery coefficient of each
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1

Figure 2: A banded unlink in Kirby diagram K describing a torus † smoothly
embedded in CP 2 # .S1 �S3/ . The 2–component unlink in E.K/ bounds
two minima of † . Resolving the unlink along the four bands yields the
boundary of two maxima of † . Then �.†/D 2� 4C 2D 0 . One can check
also that † is orientable.

component is specified by its framing) with M5=2 . Let E.K/ denote the complement
S3 n .�.L1/[ �.L2// of a small tubular neighborhood of KD L1 tL2 in S3 . Then,
given a link L � E.K/, we may think of L as describing links in M1=2 , M3=2

and M5=2 in the obvious way.

A banded unlink diagram in the Kirby diagram K is a triple .K; L; v/, where L�E.K/
is a link and v is a finite family of disjoint bands for L in E.K/, such that L bounds
a family of pairwise disjoint embedded disks in M1=2 , and Lv bounds a family of
pairwise disjoint embedded disks in M5=2 . See Figure 2 for an example of a banded
unlink diagram.

A banded unlink diagram describes an embedded surface † in banded unlink position as
follows. We first note that we can identify E.K/ with a subset of M3=2 in a natural way.
When fixing this identification, note that the intersection of M3=2 with the descending
manifolds (cores) of the 2–handles of X4 can be thought of as the attaching circles of
the 2–handles. Hence, as our banded link L[ v sits in the complement of a tubular
neighborhood of the attaching circles L2 � S3 , it can be identified with a subset
of M3=2 , which we denote by L0 [ v0, that misses the descending manifolds of the
2–handles of X4 .

Now, as L0 is an unlink, we can apply a horizontal isotopy in M3=2 if necessary so that
L0 also avoids the ascending manifolds of the 1–handles of X4 . We can thus extend
L0 vertically downwards from M3=2 to M1=2 , where it can be capped off by a family
of disjoint embedded disks in M1=2 . Similarly, we can extend the surgered link L0v0
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vertically upwards from M3=2 to M5=2 , where it can be capped off. As these families
of disks are unique up to isotopy rel boundary, the surface we obtain in this way from
the banded unlink diagram .K; L; v/ is well defined up to isotopy. We denote this
surface by †.K; L; v/. We say that .K; L; v/ describes †.K; L; v/, or that .K; L; v/
is a banded unlink diagram for †.K; L; v/.

3.3 Band moves

We now proceed to describe a collection of moves which will allow us in Section 4
to define banded unlink diagrams of arbitrary surfaces in X4 , and relate the banded
unlink diagrams of any isotopic surfaces. These moves are described in Figures 3 and 4.
They consist of cup and cap moves (Figure 3, top), band slides (Figure 3, middle),
band swims (Figure 3, bottom), 2–handle-band slides (Figure 4, top), dotted circle
slides (Figure 4, middle two rows) and 2–handle-band swims (Figure 4, bottom). These
operations, together with isotopy in E.K/, form a collection of moves which we refer
to as band moves. (Note that the dotted circle slide may actually move L rather than
a band, but we still refer to this as a band move for convenience.) Band moves may
transform a banded unlink diagram .K; L; v/ into a banded unlink diagram .K; L0; v0/,
though it is not difficult to verify that the surfaces †.K; L; v/ and †.K; L0; v0/ are
isotopic.

cup cap

slide

swim

Figure 3: The cup/cap, slide and swim band moves. These band moves do not
involve the 2–handle attaching circles of K . The cup/cap moves correspond
to 0– and 1– or 2– and 3– stabilization/destabilization of a surface † with
respect to h . The slide move passes an end of one band along the length of a
distinct band. The swim move passes a band lengthwise through the interior
of a distinct band.
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band slide

2–
handle

att
ach
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cle

2–handle-
band swim

knot
knot

...

dotte
d cir

cle

...

...

...

...

dotted circle
slide

...

dotte
d cir

cle
dotted circle

slide
L

v

v

v

Figure 4: The 2–handle-band slide and 2–handle-band swim moves. These band moves
involve the 2–handles attaching circles of K . Top: the 2–handle-band slide move slides
a band over a 2–handle, following the usual rules of Kirby calculus. This schematic is
meant to indicate that the 2–handle attaching circle may be knotted and link arbitrarily
with other circles in K or unlink or band components (including the band that slides).
Second row: a dotted circle slide may pass a band over a dotted circle, following the
usual rules of Kirby calculus. Third row: a dotted circle slide may pass the unlink L over
a dotted circle, following the usual rules of Kirby calculus. Bottom: the 2–handle-band
swim move passes a 2–handle attaching circle lengthwise through the interior of a band.
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Notation We refer to the slide, swim, 2–handle-band slide, dotted circle slide, 2–
handle-band swim moves and isotopy in E.K/ as Morse-preserving band moves. The
cup and cap moves are not Morse-preserving.

Lemma 3.2 Let † � X4 be a surface in banded unlink position. There is a pro-
cedure to obtain a banded unlink diagram .K; L†; v†/ such that L† and v† are
completely determined by the embedding † ,! X4 . Moreover, † is isotopic to
†0 WD†.K; L†; v†/.

Proof Let L† D † \M3=2�� and let v† be the bands of .†\M3=2/ nL† . By
definition of banded unlink position, L† bounds a system of disks in M1=2 (eg
†\M1=2 ) and L†v†

bounds a system of disks in M5=2 (eg †\M5=2 ). Since † is
in banded unlink position, L†[ v† is contained in E.K/. Therefore, .K; L†; v†/ is
a banded unlink diagram.

Let †0 WD†.K; L†; v†/. Then †0 is also in banded unlink position, with †0\
�
1
2
; 5
2

�
D

† \
�
1
2
; 5
2

�
. Both † \ h�1

��
0; 1
2

��
and †0 \ h�1

��
0; 1
2

��
are boundary-parallel

disk systems with equal boundary in h�1
��
0; 1
2

��
Š B4 , so are isotopic rel bound-

ary. Similarly, †\ h�1
��
5
2
; 4
��

and †0 \ h�1
��
5
2
; 4
��

are isotopic rel boundary in
h�1

��
5
2
; 4
��
Š \.S1 �B3/. Therefore, † is isotopic to †0.

Remark 3.3 In Lemma 3.2, we showed that if † and †0 are surfaces in banded
unlink position in X4 , then the banded unlink diagrams D WD .K; L†; v†/ and D0 WD
.K; L†0 ; v†0/ are well defined. However, even if † and †0 are isotopic, we have not
yet shown that D and D0 are related in any way.

4 A calculus of moves on banded unlink diagrams

4.1 Overview

In what follows, let K0 denote the standard (empty) Kirby diagram induced by the
standard height function on S4 . (The handle decomposition described by K0 has one
0–handle, one 4–handle and no other handles.) When K D K0 , Swenton [29] and
Kearton and Kurlin [16] show that the cup, cap, band slide and band swim moves relate
any two banded unlink diagrams of isotopic surfaces.
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Theorem 4.1 [29; 16] Let † and †0 � S4 be isotopic surfaces described by banded
unlink diagrams D WD .K0; L; v/ and D0 WD .K0; L0; v0/, respectively. Then D0 can be
obtained from D by a finite sequence of cap/cup, band slides, band swims and isotopies
in S3 .

Note that we have not defined what it means for an arbitrary surface in S4 to be
described by a banded unlink diagram (even with h the standard height function). Part
of the content of Theorem 4.1 is that such a diagram is well defined.

Definition 4.2 Let † be a surface in S4 . Let †0 be a surface in banded unlink
position (with respect to the standard height function) which is isotopic to †. We say
that .K0; L†0 ; v†0/ is a banded unlink diagram for †. This diagram is well defined up
to cap/cup, band slides, band swims and isotopy in S3 [29; 16].

By including 2–handle-band swims, 2–handle-band slides and dotted circle slides
along with the moves in Theorem 4.1, we can generalize Theorem 4.1 to surfaces in
arbitrary closed 4–manifolds. We state the theorem now, even though we have not
defined what it means for an arbitrary surface in X4 to be described by a banded unlink
diagram.

Theorem 4.3 Let † and †0 be surfaces X4 , with banded unlink diagrams D WD
.K; L; v/ and D0 WD .K; L0; v0/, respectively. Then † and †0 are isotopic if and only
if D can be transformed into D0 by a finite sequence of band moves.

Note that when X4 D S4 and K D K0 , Theorem 4.3 reduces to the statement of
Theorem 4.1. Loosely, to prove Theorem 4.3, we will analyze how banded unlink
diagrams for † change under isotopy of †. Here is a brief outline of our strategy for
proving Theorem 4.3:

(1) We show that surfaces in banded unlink position admit banded unlink diagrams
well defined up to band moves (Section 3.3).

(2) We show that surfaces in horizontal–vertical position (Definition 2.4) admit
banded unlink diagrams well defined up to band moves (Section 4.2).

(3) We show that certain isotopies of a horizontal–vertical surface preserve the
associated banded unlink diagram up to band moves (Section 4.2).
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(4) We show that surfaces in the more general generic position (Definition 4.8) admit
banded unlink diagrams well defined up to band moves (Section 4.4).

(5) We show that certain isotopies between generic surfaces preserve the associated
banded unlink diagrams up to band moves (Section 4.5).

(6) We show that any isotopy of surfaces can be perturbed to an isotopy as in step (5).
We define the banded unlink diagram of a surface † to be the banded unlink
diagram of any generic surface isotopic to † (Section 4.5).

4.2 Banded unlink diagrams for horizontal–vertical surfaces

We now extend Lemma 3.2 to horizontal–vertical surfaces, rather than only surfaces in
banded unlink position.

Proposition 4.4 Let † � X4 be a surface in horizontal–vertical position such that
all minima of hj† are below all saddles of hj† , which are below all maxima of hj† .
Then we may obtain a banded unlink diagram DD .K; L†; v†/ such that L† and v†
are determined up to Morse-preserving band moves by the embedding of † into X4 .
Moreover, † is isotopic to †.K; L†; v†/.

Proof We will isotope † into banded unlink position and apply Lemma 3.2. If
necessary, apply a small horizontal isotopy to the horizontal parts of †\h�1.3� �; 4�
to avoid intersections with the ascending manifolds of index-3 critical points of h.
Then isotope †\ h�1

�
5
2
� �; 4

�
vertically into h�1

�
5
2
� �; 5

2

�
.

