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Isotopies of surfaces in 4—manifolds
via banded unlink diagrams

MARK C HUGHES
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We study surfaces embedded in 4—manifolds. We give a complete set of moves
relating banded unlink diagrams of isotopic surfaces in an arbitrary 4—manifold. This
extends work of Swenton and Kearton—Kurlin in S*. As an application, we show
that bridge trisections of isotopic surfaces in a trisected 4—manifold are related by
a sequence of perturbations and deperturbations, affirmatively proving a conjecture
of Meier and Zupan. We also exhibit several isotopies of unit surfaces in CP? (ie
spheres in the generating homology class), proving that many explicit unit surfaces
are isotopic to the standard CP!. This strengthens some previously known results
about the Gluck twist in S*, related to Kirby problem 4.23.
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1 Introduction
Knotted surfaces in 4-manifolds play an important role in smooth 4—dimensional

topology, analogous to the part played by classical knots in 3—dimensional topology.
Much like in the 3—dimensional case, there are a number of surgery operations and
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invariants for a smooth 4—-manifold X* which are defined in terms of embedded
surfaces inside X*4.

Because of their importance in 4—manifold topology, it is useful to have concrete ways
of describing these embedded surfaces and their isotopies. When X* = S, there are
several ways to describe embedded surfaces and isotopies between them. These include
broken surface diagrams with Roseman moves [26]; motion picture presentations with
movie moves — see Carter and Saito [1; 2] — and braid charts with chart moves — see
Kamada [12; 13].

In this paper we consider two additional methods for describing surfaces in a 4—
manifold. When the underlying 4-manifold is S, a complete set of moves to describe
isotopies of these surfaces has already been established. We focus here on establishing
complete sets of moves to describe surface isotopies in an arbitrary 4—manifold.

The first method we consider to describe a surface X in a 4—manifold X*# is via banded
unlink diagrams. When X* = S4, this construction involves putting ¥ into Morse
position with respect to a standard height function # on S*, and then encoding the
index-0 and index-1 critical points of /|y as a classical unlink in S3 with a collection
of embedded bands attached (see Section 3 for a more detailed description). In [33],
Yoshikawa presents a set of moves on banded unlink diagrams for surfaces in S*
which are realizable by isotopies of the underlying surface, and asks if these moves
are sufficient to relate banded unlink diagrams of any pair of isotopic surfaces. This
question was affirmatively answered by Swenton [29], with an alternative proof being
given by Kearton and Kurlin [16].

In this paper we study a generalization of banded unlink diagrams to embedded surfaces
in an arbitrary 4-manifold X* equipped with a Morse function, where we encode
the Morse function by a Kirby diagram K. We describe a set of moves on banded
unlinks, called band moves, which can be realized by isotopies of the underlying
surface . These consist of Yoshikawa’s original moves, as well as additional moves
which describe the interaction of the surface ¥ with the handle structure on X*. The
main theorem we prove is the following:

Theorem 4.3 Let X* be a smooth 4—manifold with Kirby diagram K, and suppose
that ¥ and X' are embedded surfaces in X*. Let (K, L,v) and (K, L’,v") be banded
unlink diagrams for 3 and Y, respectively. Then ¥ and X' are isotopic if and only if
(K, L,v) can be transformed into (K, L', v’) by a finite sequence of band moves.
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The second method we consider to represent an embedded surface X is by using a bridge
trisection of %, which allows one to present X in terms of intersections with a given
trisection of the ambient manifold X*. Bridge trisections for surfaces in S*# were in-
troduced by Meier and Zupan in [21], where they provide a stabilization/destabilization
move which they prove is sufficient to relate any two bridge trisections of isotopic
surfaces. In [22] the same authors generalize this notion of bridge trisections to surfaces
in an arbitrary 4—manifold X*, and prove that every surface ¥ C X* can be put into
bridge trisected position with respect to any given trisection on X*. They similarly
define a stabilization/destabilization move and conjecture that these moves are sufficient
to relate any two bridge trisections of isotopic surfaces in X*. Using Theorem 4.3,
we affirmatively answer this conjecture. We give the relevant definitions and some
exposition on trisections and bridge trisections in Section 5.

Theorem 5.8 Let S and S’ be surfaces in bridge position with respect to a trisection
T of a closed 4—manifold X*. Suppose that S is isotopic to S’. Then S can be taken
to S’ by a sequence of perturbations and deperturbations, followed by a T —regular
isotopy.

As a separate application of Theorem 4.3, we focus on the case of unit surfaces in CP2.
By Melvin [23], the study of unit surfaces is relevant to understanding the Gluck twist
surgery of [7]. Melvin showed that the Gluck twist on a sphere S C S* yields S*
again if and only if there is a diffeomorphism from the pair (CP2, S#CP1) to the pair
(CPZ, CP 1). See Section 6, where we give the relevant definitions and exposition, for
more detail.

Theorem 6.25 Let F = S #CP! Cc CP? be a genus-g unit surface knot, where
S C S* is an orientable surface that is 0—concordant to a band-sum of twist-spun knots
and unknotted surfaces. Then F is isotopic to CP' # gT, where CP' # g T indicates
the standard CP! trivially stabilized g times.

Outline In Section 2, we define horizontal-vertical position and some nice families of
isotopies for surfaces in 4—manifolds. In Section 3, we define banded unlink diagrams.
In Section 4, we show that any surface in a 4—manifold is described by a banded unlink
diagram which is well defined up to a certain set of moves. In Section 5, we show that
a bridge trisection of a surface in a trisected 4—manifold is unique up to perturbation.
In Section 6, we consider many examples of surfaces in the generating homology class
of CP2, and show explicitly that these examples are isotopic to CP! (perhaps with
trivial tubes attached if the original surface is of positive genus).
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2 Level sets and isotopies

2.1 Banded links

Our primary technique for studying embedded surfaces in a 4—manifold will be to
arrange them so that their intersections with the level sets of a given Morse function
are composed of disjoint unions of embedded disks and banded links.

More precisely, let M3 be an oriented 3—manifold, and let L C M be a link. A band b
for the link L is the image of an embedding ¢: I x I — M, where I = [—1, 1], and
bNL=¢({—1,1} x1). Wecall ¢(I x{0}) the core of the band b. Let Lj be the
link defined by

Lp=(L\¢({-1.1} xI)Up(I x{=1.1}).

Then we say that L, is the result of performing band surgery to L along b. If v is a
finite family of pairwise disjoint bands for L, then we will let L, denote the link we
obtain by performing band surgery along each of the bands in v. We say that L, is
the result of resolving the bands in v. The union of a link L and a family of disjoint
bands for L is called a banded link. If L is an unlink, we call the union of L and a
family of disjoint bands a banded unlink.

2.2 Horizontal and vertical sets

Now let X* denote a closed, oriented 4—manifold equipped with a self-indexing Morse
function s: X# — [0, 4], where / has exactly one index-0 critical point and one index-4
critical point. We will write K to denote the Kirby diagram of X* induced by i (we
explain this more precisely in Section 3.2).
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In order to study ¥ C X*# via the level sets of 7, it will be convenient to have a way
of identifying subsets of distinct level sets A~ 1(¢1) and h~!(¢;). Suppose then that
t1 <tp,andlet x1, ..., x, denote the critical points of 4 which satisfy 1 <h(x;) <t>.
Let X;, 1, denote the complement in X# of the ascending and descending manifolds
of the critical points x1, ..., xp. Then the gradient flow of / defines a diffeomorphism
Prraa: KN ) N Xy = BN (12) N X1y,

Definition 2.1 We call py, 4, the projection of h=1(t1) to h=1(t,). Similarly, we call
pt_l}tz the projection of h~1(t3) to h~'(t1), which we likewise denote by py, ¢, -

Note that despite calling py, s, the projection from h~1(z1) to h™(zp), it is only
defined on the complement of the ascending and descending manifolds of the critical
points that sit between 71 and #,. These projection maps allow us to define local
product structures away from the ascending and descending manifolds of the critical
points of 4.

Definition 2.2 Let W be a subset of X*, and let J either be the closed interval
[t1,12] or the open interval (¢1,%2). Then we say that W is vertical on the interval J
if W C Xy, andif prp(B~L@)NW)=h7 @ )NW forall t,t' € J.

In Sections 3 and 4, we will construct isotopies of surfaces in X*. In this paper,
every isotopy of a surface will always extend to ambient isotopy. We generally write
“f: FxI— X*x1 is an isotopy” with the understanding that there is in fact a smooth
family of diffeomorphisms gg: X — X* with go =id such that ggopryso f(F x0) =
f(F x ) for s € [0, 1]. Here we use pry: X*x I — X* to denote projection to the
first factor.

We consider a few special types of isotopy which behave well with respect to /.

Definition 2.3 Let ¥ C X* be a smoothly embedded surface. Let f: Fx1 — X*x1
be a smooth isotopy of X, so that ¥ = f(F x {0}). If the image of pry o f is disjoint
from the critical points of /, then we say that f is h—disjoint.

We say that f is horizontal with respect to h if h(er (f(x, s))) is independent of s
for all x € F. We say that f is vertical with respect to h if for each x € F the image
of {x} x I under pry o f is contained in a single orbit of the flow of VA. Finally, we
say that f is h—regular if for each s € I, h|y, (Fx{s}) is Morse. (See Figure 1 for
schematics of horizontal and vertical isotopies.)
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horizontal isotopy vertical isotopy

- T

Figure 1: The horizontal planes represent 2~!(¢) for various values of .
Left: a horizontal isotopy of X preserves hi|y pointwise. Right: a vertical
isotopy of ¥ moves each x € X within a single orbit flow of Vi.

Intuitively, one should think of / as a height function whose level sets are horizontal. A
horizontal isotopy of £ moves ¥ N A~ (¢) within h~1(¢), preserving h|x. A vertical
isotopy of ¥ changes /|y, but preserves the projection of ¥ onto each level set 271 (z).
We will usually just say that f is horizontal or vertical, omitting “with respect to h”.

Note that a surface isotopy is generically i—disjoint. We will often explicitly require
isotopies to be i—disjoint because we will be interested in how isotopy affects the
projection of surfaces to 4! (%) , which can be complicated when the isotopy takes
the surface through a critical point. The definitions of horizontal and vertical isotopy
naturally motivate a “nice” position of a surface embedded in X# if we are willing to

allow the surface embedding to have corners.

Definition 2.4 Let ¥ C X* be a PL embedded surface. We say that X is in horizontal—
vertical position with respect to & if there exists a set T = {t1,...,,} disjoint from
{0,1,2,3,4}, with t; <ty <--- <ty, such that the following are true:

e Foreach 1 <i <n—1 the surface X is vertical on the interval (¢;,%+1).

e Foreach 1 <j <n the intersection ZNh~ (¢ /) consists of the disjoint union of a
(possibly empty) banded link and a (possibly empty) union of disjoint embedded
disks.

In other words, ¥ is vertical away from a finite number of nonsingular level sets 2~ (¢;),
while it intersects the 2#71(¢;) in a collection of horizontal disks and a banded link.
When £ is clear, we may simply say that X is horizontal-vertical.

Note that from the definition of vertical, a horizontal-vertical surface must be disjoint
from critical points of 4. Note furthermore that, by an arbitrarily small perturbation in
a neighborhood of the level sets A~1(¢1),...,h~1(t,), a horizontal-vertical surface ¥
may be isotoped to a surface ¥’ with &|y, Morse. This perturbation can be chosen so

Geometry & Topology, Volume 24 (2020)



Isotopies of surfaces in 4—manifolds via banded unlink diagrams 1525

that each horizontal band of X gives rise to a nondegenerate saddle point in X/, and
each horizontal disk in X gives rise to a nondegenerate maximum or minimum point
in ¥’. We will thus work largely with nonsmooth surfaces that are horizontal-vertical
when constructing isotopies, with the understanding that they may be isotoped into
smooth surfaces in Morse position as described above.

