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Homological eigenvalues of lifts of
pseudo-Anosov mapping classes

to finite covers

ASAF HADARI

Let † be a compact orientable surface of finite type with at least one boundary
component. Let f 2 Mod.†/ be a pseudo-Anosov mapping class. We prove a
conjecture of McMullen by showing that there exists a finite cover z†! † and a
lift zf of f such that zf�W H1.z†;Z/!H1.z†;Z/ has an eigenvalue off the unit circle.

20C12, 57M05, 57M60

1 Introduction

Let † be a compact orientable surface and let Mod.†/ be its mapping class group —
the group of isotopy classes of orientation-preserving diffeomorphisms from † to
itself that fix the boundary pointwise. The finite-dimensional representation theory
of Mod.†/ is a nascent field of study. These groups have extensive collections of
finite-dimensional representations, but many basic questions remain mysterious. For
instance, for most † it is not known whether or not Mod.†/ is a linear group.

The largest known collection of representations are the homological representations
which are associated to finite covers � W †0!†. The first of these, associated to the
trivial cover, is the standard homological representation Mod.†/! GL.H1.†;Q//

given by the induced action on first homology. The kernel of this representation is
called the Torelli group.

More generally, fix a point �2†. Let Mod.†;�/ be the group of orientation-preserving
self-diffeomorphisms of the pair .†;�/ that fix the boundary pointwise, mod isotopies
that fix � and the boundary pointwise. The group Mod.†;�/ acts on �1.†;�/ by
automorphisms.

Let K < �1.†;�/ be a finite-index subgroup, and let � W †0! † be the associated
finite cover. Let GK D ff 2Mod.†;�/ W f .K/DKg. The group GK is a finite-index
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subgroup of Mod.†;�/. We have a natural map �K W GK ! GL.H1.KIZ//. Topo-
logically, every element f 2GK can be lifted to a diffeomorphism f 0W †0!†0. The
diffeomorphism f 0 induces a map f 0�W H1.†

0IQ/!H1.†
0IQ/. The transformation

f 0� is �K .f
0/.

The representations �K are called homological representations. They have been stud-
ied extensively by many authors. For example, Grunewald, Larsen, Lubotzky and
Malestein [6] use these representation to construct several different infinite families of
arithmetic quotients of mapping class groups. In [16], Putman and Wieland exhibit
a connection between properties of homological representations and the virtual first
Betti number of Mod.†/. In work of Lubotzky and Meiri [12; 13], and separately in
work of Malestein and Souto [14] these representation were used to describe generic
properties of random elements of Mod.†/.

In addition to providing information about the group Mod.†/ as a whole, these
representations also provide in formation about individual elements. For example,
Koberda [9] and later Koberda and Mangahas [11] showed that the family of homolog-
ical representations can detect the Nielsen–Thurston classification of a mapping class.

It is natural to try to understand whether or not the topological invariants associated to
a mapping class f can be recovered from its homological representations. McMullen
studied this question for pseudo-Anosov mapping classes by considering the following
invariant. Fix f 2Mod.†;�/, a pseudo-Anosov mapping class. Given a finite-index
subgroup K < �1.†;�/, let �K be the spectral radius of the operator �K .f / (that is,
the modulus of its largest eigenvalue). It is a simple exercise to show that �K is at
least 1 and at most �, the dilatation of f . In [15], McMullen shows that if the invariant
foliations of f have a singularity with an odd number of prongs, then sup �K < �,
where the supremum is taken over all finite-index subgroups K. McMullen asked the
following question, whose positive resolution has become a well-known conjecture:

Question 1.1 In the notation above, is sup �K > 1?

In a previous paper [7], we provided evidence for this conjecture by proving the
following:

Theorem 1.2 (Hadari) Suppose that † has at least one boundary component. Then,
for any infinite-order element f 2Mod.†/, there is a finite cover � W †0!† to which
f lifts to a map f 0 such that f 0�W H1.†

0IQ/!H1.†
0IQ/ has infinite order.
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In this paper, we use a strategy inspired by the proof in [7] to provide the following
answer to McMullen’s question:

Theorem 1.3 Suppose that † has at least one boundary component. Then, for any
f 2 Mod.†/ with positive topological entropy, there exists a regular finite cover
� W †0!† to which f lifts to a map f 0 such that f 0�W H1.†

0IQ/!H1.†
0IQ/ has

eigenvalues off of the unit circle. Furthermore, if f is pseudo-Anosov, this cover can
be taken to have a solvable deck group.

We also provide an analogous result for automorphisms of free groups.

Theorem 1.4 Let n � 2 and let xf 2 Out.Fn/ be a fully irreducible automorphism.
Then there exists a representative f of xf and finite-index subgroup K C Fn such that
f .K/ D K, and f�W H1.KIQ/! H1.KIQ/ has eigenvalues off of the unit circle.
The subgroup K can be taken such that Fn=K is solvable.

Note that for any surface †, there is a natural map Mod.†/! Out.�1.†//. In our
statement of Theorem 1.3, we restrict ourselves to surfaces with boundary. These
surfaces have free fundamental groups. Given a pseudo-Anosov mapping class on
a surface with boundary, the surface † is homotopy equivalent to an invariant train
track graph � � †, and the map xf is induced by a continuous function 'W � ! � .
The map ' fixes some point � 2 � . Taking this point to be our basepoint, we get a
representative of xf , called a train track representative. A similar notion exists for fully
irreducible automorphisms (see Fathi, Laudenback and Poénaru [4] for surfaces, and
Bestvina and Handel [2] for Out.Fn/). We will deduce Theorems 1.3 and 1.4 from the
following theorem, whose proof will take up the majority of this paper:

Theorem 1.5 Let n � 2 and let xf 2 Out.Fn/ be either a fully irreducible auto-
morphism or the image of a pseudo-Anosov mapping class. Let f be a train track
representative of xf . Then there exists a finite-index subgroup K C Fn such that
f .K/ D K and f�W H1.KIZ/ ! H1.KIZ/ has eigenvalues off of the unit circle.
Furthermore, we can choose K such that Fn=K is solvable.

Remark 1.6 As we were concluding the writing of this paper, Yi Liu also published
an independent proof of McMullen’s conjecture. Like the proof in this paper, his proof
is to some extent inspired by our proof in [7] but aside from this initial inspiration
the two proofs are very different. The end results are also somewhat different. Liu’s
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proof covers the case of closed surfaces, which the proof in this paper does not (our
proof fails for closed surfaces in exactly one spot, Lemma 4.5). The proof in this paper
covers the Out.Fn/ case, which Liu’s does not, and provides the extra information that
the finite cover can be taken to be solvable.

1.1 Strategy and organization of the proof

Theorem 1.5 is nontrivial only when all of the eigenvalues of f� are roots of unity. By
replacing f with a power of itself, we can assume that all of its eigenvalues are 1, and
in particular it has a 1–eigenspace.

To such an automorphism we introduce a matrix Af , which we call the equivariant
Magnus matrix. It is related to the Magnus representation of f (see Sakasai [17] and
Suzuki [18] for definitions). The entries of this matrix are polynomials, which we view
as elements of the group ring of some quotient Hf of H1.Fn;Z/.

Given a matrix whose entries are polynomials in the variables X˙1
1
; : : : ;X˙1

m , we
can substitute numbers �1; : : : ; �m for X1; : : : ;Xm to get a matrix with entries in C .
This is called the specialization of the matrix at �1; : : : ; �m . The equivariant Magnus
matrix has the property that its specialization at roots of unity contain information
about �K .f / for a certain collection of abelian covers K. One particular connection is
that if we specialize Af at roots of unity and get a matrix that has eigenvalues off of the
unit circle, then �K .f / has eigenvalues off of the unit circle for some abelian cover K.

We now face the question of having to tell when a matrix with polynomial coefficients
has a specialization at roots of unity with eigenvalues off of the unit circle. One possible
approach is to look at the trace of such a matrix. If the trace of the matrix is in some
sense large (say if the L2 norm of its coefficients is greater than the dimension of
the matrix) then it is possible to use the Fourier transform on abelian groups to find a
specialization as required.

In Section 2 we introduce the equivariant Magnus matrix, discuss the connection
between its specializations and the homological representations of f , and provide two
criteria for finding a specialization that has eigenvalues off of the unit circle. The
remainder of the proof shows how to find a sequence of covers where the trace of the
equivariant Magnus matrices becomes larger and larger in the sense of Section 2.

In Section 3 we introduce a combinatorial object, called the transition graph, which
encodes a great deal of information about f . In particular, when f is pseudo-Anosov
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we can associate to this transition graph a convex polygon Se' �Hf ˝R, which we
call the equivariant shadow, and which we use extensively in our proof. This polygon
is related to the norm ball of the Thurston norm (this is explained in Lemma 3.19).
When f is pseudo-Anosov, we can calculate the dimension of this polygon, and hence
get a lower bound on the number of its vertices.

Morally speaking, we expect the convex hull of the support of Tr Af to be some
homothetic image of the polygon Se' , and, when this is the case, Tr Af is large in
the sense of Section 2 due to our estimate of the number of vertices. When this is not
the case, it is due to some cancellation occurring at the vertices of this polygon. In
Section 4 we discuss this cancellation, and show that for every vertex it is possible to
find a nilpotent cover where it does not cancel. Finally, in Section 5 we collect several
important technical lemmas, and complete the proof of our Theorems 1.3, 1.4 and 1.5.

2 The Magnus matrix and its specializations

In this section we introduce a key concept, the equivariant Magnus matrix; and two
lemmas, the anchoring lemma and the L2 –trace lemma, which will be our central tools
in proving Theorem 1.5.

Throughout the section, let f 2 Aut.Fn/ be a train track representative of a pseudo-
Ansov mapping class or a fully irreducible automorphism. Suppose that f is induced
by the continuous map 'W �! � , fixing the basepoint �.

2.1 The f –equivariant torsion-free universal abelian cover

Let G D Fn Ìf Z. Consider the endomorphism i W Fn!G given by i.w/D .w; 0/.

Definition 2.1 Let hW G ! H1.GIQ/ be the natural map, and let Uf D h ı i . Let
z�f be the cover corresponding to Uf . We call z�f the f –equivariant torsion-free
universal abelian cover of � .

We begin by making several simple observations. Since ŒFn;Fn� < Uf , we have that
Hf D Fn=Uf is a finitely generated abelian group. Since ŒG;G�C G, the definition
of semidirect products gives that f .Uf /D Uf . Thus f acts on the group Hf .