Next, apply a small horizontal isotopy to the horizontal parts of †\ h�1
�
0; 3
2
C �

�
to

avoid intersections with the descending manifolds of index-1 critical points of h. Then
isotope †\ h�1

�
0; 3
2
C �

�
vertically into h�1

�
3
2
; 3
2
C �

�
.

Now isotope horizontal neighborhoods of the minima and maxima of hj† horizontally
to avoid the ascending and descending manifolds of index-2 critical points of h.
Isotope the minima vertically to h�1

�
1
2

�
and the maxima vertically to h�1

�
5
2

�
(apply

further horizontal isotopies to the minima and maxima as necessary to ensure no
self-intersections are introduced to †).

Let b be the horizontal neighborhood of an index-1 critical point of hj† (so b is a
band). If h.b/ > 2 and b intersects the ascending manifold of some index-2 critical
point of h, then isotope b slightly horizontally to either side of the ascending manifold.
(These two choices eventually give rise to banded unlink diagrams which differ by a
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2–handle-band slide; see Figure 5, top left.) Do this for each such intersection, and
then isotope b vertically to h�1

�
3
2
; 2
�

(vertically isotope other bands downward in
h�1

�
3
2
; 2
�

as necessary to avoid self-intersections).

Repeat for every other index-1 critical point of hj† . Take the bands to lie in distinct
heights, by vertical isotopy. Say the bands are b1; : : : ; bn , with 3

2
< h.b1/ < � � � <

h.bn/ < 2. Set L† WD†\M3=2 , vi WD �h.bi /;3=2 and v† D
S
i vi .

Note .K; L†; v†/ is not yet a banded unlink diagram, due to the following disallowed
situations that may occur when projecting the bands bi to M3=2 :

� It might be that an end of some vi is attached to another band vj . This implies
j < i . If so, slide the end of vi off of vj and onto either L† or vk , with k < j.
Repeat until both ends of vi are on L† . There are two choices to make at each
step (that is, there is a choice of which direction to slide). The two obtainable
diagrams differ by a sequence of band slides. (See the left of the second row of
Figure 5 for the simplest case when vj has both ends on L† .)

� It might be that a band vi intersects the interior of another band vj . This implies
j < i . If so, swim vi out the length of vj . If vj intersects the interior of
another band vk (necessarily k < j ), this introduces new intersections between
vi and vk . Repeat on each intersection of vi with another band until vi does
not intersect any other bands. There are two choices at each step (that is, there
is a choice of which direction to swim). The two obtainable diagrams differ by
a sequence of band swims. (See the left of the third row of Figure 5 for the
simplest case when vj does not intersect the interior of any other band.)

� It might be that a segment of a band vi passes through the descending manifold
of some index-2–critical point of h. In K , this means that vi intersects a 2–
handle attaching circle C. Swim C through v to remove the intersection. There
are two choices of directions in which to swim. The two obtainable diagrams
differ by a 2–handle-band swim. (See the right of the top row of Figure 5 for
the simplest case when v intersects exactly one attaching circle, exactly once.)

� It might be that L† or a band vi still do not lie in E.K/ because they intersect
the ascending manifold of an index-1 critical point. Then push L† or vi
horizontally off the ascending manifold. For each such intersection, there are
two choices of which direction to push. The two obtainable diagrams differ by a
dotted circle slide. (See the right of the second and third rows of Figure 5.)
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Figure 5: Left, top row: If a band vi intersects the ascending manifold of an
index-2 critical point of h , we must choose how to slide the band off of the
ascending manifold before projecting to h�1

�
3
2

�
. In K , these two choices yield

diagrams that differ by a 2–handle-band slide of vi over the corresponding 2–
handle attaching circle. Left, second row: If the end of band vi lies on vj , then
we must choose which way to slide vi off of vj . (Here we draw only the simple
case that both ends of vj lie on L† . We do not care about interior intersections
of bands or intersections with 2–handle attaching circles.) Left, third row:
If a band vi intersects the interior of band vj , then we must choose which
way to swim vi through and out of vj . (Here we draw only the simple case
that vj does not intersect any other bands. We do not care about intersections
with 2–handle attaching circles.) Right, top row: If a band vi intersects the
descending manifold of an index-2 critical point, we must choose how to swim
the corresponding attaching circle in K out of the band vi . (Here, we draw only
the simple case that only one 2–handle attaching circle intersects vi , in one
point.) Right, second and third rows: If a band vi or L (respectively) intersect
the ascending manifold of an index-1 critical point, then we push horizontally
off. The resulting diagrams differ by a dotted circle slide.

Changing any choices made during this operation changes the diagram by Morse-
preserving band moves. See Figure 5 for a summarizing schematic. The point of
ordering the bands and proceeding in order from lowest to highest is to ensure that this
procedure terminates, and eventually after a finite number of choices all bands will be
simultaneously projected (disjointly) to E.K/.

Each move on the projections vi can be induced by a horizontal isotopy supported in a
neighborhood of bi . After this procedure and a vertical isotopy of the bands to M3=2 ,
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we find an isotopy from † to a surface in banded unlink position, whose banded unlink
diagram we denote by D D .K; L†; v†/. Via the isotopy constructed above we see
that † is indeed isotopic †.K; L†; v†/.

We must check that the choices of h–regular and h–disjoint horizontal and vertical
isotopies used to position † (that is, the choice of †0 ) do not affect the resulting
diagram up to Morse-preserving band moves (ie that L† and v† are well defined up
to Morse-preserving band moves). It is sufficient to prove the following proposition:

Proposition 4.5 Let S and S 0 be horizontal–vertical surfaces in X4 , with all minima
below all bands , which are in turn below all maxima. Assume all bands of S and S 0

can be projected to M3=2 (ie assume that the bands of S and S 0 do not intersect the
ascending manifold of any index-3 critical point of h or the descending manifold of any
index-1 critical point of h). Suppose there is an h–disjoint and h–regular horizontal
or vertical isotopy f taking S to S 0. Let DS D .K; LS ; vS / be a banded unlink
diagram obtained by setting LS D S \Mt0C� for t0 the height of the highest minima
of S, and vS the bands obtained by projecting the bands of S to M3=2 (viewed as
containing a copy of LS , projected vertically) and (as in Proposition 4.4) choosing
slides , swims , 2–handle-band slides/swims and dotted circle slides as necessary to make
the projected bands disjointly lie in E.K/. Similarly , choose a banded unlink diagram
DS 0 D .K; LS 0 ; vS 0/ using S 0. Then DS and DS 0 are related by Morse-preserving
band moves.

Proof We have two cases:

Case 1 (the isotopy is horizontal) Since the isotopy is horizontal, LS is isotopic to
LS 0 in h�1

�
3
2

�
. Therefore, LS is isotopic to LS 0 in E.S/ up to dotted circle slides.

Let vi be a band in S. The isotopy f takes the banded link zL[v1[� � �[vkDS\Mh.vi /

to the banded link zL0[v01[� � �[v
0
k
DS 0\Mh.vi / , up to relabeling of bands (for some

isotopic links zL and zL0 ). Since zL and zL0 are isotopic, there is a natural identification
between zL and zL0. Say that vi goes to band v0i , with their endpoints on zL identified.

Suppose h.vi / > 2. As per the above argument in Proposition 4.4, if the isotopy
passes vi through the ascending manifold of an index-2 critical point of h, then this
effects a 2–handle-band slide in DS .

For any value of h.vi /, if f takes the ends of �h.vi /;3=2.vi / over any other projection
�h.vj /;3=2.vj / with h.vj / < h.vi /, then as in Proposition 4.4 this effects a band
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slide in D. If f takes the interior of �h.vi /;3=2.vi / through any other projection
�h.vj /;3=2.vj / with h.vj / < h.vi /, then as in Proposition 4.4 this effects a band swim
in DS . If f takes vi through the descending manifold of an index-2 critical point
of h, then as in Proposition 4.4 this effects a 2–handle-band swim in DS .

Finally, if f takes �h.vi /;3=2.vi / through the ascending manifold of an index-1 critical
point, then as in Proposition 4.4 this effects a dotted circle slide in D.

If none of the above happen to vi during f , then the replacement vi 7! v0i just isotopes
the projection of vi in h�1

�
3
2

�
, ie changes the projection of vi by isotopy in E.K/

and dotted circle slides.

Case 2 (the isotopy is vertical) By assumption, the vertical isotopy does not introduce
new critical points of hjS and preserves the projections of S pointwise to each Mt .
Then LS 0 differs by LS by isotopy in h�1

�
3
2

�
, ie isotopy in E.K/ and dotted circle

slides. Moreover, the vertical isotopy does not affect the projections of the bands of S
(after identifying LS and LS 0 ), so these projections agree with those of S 0. Then DS
and DS 0 agree up to Morse-preserving band moves which arise from varying choices of
how to separate the projections of bands to M3=2 (as seen above in Proposition 4.4).

Thus, D is well defined from † up to Morse-preserving band moves. Moreover, † is
isotopic to †0, so, by Lemma 3.2, † is isotopic to †.K; L†; v†/. This completes the
proof of Proposition 4.4.

Given † as in Proposition 4.4, we let .K; L†; v†/ denote the banded unlink diagram
resulting from the proof of Proposition 4.4.

We now show that we need not restrict the ordering of critical points of a horizontal–
vertical surface in order to obtain a banded unlink diagram.

Lemma 4.6 Let † be a surface in horizontal–vertical position. Then we may obtain a
banded unlink diagram .K; L†; v†/ such that L† and v† are determined up to Morse-
preserving band moves by the embedding of † into X4 . Moreover, † is isotopic to
†.K; L†; v†/.

Proof Choose an ordering x1; : : : ; xn of the critical points of hj† , with all index-0
critical points coming before all index-1 critical points, which come before all index-2
critical points. Perform h–regular and h–disjoint horizontal and vertical isotopy to †
to reorder the horizontal regions according to this ordering, to obtain surface †0 (the
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vertical isotopies move horizontal regions to the appropriate height; we apply horizontal
isotopy as necessary to ensure horizontal regions never intersect). Set L† D L†0 and
v† D v†0 .