The following classical theorem states that arbitrary surfaces can be put into horizontal—
vertical position. This is critical to the study of surfaces embedded in 4-manifolds.
A proof for orientable surfaces is essentially contained in Section 2 of [15]; the
nonorientable case is covered in [11].

Theorem 2.5 [11;15] Let ¥ C X* be a smoothly embedded surface such that h|x
is Morse and X is disjoint from the critical points of h. Then there is an h—disjoint
and h-regular isotopy f: F x I — X*x I with f(F x{0}) = X such that f is a
concatenation of horizontal and vertical isotopies, f(F x {1}) is horizontal-vertical
and h|s(Fx{sy) is Morse for all s € [0, 1).

Both [11] and [15] consider only surfaces embedded in S 4 with the standard height
function, but by applying the argument locally the theorem can be extended to surfaces
in an arbitrary 4-manifold X* with self-indexing Morse function /. We will not cite
this theorem directly, but will implicitly prove this result in Lemma 4.9.

3 Banded unlink diagrams for surfaces in 4—manifolds

3.1 Banded unlink position

For ease of notation we let M; = h~!(¢) denote the (possibly singular) 3—dimensional
level set at height ¢ for each 1 € R. By the projection maps p;, r, we may identify
subsets of distinct level sets M, provided they avoid the appropriate ascending and
descending manifolds. We will often make these identifications implicitly, so for
example, we may think of a link L as living in both M;, and M;, when there is no
risk of confusion.

Definition 3.1 We say that an embedded surface £ C X# is in banded unlink position
if

¢ =[43]

Geometry € Topology, Volume 24 (2020)



1526 Mark C Hughes, Seungwon Kim and Maggie Miller

e X is vertical on the intervals (%, %) and (%, %),

e XN Ms/, is a banded unlink disjoint from the descending manifolds of index-2
critical points of 4, and

e YN Mj/ and XN Ms/, are finite collections of disjoint embedded disks.

Letting ¢ denote the height coordinate on X# induced by %, we can describe a surface
in banded unlink position by a movie in ¢ as follows. Starting at # = 0 and increasing,
we first encounter a collection of minimal disks of ¥ at height r = % For t € (%, %),
the intersection 3 N M; is an unlink in M;, which we denote by L. The next feature
we encounter are the index- 1 critical points of X* at height 1 = 1, which completes
the 1-skeleton of X#. As we continue upwards, at height t = % a family v of bands
appear, attached to the link L. Passing ¢ = % the resulting level set of 3 becomes L,
which is obtained from L by resolving the bands v. We then pass the index-2 critical
points of X at height ¢+ = 2, before finally capping off the components of L, with

maximal disks at height ¢ = %

Note that the link L is necessarily an unlink in M, for ¢ € (% %) (ie it bounds a
collection of disjoint embedded disks), and L, will be an unlink in M; for ¢ € (2, %)

3.2 Banded unlink diagrams

Surfaces in banded unlink position can be represented in terms of the associated Kirby
diagram of X* via banded unlink diagrams. Suppose that the handle decomposition
induced by & on X* is represented by the Kirby diagram K C S3. More precisely,
K isalink Ly UL, C S3, where L; is an unlink, and each component of Lj is
labeled with an integer framing. The components of L; are each decorated with a
dot to distinguish them from the components of L, and each indicates a 1-handle
attached to the O-handle B* along dB* = S as usual (the meridians of L; are cores
of the 1-handles in the handle decomposition of X#). The labeled components of L,
each represent the framed attaching circle of a 2—handle attached to X;.

Given such a Kirby diagram K C 3 for X4, the sphere S3 can be identified with M, /2
while the 3—manifold obtained by performing O—surgery to S3 along L; can be
identified with the level set M3/,. After performing this surgery, L, can again be
thought of as a framed link in M3/, , and we identify the result of performing Dehn
surgery to M3/, along the components of Ly (where the surgery coefficient of each
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Figure 2: A banded unlink in Kirby diagram /C describing a torus %~ smoothly
embedded in CP2#(S! x §3). The 2—component unlink in E(K) bounds
two minima of . Resolving the unlink along the four bands yields the
boundary of two maxima of X. Then x(X¥) =2—4+ 2 = 0. One can check
also that X is orientable.

component is specified by its framing) with Ms,,. Let E(K) denote the complement
S3\ (v(L1) Uv(L3)) of a small tubular neighborhood of X = L1 U L, in S3. Then,
given a link L C E(K), we may think of L as describing links in My, M3/,
and M5/, in the obvious way.

A banded unlink diagram in the Kirby diagram K is a triple (X, L, v), where L C E(K)
is a link and v is a finite family of disjoint bands for L in E(K), such that L bounds
a family of pairwise disjoint embedded disks in Mj/,, and L, bounds a family of
pairwise disjoint embedded disks in M5/, . See Figure 2 for an example of a banded
unlink diagram.

A banded unlink diagram describes an embedded surface % in banded unlink position as
follows. We first note that we can identify £(K) with a subset of M3/, in a natural way.
When fixing this identification, note that the intersection of M3/, with the descending
manifolds (cores) of the 2—handles of X* can be thought of as the attaching circles of
the 2—handles. Hence, as our banded link L U v sits in the complement of a tubular
neighborhood of the attaching circles L, C S3, it can be identified with a subset
of M3/, which we denote by L’ U v’, that misses the descending manifolds of the
2-handles of X4.

Now, as L’ is an unlink, we can apply a horizontal isotopy in M3, if necessary so that
L’ also avoids the ascending manifolds of the 1-handles of X*. We can thus extend
L’ vertically downwards from M3/, to My, where it can be capped off by a family
of disjoint embedded disks in My, . Similarly, we can extend the surgered link L,
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vertically upwards from M3/, to Ms;,, where it can be capped off. As these families
of disks are unique up to isotopy rel boundary, the surface we obtain in this way from
the banded unlink diagram (IC, L, v) is well defined up to isotopy. We denote this
surface by X (IC, L, v). We say that (K, L, v) describes (K, L, v), or that (IC, L, v)
is a banded unlink diagram for X (IC, L, v).

3.3 Band moves

We now proceed to describe a collection of moves which will allow us in Section 4
to define banded unlink diagrams of arbitrary surfaces in X4, and relate the banded
unlink diagrams of any isotopic surfaces. These moves are described in Figures 3 and 4.
They consist of cup and cap moves (Figure 3, top), band slides (Figure 3, middle),
band swims (Figure 3, bottom), 2—handle-band slides (Figure 4, top), dotted circle
slides (Figure 4, middle two rows) and 2—handle-band swims (Figure 4, bottom). These
operations, together with isotopy in E(K), form a collection of moves which we refer
to as band moves. (Note that the dotted circle slide may actually move L rather than
a band, but we still refer to this as a band move for convenience.) Band moves may
transform a banded unlink diagram (K, L, v) into a banded unlink diagram (K, L, v’),
though it is not difficult to verify that the surfaces X (K, L,v) and X (K, L, v’) are

isotopic.
>»0=)* D
} <slide> :
<8 : : P

Figure 3: The cup/cap, slide and swim band moves. These band moves do not
involve the 2-handle attaching circles of K. The cup/cap moves correspond
to 0—and 1- or 2— and 3- stabilization/destabilization of a surface ¥ with
respect to /1. The slide move passes an end of one band along the length of a
distinct band. The swim move passes a band lengthwise through the interior
of a distinct band.
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handles, unlink components handles, unlink components
and bands and bands

¥
\
s 2-handle-
\@0 \{5\0\ band shde
v
dotted circle . -
60\\ shde )
v
dotted circle
shde

¢ AL
%“&c}*&\
PR
V 2-handle-
Q>x%° band swim —

G —

Figure 4: The 2-handle-band slide and 2-handle-band swim moves. These band moves
involve the 2—handles attaching circles of IC. Top: the 2—handle-band slide move slides
a band over a 2-handle, following the usual rules of Kirby calculus. This schematic is
meant to indicate that the 2—handle attaching circle may be knotted and link arbitrarily
with other circles in K or unlink or band components (including the band that slides).
Second row: a dotted circle slide may pass a band over a dotted circle, following the
usual rules of Kirby calculus. Third row: a dotted circle slide may pass the unlink L over
a dotted circle, following the usual rules of Kirby calculus. Bottom: the 2—handle-band
swim move passes a 2—handle attaching circle lengthwise through the interior of a band.
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Notation We refer to the slide, swim, 2-handle-band slide, dotted circle slide, 2—
handle-band swim moves and isotopy in E(K) as Morse-preserving band moves. The
cup and cap moves are not Morse-preserving.

Lemma 3.2 Let ¥ C X* be a surface in banded unlink position. There is a pro-
cedure to obtain a banded unlink diagram (K, Ly, vy) such that Ly and vy are
completely determined by the embedding ¥ — X*. Moreover, X is isotopic to
Y= E(/C, Ls, vg).

Proof Let Ly = X N M3/,_, and let vy be the bands of (XN M;3/,)\ Lx. By
definition of banded unlink position, Ly bounds a system of disks in Mj,, (eg
XN M) and Ly, bounds a system of disks in M5/, (eg XN Ms/,). Since X is
in banded unlink position, Ly U vy is contained in E(K). Therefore, (K, Ly, vy) is
a banded unlink diagram.

Let X':=X(K, Ly, vy). Then ¥’ is also in banded unlink position, with E/ﬂ(%, %) =
N (%, %) Both = N A~!([o, %]) and X' N h~1([o0, %]) are boundary-parallel
disk systems with equal boundary in /=1 ([0, %]) ~ B*, so are isotopic rel bound-
ary. Similarly, £ N A~1 ([%, 4]) and ¥’ Nh~1 ([%, 4]) are isotopic rel boundary in
h_l([%, 4]) =~ (S! x B3). Therefore, ¥ is isotopic to X'. |

Remark 3.3 In Lemma 3.2, we showed that if ¥ and ¥’ are surfaces in banded
unlink position in X*, then the banded unlink diagrams D := (K, Ly, vx) and D' :=
(K, Ly, vy) are well defined. However, even if £ and X’ are isotopic, we have not
yet shown that D and D’ are related in any way.

4 A calculus of moves on banded unlink diagrams

4.1 Overview

In what follows, let K¢y denote the standard (empty) Kirby diagram induced by the
standard height function on S*. (The handle decomposition described by Ko has one
O-handle, one 4-handle and no other handles.) When K = K¢, Swenton [29] and
Kearton and Kurlin [16] show that the cup, cap, band slide and band swim moves relate
any two banded unlink diagrams of isotopic surfaces.
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Theorem 4.1 [29; 16] Let X and X' C S* be isotopic surfaces described by banded
unlink diagrams D := (K¢, L, v) and D’ := (Ko, L', v’), respectively. Then D’ can be
obtained from D by a finite sequence of cap/cup, band slides, band swims and isotopies
in §3.

Note that we have not defined what it means for an arbitrary surface in S* to be
described by a banded unlink diagram (even with / the standard height function). Part
of the content of Theorem 4.1 is that such a diagram is well defined.

Definition 4.2 Let ¥ be a surface in S*. Let %’ be a surface in banded unlink
position (with respect to the standard height function) which is isotopic to ¥. We say
that (Ko, Ly, vy) is a banded unlink diagram for . This diagram is well defined up
to cap/cup, band slides, band swims and isotopy in S3 [29; 16].

