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Compact hyperbolic manifolds without spin structures

BRUNO MARTELLI

STEFANO RIOLO

LEONE SLAVICH

We exhibit the first examples of compact, orientable, hyperbolic manifolds that do not
have any spin structure. We show that such manifolds exist in all dimensions n� 4 .

The core of the argument is the construction of a compact, oriented, hyperbolic
4–manifold M that contains a surface S of genus 3 with self-intersection 1 . The
4–manifold M has an odd intersection form and is hence not spin. It is built by
carefully assembling some right-angled 120–cells along a pattern inspired by the
minimum trisection of CP 2 .

The manifold M is also the first example of a compact, orientable, hyperbolic
4–manifold satisfying either of these conditions:

� H2.M;Z/ is not generated by geodesically immersed surfaces.
� There is a covering �M that is a nontrivial bundle over a compact surface.

57M50, 57N16, 57R15

1 Introduction

We prove here the following theorem:

Theorem 1.1 There are compact, orientable, hyperbolic manifolds that do not admit
any spin structure, in all dimensions n� 4.

We briefly describe the context. Every manifold is connected and without boundary in
this introduction, unless otherwise stated. Let M be a smooth compact n–manifold.
The following chain of implications is well known:

M is parallelisable D) M is stably parallelisable D) M is almost parallelisable

D) wi.M /D 0 for all i � 1 D) M is spin D) M is orientable:

We recall the terminology, which is standard. The manifold M is parallelisable if its
tangent bundle TM is trivial; it is stably parallelisable if the Whitney sum TM ˚ "k
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is trivial for some k (here "k is the rank-k trivial bundle over M ); it is almost
parallelisable if M nfpointg is parallelisable; the symbol wi 2H i.M;Z=2Z/ denotes
the i th Stiefel–Whitney class of M ; finally, M is spin if it admits a spin structure, and
this holds precisely when w1 Dw2 D 0; see Haefliger [12]. We remark that w1 D 0 is
equivalent to M being orientable.

Compact, orientable surfaces are stably parallelisable and compact, orientable 3–
manifolds are parallelisable (see Benedetti and Lisca [2] for a collection of elementary
proofs). Things become more exciting in dimension 4, where everything depends on
whether some appropriate characteristic classes vanish or not. Let � and � be the Euler
characteristic and the signature of a compact oriented 4–manifold M. The following
holds (see for instance Cappell and Shaneson [7] or Scorpan [25]):

M is parallelisable () �D � D 0 and w1 D w2 D 0:

M is stably parallelisable () � D 0 and w1 D w2 D 0:

M is almost parallelisable ()M is spin () w1 D w2 D 0:

We are interested here in compact, hyperbolic manifolds. A manifold is virtually P if
it has a finite-sheeted cover that is P, where P is some property. We recall a theorem
proved by Sullivan [26] in 1975, using previous work with Deligne [9].

Theorem 1.2 (Deligne–Sullivan) Every compact, hyperbolic n–manifold M is
virtually stably parallelisable.

That is, the manifold M has a finite-sheeted cover �M that is stably parallelisable. In
other words, the tangent bundle of every compact, hyperbolic manifold M becomes
trivial after first taking a finite cover and then adding a trivial bundle. This implies that
every compact, hyperbolic n–manifold M is virtually spin.

The Deligne–Sullivan theorem shows in particular that there are plenty of stably
parallelisable compact, orientable, hyperbolic manifolds in all dimensions. On the
other hand, at the time of writing this paper, it seems unknown whether there exists
any compact, orientable, hyperbolic manifold, in any dimension n � 4, that is not
stably parallelisable. We answer this question in the affirmative for all n� 4 here in
Theorem 1.1, where we state the stronger assertion that there are nonspin compact,
orientable, hyperbolic manifolds in all dimensions n� 4.

We note that the first nonspin compact, orientable, flat manifolds were discovered by
Auslander and Szczarba [1] in 1962. These exist in every dimension n � 4. Every
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compact flat manifold is virtually parallelisable thanks to Bieberbach’s theorem. In even
dimensions a complete, finite-volume, hyperbolic M is never parallelisable because
�.M /¤ 0 by the generalised Gauss–Bonnet theorem.