There is an f –equivariant isomorphism between Hf and the image of Fn in the group
H1.GIQ/ Š Gab˝Q, where the action of f on G is given by conjugation. Since

Geometry & Topology, Volume 24 (2020)



1722 Asaf Hadari

conjugation acts trivially on Gab , we get that f acts trivially on Hf . Let f� denote
the automorphism induced by f on H = H1.Fn;Z/. The group Hf is an abelian
quotient of Fn and is thus a quotient of H. Indeed, we have the natural identification
Hf Š coker.In�f�/. Note that since Gab˝Q is torsion-free, so is Hf .

2.2 The equivariant Magnus matrix of f

Let Vf D C1.z�f ;C/ be the space of simplicial 1–chains with coefficients in C in the
cover z�f .

The group Hf acts on z�f by deck transformations and thus permutes the edges of z�f .
This gives Vf the structure of an Hf –module.

Pick a spanning tree T of � and let zT be a lift of T to a tree in z�f . For any vertex v
of � , let zv be the lift of v incident at zT . The action of the group Hf on z�f by deck
transformations gives a transitive permutation on the set of all preimages of v . By
identifying zv with the element 0 2Hf , we can identify every preimage of v with an
element of Hf .

Given any oriented edge � of � , the choice of the lift zT gives a bijection �� between
the collection of lifts of � in z�f and Hf given by reading off the label of the origin
vertex of a lift. This identification induces an Hf –module isomorphism

.CŒHf �/
E.�/

Š Vf :

If we set mD #E.� ) then the above isomorphism is given by�X
a1;ih1;i ; : : : ;

X
am;ihm;i

�
!

mX
jD1

X
aj ;i��i

.hj ;i/;

where aj ;i 2C and hj ;i 2Hf .

Let 'f be the lift of ' to z�f that fixes z�. Since z' maps edges to edge-paths in z�f , it
induces a map z'�W Vf ! Vf . We call this map the equivariant Magnus representation
of f on � .

Because f acts trivially on Hf , we get that z'� commutes with the action of Hf

on Vf , and thus induces an Hf –module homomorphism Vf ! Vf .

Under the identification Vf Š .CŒHf �/
E.�/ , this homomorphism is given by multi-

plication by an m�m matrix Af 2Mm.CŒHf �/, where m D #E.�/. We call the
matrix Af the equivariant Magnus matrix of f on � .
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2.3 Specializations of Af and abelian covers

Write Hf Š Zd. Viewing Zd as a multiplicative group, we can write CŒZd � Š

CŒX˙1
1
; : : : ;X˙1

d
�.

Definition 2.2 Let �W Zd ! C� be a homomorphism. Write �i D �.Xi/. Let t 2

CŒZd �. Using the identification CŒZd � Š CŒX˙1
1
; : : : ;X˙1

d
�, we can view t as a

rational function in the variables X1; : : : ;Xd . By plugging in the number �i for the
variable Xi , we get a number t.�/ 2C , which we call the specialization of t at � .

Definition 2.3 If A 2Mk.CŒZ
d �/ for some k and �W Zd !C is a homomorphism,

then we can define the specialization of A at � to be the k � k matrix whose .i; j /–
coordinate is Ai;j .�/.

The space Vf is the space of formal linear combinations of edges in z�f with finite
support and coefficients in C . Let Wf D ZE.z�f / , the space of (not necessarily finitely
supported) formal linear combinations of edges in z�f . The deck group Hf acts on the
edges of z�f by permutations. This action gives Wf an Hf –module structure.

Definition 2.4 Let �W Hf !C� be a homomorphism. Define

Wf;� D ft 2Wf W h � t D �.h/t for all h 2Hf g:

Notice that for every � , the space Wf;� is an mD #E.�/–dimensional vector space.
Indeed, let f�1; : : : ; �mg be the collection of edges of � . Fix an arbitrary collection
fz�; : : : ; z�mg of lifts of the edges of � to z�f . Any edge in z�f is the image of one of
the z�i under a deck transformation. Given any t 2Wf;� and an edge � of z�f such that
� D h � z�i , the coefficient of � in t is �.h/ times the coefficient of z�i . Thus, we have
an obvious identification Wf;� DCfz�1;:::;z�mg .

Since the homomorphism z'� is an Hf –module homomorphism, it acts on every
space Wf;� as an Hf –module homomorphism, which we denote by Af;� .

If fz�1; : : : ; z�mg is the set described above, then every element of Wf;� can be written
as

t D

mX
iD1

X
h2Hf

ai�.h/.h � z�i/:

We can then define

Af;�.t/D

mX
iD1

X
h2Hf

ai�.h/.h �Af z�i/
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Lemma 2.5 Under the identification Wf;� DCfz�1;:::;z�mg , the matrix corresponding to
the linear transformation Af;� is the specialization Af .�/.

Proof Write Af z�i D
P

j wi;j z�j , with wi;j 2CŒHf �. Then

Af �
X

h2Hf

�.h/.h � z�i/D
X

h2Hf

�.h/
X

j

.h �wi;jj /z�j :

Switching the order of the summands and using the fact that h � t D �.h/t for any
t 2Wf;� and h 2Hf now gives the result.

Now suppose �W Hf !C� has finite image. Let k D j�.Hf /j be the size of the image
group. Let �k ! � be the cover corresponding to the kernel of the homomorphism
Fn!Hf =kHf given by reduction mod k .

Let t 2Wf;� , and let � be an edge in �k . Given any two lifts z�1 and z�2 of the edge �
to z�f , the coefficients of z�1 and z�2 in t are the same. Call this number a� . Write
xt D

P
� a�� 2 C1.�k ;C/.

The action of Hf =kHf on �k by deck transformations induces an Hf –module structure
on C1.�k ;C/. The map t !xt is an Hf –module isomorphism. Call its image Wf;� .

The map ' lifts to a map 'k of �k . Since this map is Hf –equivariant, it fixes the
space Wf;� . Because the map t !xt is an isomorphism, the matrix giving the induced
action .'k/� on this space is Af .�/.

2.4 The anchoring lemma and the L2–trace lemma

Definition 2.6 Let L be a lattice in Zd. Let t D
P

aihi 2CŒZd �, where ai 2C and
hi 2 Zd. Define

t.L/D
X

hi2L

ai :

Definition 2.7 Led B 2Md .CŒZ
d �/. Let tk D TrŒBk �. Write tk D

P
h2Zd a.k; h/h,

where a.k; h/ 2C is the coefficient of h. We say that B is anchored if there is some
lattice L and some integer k such that

tk.L/D

ˇ̌̌̌X
h2L

a.k; h/

ˇ̌̌̌
> d:

Definition 2.8 We say that f is anchored in � if Af is anchored.

The following lemma relates specializations to lattices:
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Lemma 2.9 Let t 2CŒZd �, t D
P

h2Zd ahh, and let L be a lattice. As in Definition
2.6, let t.L/D

P
h2L ah . Let NL be the set of all �W Zd ! C� such that �jL D 1.

Then
t.L/D

1

jNLj

X
�2NL

t.�/:

Proof Since the functions t! t.L/ and t! t.�/ are linear in t , it’s enough to prove
the lemma for the case where t is a monomial. Suppose t D ah, with a 2 C and
h 2 Zd. Let xh be the image of h in the finite abelian group G D Zd=L.

By definition,
P
�2NL

t.�/ D a
P
�2G� �.

xh/, where G� is the group of characters
of G� . Denote the trace of the regular representation of G by �G . Since G is abelian,
�G D

P
�2G� �. Thus, X

�2NL

t.�/D a�G.xh/:

The left-hand side is equal to 0 if xh ¤ e and a � jGj D a � jG�j D a � jNLj if xh D e .
Since xhD e if and only if h 2L, this concludes the proof.

Lemma 2.10 Let '#
k
W C1.�k ;C/! C1.�k ;C/ be the map induced by 'k . Suppose

this map has an eigenvalue with absolute value > 1. Then the same is true for the
induced map '�

k
W H1.�k ;C/!H1.�k ;C/.

Proof let U D C1.�k ;C/, and let W � U be the subspace spanned by all closed
paths in �k . We have a natural identification W ŠH1.�k ;C/. The space U is spanned
by elements of the form e , where e ranges over all edges of �k . Pick any norm k � k
on U, and let � > 1 be the spectral radius of the action of 'k on U. Then there exists
an edge e such that

lim sup
j!1

1

j
log k'j .e/k D log�:

Let L� be the direct sum of all generalized eigenspaces corresponding to eigenvalues
with absolute value �. Setting �j D 'j .e/=k'j .e/k, we have that the distance from
�j to L� goes to 0 as j !1. Note that 'j .e/ corresponds to a path in � , and any
such path can be closed to a loop using a bounded number of edges. Thus, the distance
of �j from W goes to 0 as j !1. Therefore L� \W ¤ f0g. Since this space is
'k –invariant, it contains an eigenvector with eigenvalue of absolute value �, . . . .

Lemma 2.11 (the anchoring lemma) If f is anchored in � then there exists an
abelian cover �k ! � to which ' lifts to a map 'k such that .'k/�W H1.�k ;C/!

H1.�k ;C/ has eigenvalues off the unit circle.
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Proof Let i be an integer and L a lattice such that Tr.Ai
f
/.L/>m. Write tiDTr.Ai

f
/.

By Lemma 2.9, ti.L/D .1=jNLj/
P
�2NL

t.�/ >m. Since .1=jNLj/
P
�2NL

t.�/ is
an average, there exists a � 2NL such that jti.�/j>m.

By definition of NL , �.Hf / is finite (since L < ker � ). Let �k ! � be the cover
constructed above. The space Wf;� is an m–dimensional, 'k –invariant subspace of
C1.�k ;C/. Furthermore, we have that jti.�/jD jTr.Af;�/j>m. Thus, the map induced
by 'k on C1.�k ;C/ has eigenvalues off the unit circle. The proof now follows from
Lemma 2.10.

Given t D
P

aihi 2CŒZd �, write ktk2 D
pP

i a2
i .

Lemma 2.12 (the L2 –trace lemma) If there exists an i such that kTr.Ai
f
/k2 >m

then there exists an abelian cover �k ! � to which ' lifts to a map 'k such that
.'k/�W H1.�k ;C/!H1.�k ;C/ has eigenvalues off the unit circle.