By including 2-handle-band swims, 2—handle-band slides and dotted circle slides
along with the moves in Theorem 4.1, we can generalize Theorem 4.1 to surfaces in
arbitrary closed 4—manifolds. We state the theorem now, even though we have not
defined what it means for an arbitrary surface in X# to be described by a banded unlink
diagram.

Theorem 4.3 Let ¥ and ¥’ be surfaces X*, with banded unlink diagrams D :=
(K,L,v) and D' := (K, L’,v’"), respectively. Then ¥ and X' are isotopic if and only
if D can be transformed into D’ by a finite sequence of band moves.

Note that when X* = S* and K = Ko, Theorem 4.3 reduces to the statement of
Theorem 4.1. Loosely, to prove Theorem 4.3, we will analyze how banded unlink
diagrams for ¥ change under isotopy of ¥. Here is a brief outline of our strategy for
proving Theorem 4.3:

(1) We show that surfaces in banded unlink position admit banded unlink diagrams
well defined up to band moves (Section 3.3).

(2) We show that surfaces in horizontal-vertical position (Definition 2.4) admit
banded unlink diagrams well defined up to band moves (Section 4.2).

(3) We show that certain isotopies of a horizontal-vertical surface preserve the
associated banded unlink diagram up to band moves (Section 4.2).
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(4) We show that surfaces in the more general generic position (Definition 4.8) admit
banded unlink diagrams well defined up to band moves (Section 4.4).

(5) We show that certain isotopies between generic surfaces preserve the associated
banded unlink diagrams up to band moves (Section 4.5).

(6) We show that any isotopy of surfaces can be perturbed to an isotopy as in step (5).
We define the banded unlink diagram of a surface X to be the banded unlink
diagram of any generic surface isotopic to X (Section 4.5).

4.2 Banded unlink diagrams for horizontal-vertical surfaces

We now extend Lemma 3.2 to horizontal-vertical surfaces, rather than only surfaces in
banded unlink position.

Proposition 4.4 Let ¥ C X* be a surface in horizontal-vertical position such that
all minima of h|y, are below all saddles of h|y,, which are below all maxima of h|y.
Then we may obtain a banded unlink diagram D = (K, Lz, vy) such that Ly, and vy
are determined up to Morse-preserving band moves by the embedding of ¥ into X*.
Moreover, % is isotopic to X (K, Lx, vy).

Proof We will isotope X into banded unlink position and apply Lemma 3.2. If
necessary, apply a small horizontal isotopy to the horizontal parts of X Nh~1(3 —¢, 4]
to avoid intersections with the ascending manifolds of index-3 critical points of /.

Then isotope £ NA~1(3 —e, 4] vertically into h71(3 —¢, 2).

Next, apply a small horizontal isotopy to the horizontal parts of X N/A~! [O, % + e) to

avoid intersections with the descending manifolds of index-1 critical points of &. Then
isotope X NA~! [O, % + e) vertically into 7! (%, % +€).

Now isotope horizontal neighborhoods of the minima and maxima of /|y horizontally
to avoid the ascending and descending manifolds of index-2 critical points of /.
Isotope the minima vertically to 2~!(3) and the maxima vertically to A~!(2) (apply
further horizontal isotopies to the minima and maxima as necessary to ensure no

self-intersections are introduced to X).

Let b be the horizontal neighborhood of an index-1 critical point of &|x (so b is a
band). If h(b) > 2 and b intersects the ascending manifold of some index-2 critical
point of 7, then isotope b slightly horizontally to either side of the ascending manifold.
(These two choices eventually give rise to banded unlink diagrams which differ by a
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2-handle-band slide; see Figure 5, top left.) Do this for each such intersection, and
then isotope b vertically to A1 (%, 2) (vertically isotope other bands downward in

h1 (%, 2) as necessary to avoid self-intersections).

Repeat for every other index-1 critical point of /|y . Take the bands to lie in distinct

heights, by vertical isotopy. Say the bands are by, ..., b,, with % <h)<---<
h(by) <2.Set Ly :=XN M35, vi i= ppp;),3/2 and vy = Ui vi.

Note (K, Lx, vy) is not yet a banded unlink diagram, due to the following disallowed
situations that may occur when projecting the bands b; to M3/,:

* It might be that an end of some v; is attached to another band v; . This implies
J <i.If so, slide the end of v; off of v; and onto either Ly, or vg, with k < j.
Repeat until both ends of v; are on Lyx. There are two choices to make at each
step (that is, there is a choice of which direction to slide). The two obtainable
diagrams differ by a sequence of band slides. (See the left of the second row of
Figure 5 for the simplest case when v; has both ends on Ly .)

* It might be that a band v; intersects the interior of another band v; . This implies
J <i. If so, swim v; out the length of v;. If v, intersects the interior of
another band vy (necessarily k < j), this introduces new intersections between
v; and vy . Repeat on each intersection of v; with another band until v; does
not intersect any other bands. There are two choices at each step (that is, there
is a choice of which direction to swim). The two obtainable diagrams differ by
a sequence of band swims. (See the left of the third row of Figure 5 for the
simplest case when v; does not intersect the interior of any other band.)

¢ It might be that a segment of a band v; passes through the descending manifold
of some index-2—critical point of 4. In K, this means that v; intersects a 2—
handle attaching circle C. Swim C through v to remove the intersection. There
are two choices of directions in which to swim. The two obtainable diagrams
differ by a 2—handle-band swim. (See the right of the top row of Figure 5 for
the simplest case when v intersects exactly one attaching circle, exactly once.)

e It might be that Ly, or a band v; still do not lie in E(K) because they intersect
the ascending manifold of an index-1 critical point. Then push Ly or v;
horizontally off the ascending manifold. For each such intersection, there are
two choices of which direction to push. The two obtainable diagrams differ by a
dotted circle slide. (See the right of the second and third rows of Figure 5.)
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Figure 5: Left, top row: If a band v; intersects the ascending manifold of an
index-2 critical point of &, we must choose how to slide the band off of the
ascending manifold before projecting to h~! (%) . In IC, these two choices yield
diagrams that differ by a 2—handle-band slide of v; over the corresponding 2—
handle attaching circle. Left, second row: If the end of band v; lies on v;, then
we must choose which way to slide v; off of v;. (Here we draw only the simple
case that both ends of v; lie on Lx. We do not care about interior intersections
of bands or intersections with 2-handle attaching circles.) Left, third row:
If a band v; intersects the interior of band v;, then we must choose which
way to swim v; through and out of v;. (Here we draw only the simple case
that v; does not intersect any other bands. We do not care about intersections
with 2-handle attaching circles.) Right, top row: If a band v; intersects the
descending manifold of an index-2 critical point, we must choose how to swim
the corresponding attaching circle in K out of the band v; . (Here, we draw only
the simple case that only one 2-handle attaching circle intersects v;, in one
point.) Right, second and third rows: If a band v; or L (respectively) intersect
the ascending manifold of an index- 1 critical point, then we push horizontally
off. The resulting diagrams differ by a dotted circle slide.

Changing any choices made during this operation changes the diagram by Morse-

preserving band moves. See Figure 5 for a summarizing schematic. The point of

ordering the bands and proceeding in order from lowest to highest is to ensure that this

procedure terminates, and eventually after a finite number of choices all bands will be
simultaneously projected (disjointly) to E(K).

Each move on the projections v; can be induced by a horizontal isotopy supported in a

neighborhood of b; . After this procedure and a vertical isotopy of the bands to M3/,,
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we find an isotopy from X to a surface in banded unlink position, whose banded unlink
diagram we denote by D = (K, Ly, vx). Via the isotopy constructed above we see
that X is indeed isotopic X (K, Ly, vy).

We must check that the choices of hA-regular and h—disjoint horizontal and vertical
isotopies used to position X (that is, the choice of X’) do not affect the resulting
diagram up to Morse-preserving band moves (ie that Ly, and vy are well defined up
to Morse-preserving band moves). It is sufficient to prove the following proposition:

Proposition 4.5 Let S and S’ be horizontal-vertical surfaces in X*, with all minima
below all bands, which are in turn below all maxima. Assume all bands of S and S’
can be projected to M3, (ie assume that the bands of S and S’ do not intersect the
ascending manifold of any index-3 critical point of h or the descending manifold of any
index-1 critical point of h). Suppose there is an h—disjoint and h-regular horizontal
or vertical isotopy f taking S to S’. Let Dg = (K, Ls,vs) be a banded unlink
diagram obtained by setting Ls = S N My, ¢ for to the height of the highest minima
of S, and vgs the bands obtained by projecting the bands of S to M3, (viewed as
containing a copy of Lg, projected vertically) and (as in Proposition 4.4) choosing
slides, swims, 2—handle-band slides/swims and dotted circle slides as necessary to make
the projected bands disjointly lie in E(K). Similarly, choose a banded unlink diagram
Ds: = (K, Lgs/,vs’) using S’. Then Ds and Dg: are related by Morse-preserving
band moves.

Proof We have two cases:

Case 1 (the isotopy is horizontal) Since the isotopy is horizontal, L is isotopic to
Lgs in h=1(3). Therefore, Ly is isotopic to Lgs in E(S) up to dotted circle slides.

Let v; beabandin S. Theisotopy f takes the banded link LUv,U-- Uvg =SNMp ;)
to the banded link L' U viU---Uv, = 8"N Mjy;), up to relabeling of bands (for some
isotopic links L and L'). Since L and L’ are isotopic, there is a natural identification
between L and L. Say that v; goes to band v/, with their endpoints on L identified.

Suppose h(v;) > 2. As per the above argument in Proposition 4.4, if the isotopy
passes v; through the ascending manifold of an index-2 critical point of %, then this
effects a 2—handle-band slide in Dg .

For any value of h(v;), if f takes the ends of pp(y,),3/2(vi) over any other projection
Ph(v;),3/2(v;j) with h(v;) < h(v;), then as in Proposition 4.4 this effects a band
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slide in D. If f takes the interior of pp(y;),3/2(vi) through any other projection
Ph(v;),3/2(v;) with h(vj) < h(v;), then as in Proposition 4.4 this effects a band swim
in Dg. If f takes v; through the descending manifold of an index-2 critical point
of h, then as in Proposition 4.4 this effects a 2—handle-band swim in Dy .

Finally, if f takes pp(y;),3/2(vi) through the ascending manifold of an index- 1 critical
point, then as in Proposition 4.4 this effects a dotted circle slide in D.

o . S
If none of the above happen to v; during f, then the replacement v; — v; just isotopes

the projection of v; in h~! (%), ie changes the projection of v; by isotopy in E(K)

and dotted circle slides.

Case 2 (the isotopy is vertical) By assumption, the vertical isotopy does not introduce
new critical points of %|g and preserves the projections of S pointwise to each M;.
Then L/ differs by Lg by isotopy in ™! (%), ie isotopy in E(K) and dotted circle
slides. Moreover, the vertical isotopy does not affect the projections of the bands of S
(after identifying Lg and Lg-), so these projections agree with those of S’. Then Dg
and Dy agree up to Morse-preserving band moves which arise from varying choices of
how to separate the projections of bands to M3/, (as seen above in Proposition 4.4). O

Thus, D is well defined from % up to Morse-preserving band moves. Moreover, X is
isotopic to ¥, so, by Lemma 3.2, X is isotopic to X (K, Ly, vy). This completes the
proof of Proposition 4.4. |

Given X as in Proposition 4.4, we let (K, Ly, vy) denote the banded unlink diagram
resulting from the proof of Proposition 4.4.

We now show that we need not restrict the ordering of critical points of a horizontal—
vertical surface in order to obtain a banded unlink diagram.

Lemma 4.6 Let X be a surface in horizontal-vertical position. Then we may obtain a
banded unlink diagram (IC, Ly, vy) such that Ly and vy are determined up to Morse-
preserving band moves by the embedding of ¥ into X*. Moreover, ¥ is isotopic to
(K, Lx,vy).

