|
|
Recent Issues |
Volume 28, 5 issues
Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
|
|
|
|
|
1 |
V Apostolov,
D M J Calderbank, P Gauduchon,
C W Tønnesen-Friedman, Hamiltonian
2–forms in Kähler geometry, III :
Extremal metrics and stability, Invent. Math. 173
(2008) 547 MR2425136 |
2 |
T Aubin, Réduction du cas
positif de l’équation de Monge–Ampère sur les variétés
kählériennes compactes à la démonstration d’une
inégalité, J. Funct. Anal. 57 (1984) 143 MR749521 |
3 |
K Ball, E A
Carlen, E H Lieb, Sharp uniform convexity
and smoothness inequalities for trace norms, Invent.
Math. 115 (1994) 463 MR1262940 |
4 |
R J Berman, B
Berndtsson, Convexity of the
K–energy on the space of Kähler
metrics and uniqueness of extremal metrics, J. Amer.
Math. Soc. 30 (2017) 1165 MR3671939 |
5 |
R J Berman, S
Boucksom, P Eyssidieux, V Guedj, A
Zeriahi, Kähler–Einstein
metrics and the Kähler–Ricci flow on log Fano
varieties, J. Reine Angew. Math. 751 (2019) 27 MR3956691 |
6 |
R J Berman, S
Boucksom, V Guedj, A Zeriahi, A variational
approach to complex Monge–Ampère equations, Publ. Math.
Inst. Hautes Études Sci. 117 (2013) 179 MR3090260 |
7 |
R Berman, S
Boucksom, M Jonsson, A variational approach to
the Yau–Tian–Donaldson conjecture, preprint (2015) arXiv:1509.04561 |
8 |
R J Berman, T
Darvas, C H Lu, Convexity of the
extended K–energy and the large
time behavior of the weak Calabi flow, Geom. Topol. 21
(2017) 2945 MR3687111 |
9 |
R J Berman, T
Darvas, C H Lu, Regularity of weak
minimizers of the K–energy and
applications to properness and K–stability, Ann. Sci. École Norm.
Sup. 53 (2020) 267 |
10 |
B Berndtsson,
Probability
measures associated to geodesics in the space of Kähler
metrics, from: "Algebraic and analytic microlocal
analysis" (editors M Hitrik, D Tamarkin, B Tsygan, S Zelditch),
Springer Proc. Math. Stat. 269, Springer (2018) 395 MR3903321 |
11 |
Z Błocki, The complex
Monge–Ampère equation in Kähler geometry, from:
"Pluripotential theory" (editors F Bracci, J E Fornæss),
Lecture Notes in Math. 2075, Springer (2013) 95 MR3089069 |
12 |
Z Błocki, S
Kołodziej, On
regularization of plurisubharmonic functions on
manifolds, Proc. Amer. Math. Soc. 135 (2007) 2089
MR2299485 |
13 |
S Boucksom,
Variational and non-Archimedean aspects of the
Yau–Tian–Donaldson conjecture, from: "Proceedings of
the International Congress of Mathematicians, II" (editors B
Sirakov, P N d Souza, M Viana), World Sci. (2018) 591
MR3966781 |
14 |
S Boucksom, D
Eriksson, Spaces of norms, determinant of cohomology and
Fekete points in non-Archimedean geometry, preprint (2018)
arXiv:1805.01016 |
15 |
S Boucksom, P
Eyssidieux, V Guedj, A Zeriahi, Monge–Ampère
equations in big cohomology classes, Acta Math. 205
(2010) 199 MR2746347 |
16 |
S Boucksom, V
Guedj, Regularizing
properties of the Kähler–Ricci flow, from: "An
introduction to the Kähler–Ricci flow" (editors S Boucksom, P
Eyssidieux, V Guedj), Lecture Notes in Math. 2086, Springer
(2013) 189 MR3202578 |
17 |
S Boucksom, T
Hisamoto, M Jonsson, Uniform K–stability, Duistermaat–Heckman measures and
singularities of pairs, Ann. Inst. Fourier (Grenoble)
67 (2017) 743 MR3669511 |
18 |
S Boucksom, T
Hisamoto, M Jonsson, Uniform K–stability and asymptotics of energy
functionals in Kähler geometry, J. Eur. Math. Soc. 21
(2019) 2905 MR3985614 |
19 |
S Boucksom, M
Jonsson, A non-Archimedean approach to K–stability, preprint (2018) arXiv:1805.11160 |
20 |
M R Bridson, A
Haefliger, Metric spaces of
non-positive curvature, 319, Springer (1999) MR1744486 |
21 |
H Busemann,
The geometry of geodesics, 6, Academic (1955) MR0075623 |
22 |
E Calabi, X X
Chen, The space of Kähler
metrics, II, J. Differential Geom. 61 (2002) 173
MR1969662 |
23 |
X Chen, On the lower bound
of the Mabuchi energy and its application, Int. Math.
