Volume 24, issue 5 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The Engel–Lutz twist and overtwisted Engel structures

Álvaro del Pino and Thomas Vogel

Geometry & Topology 24 (2020) 2471–2546
Bibliography
1 M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 MR3455235
2 R Casals, J L Pérez, Á del Pino, F Presas, Existence h–principle for Engel structures, Invent. Math. 210 (2017) 417 MR3714508
3 R Casals, Á del Pino, F Presas, h–principle for contact foliations, Int. Math. Res. Not. 2015 (2015) 10176 MR3455864
4 R Casals, Á del Pino, F Presas, Loose Engel structures, Compos. Math. 156 (2020) 412 MR4048292
5 Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 MR1022310
6 Y Eliashberg, N Mishachev, Introduction to the h–principle, 48, Amer. Math. Soc. (2002) MR1909245
7 J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 MR2179261
8 H Geiges, Review of montgomery, Mathematical Reviews (2001)
9 M Gromov, Partial differential relations, 9, Springer (1986) MR864505
10 M Klukas, B Sahamie, On prolongations of contact manifolds, Proc. Amer. Math. Soc. 141 (2013) 3257 MR3068978
11 R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1 MR478180
12 D McDuff, Applications of convex integration to symplectic and contact geometry, Ann. Inst. Fourier (Grenoble) 37 (1987) 107 MR894563
13 R Montgomery, Generic distributions and Lie algebras of vector fields, J. Differential Equations 103 (1993) 387 MR1221912
14 R Montgomery, Engel deformations and contact structures, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 103 MR1736216
15 E Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, preprint (2012) arXiv:1201.2245
16 Á del Pino, On the classification of prolongations up to Engel homotopy, Proc. Amer. Math. Soc. 146 (2018) 891 MR3731719
17 Á del Pino Gómez, Engel structures and symplectic foliations, PhD thesis, Universidad Autónoma de Madrid (2017)
18 W Thurston, The theory of foliations of codimension greater than one, Comment. Math. Helv. 49 (1974) 214 MR370619
19 T Vogel, Existence of Engel structures, Ann. of Math. 169 (2009) 79 MR2480602
20 H Whitney, Geometric integration theory, Princeton Univ. Press (1957) MR0087148