Suppose y1; : : : ; yn is another ordering of the critical points of hj† with all index-0
critical points coming before all index-1 critical points, which come before all index-
2 critical points. Let †00 be the surface obtained by isotoping † to reorder the
horizontal regions of † according to this ordering. Then †00 can be transformed
into †0 by a sequence of h–regular and h–disjoint horizontal and vertical isotopies
(and the surface is in horizontal–vertical position after each isotopy, with minima
below bands below maxima — essentially, we reorder minima, keeping them below all
bands; then we reorder bands, keeping them between the minima and maxima; then we
reorder the maxima, keeping them above the bands). By Proposition 4.5, the diagrams
.K; L†0 ; v†0/ and .K; L†00 ; v†00/ agree up to Morse-preserving band moves. Therefore,
.K; L†; v†/ does not depend on the choice of †0. By Proposition 4.4, .K; L†; v†/ is
well defined up to Morse-preserving band moves. Moreover, †.K; L†; v†/ is isotopic
to †0, so is isotopic to †.

Given † as in Lemma 4.6, we let .K; L†; v†/ denote the banded unlink diagram
resulting from the proof of Lemma 4.6.

Remark 4.7 We can immediately extend Proposition 4.5 to say that if † and †0 are
horizontal–vertical surfaces which are isotopic through an h–regular and h–disjoint
horizontal or vertical isotopy, then .K; L†; v†/ is related to .K; L†0 ; v†0/ by Morse-
preserving band moves.

4.3 Interlude: surface singularities

The following definitions generalize the classes of surface singularities identified and
studied in [16].

Definition 4.8 [16, Definition 2.5] For a fixed surface F , let CS be the space of all
smoothly embedded surfaces †�X4 with †Š F . CS inherits the induced topology
from the Whitney topology on the space of smooth maps F !X. From now on, when
we write “CS”, the topology of the embedded surface is implicitly understood to be
fixed. We say that † 2 CS is

� generic if hj† is Morse and all critical points of hj† have distinct height values
under h;
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� an AC1 A
C
1 –singularity if hj† fails to be generic because of two nondegenerate

extrema of h that have the same h value;

� an AC1 A
�
1 –singularity if hj† fails to be generic because a nondegenerate saddle

and extremum of h that have the same h value;

� an A�1A
�
1 –singularity if hj† fails to be generic because of two nondegenerate

saddles of h that have the same h value;

� an A2–singularity if hj† fails to be generic because of a singularity of hj†W †!
R having the form h.x; y/D x2�y3 in local coordinates .x; y/ on †.

Let Sh � CS be the subspace of all surfaces which are AC1 A
C
1 –, AC1 A

�
1 –, A�1A

�
1 – or

A2–singularities. We call Sh the singular subspace of X4 with respect to h. When
KDK0 , then Sh agrees with the singular subspace defined by Kearton and Kurlin [16].

4.4 Banded unlink diagrams for generic surfaces

The following lemma is analogous to [16, Proposition 2.6(i)].

Lemma 4.9 Let †�X4 be a generic surface which is disjoint from critical points of h.
Then we may obtain a banded unlink diagram .K; L†; v†/ determined by † ,! X4

up to Morse-preserving band moves. Moreover, † is isotopic to †.K; L†; v†/.

Proof We will isotope † into horizontal–vertical position and apply Lemma 4.6. See
Figure 6 for a schematic of the isotopy.

Flatten † in a small neighborhood of each local extremum. Say the smallest value
of t for which Mt \† is nonempty is t0 ; so †\Mt0C� is an unlink for very small

t
...

Figure 6: To isotope a generic surface † � X4 into horizontal–vertical
position with respect to h , we first flatten a neighborhood of each extremum
of hj† . Then we isotope † to be vertical below each critical point of hj† ,
starting from the lowest critical point and working upward. We give more
detail in the proof of Lemma 4.9.
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� > 0. Take the values of critical points of hj† to be t0 < t1 < � � � < tn . Perturb †
vertically if necessary so that ft0; : : : ; tng\ f0; 1; 2; 3; 4g D∅ (for small perturbations,
the choice of perturbation does not affect the construction of Lemma 4.6). Since † is
generic, there is exactly one critical point of hj† in each Mti .

Fixing †\Mt0 , horizontally isotope †\h�1.t0; 4� so that † is vertical in h�1Œ0; t1��/.

Then the projection of †\h�1Œt1��; t1C�� to Mt1 is a bounded (perhaps disconnected)
surface S. Specifically, if x is the critical point of hj† in Mt1 , then this S is8<:

the disjoint union of an annulus and a disk if x is a minimum;
a planar surface with three boundary components if x is a saddle;
a disk if x is a maximum.

If x is an extremum, perform a horizontal isotopy of † in h�1Œt1� �; t1C �� so that
†\h�1.t0; t1/ is vertical. The cross-section †\h�1.t1/ includes one horizontal disk.

Say that x is a saddle. Then, up to isotopy in Mt1 , S can be uniquely contracted to
a 1–complex †\Mt1�� [fedge Eg. Vertically isotope † in h�1Œt1� �; t1C �� so
that † is vertical in h�1.t0; t1/ and †\Mt1 D .†\Mt1��/[ .band along E/. The
framing of the band along the arc E agrees with the surface framing S induces on E.

Now, for i D 1; : : : ; n�1 (in order), repeat this procedure. That is, horizontally isotope
†\ h�1.ti ; 4� so that † is vertical in h�1.ti ; tiC1 � �/. If the critical point of hj†
in MtiC1

is an extremum, then horizontally isotope † near MtiC1
so that † is vertical

in h�1.ti ; tiC1/ and †\MtiC1
is a disjoint union of a (possibly empty) link and a disk.

If the critical point of hj† in MtiC1
is a saddle, then again (up to isotopy in MtiC1

)
there is a unique band b that can be attached to †\MtiC1�� so that resolving b yields
†\MtiC1C� . Vertically isotope †\h�1ŒtiC1� �; tiC1C �� so that † is vertical in
h�1.ti ; tiC1/ and †\ h�1.tiC1/ is the banded link †\MtiC1�� [ b .

Call the resulting surface †0, so the original † is isotopic through h–regular and
h–disjoint horizontal and vertical isotopies to †0, where †0 is in horizontal–vertical
position. Suppose †00 is another horizontal–vertical surface isotopic to † through h–
disjoint and h–regular horizontal and vertical isotopies. Then †0 and †00 are isotopic
through h–disjoint and h–regular horizontal and vertical isotopies. By Proposition 4.5
and Remark 4.7, .K; L†0 ; v†0/ is related to .K; L†00 ; v†00/ by Morse-preserving band
moves.

Set .K; L†; v†/ WD .K; L†0 ; v†0/. By Lemma 4.6, † determines a banded unlink
diagram .K; L†; v†/ well defined up to Morse-preserving band moves. Moreover, †
is isotopic to †.K; L†; v†/.
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Given † as in Lemma 4.9, we let .K; L†; v†/ denote the banded unlink diagram
resulting from the proof of Lemma 4.9. We say that .K; L†; v†/ describes or is a
banded unlink diagram for †.

Remark 4.10 When † is a generic surface in banded unlink position, the definitions
of .K; L†; v†/ in Lemmas 3.2 and 4.9 agree.

4.5 Banded unlink diagrams for arbitrary surfaces

The following lemma is analogous to [16, Proposition 2.6(ii)–(iv)]:

Lemma 4.11 Let † and †0 be generic surfaces in X4 . Let D D .K; L; v/ and
D0 D .K; L0; v0/ be banded unlink diagrams associated to † and †0, respectively, as in
Lemma 4.9.

(i) If † and †0 are h–disjoint isotopic through generic surfaces, then D and D0

are related by Morse-preserving band moves.

(ii) If † and †0 are h–disjoint isotopic through generic surfaces and one A˙1 A
˙
1 –

singularity, then D and D0 are related by Morse-preserving band moves.

(iii) If † and †0 are h–disjoint isotopic through generic surfaces and one A2–
singularity, then D and D0 are related by band moves.

Proof (i) An isotopy through generic surfaces preserves the level sets †\ h�1.t/
up to isotopy and reparametrization of h. Therefore, this isotopy does not affect the
construction of Lemma 4.9. The unlink L is taken to L0 by isotopy in h�1

�
3
2

�
, so

L0 can be obtained from L by isotopy in E.K/ and dotted circle slides. Each band
projection is then isotoped in E.K/ unless the corresponding band meets an

� ascending manifold of an index-2 critical point of h, inducing a 2–handle-band
slide;

� descending manifold of an index-2 critical point of h, inducing a 2–handle-band
swim;

� ascending manifold of an index-1 critical point of h, inducing a dotted circle
slide.

(ii) Perturb the isotopy so that near the singularity, the isotopy is a vertical exchange of
heights between two critical points. Say the isotopy goes from † to †0 , then vertically
to †1 and then to †0, where the A˙1 A

˙
1 singularity appears during the isotopy from

†0 to †1 . We consider each of the following possibilities:
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� If the exchanged critical points are both extrema, then this does not affect the
construction of Lemma 4.9.

� If the exchanged critical points are an extremum and an index-1 critical point,
then this does not affect the construction of Lemma 4.9. (These critical points
correspond to a minimum or maximum disk and a band which does not intersect
the interior of that disk.)

� If the exchanged critical points are both index-1, then they correspond to bands
whose projections to M3=2 must be disjoint (since at some point during this
vertical isotopy, they live in a common Mt ). Therefore, this does not affect the
diagram resulting from Lemma 4.9.

Therefore, †0 and †1 have banded unlink diagrams equivalent up to Morse-preserving
band moves. The claim follows from part (i).

(iii) When passing an A2–singularity (away from critical points of h) a nondegenerate
saddle and extremum appear or disappear [16, Claim 4.3(iv)]. In the case when the
extremum created is a minimum, this corresponds to performing a cup move, while in
the case of a maximum the banded unlinks are related by a cap move. Away from the
A2–singularity, this is an isotopy through generic surfaces, so the claim follows from
part (i).

The following analysis appears in [16]. Although they state this lemma in S4 rather
than an arbitrary 4–manifold X4 , their techniques hold generally.

