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New differential operator and noncollapsed RCD spaces

SHOUHEI HONDA

We show characterizations of noncollapsed compact RCD(K, N) spaces, which in
particular confirm a conjecture of De Philippis and Gigli on the implication from the
weakly noncollapsed condition to the noncollapsed one in the compact case. The
key idea is to give the explicit formula of the Laplacian associated to the pullback
Riemannian metric by embedding in L? via the heat kernel. This seems to be the
first application of geometric flow to the study of RCD spaces.
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Dedicated to Professor Kenji Fukaya on his 60th birthday

1 Introduction

1.1 Main results

De Philippis and Gigli introduced in [16] two special classes of RCD(K, N) spaces.
One of them is the notion of weakly noncollapsed spaces and the other one is that
of noncollapsed spaces. Our main result states that these are essentially same in the
compact case.

After the fundamental works of Lott and Villani [40] and Sturm [46; 47], Ambrosio,
Gigli and Savaré [3] (when N = oco), Gigli [20] and Erbar, Kuwada and Sturm [18]
(when N < o0) introduced the notion of RCD(K, N) spaces for metric measure
spaces (X, d, m), which means a synthetic notion of “Ric > K and dim < N with
Riemannian structure”. Typical examples are measured Gromov—Hausdorff limit spaces
of Riemannian manifolds with Ricci bounds from below and dimension bounds from
above, so-called Ricci limit spaces. The RCD theory gives a striking framework to
treat Ricci limit spaces in a synthetic way.

Cheeger and Colding established the fundamental structure theory of Ricci limit
spaces [12; 13; 14]. Thanks to recent quick developments on the study of RCD(K, N)
spaces, most of the theory of Ricci limit spaces, including Colding and Naber’s
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result [15], is covered by the RCD theory (see for instance Brue and Semola [10]). In
particular, whenever N < oo, the essential dimension, denoted by dimg (X)), of any
RCD(K, N) space (X, d, m) makes sense (see Theorem 2.4).

On the other hand, in a special class of Ricci limit spaces, so-called noncollapsed Ricci
limit spaces, finer properties are obtained by Cheeger and Colding. For instance, the
Bishop inequality with the rigidity and the almost Reifenberg flatness are justified in
this setting. They are not covered by general Ricci limits/RCD theories.

The properties of noncollapsed RCD(K, N) spaces introduced in [16] cover finer
results on noncollapsed Ricci limit spaces, as explained above. It is worth pointing out
that any convex body is not a noncollapsed Ricci limit space, but it is a noncollapsed
RCD(K, N) space.

Let us give the definitions: an RCD(K, N) space (X,d, m) is

e noncollapsed if m = HY, where %V denotes the N —dimensional Hausdorff

measure;

e weakly noncollapsed if m < HN.

The second definition is equivalent to dimg (X) = N ; this is proved in [16]. Note
that some structure results on weakly noncollapsed RCD(K, N) spaces are obtained
in [16] and that Kitabeppu [37] provides a similar notion (which is a priori stronger
than the weakly noncollapsed condition, but is a priori weaker than the noncollapsed
one) and prove similar structure results.

De Philippis and Gigli conjectured that these notions are essentially same. More
precisely:

Conjecture 1.1 If (X,d,m) is a weakly noncollapsed RCD(K, N) space, then
m = aHN for some a € (0, 00).

For the conjecture the only known development is due to Kapovitch and Ketterer [34]
and Han [29]. Kapovitch and Ketterer proved that Conjecture 1.1 is true under assuming
bounded sectional curvature from above in the sense of Alexandrov (that is, the metric
structure is CAT). Han proved that this conjecture is true for smooth Riemannian
manifolds with (not necessary smooth) weighted measures.

We are now in a position to introduce a main result of the paper:
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Theorem 1.2 (characterization of noncollapsed RCD spaces) Let (X,d, m) be a
compact RCD(K, N') space with n := dimq n(X'). Then the following two conditions
(1) and (2) are equivalent:

(1) The following two conditions hold:

(a) For every eigenfunction f on X of —A we have
(1-1) Af =t(Hessy) in L*(X,m).
(b) There exists C > 0 such that
(1-2) m(B,(x)) > Cr" forall x€ X and r € (0, 1).

(2) (X,d,m) isan RCD(K, n) space with

_ ) n
m_H”(X) .

(1-3)

It is easy to understand that this theorem gives a contribution to Conjecture 1.1. More
precisely, combining a result of Han [27] (see Theorem 2.8) with the Bishop—Gromov
inequality yields that all compact weakly noncollapsed RCD(K, N) spaces satisfy (1)
in the theorem, as n = N. Therefore:

Corollary 1.3 Conjecture 1.1 is true in the compact case.