Res. Not. 2000 (2000) 607 MR1772078 |
24 |
X Chen, The space of Kähler
metrics, J. Differential Geom. 56 (2000) 189 MR1863016 |
25 |
X Chen, J
Cheng, On the constant scalar curvature Kähler metrics :
apriori estimates, preprint (2017) arXiv:1712.06697 |
26 |
X Chen, J
Cheng, On the constant scalar curvature Kähler metrics :
existence results, preprint (2018) arXiv:1801.00656 |
27 |
X Chen, J
Cheng, On the constant scalar curvature Kähler metrics :
general automorphism group, preprint (2018) arXiv:1801.05907 |
28 |
X Chen, T
Darvas, W He, Compactness of
Kähler metrics with bounds on Ricci curvature and ℐ functional, Calc. Var. Partial
Differential Equations 58 (2019) MR3984099 |
29 |
X Chen, S Sun,
Space
of Kähler metrics, V : Kähler quantization, from:
"Metric and differential geometry" (editors X Dai, X Rong),
Progr. Math. 297, Birkhäuser (2012) 19 MR3220438 |
30 |
J Chu, V
Tosatti, B Weinkove, On the C1,1 regularity
of geodesics in the space of Kähler metrics, Ann. PDE 3
(2017) MR3695402 |
31 |
J A Clarkson,
Uniformly convex
spaces, Trans. Amer. Math. Soc. 40 (1936) 396 MR1501880 |
32 |
T Darvas, The Mabuchi
geometry of finite energy classes, Adv. Math. 285
(2015) 182 MR3406499 |
33 |
T Darvas, The Mabuchi completion
of the space of Kähler potentials, Amer. J. Math. 139
(2017) 1275 MR3702499 |
34 |
T Darvas, Weak geodesic rays
in the space of Kähler potentials and the class ℰ(X,ω), J.
Inst. Math. Jussieu 16 (2017) 837 MR3680345 |
35 |
T Darvas, Geometric
pluripotential theory on Kähler manifolds, from:
"Advances in complex geometry" (editors Y A Rubinstein, B
Shiffman), Contemp. Math. 735, Amer. Math. Soc. (2019) 1
MR3996485 |
36 |
T Darvas, E Di
Nezza, C H Lu, L1
metric geometry of big cohomology classes, Ann. Inst.
Fourier (Grenoble) 68 (2018) 3053 MR3959105 |
37 |
T Darvas, E Di
Nezza, C H Lu, Monotonicity of
nonpluripolar products and complex Monge–Ampère equations with
prescribed singularity, Anal. PDE 11 (2018) 2049
MR3812864 |
38 |
T Darvas, E Di
Nezza, C H Lu, On the singularity
type of full mass currents in big cohomology classes,
Compos. Math. 154 (2018) 380 MR3738831 |
39 |
T Darvas, E Di
Nezza, C H Lu, Log-concavity of
volume and complex Monge–Ampère equations with prescribed
singularity, Math. Ann. (2019) |
40 |
T Darvas, E Di
Nezza, H C Lu, The metric geometry
of singularity types, J. Reine Angew. Math. (2020) |
41 |
T Darvas, W He,
Geodesic rays
and Kähler–Ricci trajectories on Fano manifolds, Trans.
Amer. Math. Soc. 369 (2017) 5069 MR3632560 |
42 |
T Darvas, L
Lempert, Weak geodesics in
the space of Kähler metrics, Math. Res. Lett. 19 (2012)
1127 MR3039835 |
43 |
T Darvas, C H
Lu, Y A Rubinstein, Quantization in geometric
pluripotential theory, Comm. Pure Appl. Math. 73 (2020)
1100 |
44 |
T Darvas, Y A
Rubinstein, Tian’s properness
conjectures and Finsler geometry of the space of Kähler
metrics, J. Amer. Math. Soc. 30 (2017) 347 MR3600039 |
45 |
J P Demailly,
Regularization of closed positive currents and intersection
theory, J. Algebraic Geom. 1 (1992) 361 MR1158622 |
46 |
J P Demailly,
Regularization of
closed positive currents of type (1,1) by the flow of a Chern connection,
from: "Contributions to complex analysis and analytic geometry"
(editors H Skoda, J M Trépreau), Aspects Math. E26, Vieweg
(1994) 105 MR1319346 |
47 |
R Dervan, Uniform stability of
twisted constant scalar curvature Kähler metrics, Int.
Math. Res. Not. 2016 (2016) 4728 MR3564626 |
48 |
R Dervan, G
Székelyhidi, The Kähler–Ricci flow
and optimal degenerations, J. Differential Geom. 116
(2020) 187 MR4146359 |
49 |
E Di Nezza, V
Guedj, Geometry and
topology of the space of Kähler metrics on singular
varieties, Compos. Math. 154 (2018) 1593 MR3830547 |
50 |
E Di Nezza,
C H Lu, Uniqueness and
short time regularity of the weak Kähler–Ricci flow,
Adv. Math. 305 (2017) 953 MR3570152 |
51 |
S K Donaldson,
Symmetric
spaces, Kähler geometry and Hamiltonian dynamics, from:
"Northern California Symplectic Geometry Seminar" (editors Y
Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc.