Proof Choose an ordering x1, ..., x, of the critical points of 4|y, with all index-0
critical points coming before all index-1 critical points, which come before all index-2
critical points. Perform A -regular and s—disjoint horizontal and vertical isotopy to X
to reorder the horizontal regions according to this ordering, to obtain surface X’ (the
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vertical isotopies move horizontal regions to the appropriate height; we apply horizontal
isotopy as necessary to ensure horizontal regions never intersect). Set Ly = Ly and
Uy = Vyy.

Suppose y1, ..., yn is another ordering of the critical points of %|x with all index-0
critical points coming before all index-1 critical points, which come before all index-
2 critical points. Let X” be the surface obtained by isotoping ¥ to reorder the
horizontal regions of ¥ according to this ordering. Then ¥” can be transformed
into X’ by a sequence of h-regular and i —disjoint horizontal and vertical isotopies
(and the surface is in horizontal—vertical position after each isotopy, with minima
below bands below maxima — essentially, we reorder minima, keeping them below all
bands; then we reorder bands, keeping them between the minima and maxima; then we
reorder the maxima, keeping them above the bands). By Proposition 4.5, the diagrams
(K, Ly, vy) and (K, Ly, vsr) agree up to Morse-preserving band moves. Therefore,
(K, Ly, vy) does not depend on the choice of ¥’. By Proposition 4.4, (K, Ly, vy) is
well defined up to Morse-preserving band moves. Moreover, X (K, Ly, vyx) is isotopic
to X/, so is isotopic to . O

Given X as in Lemma 4.6, we let (K, Ly, vy) denote the banded unlink diagram
resulting from the proof of Lemma 4.6.

Remark 4.7 We can immediately extend Proposition 4.5 to say that if ¥ and X’ are
horizontal—-vertical surfaces which are isotopic through an s-regular and h—disjoint
horizontal or vertical isotopy, then (K, Ly, vy) is related to (K, Ly, vy/) by Morse-
preserving band moves.

4.3 Interlude: surface singularities

The following definitions generalize the classes of surface singularities identified and
studied in [16].

Definition 4.8 [16, Definition 2.5] For a fixed surface F, let CS be the space of all
smoothly embedded surfaces ¥ C X# with ¥ = F. CS inherits the induced topology
from the Whitney topology on the space of smooth maps F' — X. From now on, when
we write “CS”, the topology of the embedded surface is implicitly understood to be
fixed. We say that X € CS is

e generic if h|y is Morse and all critical points of /|y have distinct height values
under /;
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* an ATAT—singularity if h|y fails to be generic because of two nondegenerate
extrema of & that have the same / value;

e an Ai"Al_—singularity if |y fails to be generic because a nondegenerate saddle
and extremum of /4 that have the same /& value;

e an A7 A —singularity if h|x fails to be generic because of two nondegenerate
saddles of % that have the same & value;

e an Ap-singularity if h|y fails to be generic because of a singularity of i|x: ¥ —
R having the form A (x, y) = x2 — y3 in local coordinates (x,y) on X.

Let Sp C CS be the subspace of all surfaces which are ATA;F—, ATAI_—, AT Ay -or
Ap—singularities. We call Sy, the singular subspace of X* with respect to h. When
K = Ky, then S, agrees with the singular subspace defined by Kearton and Kurlin [16].

4.4 Banded unlink diagrams for generic surfaces
The following lemma is analogous to [16, Proposition 2.6(i)].

Lemmad4.9 Let ¥ C X* be ageneric surface which is disjoint from critical points of h.
Then we may obtain a banded unlink diagram (K, L, vs) determined by ¥ — X*
up to Morse-preserving band moves. Moreover, X is isotopic to X (I, Ly, vy).

Proof We will isotope X into horizontal-vertical position and apply Lemma 4.6. See
Figure 6 for a schematic of the isotopy.

Flatten ¥ in a small neighborhood of each local extremum. Say the smallest value
of ¢ for which M, N X is nonempty is #o; s0 X N My, ¢ is an unlink for very small

XA,

Figure 6: To isotope a generic surface ¥ C X* into horizontal-vertical
position with respect to £, we first flatten a neighborhood of each extremum
of h|x. Then we isotope X to be vertical below each critical point of 4|5,
starting from the lowest critical point and working upward. We give more
detail in the proof of Lemma 4.9.
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€ > 0. Take the values of critical points of A|x tobe tg <t <--- <t,. Perturb X
vertically if necessary so that {zg,...,#,} N {0, 1,2, 3,4} = @ (for small perturbations,
the choice of perturbation does not affect the construction of Lemma 4.6). Since X is
generic, there is exactly one critical point of /|x in each M, .

Fixing £NM,, , horizontally isotope ZNA~1(to, 4] so that ¥ is vertical in 271[0, t;—¢).

Then the projection of XNh~1[t;—¢, 1 +¢€] to My, is abounded (perhaps disconnected)
surface S. Specifically, if x is the critical point of /|x in M, , then this S is

the disjoint union of an annulus and a disk if x is a minimum,
a planar surface with three boundary components if x is a saddle,
a disk if x is a maximum.

If x is an extremum, perform a horizontal isotopy of X in A~ ![t; — €, 1 + €] so that
S Nh~ Yty t1) is vertical. The cross-section ¥ N/~ (¢1) includes one horizontal disk.

Say that x is a saddle. Then, up to isotopy in M, , S can be uniquely contracted to
a l—complex ¥ N M;,_ U{edge E}. Vertically isotope % in A~ [t] —e,t; + €] so
that X is vertical in A~ 1(t9,¢1) and ¥ N My, = (£ N My,—¢) U (band along E). The
framing of the band along the arc E agrees with the surface framing S induces on E.

Now, fori =1,...,n—1 (in order), repeat this procedure. That is, horizontally isotope
S Nh~Y(t,4] so that ¥ is vertical in A~ 1(t;,t;4+1 — €). If the critical point of h|x
in My, is an extremum, then horizontally isotope X near My, , so that X is vertical
in A=Y(t;, ti+1) and TN M, +1 s adisjoint union of a (possibly empty) link and a disk.
If the critical point of h|x in My, is a saddle, then again (up to isotopy in My, )
there is a unique band b that can be attached to XN M, 41— SO that resolving b yields
XN My, +e. Vertically isotope X N h=[ti;1 —€,ti11 + €] so that X is vertical in
h=1(t;. ti+1) and SN h~1(t;41) is the banded link =N My, _ Ub.

Call the resulting surface ', so the original X is isotopic through h-regular and
h—disjoint horizontal and vertical isotopies to X/, where X’ is in horizontal-vertical
position. Suppose X" is another horizontal-vertical surface isotopic to X through /-
disjoint and h—regular horizontal and vertical isotopies. Then ¥’ and X" are isotopic
through Ah—disjoint and s-regular horizontal and vertical isotopies. By Proposition 4.5
and Remark 4.7, (KC, Ly, vyy) is related to (K, Ly, vyr) by Morse-preserving band
moves.

Set (K, Ly,vy) := (K, Ly/,vy). By Lemma 4.6, ¥ determines a banded unlink
diagram (K, Ly, vy) well defined up to Morse-preserving band moves. Moreover, X
is isotopic to X (K, Ly, vy). O
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Given X as in Lemma 4.9, we let (K, Ly, vx) denote the banded unlink diagram
resulting from the proof of Lemma 4.9. We say that (K, Lx, vx) describes or is a
banded unlink diagram for X.

Remark 4.10 When X is a generic surface in banded unlink position, the definitions
of (K, Ly, vy) in Lemmas 3.2 and 4.9 agree.

4.5 Banded unlink diagrams for arbitrary surfaces
The following lemma is analogous to [16, Proposition 2.6(ii)—(iv)]:

Lemma 4.11 Let ¥ and X' be generic surfaces in X*. Let D = (K, L,v) and
D' = (K, L’,v") be banded unlink diagrams associated to 3 and X', respectively, as in
Lemma 4.9.

(i) If ¥ and X' are h—disjoint isotopic through generic surfaces, then D and D’
are related by Morse-preserving band moves.

(ii) If ¥ and X' are h—disjoint isotopic through generic surfaces and one A?A?E -
singularity, then D and D’ are related by Morse-preserving band moves.

(iii) If ¥ and X' are h—disjoint isotopic through generic surfaces and one Aj—
singularity, then D and D’ are related by band moves.

Proof (i) An isotopy through generic surfaces preserves the level sets ¥ NA~1(¢)
up to isotopy and reparametrization of 4. Therefore, this isotopy does not affect the
construction of Lemma 4.9. The unlink L is taken to L’ by isotopy in h~! (%), SO
L’ can be obtained from L by isotopy in E(K) and dotted circle slides. Each band
projection is then isotoped in E£(K) unless the corresponding band meets an

¢ ascending manifold of an index-2 critical point of /, inducing a 2—handle-band
slide;

¢ descending manifold of an index-2 critical point of /, inducing a 2—handle-band
swim;

¢ ascending manifold of an index- 1 critical point of /4, inducing a dotted circle
slide.

(i) Perturb the isotopy so that near the singularity, the isotopy is a vertical exchange of
heights between two critical points. Say the isotopy goes from X to Xy, then vertically
to X1 and then to ¥, where the AlﬂEAldE singularity appears during the isotopy from
3 to X1. We consider each of the following possibilities:
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o If the exchanged critical points are both extrema, then this does not affect the
construction of Lemma 4.9.

o If the exchanged critical points are an extremum and an index-1 critical point,
then this does not affect the construction of Lemma 4.9. (These critical points
correspond to a minimum or maximum disk and a band which does not intersect
the interior of that disk.)

o If the exchanged critical points are both index- 1, then they correspond to bands
whose projections to M3/, must be disjoint (since at some point during this
vertical isotopy, they live in a common M; ). Therefore, this does not affect the
diagram resulting from Lemma 4.9.

Therefore, ¥¢ and X1 have banded unlink diagrams equivalent up to Morse-preserving
band moves. The claim follows from part (i).

(iii) When passing an A,—singularity (away from critical points of /) a nondegenerate
saddle and extremum appear or disappear [16, Claim 4.3(iv)]. In the case when the
extremum created is a minimum, this corresponds to performing a cup move, while in
the case of a maximum the banded unlinks are related by a cap move. Away from the
Ap—singularity, this is an isotopy through generic surfaces, so the claim follows from
part (i). O

The following analysis appears in [16]. Although they state this lemma in S* rather
than an arbitrary 4-manifold X#, their techniques hold generally.

Lemma 4.12 [16, Claim 4.3] (i) The subspace S}, is codimension-1 in CS.
(i) Every element of CS\ S}, is generic.
(iii) Any h—disjoint isotopy of a surface in X* can be deformed to an h—disjoint

isotopy so that all intermediate surfaces are generic except for finitely many
singularities as in Definition 4.8.

Lemma 4.13 Let ¥ and ¥’ be surfaces which are disjoint from the critical points
of h. Let f be an isotopy with f(F xI) =% and f(F x 1) = X'. Then f can be
deformed to an h—disjoint isotopy, fixing f|rFxo and f|fFx1.

Proof Let H C X* be the critical points of /. Then F x I is a smooth codimension-2
submanifold of X# x I, while H x I is a dimension-1 submanifold of X* x I. We
may generically perturb F x I (and hence f') rel boundary to be disjoint from H x I,
to obtain an s —disjoint isotopy. |
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Lemma 4.14 Let ¥ and X' be isotopic generic surfaces embedded in X* which
are both disjoint from critical points of h. Say that ¥ and ¥’ have banded unlink
diagrams D and D/, respectively. Then D can be transformed into D' by band moves.