Using nonspin flat 4–manifolds as cusp sections, Long and Reid have recently con-
structed some nonspin finite-volume, cusped, orientable, hyperbolic n–manifolds for
all n� 5 in [17]. The paper also contains a nice short proof of the virtual spinness for
finite-volume hyperbolic manifolds, together with an effective bound on the covering
degree for many arithmetic manifolds of simplest type.

Outline of the proof

The core of the proof of Theorem 1.1 is the construction of a compact, oriented,
hyperbolic 4–manifold M with odd intersection form.

A compact, oriented, hyperbolic 4–manifold M has �.M / > 0 and �.M / D 0.
Therefore M is never parallelisable, and it is stably parallelisable if and only if it is
spin. The manifold M may have only two possible intersection forms up to equivalence
over Z: either even˚m

�
0
1

1
0

�
or odd˚m .1/˚m .�1/. A spin 4–manifold M must

have an even intersection form, and the converse holds if H1.M;Z/ has no 2–torsion.

The parity of the intersection form of compact, hyperbolic 4–manifolds has been
determined only in a very few cases. The Davis manifold is even and hence spin
because its first homology group is torsion-free; see Davis [8] and Ratcliffe and
Tschantz [24], and also Ratcliffe, Ruberman and Tschantz [23]. More recently, the
orientable small covers of the right-angled 120–cell have been classified: they are 56

and they all have even intersection form; see Ma and Zheng [18]. We are not aware of
any other compact, oriented, hyperbolic 4–manifold whose intersection form has been
computed. See Martelli [20] for a survey on finite-volume hyperbolic 4–manifolds.

We note the following fact:

Proposition 1.3 Let M be an orientable hyperbolic 4–manifold. If H2.M;Z/ is
generated by immersed totally geodesic surfaces, the intersection form of M is even.

Proof If S � M is totally geodesic and embedded, the normal bundle has a flat
connection and is hence trivial. Therefore we have S �S D 0. If S is only immersed,
its normal bundle is again trivial for the same reason. By desingularising we deduce
that S �S is even.

If H2.M / is generated by totally geodesic immersed surfaces S1; : : : ;Sk , then Si �Si

even for all i implies that the intersection form is even.
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For instance, the second integral homology group of the Davis manifold has rank 72

and is generated by 72 totally geodesic embedded surfaces of genus 2, as proved
in [24]. Therefore the Davis manifold has an even intersection form.

How can we construct a compact, hyperbolic 4–manifold with odd intersection form?
The only techniques we know to build hyperbolic 4–manifolds essentially use either
Coxeter polytopes or arithmetic groups, and both procedures typically produce a lot of
totally geodesic immersed submanifolds, so some care is needed. We prove here the
following:

Theorem 1.4 There is a compact, oriented, arithmetic, hyperbolic 4–manifold M

that contains a �1 –injective embedded surface S with genus 3 and S �S D 1.

Since S �S is odd, the intersection form of M is odd. The manifold M is constructed
by carefully assembling some copies of the right-angled 120–cell, along a pattern that
was suggested to us by the minimum trisection of CP2 . The surface S is contained in
the 2–skeleton of M, which consists of many right-angled pentagons. Of course the
surface S is not totally geodesic: it is pleated along its edges and vertices, and its self-
intersection S �S is calculated as the sum of the contributions of some rational weights
assigned to its vertices via a beautiful formula of Gromov, Lawson and Thurston [11].
Two vertices contribute each with 1

2
while all others contribute with zero. So the sum

is 1.

The 4–manifold M that we construct is tessellated into right-angled 120–cells and
is hence arithmetic of simplest type. By the Kolpakov–Reid–Slavich embedding
theorem [15], the manifold M totally geodesically embeds in a compact, orientable,
arithmetic, hyperbolic 5–manifold M 0, which is hence also nonspin. By iterating this
argument we find nonspin compact, orientable, arithmetic, hyperbolic manifolds of
simplest type in all dimensions n� 4.