Lemma 4.12 [16, Claim 4.3] (i) The subspace Sh is codimension-1 in CS.

(ii) Every element of CS nSh is generic.

(iii) Any h–disjoint isotopy of a surface in X4 can be deformed to an h–disjoint
isotopy so that all intermediate surfaces are generic except for finitely many
singularities as in Definition 4.8.

Lemma 4.13 Let † and †0 be surfaces which are disjoint from the critical points
of h. Let f be an isotopy with f .F � I /D † and f .F � 1/D †0. Then f can be
deformed to an h–disjoint isotopy, fixing f jF�0 and f jF�1 .

Proof Let H �X4 be the critical points of h. Then F �I is a smooth codimension-2
submanifold of X4 � I, while H � I is a dimension-1 submanifold of X4 � I. We
may generically perturb F � I (and hence f ) rel boundary to be disjoint from H � I,
to obtain an h–disjoint isotopy.
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Lemma 4.14 Let † and †0 be isotopic generic surfaces embedded in X4 which
are both disjoint from critical points of h. Say that † and †0 have banded unlink
diagrams D and D0, respectively. Then D can be transformed into D0 by band moves.

Proof Let f W F � I !X4� I be an isotopy from †D f .F �0/ to †0 D f .F �1/
By Lemma 4.13, f can be taken to be h–disjoint. By Lemma 4.12, f can be perturbed
slightly so that f .F � s/ is generic except for finitely many values of s (at which
time f .F � s/ is a singularity as in Definition 4.8), and f is still h–disjoint. Fix
0 < s1 < � � � < sn < 1 such that f .F � s/ is generic if t … fsig, and f .F � si / is a
singularity as in Definition 4.8.

For i D 1; : : : ; n� 1, let †i WD f .F � .si C �//. Let †0 WD † and †n WD †0. Let
Di D .K; L†i

; v†i
/. By Lemma 4.11, Di is obtained from Di�1 by band moves. Thus,

Dn D D0 is obtained from D0 D D by band moves.

Any surface in X4 can be perturbed to be generic and away from critical points of h.
Therefore, Lemma 4.14 allows us to make the following definition, completing the
proof of Theorem 4.3:

Definition 4.15 Let † be a surface embedded in X4 . Let †0 be a generic surface
which is disjoint from critical points of h such that † is isotopic to †0. We say that
.K; L†0 ; v†0/ describes or is a banded unlink diagram for †. By Lemma 4.14, this
diagram is well defined up to band moves.

5 Uniqueness of bridge trisections

First, we recall the definition of trisection of a closed 4–manifold.

Definition 5.1 [6] Let X4 be a closed 4–manifold. A .g; k/–trisection of X4 is a
triple .X1; X2; X3/ where

� X1[X2[X3 DX
4 ,

� Xi Š \ki
S1 �B3 ,

� Xi \Xj D @Xi \ @Xj Š \gS
1 �B2

� X1\X2\X3 Š†g ,

where †g is the closed orientable surface of genus g . Here, g is an integer while
k D .k1; k2; k3/ is a triple of integers. If k1 D k2 D k3 , then the trisection is said to
be balanced.
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Briefly, a trisection is a decomposition of a 4–manifold into three elementary pieces,
analogous to a Heegaard splitting of a 3–manifold into two elementary pieces. In-
tuitively, one should think that the need for an “extra” piece of this decomposition
when the dimension increases corresponds to an “extra” type of handle. That is, given
a Heegaard splitting M 3 D H1 [H2 , one can view H1 as containing the 0– and
1–handles of M 3 while H2 contains the 2– and 3–handles of M 3 . Similar is true for
a trisection .X1; X2; X3/ of X4 ; one can view X1 as containing the 0– and 1–handles
of X4 and X3 as containing the 3– and 4–handles of X4 while X2 contains the
2–handles of X4 . See [20] for a clear description of a trisection from this point of
view.

Note that from the definition, .†g ; Xi\Xj ; Xi\Xk/ gives a Heegaard splitting of @Xi .
By Laudenbach and Poénaru [18], X4 is specified by its spine, †g [i;j .Xi \Xj /.
Therefore, we usually describe a trisection .X1; X2; X3/ by a trisection diagram
.†g ; ˛; ˇ; 
/ where each of ˛ , ˇ and 
 consist of g independent curves bounding
disks in the handlebodies X1\X2 , X2\X3 and X1\X3 , respectively.

We do not require much knowledge about trisections for this paper. For more exposition
of trisections, refer to [6].

Definition 5.2 By the standard trisection of S4 we mean the unique .0; 0/–trisection
.X1; X2; X3/. View S4 DR4[1, with coordinates .x; y; r; �/ on R4 , where .x; y/
are Cartesian planar coordinates of a plane and .r; �/ are polar planar coordinates.
Up to isotopy, Xi D

˚
� 2

�
2�
3
� i; 2�

3
� .i C 1/

�	
[1. Then Xi Š B4 , Xi \XiC1 D˚

� D 2�
3
� .i C 1/

	
[1Š B3 and X1\Xj \Xk D fr D 0g[1Š S2 .

In [21], Meier and Zupan introduce bridge trisections of surfaces in S4 . In [22], they
extend this notion to surfaces in an arbitrary closed 4–manifold.

Definition 5.3 [21; 22] Let S be a surface embedded in X4 . Let T D .X1; X2; X3/
be a trisection of a closed 4–manifold X4 . We say that S is in .c; b/–bridge position
with respect to T if

� S \Xi is a disjoint union of c boundary-parallel disks;

� S \Xi \Xj is a trivial tangle of b arcs.

Here, b is an integer and cD .ci ; cj ; ck/ is a triple of integers. Note �.S/D
P
ci �b .

See Figure 7 for an example of a surface in bridge position.
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Figure 7: An RP 2 in S4 in .1; 1; 1I 2/–bridge position with respect to the
standard trisection. Left: we draw the whole surface (projected to R3 ). The
three planes indicate the three 3–balls fXi \Xj g . Right: we show each disk
system (each have one component) individually.

Theorem 5.4 [21; 22] Let S be a surface embedded in X4 with a trisection
.X1; X2; X3/. Then, for some c and b , S can be isotoped into .c; b/–bridge position
with respect to T . We may take c1 D c2 D c3 .

Because a collection of boundary-parallel disks in \.S1�B3/ is uniquely determined by
its boundary (up to isotopy rel boundary), a surface S in bridge position is determined
up to isotopy by S \

�S
i¤j Xi \Xj

�
.

perturb

�

Figure 8: Left: †ŠRP 2 in .1; 1; 1I 2/–bridge position in S4 (with respect
to the standard trisection). We indicate a disk � along which we perturb.
Right: after perturbing, † is in .1; 2; 1I 3/–bridge position (up to permuting
X1 , X2 and X3 ).
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Definition 5.5 Let X4 be a 4–manifold with trisection T .X1; X2; X3/. We say that
an isotopy f of X4 is T –regular if ft .Xi /DXi for each i D 1; 2; 3 for all t .

There is a natural perturbation of a surface in bridge position, analogous to perturbation
of a knot in bridge position within a 3–manifold.

Definition 5.6 [21; 22] Let S � X4 be a surface in .c; b/–bridge position with
respect to T D .X1; X2; X3/. Let � � Xi n �.S/ be a properly embedded disk
such that @� consists of one arc in @�.S/, one arc in Xi \ XiC1 and one arc in
Xi \Xi�1 . Obtain S 0 by compressing S along �. Note S 0 is isotopic to S and is in
.c0; bC1/–bridge position, where c0i D ci C 1; c

0
iC1 D ciC1; c

0
i�1 D ci�1 . We say that

S 0 is obtained from S by elementary perturbation, while S is obtained from S 0 by
elementary deperturbation (see Figure 8).

Theorem 5.4 shows existence of bridge trisections. The following theorem of [21] gives
uniqueness of bridge trisections with respect to the standard trisection of S4 .

Theorem 5.7 [21] Let S and S 0 be surfaces in bridge position with respect to the
standard trisection T0 of S4 . Suppose S is isotopic to S 0. Then S can be taken to S 0

by a sequence of perturbations and deperturbations, followed by a T0–regular isotopy.

Theorem 5.7 relies on Theorem 4.1, which is specific to S4 . In [21], Meier and Zupan
give an equivalence between bridge trisections and banded unlink diagrams, and then
show how to translate moves on banded unlink diagrams into sequences of perturbations
and deperturbations. These moves do not occur in order; in particular, they do not show
that all the deperturbations can come after the perturbations.

In [22], Meier and Zupan state the following theorem as a conjecture, and comment
that they believe it would follow from a generalized version of Theorem 4.1 following
a proof similar to that of Theorem 5.7. We will prove the following theorem using
Theorem 4.3.

Theorem 5.8 Let S and S 0 be surfaces in bridge position with respect to a trisection
T of a closed 4–manifold X4 . Suppose S is isotopic to S 0. Then S can be taken to S 0

by a sequence of perturbations and deperturbations, followed by a T –regular isotopy.

Before proving Theorem 5.8, we state several necessary definitions and lemmas
from [22].
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Definition 5.9 Let T be a tangle of properly embedded arcs in a solid handlebody H.
We say that T is trivial if T is boundary-parallel, ie cobounding disjoint disks D with
arcs T 0 � @H. We call T 0 a shadow of T .

Definition 5.10 [21; 22] Let T be a trivial tangle in a handlebody H with shadow T 0.
Let v be a set of bands attached to T , with core arcs � disjoint from a core of H.
Project � to @H. We call � a shadow of v . We say that � is dual to T 0 if V�\T 0 D∅
and each component of �[T 0 is simply connected.

Notation Given a Kirby diagram K , let L1 � S3 � K be the unlink of dotted circles
(defining 1–handles) in K . Recall that M3=2D S

3 surgered along L1 with 0–framing.
Let L2 � S3 be the link of 2–handle attaching circles in K .

Recall E.K/D S3 n �.L1[L2/.

Definition 5.11 [22] Let K be a Kirby diagram. Let H [F H 0 be a Heegaard
splitting of M3=2 such that a core of H contains L2 and a core of H 0 contains L1 .

Let .K; L; v/ be a banded unlink. We say that .K; L; v/ is in bridge position with
respect to the Heegaard splitting H [F H 0 if the following are true:

� L\H and L\H 0 are each trivial tangles with no closed components.

