Volume 24, issue 5 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
The Engel–Lutz twist and overtwisted Engel structures

Álvaro del Pino and Thomas Vogel

Geometry & Topology 24 (2020) 2471–2546
Bibliography
1 M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 MR3455235
2 R Casals, J L Pérez, Á del Pino, F Presas, Existence h–principle for Engel structures, Invent. Math. 210 (2017) 417 MR3714508
3 R Casals, Á del Pino, F Presas, h–principle for contact foliations, Int. Math. Res. Not. 2015 (2015) 10176 MR3455864
4 R Casals, Á del Pino, F Presas, Loose Engel structures, Compos. Math. 156 (2020) 412 MR4048292
5 Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 MR1022310
6 Y Eliashberg, N Mishachev, Introduction to the h–principle, 48, Amer. Math. Soc. (2002) MR1909245
7 J B Etnyre, Legendrian and transversal knots, from: "Handbook of knot theory" (editors W Menasco, M Thistlethwaite), Elsevier (2005) 105 MR2179261
8 H Geiges, Review of montgomery, Mathematical Reviews (2001)
9 M Gromov, Partial differential relations, 9, Springer (1986) MR864505
10 M Klukas, B Sahamie, On prolongations of contact manifolds, Proc. Amer. Math. Soc. 141 (2013) 3257 MR3068978
11 R Lutz, Structures de contact sur les fibrés principaux en cercles de dimension trois, Ann. Inst. Fourier (Grenoble) 27 (1977) 1 MR478180
12 D McDuff, Applications of convex integration to symplectic and contact geometry, Ann. Inst. Fourier (Grenoble) 37 (1987) 107 MR894563
13 R Montgomery, Generic distributions and Lie algebras of vector fields, J. Differential Equations 103 (1993) 387 MR1221912
14 R Montgomery, Engel deformations and contact structures, from: "Northern California Symplectic Geometry Seminar" (editors Y Eliashberg, D Fuchs, T Ratiu, A Weinstein), Amer. Math. Soc. Transl. Ser. 2 196, Amer. Math. Soc. (1999) 103 MR1736216
15 E Murphy, Loose Legendrian embeddings in high dimensional contact manifolds, preprint (2012) arXiv:1201.2245
16 Á del Pino, On the classification of prolongations up to Engel homotopy, Proc. Amer. Math. Soc. 146 (2018) 891 MR3731719
17 Á del Pino Gómez, Engel structures and symplectic foliations, PhD thesis, Universidad Autónoma de Madrid (2017)
18 W Thurston, The theory of foliations of codimension greater than one, Comment. Math. Helv. 49 (1974) 214 MR370619
19 T Vogel, Existence of Engel structures, Ann. of Math. 169 (2009) 79 MR2480602
20 H Whitney, Geometric integration theory, Princeton Univ. Press (1957) MR0087148