Proof Let i be the number given in the statement of the theorem, and let t D Tr.Ai
f
/.

For any homomorphism �W Hf !C� , we defined the specialization of t at � , t.�/. Let
H�
f

be the set of all � such that j�.h/j D 1 for all h 2Hf . The function yt W H�
f
!C

given by �! t.�/ is called the Fourier transform of t .

Setting Hf Š Zd, and considering Zd as a multiplicative group in X˙1
1
; : : : ;X˙1

d
,

we think of t as a rational function in X1; : : : ;Xd and � as a d –tuple .�1; : : : ; �d / all
of whose coordinates have modulus 1. The Fourier transform yt is the function that
plugs in the d –tuple .�1; : : : ; �d / into the rational function t . Thus, yt is a continuous
function from the torus Td ŠH�

f
to C .

By Plancherel’s theorem, ktk2Dkytk2 where the right-hand norm is the norm in L2.Td /

measured using the Haar measure of the torus. By our assumption, we have that
kytk2>m. Hence, there is a point � 2H�

f
such that jt.�/j>m. Since yt is a continuous

function, this point can be taken to have coordinates that are all roots of unity.

Since all the coordinates of � are roots of unity, we have that �.Hf / is a finite set. Let
�k ! � be the cover associated to � , as defined in the end of Section 2.3. We now
proceed in an identical manner to the proof of Lemma 2.11.

The space Wf;� is an m–dimensional, 'k –invariant subspace of C1.�k ;C/. Fur-
thermore, we have that jti.�/j D jTr.Af;�/j > m. Thus, the map induced by 'k on
C1.�k ;C/ has eigenvalues off the unit circle. The proof now follows once again from
Lemma 2.10.
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3 The transition graph of '

3.1 The transition graph and associated objects

The transition graph is a technical gadget that we use to encode information about the
map ' .

Definition 3.1 Let E.�/ D fe1; : : : ; emg be the edge set of � . Pick, once and for
all, an orientation on each edge of � . Construct a directed graph T D T Œ�; '�, called
the transition graph of ' , in the following way. The vertex set of T is fe1; : : : ; emg.
Connect the vertex ei to the vertex ej with e.i; j / directed edges, where e.i; j / is the
number of times '.ei/ traverses the edge ej (in either direction).

We will associate several useful objects to the graph T which we discuss in this section.

Definition 3.2 Pick a decorating function d W E.T /! N such that whenever Ei;j

is the set of edges in T from ei to ej , then d jEi;j
is a bijection onto the set

f1; : : : ; e.i; j /g. We think of each of the edges � connecting ei to ej as corresponding
to the d.�/th time that '.ei/ traverses ej .

Definition 3.3 Extend the decorating function to a function d W P.T /! N , where
P.T / is the set of edge paths in T , by requiring that d restricted to the set of all paths
connecting ei to ej of length k is a bijection onto f1; : : : ; e.i; j I k/g, where e.i; j I k/

is the number of times 'k.ei/ traverses ej , in either direction. We think of a path
�1 : : : �k connecting ei to ej as corresponding to the d.�1 : : : �k/

th time that 'k.ei/

traverses ej .

Definition 3.4 Let P.�/ be the set of paths in � . Define a path function pW P.T /!
P.�/ in the following way. Let �1 : : : �k be a path in T connecting e1 to ej . We
write 'k.ei/ D abc , where a; b; c 2 P.�/ and b the path of length 1 traversing ej

that corresponds to d.�1 : : : �k/. We define p.�1 : : : �k/D a if b traverses ej in the
positive direction and p.�1 : : : �k/Dab if b traverses ej in the negative direction. Note
that this convention assures that the endpoint of p.�1 : : : �k/ is the initial point of ej .

Definition 3.5 Let � W �0! � be a regular cover to which we can lift ' to a map '0 .
Denote the deck group of this cover by D. Let V D V .�/. Choose a lift V0 of the
set V to �0 . Every vertex w 2 V .�0/ satisfies w D �.v/ for some v 2 V0 and � 2 D.
We say that � is the address of w , and write � D a.w/.
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Definition 3.6 Given a regular cover � W �0! � as above and lift V0 of V , define
a function t� W P.T /! D, called a translation function, by setting t�.�1 : : : �k/ D

a.w2/a.w1/
�1 , where w1 and w2 are respectively the initial and terminal points of

p.�1 : : : �k/. We will most often be concerned with the translation function for the
cover � W z�f ! � . In this case, we will omit the subscript � .

Definition 3.7 Define a sign function sW E.�/! f˙1g in the following way. Let �
be an edge connecting ei to ej . Set s.�/ D 1 if and only if the d.�/th time '.ei/

traverses ej is in the positive direction. We extend the definition of s to edge paths
in T by setting s.�1 : : : �k/D s.�1/ : : : s.�k/.

Example 3.8 Suppose � D S1 _ S1 is the rose on two petals. The fundamental
group of this graph is F2 D ha; bi, where a and b are loops about the two petals
based at their intersection. Consider the inner automorphism a! bab�1 , b ! b .
This automorphism is induced by a function 'W � ! � which is the identity on the
loop b and sends a to bab�1 . The transition graph T has two vertices: one labeled a

and one labeled b . Identify H1.�IZ/Š Z2 . The vertex b has one outgoing edge �1

which connects it to itself. We have that s.�b/ D 1, p.�1/ is the trivial path and
t.�1/D 0. The vertex a has three outgoing edges. One, �2 , connects it to itself and
two, �3 and �4 , connect it to b . We have that s.�2/ D 1, p.�2/ is the path b and
t.�2/D .0; 1/. Of the edges connecting a to b we have that s.�3/D 1, s.�4/D�1,
p.�1/ is the trivial path, p.�4/D bab�1 , t.�3/D 0 and t.�4/D .1; 0/.

The above definitions allow us to give a different description of the matrix Af defined
in Section 2.2.

Observation 3.9 Let 1� i; j ;�m. Let Ei;j be the set of edges in T connecting ei

to ej . Let t be the translation corresponding to the cover z�f ! � . Then

.Af /i;j D
X
�2Ei;j

s.�/t.�/;

where t.�/ is understood as an element of the group ring of Hf supported at one point.

This observation can be seen by using the definition of Af to calculate Af ze , where ze
is a lift of the edge e in � .
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3.2 Vertex subgraphs and extremal subgraphs of T

The graph T has important subgraphs, which we call extremal subgraphs and vertex
subgraphs, that play a major role in our proof. Before we define them, we require an
observation, which follows from the fact that f acts trivially on Hf .

Observation 3.10 The map tW P.T /! Hf , where P.T / is viewed as a groupoid
under concatenation, is a homomorphism of groupoids.

Let t be the translation function corresponding to the cover z�f ! � .

Definition 3.11 For any path x�D �1 : : : �k , define tn.x�/, the normalized translation
of x�, to be tn.x�/D

1
k

t.�/ 2Hf ˝R.

Definition 3.12 A based cycle in T is closed path. A cycle is the equivalence class of
a based cycle, under the relation identifying two based cycles that differ by a cyclic
permutation of their edges. One corollary of Observation 3.10 is that the function t is
well defined on cycles.

Let C be the set of cycles in T and let Cs be the set of simple cycles in T (a cycle is
simple if it gives an embedding of S1 into T ). As a corollary of Observation 3.10,
we get that tn.C/ is contained in the convex hull of tn.Cs/. Since Cs is a finite set,
this convex hull is a polytope. We call this polytope the equivariant shadow of ' and
denote it by Se' .

Every vertex u is in Hf ˝Q. Since Se'k D kSe' , by replacing f with some power
of itself we can assume that every vertex of Se' has integer vertices. In our proof
of Theorem 1.5 we will show that it suffices to prove the theorem for f k for some
integer k . Therefore, we can and will assume in the sequel that every vertex of Se' is
integral.

Definition 3.13 Let !W Hf ˝R!R be a linear transformation. Let M! be the maxi-
mal value ! takes on Se' . Let T! be the union of all 
 2 C such that !.tn.
 //DM! .
We call the graph T! the extremal subgraph of T corresponding to ! .

Since every vertex of a convex polytope is the maximal set of some linear function, we
have a special kind of extremal subgraph, called a vertex subgraph.

Definition 3.14 Let u 2Hf ˝R be a vertex Se' . Let Tu be the union of all 
 2 C
such that tn.
 /D u. We call Tu the vertex subgraph corresponding to u.
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Lemma 3.15 Let !W Hf ˝R!R be as above. Let 
 2 C . Then !.tn.
 //DM! if
and only if 
 is a cycle in T! .

Proof The “only if” direction is just the definition of the subgraph T! . We will prove
the “if” direction. For any path ı in T! , define g.ı/D !tn.ı/. Suppose that 
 is a
cycle in T! with g.
 / <M! .

Choose a based cycle �1 : : : �k in the equivalence class of 
 . For every 1� i � k , the
edge �i is part of the graph T! , and hence is contained in some cycle whose normalized
translation is M! . If �i connects vertices e to e0, we can thus find a path �i connecting
e0 to e such that g.�i�i/DM! . Let li be the length of �i .

Let � be the path �k : : : �1 . Since g.�i�i/DM! , we have that

!.t.�i//D .lk C 1/M! �!.t.�i//:

Let l D l1C � � �C lk . Our assumption that g.
 / <M! gives that

g.�/D
1

l

kX
iD1

�
.lk C 1/M! �!.t.�i//

�
D

�
1C

k

l

�
M! �

k

l
g.
 / >M! :

This is a contradiction of our definition of M! .

Observation 3.16 The notion of vertex subgraphs is central to our proof, and we will
need to use it in a more general context than the one outlined above. Note that the
proof of Lemma 3.15 did not use any properties of t , aside from the fact that it is
homomorphism from the groupoid of paths to an abelian group. Thus we can define
extremal and vertex graphs with respect to any such homomorphism. We can take this
a step further. Any function from cycles to an abelian group that is additive on based
cycles which are based at the same point can be extended to a homomorphism from
the groupoid of paths. Thus, even in this more general situation, we can still define
extremal and vertex subgraphs.

Definition 3.17 Let u be a vertex of Se' . Let ei and ej be vertices of T . Let Ei;k.u/

be the set of edges in Tu connecting ei to ej . Define the vertex matrix of u, or Af;u ,
by setting

.Af;u/i;j D
X

�2Ei;j .u/

s.�/t.�/:

Similarly, we can define a matrix for any subgraph of T .