Transl. Ser. 2 196, Amer. Math. Soc. (1999) 13 MR1736211 |
52 |
S K Donaldson,
Scalar
curvature and stability of toric varieties, J.
Differential Geom. 62 (2002) 289 MR1988506 |
53 |
S K Donaldson,
Scalar
curvature and projective embeddings, II, Q. J. Math. 56
(2005) 345 MR2161248 |
54 |
A Futaki, An obstruction to the
existence of Einstein Kähler metrics, Invent. Math. 73
(1983) 437 MR718940 |
55 |
V Guedj, A
Zeriahi, Intrinsic capacities on
compact Kähler manifolds, J. Geom. Anal. 15 (2005) 607
MR2203165 |
56 |
V Guedj, A
Zeriahi, The weighted
Monge–Ampère energy of quasiplurisubharmonic functions,
J. Funct. Anal. 250 (2007) 442 MR2352488 |
57 |
V Guedj, A
Zeriahi, Regularizing
properties of the twisted Kähler–Ricci flow, J. Reine
Angew. Math. 729 (2017) 275 MR3680377 |
58 |
W He, On the space of Kähler
potentials, Comm. Pure Appl. Math. 68 (2015) 332
MR3298665 |
59 |
W He, On Calabi’s extremal metric
and properness, Trans. Amer. Math. Soc. 372 (2019) 5595
MR4014289 |
60 |
J Jost, Nonpositive
curvature: geometric and analytic aspects, Birkhäuser
(1997) MR1451625 |
61 |
M Kell, Uniformly convex
metric spaces, Anal. Geom. Metr. Spaces 2 (2014) 359
MR3290383 |
62 |
C O Kiselman,
The partial
Legendre transformation for plurisubharmonic functions,
Invent. Math. 49 (1978) 137 MR511187 |
63 |
B Kleiner, B
Leeb, Rigidity of
quasi-isometries for symmetric spaces and Euclidean
buildings, Inst. Hautes Études Sci. Publ. Math. 86
(1997) 115 MR1608566 |
64 |
S Kołodziej,
The complex
Monge–Ampère equation, Acta Math. 180 (1998) 69
MR1618325 |
65 |
K Kuwae, Jensen’s inequality
on convex spaces, Calc. Var. Partial Differential
Equations 49 (2014) 1359 MR3168636 |
66 |
C Li, C Xu,
Special test
configuration and K–stability of
Fano varieties, Ann. of Math. 180 (2014) 197 MR3194814 |
67 |
T Mabuchi, Some
symplectic geometry on compact Kähler manifolds, I,
Osaka J. Math. 24 (1987) 227 MR909015 |
68 |
A Naor, L
Silberman, Poincaré
inequalities, embeddings, and wild groups, Compos.
Math. 147 (2011) 1546 MR2834732 |
69 |
S i Ohta,
Convexities of
metric spaces, Geom. Dedicata 125 (2007) 225 MR2322550 |
70 |
D H Phong, J
Sturm, The Monge–Ampère
operator and geodesics in the space of Kähler
potentials, Invent. Math. 166 (2006) 125 MR2242635 |
71 |
J Ross, D Witt
Nyström, Analytic test
configurations and geodesic rays, J. Symplectic Geom.
12 (2014) 125 MR3194078 |
72 |
S Semmes, Complex Monge–Ampère and
symplectic manifolds, Amer. J. Math. 114 (1992) 495
MR1165352 |
73 |
J Song, S
Zelditch, Bergman metrics and
geodesics in the space of Kähler metrics on toric
varieties, Anal. PDE 3 (2010) 295 MR2672796 |
74 |
G Székelyhidi,
Extremal metrics and K–stability, PhD thesis, University of
London (2006) arXiv:math/0611002 |
75 |
G Tian, On Kähler–Einstein metrics
on certain Kähler manifolds with C1(M) > 0,
Invent. Math. 89 (1987) 225 MR894378 |
76 |
G Tian, On a set of polarized
Kähler metrics on algebraic manifolds, J. Differential
Geom. 32 (1990) 99 MR1064867 |
77 |
G Tian, The K–energy on hypersurfaces and
stability, Comm. Anal. Geom. 2 (1994) 239 MR1312688 |
78 |
G Tian, Kähler–Einstein metrics
with positive scalar curvature, Invent. Math. 130
(1997) 1 MR1471884 |
79 |
G Tian, Canonical metrics
in Kähler geometry, Birkhäuser (2000) MR1787650 |
80 |
D Witt Nyström,
Monotonicity of
non-pluripolar Monge–Ampère masses, Indiana Univ. Math.
J. 68 (2019) 579 MR3951074 |
81 |
A Zeriahi, Volume and capacity
of sublevel sets of a Lelong class of plurisubharmonic
functions, Indiana Univ. Math. J. 50 (2001) 671
MR1857051 |
82 |
K Zheng, Existence
of constant scalar curvature Kähler cone metrics, properness
and geodesic stability, preprint (2018) arXiv:1803.09506 |
|