We will also establish other characterization of noncollapsed RCD spaces. See
Section 4.2. Next let us explain how to achieve these results. Roughly speaking,
it is to take canonical deformations g; of the Riemannian metric g via the heat kernel.

1.2 Key idea: deformation of Riemannian metric via the heat kernel

In order to prove our main results the key idea is to use the pullback Riemannian metrics
g: := P} gr2 by embeddings &;: X — L?(X,m) via the heat kernel p instead of
using the original Riemannian metric g of (X, d, m). The definition of ®; is

(1'4) <I)l(x)(y): P(X’yst)

This map is introduced and studied by Bérard, Besson and Gallot [9] for closed
manifolds. They proved that for closed manifolds (M", g), as t — 07,

(1-5) wnt "D 2g, = cp0 — 2cn(Ricg — 5 Scalgg)t + O(t?),

Geometry € Topology, Volume 24 (2020)



2130 Shouhei Honda

where Ricg and Scalg denote the Ricci and the scalar curvatures, respectively, and

(1-6)  wni=L"(B1(0). cni= — / 18, (e FIP/4) 12 e (x).
(47T)n R”

Recently, the map ®; has also been studied for compact RCD(K, N) spaces by
Ambrosio, Portegies, Tewodrose and the author [5]. In particular, g; is also well
defined in this setting (see Theorem 2.9).

Let us introduce the new differential operator
(1-7) A'f = (Hesss, g¢) + 5 (Ve Ax p(x,x,21), Vf).

This plays the role of the Laplacian associated to g;; in fact, we will prove

(1-8) /X (gr dy ®df)dm = — /X YA/ dm,

which is new even for closed manifolds. See Theorem 3.4 for the precise statement.
Then, assuming (1-2), after normalization, taking the limit ¢ — 0T in (1-8) with
convergence results given in [5] yields the metric integration-by-parts formula

(1-9) /X(Vx//, Vi)ydH" = —/X ¥ tr(Hesss) dH".

This allows us to prove (1-3) by letting ¥ = 1 if in addition (1-1) holds because we see
that d#"/dm is L?(X, m)—orthogonal to tr(Hesss) for all f'; in particular, dH" /dm
is L2(X, m)—orthogonal to any nontrivial eigenfunction. This implies that d#" /dm
must be a constant function.

Finally, let us give a few comments. It is well known that in the smooth setting,
there are many geometric flows (eg Ricci flow) which are useful to understand the
original space. However, for singular spaces there are not so many (see eg Bamler
and Kleiner [8], Gigli and Mantegazza [23] and Kleiner and Lott [38; 39]). In general,
RCD spaces have very wild singularities (eg the singular set may be dense). This
paper shows us that such flow approaches are also useful even in the RCD setting.
Geometric applications of the main results can be found in Honda and Mondello [31]
and Kapovitch and Mondino [35]. Moreover, although we discuss only the compact
case, the author believes that the techniques provided will be available even in the
noncompact case.

The paper is organized as follows:
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In Section 2 we give a quick introduction on RCD spaces and prove technical results.
In Section 3 we establish (1-8). In the final section, Section 4, we prove the main
results stated in Section 1.1 and related results. It is worth pointing out that Section 4.2
is written from the point of view of metric geometry.

Acknowledgements The author is grateful to the referees for careful readings and
valuable suggestions. He acknowledges support of the Grant-in-Aid for Young Scientists
(B) 16K17585 and Grant-in-Aid for Scientific Research (B) 18HO1118.

2 RCD(K, N) spaces

A triple (X, d, m) is a metric measure space if (X, d) is a complete separable metric
space and m is a Borel measure on X with suppm = X. We consider only the case
when X is not a single point below.

2.1 Definitions

Throughout this paper the parameters K € R (lower bound on Ricci curvature) and
N € [1,00) (upper bound on dimension) will be kept fixed. Instead of giving the
original definition of RCD(K, N) spaces, we introduce an equivalent shorter version.
See [18; 7; 11; 2] for the proof of the equivalence and the detail.

Let (X,d,m) be a metric measure space. The Cheeger energy Ch: L?(X,m) —
[0, +00] is a convex and L2(X, m)-lower semicontinuous functional defined as

(2-1) Ch(f)::inf{liminf%/ (Lip fy)>dm | f, € Lip,(X.d) N L?(X, m),
n—>00 X
||fn—f||LHo},

where Lip, (X, d) denotes the space of all bounded Lipschitz functions and Lip f is
the slope.