Proof Let f: F xI — X*x I be anisotopy from ¥ = f(F x0) to &' = f(F x 1)
By Lemma 4.13, f can be taken to be h—disjoint. By Lemma 4.12, f can be perturbed
slightly so that f(F x s) is generic except for finitely many values of s (at which
time f(F x s) is a singularity as in Definition 4.8), and f is still h—disjoint. Fix
0<s1 <---<sy <1 suchthat f(F xs) is generic if ¢ ¢ {s;}, and f(F xs;) is a
singularity as in Definition 4.8.

Fori=1,....,n—1,let X; := f(F x(s;i +¢€)). Let Xp:= X and X, := X' Let
D; =(K,Lx,,vs;). By Lemma4.11, D; is obtained from D; 1 by band moves. Thus,
Dy, =D’ is obtained from Dy = D by band moves. O

Any surface in X* can be perturbed to be generic and away from critical points of /.
Therefore, Lemma 4.14 allows us to make the following definition, completing the
proof of Theorem 4.3:

Definition 4.15 Let = be a surface embedded in X*. Let X’ be a generic surface
which is disjoint from critical points of / such that X is isotopic to X’. We say that
(K, Ls,vsy) describes or is a banded unlink diagram for ¥. By Lemma 4.14, this
diagram is well defined up to band moves.

5 Uniqueness of bridge trisections

First, we recall the definition of trisection of a closed 4—manifold.

Definition 5.1 [6] Let X* be a closed 4—manifold. A (g, k)—trisection of X* is a
triple (X1, X2, X3) where

e X1UXUX;3=X"%,

o X;f, S'xB3,

e X;iNX;=0X,N0X; =fzS! x B?

e X1NXoNXszx=3g,
where X is the closed orientable surface of genus g. Here, g is an integer while

k = (k1,ko,k3) is a triple of integers. If k1 = k» = k3, then the trisection is said to
be balanced.
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Briefly, a trisection is a decomposition of a 4-manifold into three elementary pieces,
analogous to a Heegaard splitting of a 3—manifold into two elementary pieces. In-
tuitively, one should think that the need for an “extra” piece of this decomposition
when the dimension increases corresponds to an “extra” type of handle. That is, given
a Heegaard splitting M3 = Hy U H,, one can view H; as containing the 0— and
1-handles of M3 while H, contains the 2— and 3—handles of M 3. Similar is true for
a trisection (X1, X2, X3) of X 4. one can view X as containing the 0— and 1-handles
of X* and X3 as containing the 3— and 4-handles of X 4 while X, contains the
2-handles of X*. See [20] for a clear description of a trisection from this point of

view.

Note that from the definition, (X4, X; N X, X; N Xy ) gives a Heegaard splitting of 0.X; .
By Laudenbach and Poénaru [18], X% is specified by its spine, Xg U; ; (X; N X;).
Therefore, we usually describe a trisection (X1, X2, X3) by a trisection diagram
(Xg.a,B,y) where each of «, B and y consist of g independent curves bounding
disks in the handlebodies X; N X7, X> N X3 and X1 N X3, respectively.

We do not require much knowledge about trisections for this paper. For more exposition
of trisections, refer to [6].

Definition 5.2 By the standard trisection of S* we mean the unique (0, 0)—trisection
(X1. X2, X3). View S* = R* U 0o, with coordinates (x, y, 7, #) on R*, where (x, y)
are Cartesian planar coordinates of a plane and (r, #) are polar planar coordinates.
Up to isotopy, X; = {9 € [27”1 2—”-(1’ + 1)]} Uoo. Then X; = B*, XiN X,y =

{0 =2F-(i+1)}Uoo=B?and X;NX;NXg={r=0}Uooc=xS2.

In [21], Meier and Zupan introduce bridge trisections of surfaces in S 4. In[22], they
extend this notion to surfaces in an arbitrary closed 4—manifold.

Definition 5.3 [21;22] Let S be a surface embedded in X*. Let 7 = (X1, X2, X3)
be a trisection of a closed 4-manifold X*. We say that S is in (c, b)-bridge position
with respect to T if

e SN JX; is adisjoint union of ¢ boundary-parallel disks;

e SNX;NX; is atrivial tangle of b arcs.

Here, b is an integer and ¢ = (¢;, ¢, cx) is a triple of integers. Note x(S) =) c¢; —b.

See Figure 7 for an example of a surface in bridge position.
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"1\

Figure 7: An RP? in S* in (1,1, 1;2)-bridge position with respect to the
standard trisection. Left: we draw the whole surface (projected to R3). The
three planes indicate the three 3-balls {X; N X;}. Right: we show each disk
system (each have one component) individually.

Theorem 5.4 [21; 22] Let S be a surface embedded in X* with a trisection
(X1, X2, X3). Then, for some ¢ and b, S can be isotoped into (c, b)—bridge position
with respect to 7. We may take c; = ¢y = c¢3.

Because a collection of boundary-parallel disks in (S x B3) is uniquely determined by
its boundary (up to isotopy rel boundary), a surface S in bridge position is determined
up to isotopy by S N (U, »; Xi N X;).

perturb

/\

Figure 8: Left: ¥ =~ RP?2 in (1,1, 1;2)-bridge position in S* (with respect
to the standard trisection). We indicate a disk A along which we perturb.
Right: after perturbing, ¥ is in (1,2, 1; 3)-bridge position (up to permuting
Xl, Xz and X3).
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Definition 5.5 Let X* be a 4—manifold with trisection T (X1, X2, X3). We say that
an isotopy f of X* is T—regular if f;(X;) = X; foreach i =1,2,3 forall 7.

There is a natural perturbation of a surface in bridge position, analogous to perturbation
of a knot in bridge position within a 3—manifold.

Definition 5.6 [21; 22] Let S C X* be a surface in (c, b)-bridge position with
respect to T = (X1, X2, X3). Let A C X; \ v(S) be a properly embedded disk
such that dA consists of one arc in dv(S), one arc in X; N X;4; and one arc in
X; N X;_1. Obtain S’ by compressing S along A. Note S’ is isotopic to S and is in
(¢’, b+1)-bridge position, where ¢, = ¢; + 1,clfJrl =Ci+1.¢/_; = ci—1. We say that
S’ is obtained from S by elementary perturbation, while S is obtained from S’ by
elementary deperturbation (see Figure 8).

Theorem 5.4 shows existence of bridge trisections. The following theorem of [21] gives
uniqueness of bridge trisections with respect to the standard trisection of S*.

Theorem 5.7 [21] Let S and S’ be surfaces in bridge position with respect to the
standard trisection To of S*. Suppose S is isotopic to S’. Then S can be taken to S’
by a sequence of perturbations and deperturbations, followed by a To-regular isotopy.

Theorem 5.7 relies on Theorem 4.1, which is specific to S*. In [21], Meier and Zupan
give an equivalence between bridge trisections and banded unlink diagrams, and then
show how to translate moves on banded unlink diagrams into sequences of perturbations
and deperturbations. These moves do not occur in order; in particular, they do not show
that all the deperturbations can come after the perturbations.

In [22], Meier and Zupan state the following theorem as a conjecture, and comment
that they believe it would follow from a generalized version of Theorem 4.1 following
a proof similar to that of Theorem 5.7. We will prove the following theorem using
Theorem 4.3.

Theorem 5.8 Let S and S’ be surfaces in bridge position with respect to a trisection
T of a closed 4—manifold X*. Suppose S is isotopic to S’. Then S can be taken to S’
by a sequence of perturbations and deperturbations, followed by a T —regular isotopy.

Before proving Theorem 5.8, we state several necessary definitions and lemmas
from [22].
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Definition 5.9 Let T be a tangle of properly embedded arcs in a solid handlebody H.
We say that T is trivial if T is boundary-parallel, ie cobounding disjoint disks D with
arcs T C 0H. We call T" a shadow of T.

Definition 5.10 [21;22] Let T be a trivial tangle in a handlebody H with shadow 7.
Let v be a set of bands attached to 7', with core arcs n disjoint from a core of H.
Project n to dH. We call 1 a shadow of v. We say that n is dual to T' if nNT' = @
and each component of n U T’ is simply connected.

Notation Given a Kirby diagram KC, let L1 C S D K be the unlink of dotted circles
(defining 1-handles) in K. Recall that M3/, = S 3 surgered along L with O—framing.
Let L, C S be the link of 2—handle attaching circles in K.

Recall E(K) = S3\v(L1UL,).

Definition 5.11 [22] Let K be a Kirby diagram. Let H Ur H’ be a Heegaard
splitting of M3/, such that a core of H contains L, and a core of H' contains L.

Let (K, L,v) be a banded unlink. We say that (K, L, v) is in bridge position with
respect to the Heegaard splitting H Ur H' if the following are true:

e LNH and L N H’ are each trivial tangles with no closed components.

e The bands v are all contained in H and there is a shadow n of v C H such that
the surface framing dH induces on 1 agrees with the framing v induces on 7.

e There is a shadow L’ of L N H such that n and L’ are dual.

See Figure 9 for an example of a banded unlink in bridge position. Meier and Zupan [22]
show that every banded unlink can be put into bridge position with respect to a given
Heegaard splitting of M3/, (the proof is similar to the fact that every knot in a Heegaard-
split 3—manifold can be isotoped into bridge position).

Lemma 5.12 [22, Lemma 4.4] Let (K,L,v) be a banded unlink diagram. Let
H Ufr H’ be a Heegaard splitting of M. After isotopy of L Uv in E(K), we may
assume (K, L, v) is in bridge position with respect to H Ur H'.

Lemma 5.13 [22, Lemma 4.5] Let 7 = (X1, X2, X3) be a trisection of a 4—mani-
fold X*. Fix a self-indexing Morse function h: X* — I, so that X, contains all the
index-0 and index-1 critical points of h, X, contains all the index-2 critical points,
and X3 contains all the index-3 and index-4 critical points (see [6, Lemma 14]).
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8

Figure 9: Left: a banded unlink for a torus in CP2#(S! xS 3). The surface F
induces a genus-2 Heegaard splitting H Ur H' on M, = S! x S2. Right: we
isotope the banded unlink into bridge position with respect to the Heegaard
splitting H U H’, as in Definition 5.11.

Let K be the Kirby diagram of X 4 induced by h, so M| =~ dX; comes with a Heegaard
splitting M3/, = HUp H', where H =XNX», H' =X NX3 and F = X NX>NX3.
(We will say that K is a Kirby diagram of X* induced by 7.)

Let (K, L,v) be a banded unlink diagram describing a surface S C X*. If (K, L, v)
is in bridge position with respect to H U H’, then the Heegaard splitting H Ur H'
induces a trisection T on X* such that S is naturally in bridge position with respect
to T. Similarly, if S’ is a surface in bridge position with respect to T, then we may
obtain a banded unlink (K, L’,v") for S’ which is in bridge position with respect to
the Heegaard splitting M3/, = H Ur H'.

Now we are ready to prove Theorem 5.8, mirroring the proof of Theorem 5.7 in [21].

Proof Let S and S’ be isotopic surfaces in X# which are both in bridge position
with respect to a trisection 7 = (X1, X2, X3). Let K be a Kirby diagram for X 4 asin
Lemma 5.13. Againlet H = X1 N X, and H' = X; N X3 be such that H Up H' is a
Heegaard splitting of M3/, .

By Lemma 5.13, 7 induces a banded unlink diagram D := (K, L, v) for S, where D
is in bridge position with respect to the Heegaard splitting H Ug H’. Similarly, 7
induces a banded unlink diagram D’ = (K, L', v’) for S’ which is in bridge position
with respect to H Up H'.
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By Theorem 4.3, D can be taken to be isotopic to D’ after performing cap/cup,
band slide, band swim, 2-handle-band slide, dotted circle slide and 2—handle-band
swim moves. Meier and Zupan show explicitly how to achieve the cap/cup, band
slide and band swim moves by perturbing and deperturbing S with respect to 7 in
[21, Theorem 1.6].