Conclusions

We briefly discuss here some consequences of Theorems 1.1 and 1.4.

An even-dimensional compact, hyperbolic manifold has nonzero Euler characteristic
by the generalised Gauss–Bonnet formula, so in particular it is never parallelisable. In
odd dimensions, Theorem 1.1 has the following consequence, which seems new, at
least to our knowledge:

Corollary 1.5 In every odd dimension n� 5 there are compact, orientable, hyperbolic
manifolds that are not parallelisable.
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Restricting to dimension 4, the discussion above implies the following:

Corollary 1.6 There is a compact, orientable, arithmetic, hyperbolic 4–manifold M

such that H2.M;Z/ is not generated by immersed totally geodesic surfaces.

Note that the cohomology groups of small degree k < n
3

in compact, arithmetic, congru-
ence hyperbolic n–manifolds are always generated by totally geodesic submanifolds;
see Bergeron, Millson and Moeglin [4]. The pair k D 2, nD 4 is of course outside of
this range.

In the manifold M of Theorem 1.4, the surface S that we have found is �1 –injective.
It is now reasonable to ask the following:

Question 1.7 Let M be a compact, hyperbolic 4–manifold. Do �1 –injective ori-
entable surfaces generate H2.M;Z/?

In our example, the fundamental group �1.S/ < �1.M / determines a covering�M ! M with �M D H4=�1.S/. We prove that �M is geometrically finite and
diffeomorphic to a rank-2 bundle over S with Euler number 1. The existence of
complete hyperbolic structures on nontrivial bundles over surfaces was first discovered
by Gromov, Lawson and Thurston [11] in 1988. The following consequence seems
also new:

Corollary 1.8 There are nontrivial bundles over surfaces that cover some compact,
hyperbolic 4–manifolds.

Structure of the paper

The construction of the nonspin compact, hyperbolic 4–manifold M is described in
Section 2. The proofs of two more technical lemmas are deferred to Section 3. In
Section 4 we show that S is �1 –injective and that H4=�1.S/ is geometrically finite
and diffeomorphic to a plane bundle over S with Euler number 1. Finally, in Section 5
we complete the proof of Theorem 1.1 by passing from dimension 4 to any n� 4. The
reader interested only in the proof of Theorem 1.1 may skip Section 4.
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2 The construction

Our goal is to construct a compact, orientable, hyperbolic 4–manifold M that con-
tains a surface S with odd self-intersection. We plan to do this using right-angled
polytopes, and in particular the right-angled 120–cell, which has already been em-
ployed to construct various hyperbolic manifolds and orbifolds (see for instance
[5; 13; 14; 18; 19; 22]). The right-angled 120–cell is of course a combinatorially
complicated object, but thanks to its symmetries it may be used to construct hyperbolic
manifolds effectively.

We prove here Theorem 1.4, except for a couple of lemmas and the �1 –injectivity that
are deferred respectively to Sections 3 and 4.

2.1 Pleated surfaces in right-angled 120–cell tessellations

Our plan is to construct an oriented hyperbolic 4–manifold M, tessellated via a certain
number of right-angled 120–cells, which contains S in its 2–skeleton. Recall that the
120–cell has 120 facets that are right-angled dodecahedra. Therefore the 2–skeleton
of M is made of many right-angled pentagons. We want to construct S as the union
of some of these right-angled pentagons.

As we said in the introduction, our desired surface S �M cannot be totally geodesic,
so it will be pleated along some of its edges and vertices, that are also edges and vertices
of the tessellation of M. The surface S will not be smooth, but it will be locally flat
and easily smoothable.

At every vertex v of the tessellation of M, there are 16 (counted with multiplicity)
120–cells, whose links at v form the standard triangulation of S3 into 16 right-angled
tetrahedra shown in Figure 1. If v is contained in S, its link Lv is a closed unknotted
curve contained in the 1–skeleton of this triangulation of S3 . Some cases are shown
in Figure 2.