Definition 3.18 The vertex u is said to be stable if Af;u is not nilpotent.
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3.3 Subgraphs and covers

Let � W � 0! � be a cover to which ' can be lifted to a map '0. The transition graph
of '0 is a cover of the graph T . We will denote it by T Œ��. If T0 is a subgraph of T ,
we will denote it by T0Œ��. Given an vertex subgraph Tu� T , we denote its lift to T Œ��
by TuŒ��, and let Af;uŒ�� be the associated matrix. We say that u is stable in the
cover � if Af;uŒ�� is not nilpotent.

3.4 The dimension of Se'

The group G D Fn Ìf Z is the fundamental of a mapping torus Mf . If f W †! †

is a surface diffeomorphism, then this mapping torus is a 3–manifold. If f is a
free group automorphism then we form the mapping torus Mf D � � I=�, where
.x; 0/� .'.x/; 1/.

We can write H1.Mf IZ/ŠH e
1
.�IZ/˚Z, where H e

1
.�IZ/ is the image of H1.�IZ/

in H1.Mf IZ/. Let 
 be a cycle in T . Following Fried (who used an equivalent
definition), we call .tn.
 /; 1/ 2H1.Mf IR/ a homological direction. For f pseudo-
Anosov and † compact, Fried studied the cone on all homological directions and
related it to the Thurston norm.

Given a 3–manifold Mf that fibers over the circle, Thurston [19] defines a seminorm �

on H2.Mf ; @Mf IR/.

The corresponding norm on H2.Mf ; @Mf IR/=ker � is a convex polytope. One of the
top-dimensional faces of this polytope is called the fibered face. If f is pseudo-Anosov
and † has b � 1 boundary components, then

dim H2.Mf ; @Mf IR/=ker � D dim H2.Mf ; @Mf IR/� .b� 1/:

Let C be the cone on the set of homological directions. In [5], Fried proves that this
cone has the same dimension as a cone on the fibered face (in fact, he proves a stronger
claim: the two cones are dual). By Poincaré duality and the universal coefficient
theorem, dim H2.Mf ; @Mf IR/D dim H1.Mf IR/. So, for a surface diffeomorphism
we get that dimSe' D dim Hf ˝RC 1� b . A simpler statement holds for the case
where f 2 Out.Fn/. In this case, in [3], Dowdall, Leininger and Kapovich prove
that the cone C is dim H1.Mf IR/–dimensional. This is also proved separately by
Algom-Kfir, Hironaka and Rafi in [1]. This means that dimSe' is dim Hf ˝R. We
summarize this discussion in the following lemma:
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Lemma 3.19 (dimension of Se' ) If f W †!† is a pseudo-Anosov mapping class
and † has b � 1 boundary components, then dimSe' D dim Hf ˝RC .1� b/. If
f 2 Out.Fn/ is fully irreducible then dimSe' D dim Hf ˝R.

4 Stabilizing vertex subgraphs

Our goal in this section is to describe a process we call vertex stabilization, in which
we start with a vertex of Se' and find a cover in which it is stable. Our method uses
properties of nilpotent groups.

4.1 Nilpotent groups

Let G be a finitely generated group. Define G1DG, and for every i set GiC1D ŒG;Gi �.
The group G is said to be nilpotent if Gn is trivial for some value of n. The sequence
of subgroups Gi is called the lower central series of G.

In [10], Koberda introduces a modified form of the lower central series, called the
torsion-free lower central series. This is a series of the form

� � �C GTF
3 C GTF

2 C GTF
1 DG

such that

(a) the groups GTF
i are characteristic in G ;

(b) the groups Ni DG=GTF
i are nilpotent;

(c) the groups Li DGTF
i =GTF

iC1
are finitely generated torsion-free abelian groups

that are central in NiC1 .

Koberda shows that if G is of the form G D F Ì Z where F is a surface group or a
free group, then

T
GTF

i D feg.

4.2 Nilpotent stabilization

Let GDFn Ìf Z, and let i W Fn!G be given by i.w/D .w; 0/. Let GTF
1
�GTF

2
� � � �

be the torsion-free lower central series of G. For every j �1, set Kj D i�1.GTF
j /C Fn ,

Nj D Fn=Kj and Lj DKj=KjC1 .

Let �j be the cover of � corresponding to Nj . Denote the corresponding translation
function by tj . The subgroups Kj are all f –invariant and thus f acts on the groups Nj

and Lj . Since f acts trivially on Hf , it is a standard fact that it acts trivially on
each Lj .
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Definition 4.1 A subgraph T 0 � T is called j –stable if it has nontrivial cycles and
for infinitely many k there exists a p such thatX




s.
 /tj .
 /¤ 0 2CŒNj �;

where the sum is taken over all based cycles of length k in T 0 based at p . A vertex u

of Se' is said to be j –stable if its vertex subgraph is j –stable.

Since N1 D Hf , saying that the vertex u is stable is equivalent to saying that it is
1–stable.

Definition 4.2 A subgraph T 0 � T is called j –consistent if for every vertex p of T 0

there exists xp 2Nj and an integer d dividing the lengths of all cycles in T 0 such that,
for any cycle 
 of length k based at p ,

tj .
 /D f
k.xp/ � � � f

3d .xp/f
2d .xp/f

d .xp/:

Note that a vertex subgraph is an example of a 1–consistent subgraph.

Lemma 4.3 Let T 0 � T be a j –consistent subgraph. Then there exists a .jC1/–
consistent subgraph T 00 � T 0. Furthermore, the subgraph T 00 has the property that if
T 00 is .jC1/–stable then T 0 is also .jC1/–stable.

Proof Let xp 2Nj be the elements provided by the definition of j –consistency. For
each p , pick yp 2 NjC1 whose image in Nj is xp . For any l divisible by d, let
Pl.p/D f

l.yp/ � � � f
d .yp/.

Let 
p be a based cycle of length k in T 0 that is based at the vertex p . The deviation
of 
p , or �.
p/, is given by the equation

�.
p/D P�1
k .p/tjC1.
p/:

For any path ı D ı1ı2 in the graph � we have that '.ı/D '.ı1/'.ı2/. Thus, for any
path ı in the graph T , and any edge � whose initial point is the endpoint of ı we have
that p.ı�/D '.ı/p.�/. More generally, if ı0 is a path of length l whose initial point
is the endpoint of ı then p.ıı0/D 'l.ı/p.ı0/.

Now let p̌ be a based cycle of length l in T 0 that is also based at p . By the previous
paragraph,

tjC1.
p p̌/D f
l.tjC1.
p//tjC1. p̌/D f

l.Pk.p/�.
p//Pl.p/�. p̌/:
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Since f acts trivially on Lj , and Lj is central in NjC1 , we get tjC1.
p/ p̌ D

PkCl.p/�.
p/�. p̌/. Thus, we have that

�.
p p̌/D�.
p/�. p̌/:

Since Lj is an abelian group, it follows from the above calculation that if p̌ is
obtained from 
p by cyclic reordering such that both are cycles based at p , then
�.
p/D�. p̌/.

Let M be the vector space L
V .T /
j ˝ R. Given an unbased cycle 
 in T 0, define

the basepoint-free deviation of 
 or x�.
 / to be the following element of M. Set
x�.
 /Œp� D 0 if 
 doesn’t pass through p . Otherwise, set x�.
 /Œp� to be the image
of �.
p/ in Lj ˝R, where 
p is a basing of the loop 
 at p . Note that this function
depends on j. We say that x� is the j –level basepoint-free deviation function.

The function x� is additive on cycles in T 0. Furthermore, since G is finitely generated,
the vector space Lj ˝R is finite-dimensional, and hence M is finite-dimensional.
By Observation 3.16, we can use the map x� to choose a vertex subgraph T 00 � T 0

corresponding to the vertex v 2M.

Since Lj is torsion-free, we have an inclusion V .T 0/Lj �M. Fix a vertex p of T
and let vp be the p–coordinate of v . For any cycle 
p based at p of length k we
have that tj .
p/D Pk.p/�p.
p/. We must therefore have that kv 2Lj . If we write
vp D

1
q
wp with wp 2Lj and q 2N , we get that q jk .

Set d 0 to be the greatest common divisor of the lengths of all loops in T 00. We
can take wp D d 0v . We have that d 0 D ad for some integer a. Define zp D

f ad .yp/ � � � f
d .yp/�wp . This choice of the zp makes the graph T 00 consistent. Indeed,

for any cycle 
p of length k D bd 0 we have that

t.
p/D Pk.p/�p.
p/D Pk.p/kvp D Pk.p/bwp D f
k.zp/ � � � f

d 0.zp/:

Now suppose that T 00 is .jC1/–stable. Since it is a vertex subgraph of T 0, by
Observation 3.16 and Lemma 3.15 we have that T 0 is .jC1/–stable.

Definition 4.4 A subgraph T 0�T is called a j –vertex subgraph if there is a sequence
of subgraphs T 0 D Tj � � � � � T1 such that for all i , TiC1 is .iC1/–consistent and
a vertex subgraph in Ti with respect to the i –level map x�. Note that if TiC1 is an
i –vertex subgraph then so is Tl for any l < i .

Lemma 4.5 (nilpotent stability) Let u be a vertex of Se' . There exists a j � 1

such that u is j –stable.
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Proof By repeated application of Lemma 4.3, we can find for every j a j –vertex
subgraph Tu;j � Tu .

Since Tu is a finite graph, any sequence of subgraphs must stabilize, say at Tu;N . That
is, Tu;k D Tu;N for every k >N . Given two based loops ˇ and 
 in TN based at the
same point and of the same length we must have that tk.
 /D tk.ˇ/ for every k �N

(otherwise we could choose a further vertex subgraph).

Let t1 be the translation function corresponding to the universal cover of � . Since ' is
a train track representative, for any edge e of � the path 'l.e/ is immersed in � . Since
�.�/ is a free group, this means that, given two different based cycles 
1 and 
2 in T of
the same length and based at the same point, we must have that t1.
1/¤ t1.
2/. Since
the sequence fKj gj satisfies that

T
Kj D f1g, the graph Tu;N is a disjoint collection

of cycles. Any such collection is obviously N –stable. The result now follows.

4.3 Upgrading nilpotent stabilization

4.3.1 The trace of powers lemma Fix r; l 2 N and A 2 Ml.CŒZ
r �/. For any

integer k , let tk D TrŒAk �.