The Sobolev space H'>2(X,d, m) then coincides with { /' € L?(X, m):Ch(f) < +o00}.
When endowed with the norm || || gr1.2 := (|| f||]2d2 +2Ch(f))!/2, this space is Banach,
reflexive if (X, d) is doubling (see [1, Corollary 7.5]), and separable Hilbert if Ch is a
quadratic form (see [3, Proposition 4.10]). According to the terminology introduced in
[21], we say that (X, d, m) is infinitesimally Hilbertian if Ch is a quadratic form.

We assume that (X, d, m) is infinitesimally Hilbertian. Then, for all f; € H2(X,d, m),

2-2) (Vfi.V/f2) = lim V(A +Ef§2|2 — VA2

e L'(X,m)
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2132 Shouhei Honda

is well defined, where |Vf| € L?(X, m) denotes the minimal relaxed slope of f €
H'"2(X,d, m) (see [21, Sections 3 and 4]).

We can now define a densely defined operator A: D(A) — L?(X, m) whose domain

consists of all functions f € H2(X,d, m) satisfying

/de=—/ (Vf,Vo)dm forall ¢ € H"?(X,d, m)
X X

for some ¥ € L?(X,m). The unique ¥ with this property is then denoted by A f.

We are now in a position to introduce the RCD space:

Definition 2.1 (RCD spaces) Let (X, d, m) be a metric measure space, let K € R
and let N € [1,00]. We say that (X,d, m) is an RCD(K, N ) space if the following
hold:

(1) Volume growth There exist x € X and C > 1 such that m(B,(x)) < CeCr?
for all r € (0, 00).

(2) Bochner’s inequality For all / € D(A) with Af € H?(X,d, m),

A 2
(2-3) %/X|Vf|2A<pdm2/X<p(( ]é) +(Vf,VAf)+K|Vf|2)dm

for all ¢ € D(A)N L (X, m) with ¢ >0 and Ap € L*®(X,m).
(3) Sobolev-to-Lipschitz property Any f e H“2(X,d, m) with |[Vf| <1 m-a..
in X has a 1-Lipschitz representative.

It is known that a smooth weighted complete Riemannian manifold (M", g,e™¥ volg)
with ¢ € C°(M™) is an RCD(K, N) space for K € R and N e (n, o] if and only if

d d
(2-4) Ricg + Hess$ — % > Kg.

See [18, Proposition 4.21]. In particular, if it is an RCD(K, n) space, then ¢ must be
a constant function because it is also an RCD(K, N ) space for all N e (n, 0o], which
implies by (2-4) that |dp| = 0. Let us denote the heat flow associated to the Cheeger
energy by /4, . It holds (without curvature assumption) that

117
-5 NSl =0 S 2 WV < 2:2Lz

Then one of the crucial properties of the heat flow on RCD(K, co) spaces is

Nkl =

(2-6) h; f € TestF(X,d, m) forall f e L*(X,m)NL%®(X,m) and ¢ € (0, 00),
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where
(2-7) TestF(X.d,m):={f € Lipy(X.d)N H"*(X,d,m): Af € H"?(X,d, m)}.

See for instance [22] for the crucial role of test functions in the study of RCD spaces.
Finally, we end this subsection by giving the following elementary lemma:

Lemma 2.2 Let (X,d, m) be an RCD(K, 0o) space and let f € D(A). Then there
exists a sequence f; € TestF(X,d, m) such that || fi — fll g2+ |Afi —Afll2 — 0.

Proof Let Fr :=(—L)Vv f AL. Note that h; Fy € TestF(X,d, m), that h; Fp — h; f
in H2(X,d, m) as L — oo for all ¢ > 0, and that Ah,; F; L?-weakly converges
to Ahyf as L — oo for all ¢ > 0, where we used (2-5) (see [4, Corollary 10.4]).
Since Ah,f — Af in L?>(X,m) as t — 0T, there exist L; — oo and #; — 0T
such that /iy, Fr, — f in H'2(X,d, m) and that Ahy, Fr, L?-weakly converges
to A f. Then, applying Mazur’s lemma for the sequence {Ah,, F,}; yields that for all
m > 1 there exist N, € N>, and {t,i }m<i<n,, C [0, 1] such that ZlN:m tmi =1

m
and that vaz”;n ImiAhy Fp, — Af in L?(X,m). Itis easy to check that f;, :=
vaz’"m tm,ihy; Fr, satisfies the desired claim. O