If S is smooth at v , the link Lv � S3 is a closed geodesic in S3 as in Figure 2, left.
If S is pleated only along a geodesic arc containing v , the link Lv is the union of
two geodesic arcs as in Figure 2, centre. In general, Lv � S3 is a closed curve that
consists of some geodesic arcs making right angles at some vertices w1; : : : ; wk as
in Figure 2, right. Each vertex wi points from v towards an edge of the tessellation
of M incident to v contained in S where S is bent (that is, it is not smooth). So the
surface S is bent along k edges incident to v .
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Figure 1: The (stereographic projection of) the tessellation of S3 into 16

right-angled tetrahedra.

To calculate the self-intersection S �S of S, we use the beautiful simple formula of
Gromov, Lawson and Thurston [11],

S �S D
X
v

w.Lv/:

Here v runs over all the vertices of S, and w.L/ is a rational number (we call it the
weight of L) assigned to any closed curve L� S3 contained in the 1–skeleton of the
triangulation in Figure 1.

The weight w.L/ may be easily determined algorithmically (see [11, page 39]), it is
invariant under orientation-preserving isometries of the triangulation of S3 , while it
changes by a sign under orientation-reversing ones. The three curves shown in Figure 2
have weights

0; 0; 1
2
;

respectively.

Figure 2: The link Lv of a vertex v in the surface S �M is a closed curve
contained in the 1–skeleton of the tessellation of S3 into 16 right-angled
tetrahedra. Three examples (drawn in red) are shown here.

Geometry & Topology, Volume 24 (2020)



2654 Bruno Martelli, Stefano Riolo and Leone Slavich

2.2 The Y –shaped piece

We would like to construct a pair .M;S/ where M is a compact, oriented, hyperbolic
4–manifold tessellated by right-angled 120–cells and S �M is a compact, orientable
surface contained in the 2–skeleton of M. We require S to have two vertices with
a link as in Figure 2, right, each contributing with weight 1

2
, while all other vertices

contribute with zero. This will give S �S D 1, as required.

Since it is much easier to construct surfaces inside a 3–dimensional environment than in
a 4–dimensional one, we will build S inside some reasonable 3–dimensional object N

contained in M. We will in fact construct a triple S �N �M.

What kind of reasonable 3–dimensional object N can work for us? A first naive request
could be to take N as an orientable 3–dimensional submanifold in M. This request
however would be too restrictive: if S is contained in an orientable 3–dimensional
submanifold N of M, its normal bundle in M is trivial and hence S �S is zero.

As a second try, we require N � M to be a Y –shaped piece, which is a kind of
generalised trisection, where three orientable 3–manifolds N0 , N1 and N2 are glued
along a common boundary surface † as in Figure 3. Here is the precise definition:

Definition 2.1 Let M be a smooth 4–manifold. A Y –shaped piece is a subset
N �M which decomposes into three portions

N DN0[N1[N2

as in Figure 3, where

(1) each Ni is a smooth 3–dimensional orientable submanifold with boundary;

(2) the intersection †DN0\N1 DN1\N2 DN2\N0 is a boundary component
of each Ni .

N1 N2

N0

†

Figure 3: A Y –shaped piece consists of three orientable 3–dimensional
smooth submanifolds N0 , N1 and N2 with boundary, intersecting in a
common boundary surface † .
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†

‚

Figure 4: A � –graph ‚ in the central surface † .

Note that each manifold Ni is allowed to have some additional boundary components
other than †. A Y –shaped piece is in some sense the simplest kind of 3–dimensional
object that is not a manifold. We call † the central surface of the Y –shaped piece.

Let M be an oriented 4–manifold that contains a Y –shaped piece N DN0[N1[N2

with central surface †. We now describe a simple homological condition that guarantees
that M contains a surface S with S �S D˙1. Let ‚�† be a � –graph, that is, a
� –shaped 1–complex as in Figure 4 whose regular neighbourhood in † is a punctured
torus. The graph ‚ contains three oriented simple closed curves 
0 , 
1 and 
2 with
Œ
0�C Œ
1�C Œ
2�D 0 in homology.