� The bands v are all contained in H and there is a shadow � of v �H such that
the surface framing @H induces on � agrees with the framing v induces on �.

� There is a shadow L0 of L\H such that � and L0 are dual.

See Figure 9 for an example of a banded unlink in bridge position. Meier and Zupan [22]
show that every banded unlink can be put into bridge position with respect to a given
Heegaard splitting of M3=2 (the proof is similar to the fact that every knot in a Heegaard-
split 3–manifold can be isotoped into bridge position).

Lemma 5.12 [22, Lemma 4.4] Let .K; L; v/ be a banded unlink diagram. Let
H [F H

0 be a Heegaard splitting of M1 . After isotopy of L[ v in E.K/, we may
assume .K; L; v/ is in bridge position with respect to H [F H 0.

Lemma 5.13 [22, Lemma 4.5] Let T D .X1; X2; X3/ be a trisection of a 4–mani-
fold X4 . Fix a self-indexing Morse function hW X4! I, so that X1 contains all the
index-0 and index-1 critical points of h, X2 contains all the index-2 critical points,
and X3 contains all the index-3 and index-4 critical points (see [6, Lemma 14]).
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1
F

F
1

Figure 9: Left: a banded unlink for a torus in CP 2#.S1�S3/ . The surface F
induces a genus-2 Heegaard splitting H[F H 0 on M1DS

1�S2 . Right: we
isotope the banded unlink into bridge position with respect to the Heegaard
splitting H [F H 0, as in Definition 5.11.

Let K be the Kirby diagram of X4 induced by h, so M1Š@X1 comes with a Heegaard
splitting M3=2DH[FH

0, where H DX1\X2 , H 0DX1\X3 and F DX1\X2\X3 .
(We will say that K is a Kirby diagram of X4 induced by T .)

Let .K; L; v/ be a banded unlink diagram describing a surface S �X4 . If .K; L; v/
is in bridge position with respect to H [F H 0, then the Heegaard splitting H [F H 0

induces a trisection T on X4 such that S is naturally in bridge position with respect
to T . Similarly, if S 0 is a surface in bridge position with respect to T , then we may
obtain a banded unlink .K; L0; v0/ for S 0 which is in bridge position with respect to
the Heegaard splitting M3=2 DH [F H

0.

Now we are ready to prove Theorem 5.8, mirroring the proof of Theorem 5.7 in [21].

Proof Let S and S 0 be isotopic surfaces in X4 which are both in bridge position
with respect to a trisection T D .X1; X2; X3/. Let K be a Kirby diagram for X4 as in
Lemma 5.13. Again let H DX1\X2 and H 0 DX1\X3 be such that H [F H 0 is a
Heegaard splitting of M3=2 .

By Lemma 5.13, T induces a banded unlink diagram D WD .K; L; v/ for S, where D
is in bridge position with respect to the Heegaard splitting H [F H 0. Similarly, T
induces a banded unlink diagram D0 D .K; L0; v0/ for S 0 which is in bridge position
with respect to H [F H 0.
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By Theorem 4.3, D can be taken to be isotopic to D0 after performing cap/cup,
band slide, band swim, 2–handle-band slide, dotted circle slide and 2–handle-band
swim moves. Meier and Zupan show explicitly how to achieve the cap/cup, band
slide and band swim moves by perturbing and deperturbing S with respect to T in
[21, Theorem 1.6].

Suppose D0 is obtained from D by a single 2–handle-band slide or swim. Let z be the
framed arc from a band � 2 v1 to a 2–handle attaching circle C � L2 �M3=2 along
which the slide or swim takes place. Project C onto F so that the surface framing on
the projection C 0 is the handle framing of C. Take C 0 to be disjoint from a shadow
of the trivial tangle H \L. As in [21] (the proof that band swims can be realized by
perturbation), perturb .L; v/ so that C 0 is also disjoint from shadows of the bands b
and then further perturb .L; v/ until the projection of z to F is embedded and disjoint
in its interior from the shadows of L\H and b , and so the surface framing in this
projection of z agrees with the framing of z . Each of these perturbations induces
perturbation of the bridge trisection T .

Now performing the 2–handle-band slide or swim induces isotopy on S which fixes
S \ .X1 \ X3/ and isotopes S \ .X1 \ X2/ and S \ .X2 \ X3/ within X1 \ X2
and X2 \X3 , respectively. This can therefore be taken to be a T –regular isotopy.
(Diagrammatically, the 2–handle-band slide or swim induces disk-slides on a bridge
trisection diagram of S. We do not consider the diagrammatic point of view on bridge
trisections in this paper; see [22].)

Claim 5.14 After a sequence of perturbations and deperturbations of S, we may take
.L; v/ to be isotopic to .L0; v0/ in E.K/ up to dotted circle slides.

Proof The claim almost follows from Theorem 4.3, except that we did not show we
could take the dotted circle slides to happen after the other band moves (except for
isotopy in E.K/, which we did implicitly show could be taken to happen at the end of
the equivalence from .K; L; v/ to .K; L0; v0/). Two diagrams that differ by dotted slides
agree up to isotopy in S.K/ WD .S3 n �.L2//0.L1/, ie the 3–manifold with boundary
obtained from K by deleting the 2–handle attaching circles and surgering the dotted
circles. Therefore, if there is a sequence of (nonisotopy) band moves m1m2 � � �mn
which takes .K; L; v/ to .K; L0; v0/ up to isotopy in E.K/, then we may delete all of
the dotted circle slides to find a sequence of (nonisotopy and nondotted circle slide) band
moves m01m

0
2 � � �m

0
n0 from .K; L; v/ to .K; L0; v0/ up to isotopy in S.K/. Then there
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exist dotted circle slides s1; : : : ; sk such that m01m
0
2 � � �m

0
n0s1 � � � sk takes .K; L; v/ to

.K; L0; v0/ up to isotopy in E.K/.

Thus, after the above perturbations and deperturbations of S, we may take .L; v/ to
be isotopic to .L0; v0/ in S.K/. The isotopy may not respect the bridge splitting with
respect to H [F H 0. By the same argument as [21, Theorem 1.6] (this cites [35], which
is stated for bridge splittings of a tangle in a punctured 3–sphere but works just as
well for a punctured handlebody), we may perturb and deperturb D1 (and isotope a
neighborhood of F , taking F to F setwise) so that L\F D L0\F , .L[ v/\H is
isotopic to .L0[v0/\H rel boundary in H \E.K/, and L\H 0 is isotopic to L\H 0

rel boundary in H 0. Thus, after the listed sequence of perturbations and deperturbations,
we find that S is T –regular isotopic to S 0.

6 Examples in CP2

In this section, we construct isotopies of surfaces embedded in CP 2 . In particular, we
study unit surfaces.

Definition 6.1 Let † be a surface in CP 2 . If † intersects the standard CP 1 �CP 2

in exactly one point, then we say that † is a unit surface.

Note that by Freedman [4], an oriented unit sphere is topologically isotopic to CP 1 .
Similarly, by Sunukjian [27] a genus-g orientable unit surface is topologically isotopic
to the connected sum of CP 1 with an unknotted surface of genus-g contained in a
4–ball.

One motivation for studying unit surfaces in the (potentially more interesting) smooth
category is to understand the Gluck twist operation [7]. This is a surgery operation on a
2–sphere †�X4 as long as † has trivial normal bundle. In particular, the Gluck twist
on S4 about any embedded 2–sphere yields a homotopy 4–sphere. The homotopy
4–sphere resulting from a Gluck twist along † � S4 is known to be diffeomorphic
to S4 for many families of †, including ribbon knots [7; 31], spun knots [7], twist-spun
knots [8], band-sums of ribbon and twist-spun knots [9] and knots 0–concordant to any
of the others in this list [23]. We will define each of these families later in this section.

If † is a sphere in S4 , then we can take the connected sum of the pairs .S4; †/
and .CP 2;CP 1/ to obtain the 4–manifold CP 2 D S4 # CP 2 and an embedded
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surface which we denote by † # CP 1 . Melvin [23] showed that the Gluck twist along
†� S4 is diffeomorphic to S4 if and only if there is a pairwise diffeomorphism from
.CP 2; † # CP 1/ to .CP 2;CP 1/. This in part motivates the following questions of
Melvin and Gabai:

Question 6.2 Let F �CP 2 be a sphere in the generating homology class ŒCP 1� 2
H2.CP 2IZ/ with F \CP 1 D fptg.

(i) [23] Is .CP 2; F / diffeomorphic as a pair to .CP 2;CP 1/?

(ii) [5, Question 10.17.i] Is F isotopic to the standard CP 1 in CP 2?

Note that by the previously stated work of [23], Question 6.2(i) is equivalent to Kirby
problem 4.23 [17] (“Is the Gluck twist of S4 about an arbitrary 2–sphere diffeomorphic
to S4?”).

In this section, we will show that many of these unit surfaces (including all the examples
listed above) are in fact isotopic to the standard CP 1 using the moves of Theorem 4.3.

First, we give an alternative definition of † # CP 1 .

Definition 6.3 Let † be a surface in S4 . Let x be a point in S4 far from †, so
that † � S4 n �.x/ Š B4 . We can view † as living in CP 2 , inside the 4–ball
CP 2 n �.CP 1/. Let h be the radial Morse function on B4 and isotope † so that hj†
has a unique global maximum at y 2†. Let 
 be an arc from y extending radially
outward in B4 until reaching CP 2 .

Let U† be a copy of † tubed to CP 1 along an arc 
 so that 
 \ .CP 2 n�.CP 1// and

 \ �.CP 1/ are each single intervals. We call U† the unit surface associated to †.
We write U† D† # CP 1 .

Equivalently, .S4; †/ # .CP 2;CP 1/D .CP 2; U†/.

Remark 6.4 In Definition 6.3, the identification of S4 n �.x/ with CP 2 n �.CP 1/

does not affect the embedding † � CP 2 up to ambient isotopy. The framing of 

does not matter so long as the orientation on U† agrees with the orientations on †
and CP 1 .