Lemma 4.6 (the trace of powers lemma) Given any lattice L < Zr there exists a
collection ˛1; : : : ; ˛s 2C (which depends on L) and a number C > 0 such that

tk.L/D C
X

i

˛k
i :

Furthermore , if A is not nilpotent then there exists a number N > 0 such that , for all
j >N , tk.j Zr /¤ 0 for infinitely many values of k .

Proof Fix a lattice L. Recall from the proof of Lemma 4.6 that there exists a finite
set NL � .C

�/r such that, for any k ,

tk.L/D
1

jNLj

X
�2NL

tk.�/:

Set p.x/D det.xIr �A/ 2CŒZr �Œx�. We think of p as a polynomial in the variable x

with coefficients in CŒZr �. Let �W Zr ! C� . The map � extends linearly to a ring
homomorphism CŒZr �Œx�!CŒx�. The image of p under this homomorphism is called
the specialization of p at � and is denoted by p� . Note that p� is a degree r polynomial.

Pick r (not necessarily continuous) functions �1; : : : ; �r W .C�/r !C such that, for
any � , �1.�/; : : : ; �r .�/ is the collection of all roots of the polynomial p� , counted
with multiplicity.
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For any � , the numbers �1.�/; : : : ; �r .�/ are the roots of the characteristic polyno-
mial of the matrix A.�/. Thus, �k

1
.�/; : : : ; �k

r .�/ are the roots of the characteristic
polynomial of the matrix Ak.�/. Therefore, tk.�/D

P
i �

k
i .�/. It follows that

tk.L/D
1

jNLj

X
�2NL

X
i

�k
i .�/:

This shows the first claim of the lemma. We now show the second claim. Since A is
not nilpotent, tk ¤ 0 for some value of k . Recall that the Fourier transform ytk is the
restriction of the function � ! tk.�/ to .S1/r , where S1 D fz 2 C W jzj D 1g. This
is a continuous function since tk has finite support. Since tk ¤ 0, this function is not
the zero function.

Write Nj DNjZr . Using the definition of Nj , as it appears in Lemma 4.6 we have

Nj D f� W �jjZr D 1g:

Thus, Nj is the set of all points of order dividing j in the torus .S1/r . Thus, for any
� > 0, the set Nj forms an �–net in .S1/r for all sufficiently large j. In particular,
by continuity of the trace of A, for all sufficiently large j there exists � 2 Nj and
1� i � r such that �i.�/¤ 0. The second claim now follows from the elementary fact
that if ˛1; : : : ; ˛s are not all 0, then

P
˛k

i ¤ 0 for infinitely many values of k .

Note that an identical proof holds if we replace the lattice L with a translate of itself.
We get the following:

Lemma 4.7 Given any lattice L< Zr and a vector Sw 2 Zr, there exists a collection
˛1; : : : ; ˛s 2C (which depends on L) and a number C > 0 such that

tk.LC Sw/D C
X

i

˛k
i :

Furthermore , if A is not nilpotent then there exists a number N > 0 such that , for all
j >N and for all Sw , tk.j Zr C Sw/¤ 0 for infinitely many values of k .

4.3.2 k–covers and nilpotent quotients Let G be a residually torsion-free, finitely
generated group. Let fGTFgi be its torsion-free lower central series. For x1; : : : ;xi 2 G ,
let

Œx1; : : : ;xi �D Œ: : : ŒŒx1;x2�;x3�; : : : ;xi �:
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Let S be a finite generating set for �. It is a standard fact that, for any j, LjDZ.G=GTF
j /

is generated by elements of the form Œa1; : : : ; aj �, where ai 2 S. We require the
following simple lemma:

Lemma 4.8 Let j ; k 2N . For any 1� i � j and, for any a1; : : : ; aj 2 G ,

Œa1; : : : ; aj �
k
�j Œa1; : : : ; a

k
i ; : : : ; aj �;

where �j is understood as having equal images in Lj .

Proof We prove the claim inductively on j. The claim is obvious for j D 1. Assume
we’ve proved the claim for all numbers up to j. We now prove it for j C 1. Repeated
application of the basic commutator identities Œx; zy�D Œx;y� � Œx; z�y together with
the fact that conjugation acts trivially on Li for all i gives that

Œa1; : : : ; a
k
j �D Œa1; : : : ; aj � � Œa1; : : : ; aj �

y
� � � Œa1; : : : ; aj �

yk�1

�j Œa1; : : : ; aj �
k :

For i < j the inductive claim gives us a w 2 GTF
j such that

Œa1 : : : ; a
k
i ; : : : ; aj �D ŒŒa1; : : : ; a

j
i ; : : : ; aj�1�; aj �

D ŒŒa1; : : : ; aj�1�
kw; aj ��j ŒŒa1; : : : ; aj�1�

k ; aj �:

Using the identity Œy;x�D Œx;y��1 and the fact that Œa1; : : : ; a
k
j ��j Œa1; : : : ; aj �

k now
yields the result.

For any k , let GŒk� be the kernel of the natural map G!H1.G;Z=kZ/. Let fGŒk�TF
j gj

be the torsion-free lower central series of GŒk�, and let

Lj Œk�DZ.GŒk�=GŒk�TF
j /:

The inclusion GŒk� ! G induces a natural map Lj Œk� ! Lj . As a corollary to
Lemma 4.8, we have the following:

Corollary 4.9 For any j ; k 2N , the image of the natural map Lj Œk�!Lj is kj Lj .

4.3.3 The upgrade lemma Fix a vertex u of Se' . For any integer k , let GŒk� be
the kernel of the map G!H1.G;Z=kZ/. Let F Œk�D i�1.Gk/. Let �k W �k! � be
the cover of � corresponding to this map. The map 'k lifts to �k . Call this lift 'k .
Let T k

u be the vertex subgraph corresponding to u in the transition graph of 'k .

Lemma 4.10 (the upgrade lemma) Let j 2 N , and suppose u is a .jC1/–stable
vertex for ' . Then, for all but finitely many k 2 N , the graph T k

u Œ�k � is a j –stable
extremal subgraph.
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Proof Let T 0�Tu be a j –vertex subgraph. As in Lemma 4.3, let MDV .T /LjC1˝R,
and let x� be the level j C 1 basepoint-free deviation function. Since the function x�
is additive on cycles, we can extend it to in Tu , and produce a corresponding matrix
B 2MjV .T /j.CŒM�/ such that, for any k ,

Tr.Bk/D
X



s.
 /x�.
 /;

where the sum is taken over all cycles of length k in T 0 and x�.
 / is understood
as an element of CŒM �. Since VjC1 is torsion-free, we have a natural inclusion
map LjC1

V .T / � M. Let m D jV .T /j. Write L D LjC1
V .T / Š .Zr /m , where

r D rank.LjC1/. Note that, by construction, Tr.Bk/ 2 L for every k .

Since T 0 is stable, the matrix B is not nilpotent. Let N be the number provided by
Lemma 4.6. Fix k > N. For any s , let ts be the translation function corresponding
to the map G ! G=GTF

s , and tŒk�s be the translation corresponding to the map
GŒk�!GŒk�=GTFŒk�s .

For any i , let Ti D
P

 s.
 /tjC1.
 /, where the sum is taken over all cycles of length i

in T 0. For any x in the support of Ti , let ai
x be its coefficient. Since T 0 is a j –vertex

subgraph, for any x and y in the support of Ti we have that xy�1 2 LjC1 . Let
Ti Œx; k�D

P
y ai

y , where the sum is taken over all y such that xy�1 2 kjC1LjC1 .

Consider the sum
P
z
 s.z
 /tŒk�jC1.z
 /, where the sum is taken over the lifts to T 0Œ�k �

of all cycles of length i in T 0. Pick y in the support of this sum such that the image
of y in G=GTF

jC1
is x . Let xy be the image of y in GŒk�=GTFŒk�j under the natural

inclusion map.

By Corollary 4.9, the coefficient of xy in
P
z
 s.z
 /tŒk�j .z
 / is equal to Ti Œx; k�. Since

T 0 is a j –vertex, this in turn is equal to Tr.Bi/.LCSw/ for some Sw2L. By Lemma 4.6,
this is not equal to 0 for infinitely many values of i . This concludes the proof.

4.3.4 Weak vertex subgraphs and weakly consistent subgraphs

Observation 4.11 We would like to use Lemma 4.5 together with repeated applications
of Lemma 4.10 to produce a cover where a given vertex u of Se' is stable. However,
Lemma 4.10 inputs a cover where a given vertex is .jC1/–stable and outputs a further
cover where a given face is j –stable. It is quite possible that the vertices in this face are
not themselves j –stable, which prevents the use of an inductive step. To circumvent
this issue, we introduce a slight technical generalization called weakly vertex subgraphs
and weakly consistent subgraphs.
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Definition 4.12 A subgraph T 0 � T is said to be of vertex type if there exists some
v 2Hf ˝R such that T 0 consists all loops 
 with tn.
 /D v .

Definition 4.13 A subgraph T 0 � T of vertex type is said to be a weak j –level vertex
if it is j –stable and there exists some linear transformation T W Hf ˝R!R such that
for any v0 2Hf ˝R with T .v0/ > T .v/, the subgraph of vertex type corresponding
to v0 is not j –stable.

Observation 4.14 Let v and v0 be as in the above definition. By replacing f with a
power of itself, we may assume that for all such v0, for any vertex p and, for any k ,P

s.
p/tj .
p/ D 0, where the sum is taken over all based loops of length k in the
vertex type subgraph corresponding to v0 that are based at p and tj is the translation
function corresponding to Nj .

Definition 4.15 A subgraph T 0�T is called weakly j –consistent if for every vertex p

of T 0 there exists xp 2Nj and an integer d dividing the lengths of all cycles in T 0

such that, for all sufficiently large k ,X



s.
 /tj .
 /D Ckf
k.xp/ � � � f

3d .xp/f
2d .xp/f

d .xp/;

where the above sum is taken in the group ring of Nj , the sum is taken over all
based cycles of length k in T 0 that are based at p , Ck is some number and tj is the
translation function corresponding to Nj .

Suppose T 00 is a weakly j –consistent subgraph of the weak j –level vertex subgraph T 0

corresponding to v 2 Hf ˝R. For any vertex p and any based loop 
p satisfying
tn.
p/D v , define the deviation of 
p or �.
p/ exactly as in Lemma 4.3. The same
calculation as the one done in Lemma 4.3 shows that � remains constant under cyclic
reordering of based cycles based at p , and that it is additive on such cycles. Exactly as
in Lemma 4.3, define the basepoint-free deviation of a cycle 
 satisfying tn.
 /D v .