2.2 Heat kernel

It is well known that the Bishop—Gromov theorem holds for any RCD(K, N) space
(X,d,m) (or more generally for CD*(K, N) spaces) and that the local Poincaré
inequality holds for RCD(K, co) spaces (or more generally for CD(K, 0co) spaces).
See [48, Theorem 30.11; 43; 42, Theorem 1]. Furthermore, it follows from the Sobolev-
to-Lipschitz property that, on any RCD(K, N) space (X, d, m), the intrinsic distance

den(x, ) i=sup{| f(x) = f(»)|: /€ H"*(X,d, m) N Cp(X,d), |Vf| = 1}
associated to the Cheeger energy Ch coincides with the original distance d. Conse-
quently, applying [44, Proposition 2.3; 45, Corollary 3.3] on the general theory of
Dirichlet forms provides the existence of a locally Holder continuous representative p
on X x X x (0, 00) for the heat kernel of (X, d, m). Let us recall that, by definition,
(2-8) hy f(x) =/ p(x,y.0) f(y)dm(y) forall 1>0, xeX and feL*(X,m)

X

and

2-9) p(x,py,t+s) =/ p(x,z,t)p(z,y,s)dm(z) forall t>0,s5s>0, x,yeX.
X
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The sharp Gaussian estimates on this heat kernel have been proved later on in the
RCD context [33, Theorem 1.2]: for any € > 0, there exist C; := Cj(e, K, N) > 1 for
i =1,2, depending only on K, N and €, such that

(oh ( d?(x, )

1
@10 U5 i TP\ —er T

CZZ) = P(X’yat)

- Cy d?(x, y)
= m(B_; () e"p(_ Gror C”)

for all x, y € X and any ¢ > 0, where from now on we state our inequalities with the

Holder continuous representative. Combining (2-10) with the Li—Yau inequality [19,
Corollary 1.5; 32, Theorem 1.2], we have a gradient estimate [33, Corollary 1.2]:

C3 exp(_dz(x’y)
Vim(B ;(0) "\ G e

forany ¢ > 0 and y € X, where C; := Cj(¢, K, N) > 1 for i = 3,4. Note that in this
paper, we will always work with (2-10) and (2-11) in the case € = 1.

2-11) |V p(x, p, )| < + C4t) form-ae. x € X

Let us assume that diam(X, d) < oo, thus (X, d) is compact (because in general (X, d)
is proper). Then the doubling condition and a local Poincaré inequality on (X, d, m)
yields that the canonical embedding map H!?(X,d,m) < L?(X,m) is a compact
operator [26, Theorem 8.1]. In particular, the (minus) Laplacian —A admits a discrete
positive spectrum 0 = Ag < A; < Ay <--- > 400. We denote the corresponding
eigenfunctions by @, ¢1, ... with ||@;| ;2 = 1. This provides the following expansions
for the heat kernel p:

(2-12) px.y. )= e Mpi(x)gi(y) in C(X x X)
i=0
for any ¢ > 0 and
(2-13) pC.y.)=> e Mgi(y)g; in H(X.d m)
i=0
forany y € X and 7 > 0 with the Holder representative of all eigenfunctions. Combining

(2-12) and (2-13) with (2-11), we know that ¢; is Lipschitz; in fact,

Q-14)  gillzes < CsAM*, |Vgilpee < CAN TRy > 12N,

i
where C5 := Cs(diam(X,d), K, N) > 0. See for instance the appendices in [5; 30]
for the proofs.

Geometry & Topology, Volume 24 (2020)



New differential operator and noncollapsed RCD spaces 2135

Finally, let us remark that it follows from this observation with (2-23) that

(2-15) Axp(x,x,1) =2 e (<hi(i(x)* + Vi’ () in H"?(X,d,m)

i=0

holds because (2-23) implies that

(E)

i=0

(2-16) sup Ze M (—hig] + Vel

i=0

= sup

<00.
H!2 k

H1.2

In particular, thanks to (2-12), we see that p(x,x,t) € D(A) satisfies the equality
in (2-15) in L?(X,m). Then, applying Mazur’s lemma for the sequence

[s(5 ),

i>0

with (2-16) allows us to prove that the equality in (2-15) holds in H2(X,d, m).

2.3 Infinitesimal structure

Let (X,d,m) be an RCD(K, N) space.
Definition 2.3 (regular set Ry ) Forany k > 1, we denote by Ry, the k —dimensional
regular set of (X, d, m), namely the set of points x € X such that

(X, r~'d, m(B,(x))"'m, x)

pointed measured Gromov—Hausdorff converge to (Rk ARk, w,:lﬁk ,0p) asr — 07,
We are now in a position to introduce the latest structural result for RCD(K, N) spaces.