Remark 6.5 We may obtain a banded unlink diagram for U† as follows. Let
.K0; L; v/ be a banded unlink diagram for † � S4 . Add a 1–framed 2–handle
to K0 as a small meridian of L, far away from v , to obtain a Kirby diagram K1
for CP 2 . Then .K1; L; v/ is a banded unlink diagram for U† �CP 2 .
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6.1 Ribbon and 0–concordant surfaces

We now proceed to define ribbon surfaces, as well as a diagrammatic framework for
describing these surfaces and their isotopies, called chord diagrams. We will use chord
diagrams to show that all ribbon unit surfaces are unknotted in CP 2 .

Definition 6.6 Let S1 and S2 be surfaces in S4 , and let �I W S4 � I ! I be the
projection to the unit interval. We say that S1 is ribbon-concordant to S2 if there exists
an embedding f W †�I !S4�I such that f .†�0/DS1�0 and f .†�1/DS2�1
and such that �I ıf has finitely many critical points with distinct critical values, all of
which are of index 0 or 1. We say that a surface S is ribbon if the unknotted sphere is
ribbon-concordant to S.

Kawauchi [14] gives an equivalent definition of ribbonness without the cobordism
perspective, by using semiunknotted punctured handlebodies.

Definition 6.7 (eg [14]) A genus-g surface R �X4 is ribbon if R bounds a punc-
tured 3–dimensional handlebody V embedded in X4 so that @V DR[O, where O
is an trivial unlink of unknotted spheres.

From this definition comes a diagrammatic description of ribbon surfaces. We recall
the definition of a chord diagram of an oriented ribbon surface knot R � S4 .

Definition 6.8 [14] A chord graph for a ribbon-surface in S4 consists of an oriented
unlink o of circles in S3 and arcs ˛ in S3 with endpoints on o and interiors disjoint
from o. This graph indicates the same ribbon-surface as the banded unlink .K0; o; v/,
where v consists of pairs of dual bands attached along the ˛ curves, as in Figure 10.
(Twisting this pair does not affect the resulting surface, as long as they describe an
orientable surface; see Remark 6.9.) A chord diagram is a planar diagram of a chord
graph. (See [14] for details.)

.O; ˛/ .K0; L; v/

Figure 10: Left: a chord diagram for a ribbon surface R in S4 . Each unlink
component is oriented counterclockwise. Right: a banded unlink diagram for
the same ribbon surface R in S4 .

Geometry & Topology, Volume 24 (2020)



1552 Mark C Hughes, Seungwon Kim and Maggie Miller

R1:

R2:

R3:

R4:

R5:

Reidemeister moves M0 fusion–fission M1

chord moves M2

elementary M1

moves

Figure 11: Kawauchi’s M0 , M1 and M2 moves for chord diagrams in S4 .
In moves R4; R5;M1 and M2 the red (narrow) curves represent ˛ arcs,
while black (bold) curves represent components of o . The (gray) curves of
moves R1 , R2 and R3 represent arcs from either ˛ or o .

Kawauchi [14] gives a list of diagrammatic moves on chord diagrams that represent
isotopies of a ribbon surface S4 . (This list is incomplete; see eg the supplement to [14].)
These moves are illustrated in Figure 11.

Remark 6.9 We do not specify the framings on the chords ˛ in a chord diagram .O; ˛/

for R . In fact, if two framings of ˛ give descriptions of orientable surfaces, then the
surfaces are isotopic. Similarly, we may add whole twists to the framing of v in the
associated banded unlink .K0; L; v/ for R without changing the isotopy type of the
described surface.

Exercise 6.10 Let .O; ˛/ be a chord diagram and .K0; L; v/ the associated banded
unlink.

� An M0 move on .O; ˛/ induces isotopy on .K0; L; v/.

� Each elementary M1 move on .O; ˛/ can be achieved by performing a sequence
of fusion–fission M1 moves and isotopies on .O; ˛/. Conversely, every fusion–
fission M1 move can be achieved by a sequence of elementary M1 moves and
isotopies.

� An elementary M1 move on .O; ˛/ induces isotopy and a sequence of band
moves on .K0; L; v/.
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� An M2 move on .O; ˛/ induces isotopy and a sequence of band slides and
swims on .K0; L; v/. (Very informally, the M2 move most uses the property
that .O; ˛/ describes a ribbon surface. In a general banded unlink diagram, we
cannot hope to pass bands through one another.)

Note that there is not a converse to Exercise 6.10. In general, performing band moves
on the banded unlink .K0; L; v/ will destroy the symmetry arising from the association
between .K0; L; v/ and .O; ˛/. Chord diagrams exist only for ribbon surfaces and
naturally describe these surfaces with a clear symmetry; banded unlink diagrams
describe arbitrary surfaces and need not respect any symmetry of the underlying
surface. In particular, we do not claim to prove that M0 , M1 and M2 moves relate
any two chord diagrams of isotopic surfaces.

When R is ribbon, we can define a useful isotopy of UR using the moves of Theorem 4.3.
We call this the M3 move; see Figure 12. We slide a band over the 2–handle, and then
swim the 2–handle through the dual band (or perform the same moves in the opposite
order). This move will allow us to change the linking number of L and v in E.K1/.

1 1 1

111

Figure 12: The M3 move consists of one 2–handle-band slide and one
2–handle-band swim. We slide a band over the 1–framed 2–handle, then
swim the 2–handle through the dual band (or perform the same moves in the
opposite order). With this move, we can add or remove linking between L
and v in E.K1/ .
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Lemma 6.11 Let R�S4 be a ribbon surface of genus g . Then UR�CP 2 is isotopic
to CP 1 #gT , where T is an unknotted torus in B4 .

Proof Let .K0; L; v/ be a banded unlink diagram for R , as in Definition 6.8. Then
.K1; L; v/ is a banded unlink diagram for UR . Perform the M3 move on L[v in K1
finitely many times until v does not link L. (That is, until the bands v do not meet
disks bounded by L in S3 � K1 .) To achieve this unlinking, we use 2–handle-band
swims to take the 2–handle attaching circle of K1 to be a meridian of any desired
component of L. We then perform M3 moves until v no longer links that component.
We then use 2–handle-band swims to move the 2–handle attaching circle to be a
meridian of the next component of L, and repeat until eventually v is unlinked with
every component of L.

We then do moves M0 and M2 finitely many times to trivialize L and v so that, in
the projection � W E.K1/! R2 , �.L[ v/ is embedded (recall we may choose the
framing of v to be the framing induced by the plane). Finally, we perform the fusion
M1 move finitely many times to get a banded unlink diagram with one circle and g
pairs of dual bands. This is a banded unlink diagram for CP 1 trivially stabilized g
times, ie CP 1 #gT .

Using the above argument, we actually prove a stronger fact about a more general class
of knots. We recall a form of concordance introduced by Melvin [23] for spheres, and
extended to positive-genus surfaces by Sunukjian [27].

Definition 6.12 [23] Let S1 and S2 be genus-g surfaces in X4 . We say that S1
is 0–concordant to S2 if there exists an embedding f W †g � I ! X4 � I such that
f .†g � 0/ D S1 � 0, f .†g � 1/ D S2 � 1, �I ı f has finitely many critical points
mapped to distinct t ’s, and, away from critical values of t , f �1.X4 � t / is a disjoint
union of a genus-g surface and some number of spheres.

Sunukjian [28] showed that there exist infinitely many pairwise non-0–concordant
2–knots in S4 . Under the equivalence relation of 0–concordance (and operation of
connected sum), the set of 2–knots in S4 becomes a monoid M somewhat analogous
to the concordance group C of classical knots in S3 . Dai and the third author [3]
showed that M is not finitely generated (ie contains a copy of N1 ). Joseph [10]
showed that M is not a group: there exist 2–knots K � S4 such that K # J is not
0–concordant to the unknot for any 2–knot J.
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Sunukjian [27] noted the following relation between 0–concordance and ribbon-
concordance. This lemma is a key fact in [28; 3].

Lemma 6.13 [27, Lemma 8.1] Let S1 and S2 �X4 be genus-g surfaces such that
S1 is 0–concordant to S2 . Then there exists a genus-g surface S such that S1 and S2
are both ribbon-concordant to S.

The proof of the above lemma is to show that one can view a 0–concordance as a
concordance consisting of 0–handles, then 1–handles each attached between distinct
surface components, then 2–handles which each create a new sphere component, and
finally 3–handles.

Theorem 6.14 Let S; S 0�S4 be genus-g surfaces such that S is 0–concordant to S 0.
Then S # CP 1 is isotopic to S 0 # CP 1 in CP 2 . In particular, if S is 0–concordant to
the unknot, then S # CP 1 is isotopic to CP 1 #gT .

Proof By Lemma 6.13, there exists a surface S 00 such that S and S 0 are each ribbon-
concordant to S 00. It is sufficient to prove the following statement:

Proposition 6.15 Suppose S is ribbon-concordant to S 0 via a ribbon-concordance
consisting of k index-0 critical points and k index-1 critical points. Then S # CP 1 is
isotopic to S 0 # CP 1 in CP 2 .

Proof The above setup is equivalent to saying that S 0 is given by tubing S to an
unlink

F
k O of k unknotted spheres along k narrow tubes around arcs b . (There is an

extra restriction on the endpoints of b , as this tubing must yield a connected surface.)
Via move M3 (Figure 12), in CP 2 we may remove all intersections of b with the balls
bounded by

F
k O. That is, S 0#CP 1 is isotopic to .S#O#� � �#O/#CP 1DS#CP 1 .

This completes the proof of Theorem 6.14.

In fact, essentially the proof of Theorem 6.14 can be used to prove the following more
general statement:

Theorem 6.16 Let X4 be a geometrically simply connected 4–manifold (ie X admits
a handle decomposition with no 1–handles). Let F and F 0 be 0–concordant genus-g
surfaces in X. Assume that X nF and X nF 0 are simply connected. Then F and F 0

are isotopic.

Sunukjian [27, Theorem 8.2] has previously shown that there exists a diffeomorphism
.X; F /Š .X; F 0/.
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Proof Note that the condition that X n F is simply connected is equivalent to the
existence of a 2–sphere G immersed in X that intersects F transversely exactly once.