Suppose D’ is obtained from D by a single 2-handle-band slide or swim. Let z be the
framed arc from a band v € vy to a 2-handle attaching circle C C Ly C M3/, along
which the slide or swim takes place. Project C onto F so that the surface framing on
the projection C’ is the handle framing of C. Take C’ to be disjoint from a shadow
of the trivial tangle H N L. As in [21] (the proof that band swims can be realized by
perturbation), perturb (L, v) so that C’ is also disjoint from shadows of the bands b
and then further perturb (L, v) until the projection of z to F is embedded and disjoint
in its interior from the shadows of L N H and b, and so the surface framing in this
projection of z agrees with the framing of z. Each of these perturbations induces
perturbation of the bridge trisection 7.

Now performing the 2—handle-band slide or swim induces isotopy on S which fixes
S N (X1 N X3) and isotopes S N (X1 N Xz) and S N (X2 N X3) within X; N X,
and X, N X3, respectively. This can therefore be taken to be a 7 —regular isotopy.
(Diagrammatically, the 2—handle-band slide or swim induces disk-slides on a bridge
trisection diagram of S. We do not consider the diagrammatic point of view on bridge
trisections in this paper; see [22].)

Claim 5.14 After a sequence of perturbations and deperturbations of S, we may take
(L, v) to be isotopic to (L', v") in E(K) up to dotted circle slides.

Proof The claim almost follows from Theorem 4.3, except that we did not show we
could take the dotted circle slides to happen after the other band moves (except for
isotopy in E(K), which we did implicitly show could be taken to happen at the end of
the equivalence from (K, L, v) to (K, L, v")). Two diagrams that differ by dotted slides
agree up to isotopy in S(K) := (S3\ v(L2))o(L1), ie the 3—manifold with boundary
obtained from K by deleting the 2—handle attaching circles and surgering the dotted
circles. Therefore, if there is a sequence of (nonisotopy) band moves mimy ---mp
which takes (K, L, v) to (K, L’,v) up to isotopy in E(K), then we may delete all of
the dotted circle slides to find a sequence of (nonisotopy and nondotted circle slide) band
moves m'ym}---m,, from (K, L,v) to (K, L’,v") up to isotopy in S(K). Then there
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exist dotted circle slides s1, ..., s such that mim} ---m; sy ---sx takes (K, L, v) to
(K, L', v") up to isotopy in E(K). O

Thus, after the above perturbations and deperturbations of S, we may take (L, v) to
be isotopic to (L', v’) in S(K). The isotopy may not respect the bridge splitting with
respect to H Ugp H'. By the same argument as [21, Theorem 1.6] (this cites [35], which
is stated for bridge splittings of a tangle in a punctured 3—sphere but works just as
well for a punctured handlebody), we may perturb and deperturb D; (and isotope a
neighborhood of F, taking F to F setwise) sothat LN F =L'NF, (LUv)NH is
isotopic to (L"Uv")N H rel boundary in H N E(K), and LN H' is isotopic to LN H’
rel boundary in H'. Thus, after the listed sequence of perturbations and deperturbations,
we find that S is 7 —regular isotopic to S’. O

6 Examples in CP?

In this section, we construct isotopies of surfaces embedded in CP2. In particular, we
study unit surfaces.

Definition 6.1 Let X be a surface in CP2. If ¥ intersects the standard CP1 ¢ CP?2
in exactly one point, then we say that X is a unit surface.

Note that by Freedman [4], an oriented unit sphere is topologically isotopic to CP1.
Similarly, by Sunukjian [27] a genus-g orientable unit surface is topologically isotopic
to the connected sum of CP! with an unknotted surface of genus-g contained in a
4—ball.

One motivation for studying unit surfaces in the (potentially more interesting) smooth
category is to understand the Gluck twist operation [7]. This is a surgery operation on a
2—sphere ¥ C X* as long as ¥ has trivial normal bundle. In particular, the Gluck twist
on S* about any embedded 2—sphere yields a homotopy 4—sphere. The homotopy
4—sphere resulting from a Gluck twist along ¥ C S* is known to be diffeomorphic
to S* for many families of ¥, including ribbon knots [7; 31], spun knots [7], twist-spun
knots [8], band-sums of ribbon and twist-spun knots [9] and knots O—concordant to any
of the others in this list [23]. We will define each of these families later in this section.

If ¥ is a sphere in S*, then we can take the connected sum of the pairs (54, X)
and (CP2,CP') to obtain the 4-manifold CP? = S*# CP? and an embedded
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surface which we denote by X # CP 1 Melvin [23] showed that the Gluck twist along
¥ C §* is diffeomorphic to S* if and only if there is a pairwise diffeomorphism from
(CP2, X #CP') to (CP2,CP'). This in part motivates the following questions of
Melvin and Gabai:

Question 6.2 Let F C CP? be a sphere in the generating homology class [CP!] €
H,(CP?;7Z) with FNCP! = {pt}.

(i) [23] Is (CP2, F) diffeomorphic as a pair to (CP2,CP1)?

(i) [5, Question 10.17.i] Is F isotopic to the standard CP! in CP2?

Note that by the previously stated work of [23], Question 6.2(i) is equivalent to Kirby
problem 4.23 [17] (“Is the Gluck twist of S* about an arbitrary 2—sphere diffeomorphic
to S4M).

In this section, we will show that many of these unit surfaces (including all the examples
listed above) are in fact isotopic to the standard CP! using the moves of Theorem 4.3.

First, we give an alternative definition of S#CP!.

Definition 6.3 Let ¥ be a surface in S*. Let x be a point in S* far from X, so
that ¥ C S*\ v(x) = B*. We can view X as living in CP?2, inside the 4—ball
CP2\ v(CP). Let h be the radial Morse function on B* and isotope X so that i|yx
has a unique global maximum at y € ¥. Let y be an arc from y extending radially
outward in B* until reaching CP?2.

Let Us, be a copy of X tubed to CP! along an arc y so that y N (CP2\ v(CP')) and
y Nv(CP) are each single intervals. We call Us, the unit surface associated to X.
We write Us = X #CP1.

Equivalently, (S*, ) #(CP2,CP') = (CP2,Uy).

Remark 6.4 In Definition 6.3, the identification of S*\ v(x) with CP?\ v(CP1!)
does not affect the embedding ¥ C CP? up to ambient isotopy. The framing of y
does not matter so long as the orientation on Uy agrees with the orientations on X
and CP!.

Remark 6.5 We may obtain a banded unlink diagram for Uyx as follows. Let
(Ko, L,v) be a banded unlink diagram for ¥ C S%. Add a 1-framed 2-handle
to Ko as a small meridian of L, far away from v, to obtain a Kirby diagram X;
for CP2. Then (K1, L,v) is a banded unlink diagram for Uy, C CP?2.
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6.1 Ribbon and 0—concordant surfaces

We now proceed to define ribbon surfaces, as well as a diagrammatic framework for
describing these surfaces and their isotopies, called chord diagrams. We will use chord
diagrams to show that all ribbon unit surfaces are unknotted in CP2.

Definition 6.6 Let S; and S, be surfaces in S*, and let 7r7: S* x I — I be the
projection to the unit interval. We say that Sy is ribbon-concordant to S, if there exists
an embedding f: ¥ x I — S*x I such that f(£x0)=5;x0and f(Ex1)=S,x1
and such that 7r7 o f has finitely many critical points with distinct critical values, all of
which are of index 0 or 1. We say that a surface S is ribbon if the unknotted sphere is
ribbon-concordant to S.

Kawauchi [14] gives an equivalent definition of ribbonness without the cobordism
perspective, by using semiunknotted punctured handlebodies.

Definition 6.7 (eg [14]) A genus-g surface R C X* is ribbon if R bounds a punc-
tured 3—dimensional handlebody V' embedded in X# so that 3V = R U O, where O
is an trivial unlink of unknotted spheres.

From this definition comes a diagrammatic description of ribbon surfaces. We recall
the definition of a chord diagram of an oriented ribbon surface knot R C S*.

Definition 6.8 [14] A chord graph for a ribbon-surface in S* consists of an oriented
unlink o of circles in S3 and arcs o in S3 with endpoints on o and interiors disjoint
from o. This graph indicates the same ribbon-surface as the banded unlink (Ko, 0, v),
where v consists of pairs of dual bands attached along the « curves, as in Figure 10.
(Twisting this pair does not affect the resulting surface, as long as they describe an
orientable surface; see Remark 6.9.) A chord diagram is a planar diagram of a chord
graph. (See [14] for details.)

(0.a)

Figure 10: Left: a chord diagram for a ribbon surface R in S*. Each unlink
component is oriented counterclockwise. Right: a banded unlink diagram for
the same ribbon surface R in S*.
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Reidemeister moves M fusion—fission M;

Ri: CAL—{—(X >_<<_,‘\—/ clementary My
w3 " Yo
R3: '\j\“-’ \Z\r chord moves M, H
(X KK

Figure 11: Kawauchi’s My, M; and M, moves for chord diagrams in S*.
In moves R4, R5, M1 and M, the red (narrow) curves represent ¢ arcs,
while black (bold) curves represent components of o. The (gray) curves of
moves Ry, R, and Rj3 represent arcs from either « or o.

L X

R

W

Kawauchi [14] gives a list of diagrammatic moves on chord diagrams that represent
isotopies of a ribbon surface S*. (This list is incomplete; see eg the supplement to [14].)
These moves are illustrated in Figure 11.

Remark 6.9 We do not specify the framings on the chords « in a chord diagram (O, «)
for R. In fact, if two framings of o give descriptions of orientable surfaces, then the
surfaces are isotopic. Similarly, we may add whole twists to the framing of v in the
associated banded unlink (Ko, L, v) for R without changing the isotopy type of the
described surface.

Exercise 6.10 Let (O, «) be a chord diagram and (Kg, L, v) the associated banded
unlink.
e An My move on (O, «) induces isotopy on (Kg, L, v).

e Each elementary M move on (O, o) can be achieved by performing a sequence
of fusion—fission M; moves and isotopies on (O, «). Conversely, every fusion—
fission M; move can be achieved by a sequence of elementary M; moves and
isotopies.

e An elementary M; move on (O, «) induces isotopy and a sequence of band
moves on (Ko, L, v).
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e An M, move on (O, «) induces isotopy and a sequence of band slides and
swims on (Ko, L, v). (Very informally, the M> move most uses the property
that (O, ) describes a ribbon surface. In a general banded unlink diagram, we
cannot hope to pass bands through one another.)

Note that there is not a converse to Exercise 6.10. In general, performing band moves
on the banded unlink (Ko, L, v) will destroy the symmetry arising from the association
between (Ko, L,v) and (O, «). Chord diagrams exist only for ribbon surfaces and
naturally describe these surfaces with a clear symmetry; banded unlink diagrams
describe arbitrary surfaces and need not respect any symmetry of the underlying
surface. In particular, we do not claim to prove that My, M; and M, moves relate
any two chord diagrams of isotopic surfaces.

When R is ribbon, we can define a useful isotopy of Ug using the moves of Theorem 4.3.
We call this the M3 move; see Figure 12. We slide a band over the 2-handle, and then
swim the 2-handle through the dual band (or perform the same moves in the opposite
order). This move will allow us to change the linking number of L and v in E(K1).