We think of x�.
 / as an element of the group ring CŒLV .T /
j �. Extend the definition

of x� to cycles 
 in T 00 not satisfying tn.
 /D v by setting x�.
 /D 0.

Observation 4.16 Since v is a j –level weak vertex subgraph, we can find a matrix
B 2MjV .T /j.CŒL

V .T /
j �/ such that, for any k ,

Tr.Bk/D
X



s.
 /x�.
 /;
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where the sum is taken over all cycles of length k in T 00 satisfying tn.
 /D p . The
same proof as Lemma 4.10 now gives us that, for all but finitely many k ’s, the graph
C T 00Œ�k � is .j�1/–stable.

4.3.5 The vertex stabilization lemma

Lemma 4.17 (the vertex stabilization lemma) For any vertex u of Se' , there exists
a solvable cover � 0 ! � to which ' lifts such that ku is a stable vertex in � 0 for
some k .

Proof By Lemma 4.5, the vertex u is j –stable for some j. By Lemma 4.10, we can
find some k1 –cover �k1

such that the extremal subgraph TuŒ�k1
� is .j�1/–stable.

Since this extremal subgraph is .j�1/–stable, it has a weak .j�1/–level vertex u1 .
Let Tu1

be the corresponding graph. By applying Observation 4.16 we can find a
k2 and a k2 –cover �k2

of �k1
such that Tu1

Œ�k2
� is .j�2/–stable. This means that

TuŒ�k2
� is .j�2/–stable.

Proceeding inductively in this manner, we can find a cover � in which Tu is 1–stable,
and hence stable. Note that at each step, the abelian covers we take are characteristic
since they are simply the covers obtained by reducing homology modulo some integer.
Since � is obtained by iterating characteristic covers, it is a regular cover. Since it is
obtained by iterating abelian covers, it is solvable.

5 Proof of theorems

5.1 Lemmas

In this section we collect several technical lemmas that we require for our proof.

5.1.1 The cyclic deformation lemma

Lemma 5.1 (cyclic deformation lemma) Let T 0� T be a weak .jC1/–stable vertex
subgraph that is weakly j –consistent. Let  W G! Z=qZ be a homomorphism into a
cyclic group of prime order q such that i.Fn/— ker and such that T 0 is j –stable in
the cover corresponding to ker . Then, for all sufficiently large primes p , there are
homomorphisms  pW G!Z=pZ such that i.Fn/— ker p and T 0 is j –stable in the
cover corresponding to ker p .
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Proof Pick a basis a1; : : : ; al for Hf , and extend it to a minimal generating set B

for H1.GIZ/ such that  W H1.G;Z/!Z=qZ sends a1 to 1 and all other generators
to 0. For any prime p , let  p be the homomorphism  pW H1.G;Z/!Z=pZ sending
a1 to 1 and all other generators to 0. So  D  q .

Let LjC1 DGTF
jC1

=GTF
jC2

. Denote by LjC1Œ p � the image of the .jC1/st term of the
lower central series of ker p in LjC1 . Denote by L�

jC1
the dual group of LjC1 (that

is, the group of all characters on LjC1 with image in the unit circle). Let � 2L�
jC1

be such that LjC1Œ q �� ker�.

We begin by showing that for all � > 0, there exist infinitely many primes p , and
elements �p 2 L�

jC1
, such that LjC1Œ p � � ker�p , and the distance from � to �p

is less than � (here we’re using the distance on L�
jC1

induced by an embedding into
Crank.LjC1/ ).

The group LjC1 is generated by the images of elements of the form Œb1; : : : ; bjC1�,
where bi 2 B. By Lemma 4.8, the lattice LjC1Œ p � is generated by elements of the
form ps Œb1; : : : ; bj �, where s is the number of times that a1 appears in b1; : : : ; bj .

Let RD spanZ.Œb1; : : : ; bjC1�/ be the lattice of formal linear combinations of genera-
tors as above. For any i � 0 let Ri be the sublattice generated by all elements where
a1 appears i times. Let Ui be the image of Ri in LjC1 . Then LjC1Œ p �D

P
piUi .

By definition, we have that U0 � ker � , and must have that U0 � ker �p for every p .
Given a lattice L � Zr , we can find a direct sum decomposition Zr Š

L
Mi , with

LŠ
L
.L\Mi/ and L\Mi a finite-index subgroup of Mi . Since every element

of LjC1=LjC1Œ p � has order that is a power of p and U0 �LjC1Œ p � for all p , we
must have that U0 is a direct summand of LjC1 . Write LjC1 D U0˚V .

For every p , let Np � L�
jC1

be the set of all characters � such that U0 � ker � and
�.V / is contained in the set of pth roots of unity. Let N1 be the set of all characters �
such that U0� ker � . We have that � 2N1 , and any � 2Np satisfies LjC1Œ p �� ker � .
We now conclude by noting that for every � > 0, the set Np is �–dense in N1 for all
sufficiently large p .

We now proceed similarly to the proof of Lemma 4.10. Let m D jV .T /j and L D
CŒLV

jC1
.T /�. As in Lemma 4.10, there is a B 2Mm.L/ such that, for any k ,

Tr Bk
D

X



s.
 /x�.
 /;
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where the sum is taken over all loops 
 of length k in T 0. Since T 0 is .jC1/–stable,
the matrix B is not nilpotent.

As in the proof of Lemma 4.6, let p.x/ be the characteristic polynomial of B, and
let �1; : : : ; �m be a collection of m roots of p.x/. Since T 0 is j –stable in the
cover corresponding to ker , then, as in Lemma 4.10, there exists � 2 L�

jC1
with

LjC1Œ �� ker�, and a root �i such that �i.�/¤ 0.

For every k , Tr Bk Œ��D
P

i �i.�/
k . Thus, we can find a k where Tr Bk Œ��¤ 0. The

polynomial Tr Bk is continuous, and thus there exists an open set U containing �
where Tr Bk is nonzero at every point. For every �0 2 U there exists an i such that
�i.�

0/¤ 0.

Let N p
D f� 2 L�

jC1
W LjC1Œ p � � ker �g. By the above claim, there are infinitely

many values of p such that N p
\U ¤∅. For each such p , there are infinitely many

values of l such that X
i

X
�02N p

�i.�
0/l ¤ 0:

Thus, as in the proof of Lemma 4.10, the graph T 0 is j –stable in the cover corresponding
to ker p .

5.1.2 The cyclic cover multiplicity lemma

Lemma 5.2 (cyclic cover multiplicity lemma) Let � W �p! � be a cyclic cover of
degree p , for a prime number p . Let u be a vertex of ' such that the image of u

in Z=pZ is not 0. Let Tu be the vertex subgraph of u and AuŒ�� be the matrix
corresponding to TuŒ��. For any k , let tk Œ�;u� be the trace of the matrix AuŒ��

k .
Then, as an element of the additive group of ZŒH1.�p;Z/�, tk.�;u/ is divisible by p .

Proof For any integer k ,
Tr.AuŒ��

k/D
X



t.
 /;

where the above sum is taken over all based cycles 
 of length k in Tu . Since t.
 /

does not depend on the choice of basepoint of a cycle, we can rewrite the above as

Tr.AuŒ��
k/D

X
ı

nıs.ı/t.ı/;

where the sum is taken over all unbased cycles of length k in Tu and nı is an integer.
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Let ı be an unbased cycle. The group Z acts transitively on the set of based cycles
corresponding to ı by cyclic rotations. Let sı be the size of the image of Z under this
action. We call sı the cyclic stabilizer of ı . Then nı D k=sı .

An alternative characterization of nı is the following. Let 
 be a based representative
of ı . Let 
 0 be the minimal based subcycle of 
 (sharing the same basepoint) such
that 
 D .
 0/l . Then

nı D
k

l
D

k

sı
length.
 0/:

The based cycle ˛0 projects to a based cycle ˛ in Tu . By the definition of Tu ,
t.˛/ D length.˛/u. Since u projects to a generator of Z=pZ, and 
 0 is a cycle
in the cover � , we must have that length.˛/D length.
 0/ is divisible by p . By the
above, this means that nı is divisible by p , as required.

5.1.3 Invariance of trace Let � W z�! � be a finite regular cover, to which ' lifts
to a map z'W z�! z� . Let D be the deck group of the cover � . Since z' is a lift of ' , we
have that z'DDDz' . Thus, some power of z' commutes with every element of D. Note
that the group D also acts on H zf , the homology of the corresponding mapping torus.

Given an edge � of the train track graph of f , and a lift z� of � to z†, for any � 2D we
have that z'�.z�/D � z'.z�/. Thus, by the definition of Af Œ��, we have the following:

Lemma 5.3 (invariance of trace) Let � W z�! � be a finite regular cover with deck
group D to which ' lifts. Then there is some integer k such that Tr.Af Œ��k/ is
D–invariant. Furthermore, if h 2 support.Tr.Af Œ��k// then the multiplicity of h in
Tr.Af Œ��k/ is divisible by nh D fı 2 D W ı�hD hg.

5.1.4 The polytope/lattice lemmas

Lemma 5.4 (the polytope/lattice lemma) Let P �Rd be a d –dimensional convex
polytope. There exists a lattice L0 � Rn and a translate L of L0 such that P \L

consists of at least d C 1 points, all of which are vertices of P, and the convex hull
of the points in the intersection is a d –dimensional polytope. Furthermore, for any
vertex v of P, L can be chosen so that v 2 P \L.

Proof We will prove the claim by induction on d. The claim is obvious for d D 1.
Assume inductively that we’ve proved it for all dimensions up to d � 1.
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Fix a vertex v of P. Without loss of generality, we can take v to be the origin and
v 2 Q. Let F1 be a .d�1/–dimensional face of P incident at v . Let F2 be the
opposite face of F1 (by this we mean that there exists a linear map !W Rn!R whose
minimal value on P is achieved precisely on F1 and whose maximal value is achieved
precisely on F2 ).

The vertex v is also a vertex of F1 . Let W D span.F1/, and let X be the set of all
� 2W � whose minimum on F1 is achieved exactly at v . The set X is an open set.
Pick a point u2F2 , and let T 0 be the linear operator T 0.x/Dx�!.x/u. The map T 0

sends F2 to W . For any � 2 X, there is a face of T 0.F2/ on which � ıT 0 achieves
its minimum. Since X is open, we can choose � 2X so this minimum is achieved at
exactly one point. Call this point v0.