Again, by Lemma 6.13 (whose proof carries out in a general 4–manifold), there exists
a surface F 00 such that F and F 0 are each ribbon-concordant to F 00. The surface F 00

is obtained by tubing F to many unlinked, unknotted 2–spheres in X. These unlinked
2–spheres may be moved far from G, and by dimensionality the tubes may also be
taken to be disjoint from G. Therefore, F 00 also intersects G transversely exactly once,
so it is sufficient to prove the following statement:

Proposition 6.17 Suppose F and F 0 are as in Theorem 6.14 and also that F is
ribbon-concordant to F 0 via a ribbon-concordance consisting of k index-0 critical
points and k index-1 critical points. Then F and F 0 are isotopic.

Proof Since X4 is geometrically simply connected, there exists a Kirby diagram K
of X4 with no dotted circles.

Let .K; L; v/ be a banded unlink diagram for F . Let U1; : : : ; Uk be unknots unlinked
from K , L and v . That is, take U1; : : : ; Uk to bound disjoint disks D1; : : : ;Dk
(respectively) in S3 n .K[L[ v/. Then

�
K;
F
Ui ;∅

�
is a banded unlink diagram

of an unlink of k spheres O1 t � � � tOk �X n .F [G/. Recall F 0 is obtained from
F tO1t� � �tOk by surgery along k tubes (3D 1–handles) connecting F to each Oi .
Then we may obtain a banded unlink diagram

�
K; Lt

F
i Ui ; v

0
�
, where v0 is obtained

from v by adding k pairs of bands vi and v0i , where vi connects L to Ui and v0i is
dual to vi . (See Figure 13.)

Now we describe some moves on .K; LtUi ; v0/ that induce isotopy of F 0.

Note that we may achieve crossing changes of vi with any b 2 .v[i vi / by swimming
b through v0i . (Here, b may be vi .) We may similarly achieve crossing changes of vi
with a 2–handle attaching circle C in K by swimming C through v0i . These moves
are analogous to the M2 chord moves. See Figure 13, top.

Moreover, we may unlink vi with A � LtUi by using G as follows: Fix a point
z 2A. Isotope G in a neighborhood of F 0 so that G intersects F 0 exactly once, in the
point z . Let ��G be a small embedded disk containing z , perturbed to lie in S3 nK .
Say the tube represented by vi and v0i has core arc ˛i . Via a homotopy parallel to
G n�, we see that ˛i is homotopic (and hence isotopic) in X4 to the result of sliding
the core of vi over @�. We conclude that sliding vi over @� describes an isotopy
of F 0 (the choice of framing is irrelevant). See Figure 13, bottom.
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2–handle attaching circle
or band in v[ v1; : : : ; vk

vi

v0i

A

vi

�

Figure 13: The proof of Theorem 6.16: in a geometrically simply connected
4–manifold, two 0–concordant surfaces with simply connected complements
are ambiently isotopic. Top: We may change crossings between K and vi or
between vj and vi by band moves (and hence isotopy of F 0 ). Bottom: We
may change crossings of vi with L by sliding the core of the tube represented
by vi over an immersed 2–sphere dual to F 0.

Therefore, via band moves, we may transform the banded unlink diagram of F 0 until
the disk Di bounded by Ui is disjoint in its interior from vj for all i and j. Then
we may remove each v1; v01; : : : ; vk; v

0
k

and U1; : : : ; Uk via k cap and k cup moves,
finally obtaining .K; L; v/. We therefore conclude that F 0 and F are isotopic.

This completes the proof of Theorem 6.16.

The proof of Lemma 6.11 also yields a result about band-sums. Recall the definition of
band-summing:

Definition 6.18 Let S1 and S2 be oriented surfaces in S4 , contained in disjoint balls.
Let 
 be an arc from a point on S1 to a point on S2 . Then the band-sum S1 #
 S2 is
the surface ..S1 tS2/ n �.
//[ .
 �S1/.

The framing on 
 to determine the S1–bundle over 
 does not affect the resulting
surface up to isotopy, so long as �.
/\ .S1 #
 S2/ is oriented consistently with the
orientations on S1 and S2 .
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Note that connect-summing is a specific example of band-summing. Now we show
that blowing up S4 trivializes the band-sum.

Theorem 6.19 Let S1 #
 S2 be a band-sum in S4 , where S1 and S2 are any smooth
surfaces in S4 contained in disjoint 4–balls and 
 is any path between them. Then the
unit surfaces S1 #
 S2 # CP 1 and S1 #S2 # CP 1 are isotopic in CP 2 .

Proof Fix band diagrams for S1 and S2 . Then S1 #
 S2 # CP 1 has a banded unlink
diagram .K1; L; v/ consisting of the union of the banded unlink diagrams for S1
and S2 with two bands for the band-sum tube and the C1–surgery curve of CP 2 . The
M3 move allows one to change any crossing of L with 
 . (The M2 move, or rather
the equivalent sequence of band moves of Exercise 6.10, allows one to change any
crossing of v with 
 and to slide the endpoints of 
 along L, through v .) Therefore,
in CP 2 we may take 
 to be an arbitrary arc, and in particular find S1 #
 S2 # CP 1 is
isotopic to S1 #S2 # CP 1 .

Remark 6.20 It is not hard to show that there is a ribbon-concordance from S1 #
 S2
to S1 #S2 . Therefore, Theorem 6.14 is actually a corollary of Theorem 6.19. Similarly,
Theorem 6.19 follows from Theorem 6.16, but we prefer to state these results separately
given the focus of this section on CP 2 .

The construction of the ribbon-concordance is the same as in [24], where Miyazaki
shows that a connected sum of classical knots K1 and K2 is ribbon-concordant to
any band-sum of K1 and K2 . The direction of the word “ribbon” is reversed in the
statement for classical knots (if we use consistent definitions; we caution the reader
that Miyazaki uses the opposite convention and we have translated his statement to be
consistent with our definition of ribbon-concordance). Repeating the construction of
Miyazaki a dimension up yields a concordance from S1 # 
S2 to S1 #S2 with only
index-2 and index-3 critical points. Turning this concordance upside down, we find
that S1 #S2 is ribbon-concordant to S1 #
 S2 .

6.2 Deform-spun knots

We move on from 0–concordant knots to twist-spun knots [34] and deform-spun
knots [19].

Definition 6.21 (see [19] generally and [34] for twist-spun knots) Let K1 � B3

be a 1–stranded tangle. Let f W B3! B3 be a diffeomorphism fixing @B3 and K1

pointwise. Then the f –deform-spun knot of K1 is fK1 DK1 � I=�, contained in
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K1

T D S1 �S1

B3

0�S1

S1 � 0

Figure 14: The setup for Litherland’s description of twist-roll spun knots [19].
Here, K1 is a 1–stranded tangle in ball B3 . The torus T is given by
@.�.K1[ @B3// . We parametrize T Š S1 �S1 so that its longitude 0�S1

is nullhomologous in B3 n �.K1/ , and its meridian S1 � 0 bounds a disk
in �.K1/ .

S4 D .B3 � I /=
�
.x; 1/ � .f .x/; 0/; y � S1 � pt for y 2 @B3

�
. Let T � B3 be the

torus @.�.K1[ @B3//. Parametrize T D S1 �S1 so that S1 � 0 is a meridian of K1

and Œ0� S1� D 0 2 H1.B3 nK1/ (ie 0� S1 is a 0–framed longitude for K1 ). Let
T � I be a regular neighborhood of T contained in the interior of B3 nK1 .

Define �; �W T�I!T�I by �.x; y; t/D .xC2�t; y; t/ and �.x; y; t/D .x; yC2�t; t/.
Extend � and � to the rest of B3 by the identity map. Then �n�pK1 is called the
n–twist p–roll spun knot of K1 . (When nD 0 or pD 0, we may say p–roll spun knot
of K1 or n–twist spun knot of K1 , respectively.) See Figure 14 if this construction is
unfamiliar.

Let K be a classical knot in S3 (that is, a 1–knot) and B � S3 a small 3–ball
meeting K in a trivial arc. If .B3; K1/D .S3 nB;K nB/, then we may write fK to
indicate fK1 , and refer to the f –deform-spun knot of K1 and the f –deform-spun
knot of K interchangeably.

Theorem 6.22 Let K be a 1–knot, so that �nK is the n–twist spun knot of K. Then
U�nK is isotopic to CP 1 .

Proof In Figure 15, we demonstrate an isotopy in CP 2 taking U�nK to U�nC1K .
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nC1
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...
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ˇ

nC1

ˇ

1

...

...

...
...
...

...

...

ˇ

ˇ

nC1

ˇ

.B3; T /

f .B3; T /

slide swim

Figure 15: Left to right: a banded unlink diagram for �nK #CP 1 (see eg [21,
Section 5.2]), where K in bridge position is the closure of tangle ˇ . We
slide half the bands over the 2–handle of CP 2 , and then swim the 2–handle
through the remaining bands. We obtain a banded unlink for �nC1K # CP 1 .

Inductively, U�nK is isotopic to U�K . By [34], �K is the unknot, so U�nK is isotopic
to CP 1 .

We can say something stronger about the general family of deform-spun knots.

Theorem 6.23 Let K be a 1–knot. Let fK be a deform-spun knot of K. Then
fK # CP 1 is isotopic to �nfK # CP 1 for any n.

Proof Figure 16 shows an explicit isotopy from fK # CP 1 to �fK # CP 1 .

1

...

...

......

ˇ

slide

...

...

...
...

1

ˇ

1 swim

...

...

...
...

ˇ

1

1 1

...

...

......

ˇ

.B3; T /

f .B3; T / f .B3; T / f .B3; T / �f .B3; T /

Figure 16: Left to right: a diagram for fK#CP 1 , where K in bridge position
is the closure of the tangle ˇ . We slide half the bands over the 2–handle
of CP 2 , and then swim the 2–handle over the remaining bands. We obtain a
diagram for �fK # CP 1 .
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Corollary 6.24 Let K be a knot with an integral lens space surgery. Then �n�K#CP 1

is isotopic to the standard CP 1 for any n 2 Z.

Proof Say k–surgery on K yields a lens space L.k; q/. Teragaito [30] observed that
�k�K is the unknot, as follows:

By Litherland [19], �k�K is a fibered knot, whose fiber is obtained by 1–Dehn filling
the k–fold cyclic cover of S3 n �.K/ and then deleting an open 3–ball. That is, the
closure of the fiber is a k–fold cover of L.k; q/, so the closure of the fiber is S3 .
Therefore, �k�K bounds a smooth 3–ball.