Theorem 2.4 (essential dimension of RCD(K, N) spaces) Let (X,d,m) be an
RCD(K, N) space. Then, there exists a unique integer n € [1, N|, denoted by
dimg,m(X), such that

2-17) m(X \ Rn) = 0.

In addition, the set R, is (m,n)-rectifiable and m is representable as OH" LR, for

some nonnegative-valued function 6 € L1 (X, H").

loc

Note that the rectifiability of all sets Ry was inspired by [12; 13; 14] and proved in
[41, Theorem 1.1], together with the concentration property m(X \ U Rx) = 0, with
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the crucial uses of [24; 20]; the absolute continuity of m on regular sets with respect to
the corresponding Hausdorff measure was proved afterwards and is a consequence of
[36, Theorem 1.2; 17, Theorem 1.1; 25, Theorem 3.5]. Finally, in the very recent work
[10, Theorem 0.1] it is proved that only one set R, has positive m—measure, leading to
(2-17) and to the representation m = 8" L R, . Recall that our main target here is 6.

By slightly refining the definition of n—dimensinoal regular set, passing to a reduced
set R, general results of measure differentiation provide also the converse absolute
continuity property H” <« m on R . We summarize here the results obtained in this
direction in [6, Theorem 4.1]:

Theorem 2.5 (weak Ahlfors regularity) Let (X,d,m) be an RCD(K, N) space,
n:=dimgmnm(X), m = 0H" LR, and set

. m(By(x))
lim ———~
r—>0+ W

(2-18) Ry = {x €Rn € (0, 00) exists}.

Then m(R, \R;) =0, mL R and H" LR} are mutually absolute continuous, and
m(By(x))

(2-19) lim+ —— = =0(x) for m-a.e. x € R},
r—0 wpt
n
1
(2-20) lim Ol _ lgx(x)——— for m-ae x € X.

r—0+ m(B,(x))

Moreover, H" (R, \R;) =0 if n = N.

0(x)

2.4 Second-order differential structure and Riemannian metric

Let (X,d,m) be an RCD(K, o0) space.

Inspired by [49], the theory of the second-order differential structure on (X, d, m) based
on L?-normed modules is established in [22]. To keep our presentation short, we omit
several notions, for instance the spaces of L?—vector fields, denoted by L? (T(X,d, m)),
and of L2—tensor fields of type (0,2), denoted by L2((T*)®?(X,d, m)). See [22]
for details. We denote the pointwise Hilbert—Schmidt norm and the pointwise scalar
product by |T|gs and (T, S), respectively (see also [22, Section 3.2; 4, Section 10]).

One of the important results in [22] we will use later is that for all / € D(A), the
Hessian Hessy € L2((T*)®2(X,d, m)) is well defined and satisfies
(2-21) (Hessy.df; ®df3)

= (VA VYLV + (V. VIV VA — (VA V(VL. V)
for m—a.e. x € X for all f; € TestF(X,d, m)
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and the Bochner inequality with the Hessian term
(2-22) TA|VSI? = Hessslfis + (VAL V) + K|Vf|?

in the weak sense (see [22, Section 4]). In particular,

(2-23) / |Hes5f|12{5dm§/((Af)z—K|Vf|2)dm.
X X

Let us introduce the notion of Riemannian metrics on (X, d, m). In order to simplify
our argument we assume that (X, d, m) is an RCD(K, N) space with n = dimg (X))
and diam(X, d) < oo below. Although we defined the notion as a bilinear form on
L?*(T(X,d,m)) in [5], we adopt an equivalent formulation by using tensor fields in
this paper. Moreover, we consider only L? ones, which is enough for our purposes.

Definition 2.6 (L2-Riemannian metric) We say that T € L?>((T*)®?(X,d, m))
is a Riemannian metric if for all n; € L*°(T*(X,d, m)) (which means that n; €
L2(T*(X,d, m)) with |n;|gs € L*(X,m)), it holds that

(2-24) (T,m @0y ={(T,na®n1), (T.n1®n)>0 form-ae xeX
and that if (T, n; ® ;) =0 for m-a.e. x € X, then n; =0 in L>(T*(X,d, m)).

Proposition 2.7 (the canonical metric g) There exists a unique Riemannian metric
g € L*((T*)®*(X,d, m)) such that

(g.df1®df2) =(Vf1,Vf) for m-ae on X
for all Lipschitz functions f; on X. Then
(2-25) lglus = +/n  for m-ae. x € X.
Note that for 7 € L2((T*)®?(X,d, m)), the trace tr(T) € L*>(X,m) is tr(T) := (T, g).