Proposition 2.2 Suppose that each 
i is the boundary of a properly embedded com-
pact, oriented surface Si �Ni for all i D 0; 1; 2. Then S D S0[S1[S2 is a closed
oriented surface in M with S �S D˙1.

Proof We first note that indeed S is a closed, oriented surface, pleated along ‚
and easily smoothable; see Figure 5. To calculate S �S, we push N slightly in some

S2 S0

S1

‚

Figure 5: The graph ‚ in S D S0[S1[S2 .
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N1 N2

N0

†

N 0
1 N 02

N 00

†0

Figure 6: A Y –shaped piece N together with a copy N 0 slightly pushed in
a random direction. Here N \N 0 DN2\N 00 is a surface parallel to both †
and †0.

random direction as in Figure 6, to produce a new Y –shaped piece N 0. Note that
N \N 0 DN2\N 0

0
is a surface parallel to both † and †0. After a slight perturbation

the isotopic copy S 0 �N 0 of S �N intersects S transversely in a single point, which
corresponds to the transverse intersection of the perturbed curves 
0 and 
2 in †.

The hypothesis of Proposition 2.2 is in fact just a homological condition on each 
i : we
require 
i to be zero in H1.Ni ;Z/ for all i . This condition guarantees the existence
of the surfaces Si . In our construction, every Si will be a one-holed torus and hence
S will have genus 3 as in Figure 5.

Example 2.3 The genus-one trisection N of CP2 satisfies these hypothesis and was
in fact our main inspiration. The trisection N is a Y –shaped piece made of three solid
tori N0 , N1 and N2 in CP2 with a common boundary torus †. We may choose
meridian discs Si �Ni whose boundary curves 
i D @Si are contained in a � –graph
‚�†. The three meridians glue to form a sphere S D S0[S1[S2 with S �S D 1.
The sphere S is isotopic to a line in CP2 .

Our strategy to construct the hyperbolic manifold M is now the following: we first
build an abstract geometric Y –shaped piece N made of right-angled dodecahedra, and
then we enlarge N to a compact, hyperbolic 4–manifold M by adding right-angled
120–cells.

2.3 Proof of Theorem 1.4

We now prove Theorem 1.4. The proof of two more technical lemmas and of the
�1 –injectivity will be deferred to Sections 3 and 4.

Let † be the genus-two oriented hyperbolic surface tessellated into eight right-angled
pentagons shown in Figure 7, left. The surface † contains a � –graph ‚, drawn in red

Geometry & Topology, Volume 24 (2020)
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A A

B

B

C

E

D

D

E

C

F

F

‚


0


1


2

Figure 7: The surface † is the hyperbolic genus-two surface tessellated into
eight right-angled pentagons as shown here. The edges labelled with the
same letters should be paired isometrically according to the arrows (left). The
� –graph ‚ contains three oriented simple closed curves 
0 , 
1 and 
2 (right).

in the figure. Let 
0 , 
1 and 
2 be the three oriented simple closed curves contained
in ‚ as shown in Figure 7, right. We have Œ
0�C Œ
1�C Œ
2�D 0 in homology.

The following purely 3–dimensional lemma says that † is (part of) the geodesic
boundary of a hyperbolic 3–manifold Ni containing a one-holed torus Si with @SiD
i

for all i . The manifold Ni is nicely tessellated into dodecahedra.

Lemma 2.4 There are three compact , oriented , hyperbolic 3–manifolds N0 , N1

and N2 with geodesic boundary, tessellated into right-angled dodecahedra , such that

(1) one boundary component of Ni is isometrically identified to †, with an isometry
that preserves the tessellations into pentagons for all i ;

(2) the boundary component †� @Ni is nicely collared , that is , the eight dodeca-
hedra in Ni incident to the eight pentagons of † are distinct for all i ;

(3) there is a properly embedded , oriented , one-holed torus Si �Ni with boundary
@Si D 
i for all i .