Figure 12: The M3 move consists of one 2-handle-band slide and one
2-handle-band swim. We slide a band over the 1—framed 2-handle, then
swim the 2—handle through the dual band (or perform the same moves in the
opposite order). With this move, we can add or remove linking between L
and v in E(Ky).
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Lemma 6.11 Let R C S* be a ribbon surface of genus g. Then Ug C CP? is isotopic
to CP'#gT, where T is an unknotted torus in B*.

Proof Let (Ko, L,v) be a banded unlink diagram for R, as in Definition 6.8. Then
(K1, L,v) is a banded unlink diagram for Ug. Perform the M3 move on L Uv in K4
finitely many times until v does not link L. (That is, until the bands v do not meet
disks bounded by L in § 3 5 K1.) To achieve this unlinking, we use 2—handle-band
swims to take the 2—handle attaching circle of KC; to be a meridian of any desired
component of L. We then perform M3 moves until v no longer links that component.
We then use 2-handle-band swims to move the 2-handle attaching circle to be a
meridian of the next component of L, and repeat until eventually v is unlinked with
every component of L.

We then do moves My and M> finitely many times to trivialize L and v so that, in
the projection : E(K{) — R?, n(L Uv) is embedded (recall we may choose the
framing of v to be the framing induced by the plane). Finally, we perform the fusion
M1 move finitely many times to get a banded unlink diagram with one circle and g
pairs of dual bands. This is a banded unlink diagram for CP! trivially stabilized g
times, ie CP 1 #gT. o

Using the above argument, we actually prove a stronger fact about a more general class
of knots. We recall a form of concordance introduced by Melvin [23] for spheres, and
extended to positive-genus surfaces by Sunukjian [27].

Definition 6.12 [23] Let S; and S, be genus-g surfaces in X 4. We say that S
is O—concordant to S, if there exists an embedding f: Xg xI — X 4 x I such that
Jf(Zg x0) =81 x0, f(Xg x1) =82 x1, my o f has finitely many critical points
mapped to distinct s, and, away from critical values of ¢, f~1(X* x ) is a disjoint
union of a genus-g surface and some number of spheres.

Sunukjian [28] showed that there exist infinitely many pairwise non-0—concordant
2—knots in S*. Under the equivalence relation of O—concordance (and operation of
connected sum), the set of 2—knots in S* becomes a monoid M somewhat analogous
to the concordance group C of classical knots in S3. Dai and the third author [3]
showed that M is not finitely generated (ie contains a copy of N°). Joseph [10]
showed that M is not a group: there exist 2—knots K C S* such that K # J is not
O—concordant to the unknot for any 2—knot J.
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Sunukjian [27] noted the following relation between O—concordance and ribbon-
concordance. This lemma is a key fact in [28; 3].

Lemma 6.13 [27, Lemma 8.1] Let S and S, C X* be genus-g surfaces such that
S1 is O—concordant to S, . Then there exists a genus-g surface S such that S; and S»
are both ribbon-concordant to S.

The proof of the above lemma is to show that one can view a O—concordance as a
concordance consisting of O—handles, then 1-handles each attached between distinct
surface components, then 2—-handles which each create a new sphere component, and
finally 3-handles.

Theorem 6.14 Let S, S’ C S* be genus-g surfaces such that S is O0—concordant to S’.
Then S #CP! is isotopic to S'#CP' in CP2. In particular, if S is 0—concordant to
the unknot, then S # CP! is isotopic to CP1 #gT.

Proof By Lemma 6.13, there exists a surface S” such that S and S’ are each ribbon-
concordant to S”. It is sufficient to prove the following statement:

Proposition 6.15 Suppose S is ribbon-concordant to S’ via a ribbon-concordance
consisting of k index-0 critical points and k index-1 critical points. Then S #CP! is
isotopic to S’#CP! in CP2.

Proof The above setup is equivalent to saying that S’ is given by tubing S to an
unlink | |, O of k unknotted spheres along k narrow tubes around arcs b. (There is an
extra restriction on the endpoints of b, as this tubing must yield a connected surface.)
Via move M3 (Figure 12), in CP? we may remove all intersections of b with the balls
bounded by | |, O. Thatis, S’#CP! is isotopic to (S#O#---#0)#CP! =S#CP'. O

This completes the proof of Theorem 6.14. |

In fact, essentially the proof of Theorem 6.14 can be used to prove the following more
general statement:

Theorem 6.16 Let X* be a geometrically simply connected 4—manifold (ie X admits
a handle decomposition with no 1-handles). Let F and F’ be O—concordant genus-g
surfaces in X. Assume that X \ F and X \ F’ are simply connected. Then F and F’
are isotopic.

Sunukjian [27, Theorem 8.2] has previously shown that there exists a diffeomorphism
(X,F)~ (X, F).
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Proof Note that the condition that X \ F is simply connected is equivalent to the
existence of a 2—sphere G immersed in X that intersects F transversely exactly once.

Again, by Lemma 6.13 (whose proof carries out in a general 4—manifold), there exists
a surface F” such that F and F’ are each ribbon-concordant to F”. The surface F”
is obtained by tubing F to many unlinked, unknotted 2—spheres in X. These unlinked
2—spheres may be moved far from G, and by dimensionality the tubes may also be
taken to be disjoint from G. Therefore, F” also intersects G transversely exactly once,
so it is sufficient to prove the following statement:

Proposition 6.17 Suppose F and F’ are as in Theorem 6.14 and also that F is
ribbon-concordant to F' via a ribbon-concordance consisting of k index-0 critical
points and k index-1 critical points. Then F and F' are isotopic.

Proof Since X* is geometrically simply connected, there exists a Kirby diagram K
of X* with no dotted circles.

Let (K, L, v) be a banded unlink diagram for F. Let Uy, ..., Ui be unknots unlinked
from K, L and v. That is, take Uy, ..., Ui to bound disjoint disks Dq,..., Dy
(respectively) in §3\ (X U L Uv). Then (K,| |U;, @) is a banded unlink diagram
of an unlink of k spheres O; L---U O C X \ (F UG). Recall F’ is obtained from
F LU O1U---U Oy by surgery along k tubes (3D 1-handles) connecting F to each O;.
Then we may obtain a banded unlink diagram (IC LUl Ui ) , where v’ is obtained
from v by adding k pairs of bands v; and v}, where v; connects L to U; and v; is
dual to v; . (See Figure 13.)

Now we describe some moves on (K, L U U;,v’) that induce isotopy of F’,

Note that we may achieve crossing changes of v; with any b € (v U; v;) by swimming
b through v;. (Here, b may be v;.) We may similarly achieve crossing changes of v;
with a 2-handle attaching circle C in K by swimming C through v/. These moves
are analogous to the M» chord moves. See Figure 13, top.

Moreover, we may unlink v; with A C L U U; by using G as follows: Fix a point
z € A. Isotope G in a neighborhood of F’ so that G intersects F’ exactly once, in the
point z. Let A C G be a small embedded disk containing z, perturbed to lie in $3\ K.
Say the tube represented by v; and v has core arc «;. Via a homotopy parallel to
G \ A, we see that «; is homotopic (and hence isotopic) in X* to the result of sliding
the core of v; over dA. We conclude that sliding v; over dA describes an isotopy
of F’ (the choice of framing is irrelevant). See Figure 13, bottom.
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2-handle attaching circle
orbandinvUuwvq,..., vt

Figure 13: The proof of Theorem 6.16: in a geometrically simply connected
4—manifold, two O—concordant surfaces with simply connected complements
are ambiently isotopic. Top: We may change crossings between X and v; or
between v; and v; by band moves (and hence isotopy of F’). Bottom: We
may change crossings of v; with L by sliding the core of the tube represented
by v; over an immersed 2—sphere dual to F’.

Therefore, via band moves, we may transform the banded unlink diagram of F’ until
the disk D; bounded by U; is disjoint in its interior from v; for all i and j. Then
we may remove each v, v],..., Vg, v;c and Uy, ..., U, via k cap and k cup moves,
finally obtaining (K, L, v). We therefore conclude that F’ and F are isotopic. m|

This completes the proof of Theorem 6.16. |

The proof of Lemma 6.11 also yields a result about band-sums. Recall the definition of
band-summing:

Definition 6.18 Let S; and S, be oriented surfaces in S*, contained in disjoint balls.
Let y be an arc from a point on S to a point on S3. Then the band-sum S #, S5 is
the surface ((S1US>2)\v(y))U(y xSh.

The framing on y to determine the S!—bundle over y does not affect the resulting

surface up to isotopy, so long as v(y) N (S1#, S2) is oriented consistently with the
orientations on S; and S,.
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Note that connect-summing is a specific example of band-summing. Now we show
that blowing up S* trivializes the band-sum.

Theorem 6.19 Let S1#, S> be a band-sum in S 4 where Sy and S, are any smooth
surfaces in S* contained in disjoint 4—balls and y is any path between them. Then the
unit surfaces S1#, S» #CPY and S1#S,#CP! are isotopic in CP?.

Proof Fix band diagrams for Sy and S. Then S1 #, S> # CP! has a banded unlink
diagram (K1, L, v) consisting of the union of the banded unlink diagrams for S
and S, with two bands for the band-sum tube and the + 1-surgery curve of CP2. The
M3 move allows one to change any crossing of L with y. (The M, move, or rather
the equivalent sequence of band moves of Exercise 6.10, allows one to change any
crossing of v with y and to slide the endpoints of y along L, through v.) Therefore,
in CP? we may take y to be an arbitrary arc, and in particular find Sy #, S, #CP! is
isotopic to S #S,#CP!L. O

Remark 6.20 It is not hard to show that there is a ribbon-concordance from S #, S>
to S1#.S>. Therefore, Theorem 6.14 is actually a corollary of Theorem 6.19. Similarly,
Theorem 6.19 follows from Theorem 6.16, but we prefer to state these results separately
given the focus of this section on CP2.

The construction of the ribbon-concordance is the same as in [24], where Miyazaki
shows that a connected sum of classical knots K7 and K> is ribbon-concordant to
any band-sum of K; and K,. The direction of the word “ribbon” is reversed in the
statement for classical knots (if we use consistent definitions; we caution the reader
that Miyazaki uses the opposite convention and we have translated his statement to be
consistent with our definition of ribbon-concordance). Repeating the construction of
Miyazaki a dimension up yields a concordance from S; #yS, to S # 5> with only
index-2 and index-3 critical points. Turning this concordance upside down, we find
that S7 #.55 is ribbon-concordant to S; #, S>.

6.2 Deform-spun knots

We move on from O—concordant knots to twist-spun knots [34] and deform-spun
knots [19].

Definition 6.21 (see [19] generally and [34] for twist-spun knots) Let K 1 B3
be a 1-stranded tangle. Let f: B3> — B3 be a diffeomorphism fixing 0B> and K
pointwise. Then the f —deform-spun knot of K' is fK' = K x I /~, contained in
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T=S!xS!

Figure 14: The setup for Litherland’s description of twist-roll spun knots [19].
Here, K! is a 1-stranded tangle in ball B3. The torus T is given by
d(v(K'U0B?)). We parametrize T = S! x S! so that its longitude 0 x S
is nullhomologous in B3\ v(K!), and its meridian S! x 0 bounds a disk
in v(K1).

S4 = (B3 xI)/((x, 1) ~ (f(x),0), yx S' ~pt for y € 333). Let T C B3 be the
torus d(v(K! U dB3)). Parametrize T = S! x S! so that S x 0 is a meridian of K!
and [0x S']=0¢e H{(B3\ K') (ie 0 x S! is a O—framed longitude for K'). Let
T x I be a regular neighborhood of 7' contained in the interior of B3\ K.