The following result, proved in [27, Proposition 3.2], will play a crucial role in the
proof of Theorem 1.2:

Theorem 2.8 (Laplacian is trace of Hessian under maximal dimension) Assume that
N is an integer with dimg n (X) = N. Then, for all /' € D(A), we see that

(2-26) Af =tr(Hessy) for m-a.e. x € X.

Let us introduce the pullback Riemannian metrics by embeddings via the heat kernel
(see [5, Proposition 4.7]).

Geometry € Topology, Volume 24 (2020)



2138 Shouhei Honda

Theorem 2.9 (the pullback metrics) Forevery ¢ > 0 there exists a unique Riemannian
metric g; € L>((T*)®?(X,d, m)) such that

(2-27) /){(gt,m@nz)dm

- / / (e P, 221,11 () (dx pCx. v 7). 12 (6)) dm() dm(y)
X JX
forall n; € L*®°(T*(X,d, m)).

Moreover, it is representable as the HS-convergent series

(o.¢]
(2-28) gr=) ¢ Hldp@dp in L(T1)®(X.d.m).
i=1

Finally, the rescaled metric lm(Bﬁ( -))g; satisfies
(2-29) tm(B ;(-))gr = C(K,N)g forall t €(0,1),
which means that, for all n € L*°(T*(X,d, m)),

tm(Bﬁ(x))(gt, n®n)(x) <C(K, N)|n|§ls(x) for m—ae. x e X.

Note that since

k
Test(T*)®%(X,d, m) := {Z fridfai®dfsi|k €N, fj; € TestR(X, d,m)}

i=1
is dense in L2((T*)®2(X,d, m)) [22, (3.2.7)], it is easily checked that
@30 [ terTham= [ [ (@ ©dep.T)dmex) am)
X XJX ’ ’

forall T e L2(T*)®%(X,d, m)).
A main convergence result proved in [5] is the following:
Theorem 2.10 (L?—convergence to the original metric) We have
(2-31) tm(B /;(-))g: —cnglus > 0 in LP (X, m)
for all p €1, 00), where we recall (1-6) for the definition of ¢;.
See [5, Theorem 5.10] for proofs of the results above. It is worth pointing out that in
general we can not improve this L —convergence to the L one (see [5, Remark 5.11]).

We end this subsection by giving the following technical lemma:
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Lemma 2.11 Let (X,d, m) be a compact RCD(K, N') space with n := dimg (X).
Assume that there exists C > 0 such that

(2-32) m(B,(x)) > Cr" forall x€ X and r € (0, 1).

Then, as t — 0T, we see that

(2-33) (D12 p(x x,t) >0 in H2(X.d, m)
and that
dH"
(2-34)  |wut "D/ g, — ¢, €| =0 in LP(X,m) forall pe[l,o00).
M ys

Proof By (2-10), we see that, for all x € X and all ¢ € (0, 1),
C(K, N)z
C .

In particular, t#**t2/2 p(x, x,¢) — 0 in C(X). On the other hand, (2-15) and (2-28)
yield

(2-35) (D2 p(x x 1) < ém(B P, <

(2:36) [ 18sptexnl e = Y rie 0 =4 [ {g.g,2) dm
X i X

< 4ﬁ/X |g¢/2|ns dm.
In particular, (2-35) and (2-36) yield

(2-37) / V(72 p(x, x, 1) dm(x)
X

_ /X 12 p(x, x, ) Ax p(x, x, 1) dm(x)

4C(K,N)+/n
E—( c )fl/)(|l(n+2)/2gt/2|Hsdm(X)

< 4C(K,N)~/ﬁ2(n+2)/2t/ E
C? X

as t — 0%, where we used (2-29). Thus we get (2-33).

tm(Bm(x))gt/2|Hs dm(x) =0

Next let us prove (2-34). First let us remark that (2-32) yields H" <« m. Combining
this with Theorem 2.5 shows that d%{" /dm € L°°(X, m) and that, as r — 0™,

wut" dH"

(2-38) w(B, ) — Im (x) form-ae.x e X.
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Then since, as t — 0,

(2-39) /
X

b4
dm
HS

_” I
~ Jxlm(B () dm

N dH"
m(B;(x))  dm )

we conclude because of Theorem 2.10, where we used the dominated convergence

(n+2)/2 d#”
wnl gt_zm(Bﬁ(x))E(x)gt

P
m(B ;(x))g:|fs dm

P
dm — 0,

<C(K,N)? [X ‘

theorem. o

3 Laplacian on (X, g;, m)

Let (X,d,m) be a compact RCD(K, N) space. We rewrite our new differential
operators:

Definition 3.1 (Laplacian on (X, g;,m)) Forall f € D(A) we define the Laplacian
N'f associated to g; by

(3-1) A'f = (Hessy, g1) + 3 (Ve Ax p(x, x,2¢), Vf) € L' (X, m).
Let us start our calculation:
Lemma 3.2 Forall f € D(A) and ¥ € H2(X,d, m), we have
62 [ [ W00Tep V(T V1) dma) dm()
- —/X(gt, df ®dy)dm+ i /X div(wVf)%p(x, x,27) dm.