Define a new projection operator T .x/ D x �!.x/v0. Let Q be the convex hull of
F1 [T .F2/. This polytope is .d�1/–dimensional. Note that, by construction, v is
a vertex of Q. Apply the induction assumption to Q to get a lattice L0 � W . Let
C0 D L0 \Q. Let L � Rd be the lattice generated by all the vertices in T �1.C0/.
Note that since C0 has at least d points, and, since T .v0/D v and v 2 C0 , we get that
L intersects P in at least d C 1 points. By construction, L is a lattice as required.

We require a slightly more specialized version of Lemma 5.4 that allows some more
control over the vertices of P that belong to L.

Corollary 5.5 Let P �Rd be a convex polytope, one of whose vertices is the origin.
Suppose we have two maps T W Rd !Rm and S W Rd ! ker T such that for every ver-
tex v of T .P /, the set T �1.v/ consists of a single vertex and such that the only vertices
in ker S are vertices of the above form. Then there exists a lattice L as in Lemma 5.4
such that L\V .P / contains at least mC 1 vertices that project to vertices of T .P /.

Proof Apply Lemma 5.4 to the polytopes T .P / and S.P /. Let CS and CT be the
corresponding sets of vertices. Let L be the lattice generated by the following set: for
every 0¤ v 2 CS , pick a single vertex in S�1.v/, and then add all the vertices of the
form T �1.CT /. This is a lattice as required.

5.1.5 The positive vertices lemma

Lemma 5.6 (positive vertices lemma) Suppose that every vertex of Se' is stable.
Then there exists a k > 0 such that, for every vertex v of Se' with vertex matrix Av ,
Tr Ak

v D av.kv/, where av > 0.
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Proof By Lemma 4.6, for every v there exists a collection of numbers Xv D

f˛1; : : : ; ˛r g such that Tr Ak
v D

P
˛k

i . Let X D
S
v Xv . Let

Y D

�
˛

j˛j

ˇ̌̌
0¤ ˛ 2X

�
:

Enumerate the elements of Y as Y D fˇ1; : : : ; ˇtg, and let

xy D .ˇ1; : : : ; ˇt / 2 T t
D .S1/t :

There exists a number M such that the i th component of xyM is 1 for every i where
ˇi is a root of unity. Say ˇi D 1 for 0� i � r . For every other i , the coordinate ˇi is
not a root of unity. Thus, the set fxyMj g1

jD1
is dense in the subtorus T t�r obtained

from T t by setting the first r coordinates to 1.

The set of points in T t�r where all components have a positive real component is
open. Thus, there exists a j such that Re.ˇ

Mj
i / > 0 for every i . Since each ˇi is of

the form ˇi D ˛i=j˛i j, we get that Re.˛
Mj
i / > 0 for every 0¤ ˛ 2X. Set k DMj.

Since every vertex is stable, there is some 0¤˛2Xv for every v . Since Tr Ak
vDav.kv/

for some integer av , we must have that av > 0 for every v , as required.

5.1.6 The unbounded vertices in cyclic covers lemmas

Lemma 5.7 (unbounded vertices for surface diffeomorphisms) Let f W †!† be
a pseudo-Anosov mapping class. Let b be the number of boundary components
of †. For ever prime p there exists a finite cyclic cover � W z† ! † of degree p

with b boundary components and a lift g of some power of f to z† such that
g�W H1.z†;R/!H1.z†;R/ has eigenvalues off of the unit circle, or

#V .Seg/� p� b� 1:

Proof Choose a prime p > 0, and a homomorphism  W �1.†/! Z=pZ such that
every boundary component of † is sent to 12Z=pZ. Let z† be the cover corresponding
to ker . Some power of f lifts to the cover z†. By replacing with a further cover, we
may assume that it commutes with the deck group.

By a theorem of Kronecker, a matrix A 2Mn.Z/ that does not have eigenvalues off of
the unit circle has only roots of unity as eigenvalues. If the map induced by the lift of f
on H1.z†IR/ does not have eigenvalues off of the unit circle, we can replace it with a
further power such that all of the eigenvalues are 1. By replacing f with the relevant
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power, we may assume that all of the eigenvalues of f�W H1.z†IR/ ! H1.z†IR/

are also 1. Call this lift g . By construction, z† has the same number of boundary
components as †.

Form the mapping torus Mg . The operator g� commutes with the action of the deck
group on H1.z†;R/. Call this deck group D. For every j, the space Vj D ker.g��I/j

is D–invariant. The number dim VjC1� dim Vj is the number of Jordan blocks in the
Jordan normal form of g� of size greater than j.

Let W D ker.H1.z†;R/ ! H1.†;R//. The spaces Vj \W are all D–invariant,
and have dimension divisible by p � 1. Some of the spaces Vj must intersect W

nontrivially by assumption. If dim.Vj \W /D dim.VjC1\W /, then W must contain
1–eigenvectors. Thus, there must be at least p�1 such eigenvectors. If dim.Vj\W /<

dim.VjC1\W / for some j, then dim.VjC1\W /� dim.Vj \W / is divisible by p ,
and there must be at least p Jordan blocks. Thus, we have that the multiplicity of 1 as
an eigenvalue of g� must be at least p� 1. This proves the result by Lemma 3.19.

Lemma 5.8 (unbounded vertices for fully irreducible automorphisms) Let f 2
Aut.Fn/ be a train track representative of a fully irreducible automorphism, and let
� be the corresponding train track graph. For every prime p there exists a finite
cyclic cover � W z�! � of degree p and a lift g of some power of f to z� such that
g�W H1.z�;R/!H1.z�;R/ has eigenvalues off of the unit circle, or

#V .Seg/� p� 1:

Proof Choose a prime p > 0, and a nontrivial homomorphism  W �1.�/! Z=pZ.
Let z� be the cover corresponding to ker . Some power of f lifts to the cover z� .
Since this power of f lifts to z� , it normalizes the deck group of z� ! � . By
passing to a further power, we may assume that it commutes with the deck group.
If f �W H1.z�IR/!H1.z�IR/ does not have eigenvalues off of the unit circle, we can
replace it with a further power such that all of the eigenvalues are 1. Call this lift g .
We now proceed in a nearly identical manner to the previous lemma.

Let D be the deck group of the cover z� ! � . Form the mapping torus Mg . The
operator g� commutes with the action of D group on H1.z†;R/. For every j, the
space Vj D ker.g��I/j is D–invariant. The number dim VjC1�dim Vj is the number
of Jordan blocks in the Jordan normal form of g� of size greater than j.

Let W D ker.H1.z†;R/ ! H1.†;R//. The spaces Vj \W are all D–invariant,
and have dimension divisible by p � 1. Some of the spaces Vj must intersect W
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nontrivially by assumption. If dim.Vj \W /D dim.VjC1\W /, then W must contain
1–eigenvectors. Thus, there must be at least p�1 such eigenvectors. If dim.Vj\W /<

dim.VjC1\W / for some j, then dim.VjC1\W /� dim.Vj \W / is divisible by p ,
and there must be at least p Jordan blocks. Thus, we have that the multiplicity of 1 as
an eigenvalue of g� must be at least p� 1. This proves the result by the conclusion of
Lemma 3.19 for fully irreducible automorphisms.

5.2 Completing the proofs

We begin by noting that in the proof of Theorem 1.5, it is enough to prove the theorem
for some power of f . Indeed, suppose K C Fn is an f k –invariant subgroup for some
k such that f k

� W H1.KIC/! H1.KIZ/ has eigenvalues off of the unit circle. Let
K0 D

T
˛.K/, where the intersection is taken over all automorphisms ˛ 2 Aut.Fn/.

The group K0 is characteristic in Fn , and if Fn=K is solvable then so is Fn=K
0. Since

K0 is characteristic, f .K0/DK0.

The transfer map transfer map T W H1.KIC/! H1.k
0IC/ is f k –equivariant, and

thus f k
� W H1.K

0IC/!H1.K
0IC/ has eigenvalues off of the unit circle. The same

must then hold for f .

We now prove Theorem 1.5 by dividing it into two cases.

Proposition 5.9 (the pseudo-Anosov case) Let n � 2 and let xf 2 Out.Fn/ be
the image of a pseudo-Anosov mapping class. Let f be a train track representative
of xf . Then there exists a finite-index subgroup K C Fn such that f .K/ D K, and
f�W H1.KIZ/!H1.FnIZ/ has eigenvalues off of the unit circle. Furthermore, we
can choose K such that Fn=K is solvable.

Proof If f�W H1.†/!H1.†/ has eigenvalues off of the unit circle, we are done. If
not, replace f with a power of itself such that all of the eigenvalues of f� are 1.

If Se' has a nonstable vertex v , then by the stabilization lemma, Lemma 4.17, there
exists a solvable cover � W †0!† to which f lifts such that v is stable in � . Since
every solvable cover is the intersection of cyclic covers of prime order, we can find
an intermediate cover †0!†00!† to which f lifts such that v is not stable in the
cover †00 and †0 is a cyclic cover of †00 of prime order. By the cyclic deformation
lemma, Lemma 5.1, there exist infinitely many primes p and cyclic p–covers of †00

where v is stable. Let �pW †p!† be such a cover corresponding to the prime p .
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Note v is not stable in †00, and, by Lemma 5.3, the support of Tr Av Œ�p �
k contains

an orbit of size p for some k . By the cyclic multiplicity lemma, Lemma 5.2, the
coefficient of every point in the support is divisible by p . Thus, the L2 norm of
Tr AŒ�p �

k is at least
p

p �p2 D p3=2 . Suppose †00 is a cover of degree M. Then
dim H1.†pIR/ �Mp dim H1.†IR/. In particular, if we take p � 0, we get that
the L2 norm of Tr AŒ�p �

k is greater than the first Betti number of the corresponding
mapping torus. This concludes the proof by the L2 –trace lemma, Lemma 2.12.

The same reasoning holds if v is stable in the cover � 0W †0!†, �pW †p!†0 is a
cyclic p–cover for p� 0 and the lift of Tv to �p is a face graph that is not a vertex
graph (because, once again, the trace will contain an orbit of size p ).

For any cover � W †0 ! † to which f lifts, let d� be the first Betti number of the
mapping torus, and let


 .�/D
supk;L Tr AŒ��k.L/

d�
;

where the supremum is taken over all integers k and lattices L.