Define 7, p: TxI —TxI by t(x, y,t)=(x+2xt, y,t) and p(x, y,t) = (x, y+2xt,1).
Extend 7 and p to the rest of B3 by the identity map. Then t”p? K! is called the
n—twist p—roll spun knot of K'. (When n =0 or p =0, we may say p-roll spun knot
of K! or n—twist spun knot of K, respectively.) See Figure 14 if this construction is
unfamiliar.

Let K be a classical knot in S3 (that is, a 1—knor) and B C S3 a small 3-ball
meeting K in a trivial arc. If (B3, K1) = (S3\ B, K \ B), then we may write fK to
indicate fK!, and refer to the f—deform-spun knot of K! and the f—deform-spun
knot of K interchangeably.

Theorem 6.22 Let K be a 1-knot, so that " K is the n—twist spun knot of K. Then
U.n g is isotopic to CP 1.

Proof In Figure 15, we demonstrate an isotopy in CP? taking Upng to Upnti1g-.
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Fﬁ\ slide
1)

|

\(B3 L)

Figure 15: Left to right: a banded unlink diagram for t” K #CP! (see eg [21,
Section 5.2]), where K in bridge position is the closure of tangle . We
slide half the bands over the 2—handle of CP2, and then swim the 2-handle
through the remaining bands. We obtain a banded unlink for "1 K # CP!,

Inductively, U;n g is isotopic to U g . By [34], tK is the unknot, so U;n g is isotopic
to CP!. O

We can say something stronger about the general family of deform-spun knots.

Theorem 6.23 Let K be a 1-knot. Let fK be a deform-spun knot of K. Then
fK#CP! is isotopic to t" fK # CP! for any n.

Proof Figure 16 shows an explicit isotopy from fK #CP! to tfK #CP!. O

b
= =G
G Ee S )| U0

Figure 16: Left to right: a diagram for fK#CP!, where K in bridge position
is the closure of the tangle . We slide half the bands over the 2—handle
of CP2, and then swim the 2—handle over the remaining bands. We obtain a
diagram for 7 fK # CP!.
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Corollary 6.24 Let K be a knot with an integral lens space surgery. Then t" pK #CP!
is isotopic to the standard CP' for any n € Z.

Proof Say k—surgery on K yields a lens space L(k,q). Teragaito [30] observed that
% pK is the unknot, as follows:

By Litherland [19], 8 pK is a fibered knot, whose fiber is obtained by 1-Dehn filling
the k—fold cyclic cover of $3\ v(K) and then deleting an open 3-ball. That is, the
closure of the fiber is a k—fold cover of L(k,q), so the closure of the fiber is S3.
Therefore, 7% oK bounds a smooth 3-ball.

By Theorem 6.23, t" pK # CP! is isotopic to tKpK # CP! = CP! for any n. m|

6.3 Satellites and miscellaneous examples

Consider the family of 2—knots K illustrated in Figure 17, top. Nash and Stipsicz [25]
showed via Kirby calculus that the Gluck twist on any of these 2—knots yields S*. In
fact, by translating their handle slides into band moves, we observe that K, # CP! is
isotopic to the standard CP! in CP?2.

Most of the results of Sections 6.1 and 6.2 can be consolidated into the single following
statement:

Theorem 6.25 Let F = S #CP! ¢ CP? be a genus-g unit surface knot, where
S C S* is an orientable surface that is 0—concordant to a band-sum of twist-spun knots
and unknotted surfaces. Then F is isotopic to CP' # gT, where CP' # g T indicates
the standard CP trivially stabilized g times.

The results of Theorems 6.22 and 6.23 extend to satellite knots. This illustrates the
strength of this diagrammatic packaging, as in general these knots may not be twist-spins
or even fibered (see eg [32]).

Definition 6.26 Let Kp C V be a 2—sphere embedded in V = S? x D?. Let K¢
be a 2—sphere embedded in S*. Fix a diffeomorphism ¢: V — v(K¢). Let K =
f(Kp) C S*. We call K the satellite of companion K¢ with pattern (Kp, V).

Let K be the satellite of companion K¢ with pattern (Kp, V). To obtain a diagram
of K, we view S* = 83 x [~1,1]/(S3x 1 ~pt, §3 x —1 ~ pt), where K¢ N S3 x0
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Figure 17: Top: the 2—knot K, C S*. Nash and Stipsicz [25] showed that
performing the Gluck twist on K, yields S*. Bottom two rows: an isotopy
from K, #CP! to the standard CP' in CP?.

is a connected knot and K¢ N (S3 x[—1,0]) and K¢ N (S3 x [0, 1]) are ribbon disks
(this is the normal form of [15]).

We take V = S2 x D? C S* (a neighborhood of the standard unknotted sphere) so that
W:=VN(S3x0)=S!'xD?,and VN(S3x[-1,0]) =V N(S3x[0,1]) = DZx D2.
See Figure 18, left, for a schematic.

Draw a banded unlink (in o) for Kp sitting inside . (Note the original unlink and
the one obtained by resolving all bands are unlinked in B3 = W U (0—framed 2-handle)
but may be nontrivial within the solid torus W.) Fix a meridian disk A of W disjoint
from all bands (note that if A intersects bands k times, then we can remove these
intersections at the cost of adding 2k canceling intersections between A and the unlink)
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4 W
w
3 ’ A
A

Figure 18: Left: a schematic of ¥V embedded in S*. The intersection V' NS3x0
is the solid torus W. Right: a banded unlink of a pattern Kp C V. With respect
to this choice of A, the pattern has geometric winding 2. (Note in this diagram
Kp is unknotted inside V, so could be isotoped to a pattern of geometric
winding 0.)

in the diagram for Kp, and take Kp to be transverse to A. We say the geometric
winding of Kp is the unsigned intersection Kp N A. (Note this number depends
on A.)

Kp
Kc

$1 Sn Sn S1
52 S2

Figure 19: Left, top row: We draw a banded unlink diagram for Kp and a
normal form diagram for K¢ (a band diagram in which some bands lie below

the pictured cross-section, as indicated, so that intersection of K¢ with this
time slice is a knot). From these two diagrams, we obtain a diagram of K. Left,
bottom row: We push all bands above the pictured cross-section, so that each
diagram is a banded unlink diagram. Right: We show how to draw the n bands

of a banded unlink diagram for K corresponding to a band in the banded unlink
diagram for K¢ . In this picture, s; indicates one arc in ¢ (A x I).
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Now draw a banded unlink (in Kg) for K¢, isotoped to lie inside
W' :=v(Kc)N(S3x0) =SS! x D?

(we first draw the diagram in S = S3 x 0 and perturb to be disjoint from 0 x S! C
S3\ W = B3 x S, and then project to W). Fix a meridian disk A’ for W’ which
intersects the banded unlink transversely in one point.

Isotope the diffeomorphism ¢: V — v(K¢) so that (W) = W’ and ¢p(A x 1) =
W'\ (A x I). Choose ¢ so that every saddle of K either corresponds to a saddle of Kp
or lies above or below a saddle of K¢ . Each saddle of K¢ gives rise to |[Kp N A|
saddles of K.

Therefore, the satellite K has a + b|Kp N A| critical points of index 1, where a is
the number of index-1 critical points of Kp and b the number of index-1 critical
points of K¢ . Then we obtain a banded unlink diagram (in K¢) for K by taking the
standard O—framed satellite of Kp N (S3 x0) C W around K¢ N (S3 x 0) (both of
these cross-sections are knots), attaching the bands corresponding to Kp, and then

B3 C S2x D? CP1\ (core of 2-handle)
isotope CP!

Figure 20: Top: a movie of cross-sections of S2 x D? # CP2. The central
cross-section is a solid torus W. In shaded blue, we draw a ball B in
S2 x D?. In red (to the right), we draw the disk CP! N S2? x D?2. The rest
of CP! is a core of the 1—framed 2—handle. Black strands are contained in
Kp C S? x D?. Bottom: we isotope CP! through B while fixing the unit
surface for Kp.
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attaching |Kp N A| copies of each band corresponding to K¢ (pushing them above
S3 x0). See Figure 19.

Very roughly, we obtain a banded unlink diagram for K by tubing a diagram for Kp
to |Kp N A| parallel (up to orientation) diagrams for K¢ .

We give a new isotopy move of CP! inside (S% x D?)#CP?: the double slide. Refer
to Figure 20. The effect of the double slide move is to change the intersection of CP!
with W by two slides over a longitude of W (with opposite sign). Via this move, we
may replace the intersection y of CP! with W with any curve y’ C W such that
y and y’ are isotopic in W U (0O—framed 2-handle) and represent the same element
of Hi(W).

Theorem 6.27 Let K be a satellite of companion K¢ with pattern (Kp, V). Say
[Kp] =m[S? x pt] in Hy(V;Z). View V C S* as a neighborhood of an unknotted
2—sphere. Assume Kp C V C S* is 0—concordant to a band-sum of twist-spun knots.

e Ifm=0,then K#CP! isisotopic to CP! in CP2.
o If m==+1, then K#CP! isisotopic to £ K¢ #CP' in CP2.
o If |m|> 1, then K#CP! isisotopic to K'#CP', where K’ is a satellite with

companion K¢ and pattern (O,,, V), where O,, C V C S§* is the unknotted
sphere Ko and [Op,] = m[S? x pt] € Hy(V;Z).

We are careful to distinguish between the unknotted sphere K¢ in S* and the degree-m
unknotted pattern (O, V).

Remark 6.28 The pattern O,, C V is well defined. We have V = S*\ v(y), where
y is a curve in S*\ Ko with [y] =m C Z = 71(S*\ Ko). In this dimension, y is
unique up to isotopy, so O, C V is uniquely determined by m. See Figure 21 for a
banded unlink diagram (with no bands) for O, C V. The satellite knot K’ is isotopic
to |m| parallel copies of (m/|m|) K¢ tubed together.

Proof of Theorem 6.27 Let F be the surface Kp # CP! C (S? x D?)#CP?. The
banded unlink diagram for Kp # CP1 C CP? sits inside the solid torus W C $3, with
a 1-framed 2-handle attaching circle y at the site of the blowup. See Figure 22. Apply
the isotopy of Theorem 6.25 to unknot the banded unlink diagram. So long as y stays
in W, this isotopy induces isotopy on F in (§2 x D?)#CP?2. But y passes outside
of W (“through the hole of W) an even number of times —that is, y appears to slide
over a longitude of W an even number of times, an equal number of each direction of
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.ﬂ . .
m>0 m=20 m<0

Figure 21: A banded unlink diagram for O,, C V. In this diagram, O,, has
one local minimum, one local maximum and zero saddles (ie zero bands).

slide. Achieve these slides through a sequence of double slide moves. See Figure 22.
This isotopy does not fix the standard CP !, but replaces F with O,, #(standard CP ).

Let K’ C §* be the satellite knot with pattern O,, and companion K¢ . Then K#CP!
is isotopic to K’#CP! in CP2. Note that if m =0, then K’ is the unknot. If m = +1,
then K’ = +K¢. |

double
slide

Figure 22: We unknot Kp#CP! in S?2x D?#CP? when Kp is O—concordant
to a band-sum of twist-spun knots. We perform the isotopy of Theorem 6.25,
performing the double slide move to slide CP' N W over the longitude of W
and back.
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The following corollary follows immediately from Theorem 6.27 and the relation of
unit surfaces to the Gluck twist from [23]:

Corollary 6.29 Let K be a satellite with companion K¢ and pattern (Kp, V). Say
[Kp) = m[S? xpt] in Hy(V;Z). View V C S* as a neighborhood of an unknotted
2—sphere. Assume Kp C V C S* is O—concordant to a band-sum of twist-spun knots.

o If m =0, then the Gluck twist on S* about K is diffeomorphic to S*.

o If m = +1 and the Gluck twist on S* about K¢ yields S*, then so does the
Gluck twist on S* about K.
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