Proof Note that

(3-3) /X [X V() (Ve p. Vi (Vi p. V) dm(x) dm(y)
__ [ / dive (¥ Vi p) (Vi . V) dm(x) dm(y)
X JX
_ / / (V. Ve p) + ¥ () Ax p){Ve p. V) dm(x) dm(y)
X JX

. [ (gr.df ®dy) dm— / [ V() Ay p(Vep. VF) dm(x) dm(y)
X X JX
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and that

G4y — / f V() Ay p(Vep. VF) dm(x) dm(y)

-/ [ (x)( S e <pz(X)<0z(y))

i=0
(e 1901, 971 ) dmr) am)

i=0

= Y ke |y @S V) ) dm

i>0
=3 T [ (Vs Ve am
i>0
1/ d1v(wVf)(Zk o2kt 2)d
i>0
On the other hand, since
d Y
(3-5) G POx 20 =23 e Pl (x)%,
i=0

we have

(3-6) —l/ dlv(ww)(Zx e~ 2hit 2) dm:i/};div(WVf)c%p(x,x,Zt)dm,

which completes the proof because of (3-3) and (3-4). |

Lemma 3.3 Forall f € D(A) and ¥ € H2(X,d, m), we have
1
6T =5 [ [ WS TP dinG) dmr)
x Jx
1 . d
=4 [ av VN o x. 20 dm)
4 |y dr
+ i/ div(y V) Ax p(x, x,2t) dm(x).
X
Proof By Lemma 2.2 it is enough to prove (3-7) under assuming f € TestF(X,d, m).
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First assume ¥ € TestF(X,d, m). Let ¢ :=div(y'Vf) € H?(X,d, m). Then

68 =5 [ [ OO 5l pP) dim) da()
=3 | o1%epl? amex) amiy)
=5 [ [ e Sutop) ey am()=5 [ [ (p%ep. Vo) dmi) dim(r)
- /X /X $() P p dm(x) dn(y) — & [X /X (Vi 2, Vieg) dm(x) dm()

=-1 4 1 2

=1 go(x)( [ %pzdm(y)) dm()

5 [ oo ([ anr?ane) ameo
= (x)%( [ pzdm(y)) dm()

+5 [omas( [ 2 ame)) anco)
:—%/;(go(x)%p(x,x,%)dm(x)—i—%/X(p(x)Axp(X,X,zf)dm(X)’

which proves (3-7), where we used (2-9).

Finally, let us prove (3-7) for general ¥ € H'2(X,d, m). Let ¥y :=(—=L)VYy AL €
H'2(X,d, m)N L>®(X,m). Since (3-7) holds as ¥ = h;(yr) for all ¢ > 0, letting
L — oo and then letting ¢t — 0% shows the desired claim. |

Theorem 3.4 (integration-by-parts on (X, g;,m)) For all f € D(A) and ¢ €
H'“2(X,d, m)N L®(X, m), we have

(3-9) / (g7, dYy ®df)dm = — / YA f dm.
X X
Proof Lemmas 3.2 and 3.3 yield
/ w(HeSSf, g:)dm
X

= [ / ¥ (x)(Hesss, dx p ® dx p) dm(x) dm(y)
X JX
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- / / V() (Ve p. Ve (Ve . V) dm(x) dm(y)
X JX 1
_ 1 2
3 [ [ L BB ) dmiy)

=—/ (gt,df®d1ﬁ)dm+%/ div(y V) A p(x, x, 21) dm(x)
X X

—— [ teraf @avydm— [ W97 VuBepex.20) ),
X X

which proves (3-9). O

4 Characterization of noncollapsed RCD spaces

4.1 Proof of Theorem 1.2

Assume that (2) holds. Then the Bishop—Gromov inequality yields that (1-3) holds.
Moreover, it follows from Theorem 2.8 that (1-1) holds. This proves the implication
from (2) to (1).