By Theorem 6.23, �n�K # CP 1 is isotopic to �k�K # CP 1 DCP 1 for any n.

6.3 Satellites and miscellaneous examples

Consider the family of 2–knots Kpq illustrated in Figure 17, top. Nash and Stipsicz [25]
showed via Kirby calculus that the Gluck twist on any of these 2–knots yields S4 . In
fact, by translating their handle slides into band moves, we observe that Kpq # CP 1 is
isotopic to the standard CP 1 in CP 2 .

Most of the results of Sections 6.1 and 6.2 can be consolidated into the single following
statement:

Theorem 6.25 Let F D S # CP 1 � CP 2 be a genus-g unit surface knot, where
S � S4 is an orientable surface that is 0–concordant to a band-sum of twist-spun knots
and unknotted surfaces. Then F is isotopic to CP 1 #gT , where CP 1 #gT indicates
the standard CP 1 trivially stabilized g times.

The results of Theorems 6.22 and 6.23 extend to satellite knots. This illustrates the
strength of this diagrammatic packaging, as in general these knots may not be twist-spins
or even fibered (see eg [32]).

Definition 6.26 Let KP � V be a 2–sphere embedded in V Š S2 �D2 . Let KC
be a 2–sphere embedded in S4 . Fix a diffeomorphism �W V ! �.KC /. Let K D
f .KP /� S

4 . We call K the satellite of companion KC with pattern .KP ; V /.

Let K be the satellite of companion KC with pattern .KP ; V /. To obtain a diagram
of K, we view S4 D S3 � Œ�1; 1�=.S3 � 1� pt; S3 ��1� pt/, where KC \S3 � 0
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�
1

C1
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q

+1
�
p
�
1

C1

slides

C1

�
q

+1
�
p
�
1

C1

swim

isotopy

Figure 17: Top: the 2–knot Kpq � S4 . Nash and Stipsicz [25] showed that
performing the Gluck twist on Kpq yields S4 . Bottom two rows: an isotopy
from Kpq # CP 1 to the standard CP 1 in CP 2 .

is a connected knot and KC \ .S3 � Œ�1; 0�/ and KC \ .S3 � Œ0; 1�/ are ribbon disks
(this is the normal form of [15]).

We take V D S2�D2 � S4 (a neighborhood of the standard unknotted sphere) so that
W WDV \.S3�0/ŠS1�D2 , and V \.S3� Œ�1; 0�/ŠV \.S3� Œ0; 1�/ŠD2�D2 .
See Figure 18, left, for a schematic.

Draw a banded unlink (in K0 ) for KP sitting inside W . (Note the original unlink and
the one obtained by resolving all bands are unlinked in B3DW [.0–framed 2–handle/
but may be nontrivial within the solid torus W .) Fix a meridian disk � of W disjoint
from all bands (note that if � intersects bands k times, then we can remove these
intersections at the cost of adding 2k canceling intersections between � and the unlink)
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S 3

W

�

V W

�

Figure 18: Left: a schematic of V embedded in S4 . The intersection V \S3�0
is the solid torus W . Right: a banded unlink of a pattern KP � V . With respect
to this choice of � , the pattern has geometric winding 2 . (Note in this diagram
KP is unknotted inside V , so could be isotoped to a pattern of geometric
winding 0 .)

in the diagram for KP , and take KP to be transverse to �. We say the geometric
winding of KP is the unsigned intersection KP \�. (Note this number depends
on �.)

W

�

k k

KP KC K

-k

n

k k -k

n

W

�

n

past past KC

KP

s1
s2
sn sn

s2
s1

n

Figure 19: Left, top row: We draw a banded unlink diagram for KP and a
normal form diagram for KC (a band diagram in which some bands lie below
the pictured cross-section, as indicated, so that intersection of KC with this
time slice is a knot). From these two diagrams, we obtain a diagram of K. Left,
bottom row: We push all bands above the pictured cross-section, so that each
diagram is a banded unlink diagram. Right: We show how to draw the n bands
of a banded unlink diagram for K corresponding to a band in the banded unlink
diagram for KC . In this picture, si indicates one arc in �.�� I / .
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Now draw a banded unlink (in K0 ) for KC , isotoped to lie inside

W 0 WD �.KC /\ .S
3
� 0/Š S1 �D2

(we first draw the diagram in S3 D S3 � 0 and perturb to be disjoint from 0�S1 �

S3 nW Š B3 � S1 , and then project to W ). Fix a meridian disk �0 for W 0 which
intersects the banded unlink transversely in one point.

Isotope the diffeomorphism �W V ! �.KC / so that �.W / D W 0 and �.�� I / D
W 0n.�0�I /. Choose � so that every saddle of K either corresponds to a saddle of KP
or lies above or below a saddle of KC . Each saddle of KC gives rise to jKP \�j
saddles of K.

Therefore, the satellite K has aC bjKP \�j critical points of index 1, where a is
the number of index-1 critical points of KP and b the number of index-1 critical
points of KC . Then we obtain a banded unlink diagram (in K0 ) for K by taking the
standard 0–framed satellite of KP \ .S3 � 0/ �W around KC \ .S3 � 0/ (both of
these cross-sections are knots), attaching the bands corresponding to KP , and then

...

...

...

...

...

...

...

...

...

...

1

...

...

...

...

...

...

...

...

...

...
B3 � S2 �D2 CP 1 n .core of 2–handle/

isotope CP 1

1

Figure 20: Top: a movie of cross-sections of S2 �D2 # CP 2 . The central
cross-section is a solid torus W . In shaded blue, we draw a ball B in
S2 �D2 . In red (to the right), we draw the disk CP 1 \S2 �D2 . The rest
of CP 1 is a core of the 1–framed 2–handle. Black strands are contained in
KP � S

2 �D2 . Bottom: we isotope CP 1 through B while fixing the unit
surface for KP .
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attaching jKP \�j copies of each band corresponding to KC (pushing them above
S3 � 0). See Figure 19.

Very roughly, we obtain a banded unlink diagram for K by tubing a diagram for KP
to jKP \�j parallel (up to orientation) diagrams for KC .

We give a new isotopy move of CP 1 inside .S2�D2/ # CP 2 : the double slide. Refer
to Figure 20. The effect of the double slide move is to change the intersection of CP 1

with W by two slides over a longitude of W (with opposite sign). Via this move, we
may replace the intersection 
 of CP 1 with W with any curve 
 0 � W such that

 and 
 0 are isotopic in W [ .0–framed 2–handle/ and represent the same element
of H1.W /.

Theorem 6.27 Let K be a satellite of companion KC with pattern .KP ; V /. Say
ŒKP �D mŒS

2 � pt� in H2.V IZ/. View V � S4 as a neighborhood of an unknotted
2–sphere. Assume KP � V � S4 is 0–concordant to a band-sum of twist-spun knots.

� If mD 0, then K # CP 1 is isotopic to CP 1 in CP 2 .

� If mD˙1, then K # CP 1 is isotopic to ˙KC # CP 1 in CP 2 .

� If jmj> 1, then K # CP 1 is isotopic to K 0 # CP 1 , where K 0 is a satellite with
companion KC and pattern .Om; V /, where Om � V � S4 is the unknotted
sphere K0 and ŒOm�DmŒS2 � pt� 2H2.V IZ/.

We are careful to distinguish between the unknotted sphere K0 in S4 and the degree-m
unknotted pattern .Om; V /.

Remark 6.28 The pattern Om � V is well defined. We have V D S4 n �.
/, where

 is a curve in S4 nK0 with Œ
� D m � Z Š �1.S4 nK0/. In this dimension, 
 is
unique up to isotopy, so Om � V is uniquely determined by m. See Figure 21 for a
banded unlink diagram (with no bands) for Om � V . The satellite knot K 0 is isotopic
to jmj parallel copies of .m=jmj/KC tubed together.

Proof of Theorem 6.27 Let F be the surface KP # CP 1 � .S2 �D2/ # CP 2 . The
banded unlink diagram for KP # CP 1 �CP 2 sits inside the solid torus W � S3 , with
a 1–framed 2–handle attaching circle 
 at the site of the blowup. See Figure 22. Apply
the isotopy of Theorem 6.25 to unknot the banded unlink diagram. So long as 
 stays
in W , this isotopy induces isotopy on F in .S2 �D2/ # CP 2 . But 
 passes outside
of W (“through the hole of W ”) an even number of times — that is, 
 appears to slide
over a longitude of W an even number of times, an equal number of each direction of
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m

m> 0

�m

m< 0mD 0

Figure 21: A banded unlink diagram for Om � V . In this diagram, Om has
one local minimum, one local maximum and zero saddles (ie zero bands).

slide. Achieve these slides through a sequence of double slide moves. See Figure 22.
This isotopy does not fix the standard CP 1 , but replaces F with Om #.standard CP 1/.

Let K 0�S4 be the satellite knot with pattern Om and companion KC . Then K #CP 1

is isotopic to K 0#CP 1 in CP 2 . Note that if mD 0, then K 0 is the unknot. If mD˙1,
then K 0 D˙KC .

n 1

n
C
1 1

n
C
1

1

n
C
1

1 n
C
1

1
double
slide

Figure 22: We unknot KP #CP 1 in S2�D2#CP 2 when KP is 0–concordant
to a band-sum of twist-spun knots. We perform the isotopy of Theorem 6.25,
performing the double slide move to slide CP 1\W over the longitude of W
and back.
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The following corollary follows immediately from Theorem 6.27 and the relation of
unit surfaces to the Gluck twist from [23]:

Corollary 6.29 Let K be a satellite with companion KC and pattern .KP ; V /. Say
ŒKp� D mŒS

2 � pt� in H2.V IZ/. View V � S4 as a neighborhood of an unknotted
2–sphere. Assume KP � V � S4 is 0–concordant to a band-sum of twist-spun knots.

� If mD 0, then the Gluck twist on S4 about K is diffeomorphic to S4 .

� If mD˙1 and the Gluck twist on S4 about KC yields S4 , then so does the
Gluck twist on S4 about K.
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