Let 
1 be 
 of the trivial cover. If Se' has any nonstable vertices, we are done. If
we can find a vertex v such that for some sufficiently large prime p there is a cyclic
cover �p such that Tv Œ�p � is not a vertex subgraph, we are also done. Otherwise, by
the unbounded vertices for surface diffeomorphisms lemma, Lemma 5.7, we can find
a prime p � 0 and a cyclic p–cover �pW †p ! † to which f lifts to a map fp

such that Sefp is at least .p�1�b/–dimensional, where b is the number of boundary
components of †. Furthermore, †p has the same number of boundary components
as †.

Every vertex of Sef is stable and lifts to a vertex of Se . As before, if any of the
vertices of Sefp is not stable, we are done. Otherwise, by the positive vertices lemma,
Lemma 5.6, we can replace f with a power f k such that the coefficient of each vertex
in AŒ�p �

k is positive. By Lemma 5.3, the coefficient of each vertex that is a lift from a
vertex in † is divisible by p . The coefficient of every other vertex is at least 1.

By the polytope/lattice lemma, Lemma 5.4, and Corollary 5.5, we can find a lattice L

such that Tr AŒ�p �
k \L consists of a set of at least p� b vertices, dimSef C 1 of

which are lifts of vertices of Sef . Thus,


 .�p/�
1

p
Tr AŒ�p �

k.L/� 
1C
p� b� dim.Sef /

p
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By taking p � 0, this can be made arbitrarily close to 
1 C 1. Repeat the same
argument for �p . If it has unstable vertices, or vertices that lift to faces in cyclic covers,
then we are done. Otherwise, for any � > 0 we can find p0 � p and a cover �p0

of †p such that 
 .�p00/� 
1C 2� � . Iterating this process, we see that the set 
 .�/
is unbounded over all solvable covers � . This concludes the proof by the anchoring
lemma, Lemma 2.11.

Proposition 5.10 (the fully irreducible case) Let n � 2 and let xf 2 Out.Fn/ be
fully irreducible. Let f be a train track representative of xf . Then there exists a finite-
index subgroup K C Fn such that f .K/DK, and f�W H1.KIZ/!H1.FnIZ/ has
eigenvalues off of the unit circle. Furthermore, we can choose K such that Fn=K is
solvable.

Proof The proof here is nearly identical to the proof of Proposition 5.9 except that
instead of using the unbounded vertices lemma for surface diffeomorphisms, we use
the unbounded vertices for fully irreducible automorphisms lemma, Lemma 5.8.

We now need only to deduce Theorem 1.3 from Theorem 1.5.

Proof To conclude the proof of Theorem 1.3, we now need only address the case that
f has positive topological entropy but is not a pseudo-Anosov mapping class. By the
Nielsen–Thurston classification, we can replace f with a power of itself such that
there exists a subsurface †0 �† such that †0 is f –invariant and f restricted to †0

is a pseudo-Anosov mapping class. Pick a basepoint � 2†0.

By a theorem of Marshall Hall [8], there exists a finite-index subgroup K < �1.†;�/

such that �1.†
0;�/ �K, and �1.†

0;�/ is a free subfactor of K. Replace f with a
power that fixes the subgroup K. The theorem now follows from applying Theorem 1.5
to f jK 0 , and noting that H1.†

0IC/ injects into H1.KIC/.

References
[1] Y Algom-Kfir, E Hironaka, K Rafi, Digraphs and cycle polynomials for free-by-cyclic

groups, Geom. Topol. 19 (2015) 1111–1154 MR

[2] M Bestvina, M Handel, Train tracks and automorphisms of free groups, Ann. of Math.
135 (1992) 1–51 MR

[3] S Dowdall, I Kapovich, C J Leininger, McMullen polynomials and Lipschitz flows
for free-by-cyclic groups, J. Eur. Math. Soc. 19 (2017) 3253–3353 MR

Geometry & Topology, Volume 24 (2020)

http://dx.doi.org/10.2140/gt.2015.19.1111
http://dx.doi.org/10.2140/gt.2015.19.1111
http://msp.org/idx/mr/3336279
http://dx.doi.org/10.2307/2946562
http://msp.org/idx/mr/1147956
http://dx.doi.org/10.4171/JEMS/739
http://dx.doi.org/10.4171/JEMS/739
http://msp.org/idx/mr/3713041


1750 Asaf Hadari

[4] A Fathi, F Laudenbach, V Poénaru (editors), Travaux de Thurston sur les surfaces,
Astérisque 66–67, Soc. Math. France, Paris (1979) MR

[5] D Fried, The geometry of cross sections to flows, Topology 21 (1982) 353–371 MR
[6] F Grunewald, M Larsen, A Lubotzky, J Malestein, Arithmetic quotients of the

mapping class group, Geom. Funct. Anal. 25 (2015) 1493–1542 MR
[7] A Hadari, Every infinite order mapping class has an infinite order action on the

homology of some finite cover, preprint (2015) arXiv
[8] M Hall, Jr, Coset representations in free groups, Trans. Amer. Math. Soc. 67 (1949)

421–432 MR
[9] T Koberda, Asymptotic linearity of the mapping class group and a homological version

of the Nielsen–Thurston classification, Geom. Dedicata 156 (2012) 13–30 MR
[10] T Koberda, Residual properties of fibered and hyperbolic 3–manifolds, Topology Appl.

160 (2013) 875–886 MR
[11] T Koberda, J Mangahas, An effective algebraic detection of the Nielsen–Thurston

classification of mapping classes, J. Topol. Anal. 7 (2015) 1–21 MR
[12] A Lubotzky, C Meiri, Sieve methods in group theory, II: The mapping class group,

Geom. Dedicata 159 (2012) 327–336 MR
[13] A Lubotzky, C Meiri, Sieve methods in group theory, III: Aut.Fn/ , Int. J. Algebra

Comput. 22 (2012) art. id. 1250062 MR
[14] J Malestein, J Souto, On genericity of pseudo-Anosovs in the Torelli group, Int. Math.

Res. Not. 2013 (2013) 1434–1449 MR
[15] C T McMullen, Entropy on Riemann surfaces and the Jacobians of finite covers,

Comment. Math. Helv. 88 (2013) 953–964 MR
[16] A Putman, B Wieland, Abelian quotients of subgroups of the mappings class group

and higher Prym representations, J. Lond. Math. Soc. 88 (2013) 79–96 MR
[17] T Sakasai, A survey of Magnus representations for mapping class groups and homology

cobordisms of surfaces, from “Handbook of Teichmüller theory, III” (A Papadopoulos,
editor), IRMA Lect. Math. Theor. Phys. 17, Eur. Math. Soc., Zürich (2012) 531–594
MR

[18] M Suzuki, Geometric interpretation of the Magnus representation of the mapping class
group, Kobe J. Math. 22 (2005) 39–47 MR

[19] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339,
Amer. Math. Soc., Providence, RI (1986) 99–130 MR

Department of Mathematics, University of Hawaii
Honolulu, HI, United States

hadari.asaf@gmail.com

Proposed: Étienne Ghys Received: 11 December 2017
Seconded: Martin Bridson, Benson Farb Revised: 25 September 2019

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://www.numdam.org/item/AST_1979__66-67_/
http://msp.org/idx/mr/568308
http://dx.doi.org/10.1016/0040-9383(82)90017-9
http://msp.org/idx/mr/670741
http://dx.doi.org/10.1007/s00039-015-0352-5
http://dx.doi.org/10.1007/s00039-015-0352-5
http://msp.org/idx/mr/3426060
http://msp.org/idx/arx/1508.01555
http://dx.doi.org/10.2307/1990483
http://msp.org/idx/mr/32642
http://dx.doi.org/10.1007/s10711-011-9587-y
http://dx.doi.org/10.1007/s10711-011-9587-y
http://msp.org/idx/mr/2863543
http://dx.doi.org/10.1016/j.topol.2013.02.005
http://msp.org/idx/mr/3037878
http://dx.doi.org/10.1142/S1793525315500016
http://dx.doi.org/10.1142/S1793525315500016
http://msp.org/idx/mr/3284387
http://dx.doi.org/10.1007/s10711-011-9662-4
http://msp.org/idx/mr/2944535
http://dx.doi.org/10.1142/S0218196712500622
http://msp.org/idx/mr/2999368
http://dx.doi.org/10.1093/imrn/rns095
http://msp.org/idx/mr/3038366
http://dx.doi.org/10.4171/CMH/308
http://msp.org/idx/mr/3134416
http://dx.doi.org/10.1112/jlms/jdt001
http://dx.doi.org/10.1112/jlms/jdt001
http://msp.org/idx/mr/3092259
http://dx.doi.org/10.4171/103-1/10
http://dx.doi.org/10.4171/103-1/10
http://msp.org/idx/mr/2952771
http://msp.org/idx/mr/2203329
https://www.ams.org/books/memo/0339/
http://msp.org/idx/mr/823443
mailto:hadari.asaf@gmail.com
http://msp.org
http://msp.org

	1. Introduction
	1.1. Strategy and organization of the proof

	2. The Magnus matrix and its specializations
	2.1. The f–equivariant torsion-free universal abelian cover
	2.2. The equivariant Magnus matrix of f
	2.3. Specializations of A_f and abelian covers
	2.4. The anchoring lemma and the L^2–trace lemma

	3. The transition graph of phi
	3.1. The transition graph and associated objects
	3.2. Vertex subgraphs and extremal subgraphs of T
	3.3. Subgraphs and covers
	3.4. The dimension of S^e phi

	4. Stabilizing vertex subgraphs
	4.1. Nilpotent groups
	4.2. Nilpotent stabilization
	4.3. Upgrading nilpotent stabilization
	4.3.1. The trace of powers lemma
	4.3.2. k–covers and nilpotent quotients
	4.3.3. The upgrade lemma
	4.3.4. Weak vertex subgraphs and weakly consistent subgraphs
	4.3.5. The vertex stabilization lemma


	5. Proof of theorems
	5.1. Lemmas
	5.1.1. The cyclic deformation lemma
	5.1.2. The cyclic cover multiplicity lemma
	5.1.3. Invariance of trace
	5.1.4. The polytope/lattice lemmas
	5.1.5. The positive vertices lemma
	5.1.6. The unbounded vertices in cyclic covers lemmas

	5.2. Completing the proofs

	References