Next we assume that (1) holds. Fix a nonconstant eigenfunction f of —A on (X, d, m)
with eigenvalue A > 0. Applying Theorem 3.4 as ¥ = 1 shows

@1 0= —/ (Hessy, wnt " t2/2g,) dm
X

—l/ (Vant D)2 p(x, x,26), VA £(x)) dm(x).
4 Jx

Lemma 2.11 yields that, as t — 0T, the first term of the right-hand side of (4-1)
converges to

dH" . dH”
4-2) —c,,/Xtr(HeSSf)m dm—cnk/Xf—dm dm.

On the other hand, Lemma 2.11 yields that, as ¢ — 07, the second term of the right-
hand side of (4-1) converges to 0. Thus (4-2) is equal to 0; in particular, d%" /dm is
L?—orthogonal to f, which shows that d%{” /dm must be a constant function.

For all ¢ € D(A), since

4-3) v = Z(/X Vi dm)<p,~ in H'2(X,d, m)

i=0
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and
(4-4) Ay ==Y xi(/ s dm)<p,~ in L2(X, m)
i=0 X

(see the appendices of [5; 30]), combining (4-3) and (4-4) with (2-23) yields

4-5) Hessy, = Z(/ V@i dm)Hesswi in L2((T*)®2(X,d, m)).
i=0 \WX

In particular,

(4-6) tr(Hessy) = <Z(/X xon dm) Hessy, , g> = Z(/X xon dm) (Hessy, , g)

i>0 i>0
= IZZO(/X Vi dm) Ag;
= —g ki(/X Vi dm)(Pi = Ay in L}*(X,m).

Therefore, if Ay € H 1’Z(X ,d, m), then in the weak sense it holds that
(4-7) TAIVY|? > [Hessy|* + (VAY, V) + K|V |?

tr(Hessy, ))?
> % + (VAY. V) + K|V 2
(Ay)?

n
This shows that (X, d, m) is an RCD(K, n) space. Thus we get (2). |

+ (VAY, Vy) + K|V |%.

4.2 Witten Laplacian on RCD spaces

Let us recall that for a closed manifold (M", g) with a smooth function ¢ € C*°(M™"),
the corresponding Laplacian of the weighted space (M", g,e™% volg) is the Witten
Laplacian Ay, that is,

(4-8) / (VS1,Vfa)e™® dvolg:—/ J1Ay fre" % dvoly  forall f; e C®(M"),
Mn Mn

where Ay [ :=tr(Hessy) — (Vo, Vf). By using the formula (3-9), we can prove an
analogous result in the nonsmooth setting. Compare with [28, Proposition 3.5].

Theorem 4.1 (Witten Laplacian on RCD spaces) Let n €[1,00) and let (X,d) be
a compact metric space satistying that there exists C > 0 such that

(4-9) H"(B,(x)) > Cr" forall xe X and r € (0,1).
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If (X,d,e”H") is an RCD(K, N) space for some N € [l,00) and some Lipschitz
function ¢ on X, then for all f € D(A) we have

(4-10) Af =tr(Hessy) — (Vo,Vf) in L*(X,m).

Proof Let m:= e YH". By Lemma 2.2 it is enough to prove (4-10) under assuming
f € TestF(X, d, m). Note that

4-11) m(By(x)) = / e P AH" > Ce ™™™ %" forall x € X and r € (0, 1).

By (x)
Then, by an argument similar to the proof of Theorem 1.2, we see that, for all €
TestF(X,d, m),

(4-12) / (Vi V/)e? dm = — f ¥ tr(Hess,)e? dm.
Since the left-hand Si):le of (4-12) is equal to '
@13 [ (e, 1 dm— [ (90,9 pe" i
—— [ weraran [ (vg.Vp)per am,
X X

we have
(4-14) / (=Af = (Vp,Vf)+tr(Hessy))ye? dm =0,
X
which completes the proof of (4-10) because  is arbitrary. a

We end this paper by giving another characterization of noncollapsed RCD spaces:
Corollary 4.2 Let n, N €[1,00) andlet (X,d, H") be a compact RCD(K, N) space.
Then the following two conditions are equivalent:

(1) There exists C > 0 such that
(4-15) H"(B,(x)) > Cr" forall xe X and r € (0, 1).

(2) (X,d,H") isan RCD(K, n) space, that is, it is a noncollapsed space.
Proof The implication from (2) to (1) is trivial because of the Bishop—Gromov
inequality.

Assume that (1) holds. Then applying Theorem 4.1 as ¢ = 0 yields that (1-1) holds.
Therefore, Theorem 1.2 shows that (2) holds. O
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