We now construct an abstract geometric Y –shaped N by glueing N0 , N1 and N2 to †.
Starting from N , we may thicken it and then close it to a hyperbolic 4–manifold M

using 120–cells. This is how we prove the following lemma:

Lemma 2.5 There is a compact, orientable, hyperbolic 4–manifold M containing N

as a Y –shaped piece.

The proof of the main part of Theorem 1.4 is now complete: by construction the
manifold M contains the Y –shaped piece N, which in turn contains three surfaces
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S0 , S1 and S2 whose union S has genus 3 and S �S D˙1 by Proposition 2.2. We
get S �S D 1 by choosing the appropriate orientation for M. By construction M is
arithmetic, as explained at the beginning of Section 5.

The two lemmas are proved in the next section. In Section 4 we show that S is also
�1 –injective, and this will conclude the proof of Theorem 1.4.

The surface S is shown in Figure 13. We provide another proof of the equality
S �S D˙1 in Section 4.1 via the Gromov–Lawson–Thurston formula.

3 Proofs of the lemmas

We prove here Lemmas 2.4 and 2.5. Their proofs are similar: in both cases we construct
some hyperbolic manifolds of dimension 3 or 4 by attaching right-angled dodecahedra
or 120–cells to some existing object, that is, the surface † or the Y –shaped piece N .
We introduce a general definition, taken from [19].

3.1 Hyperbolic manifolds with corners

We recall from [19] the notion of hyperbolic manifold with (right-angled) corners,
which generalises both hyperbolic manifolds with geodesic boundary and right-angled
polytopes.

We use the Klein model Dn for hyperbolic space and define P �Dn as the intersection
of Dn with the positive sector x1; : : : ;xn � 0. A hyperbolic manifold with (right-
angled) corners is a topological n–manifold M with an atlas in P and transition
maps that are restrictions of isometries. The boundary @M is naturally stratified into
connected, closed k –dimensional strata called faces, which we call vertices, edges and
facets if k D 0; 1 and n� 1, respectively. Every face is abstractly itself a hyperbolic
k –manifold with corners; note that a face may not be embedded, because it may be
incident multiple times to the same lower-dimensional face.

A manifold with corners can also be interpreted as an orbifold with mirrors, but we do
not really need the more general orbifold language here: everything will be elementary.

As we said, hyperbolic manifolds with geodesic boundary and right-angled polytopes
are particular kinds of hyperbolic manifolds with corners. One crucial property of this
class of objects is the following: if we glue two hyperbolic manifolds with corners
along two isometric embedded facets, the result is naturally a new hyperbolic manifold
with corners. More generally, if we glue two disjoint embedded isometric facets of a
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(possibly disconnected) hyperbolic manifold with corners, we get a new hyperbolic
manifold with corners.

A nice operation that we can do with a manifold M with corners is colouring and
mirroring. Suppose that we can colour some of the embedded facets of M, in such a
way that adjacent coloured facets always get different colours. Then we can mirror M

iteratively along the facets having the same colour, and get at the end a bigger manifold
with corners M 0 containing M. If we have coloured all the facets of M, the resulting
M 0 is without boundary. If M is oriented, also M 0 is. See [19, Proposition 6] for more
details. Using the orbifold language, we have constructed a finite orbifold covering
M 0!M. The manifold M 0 is tessellated into 2k copies of M, where k is the number
of colours in our palette.

Note that if M has k facets, and these are all embedded, we can colour them with
k different colours; this will produce a compact, hyperbolic manifold M 0 without
boundary tessellated into 2k copies of M.

3.2 Proof of Lemma 2.4

Up to symmetry, it suffices to consider the curves 
0 and 
1 shown in Figure 8, since

2 is isometric to 
1 . In both cases we start by attaching eight right-angled dodecahedra
above †, one above each pentagon. The result is a hyperbolic 3–manifold with corners,
with two boundary components: its bottom is the totally geodesic †, while its top is
isotopic to † and pleated at right-angles along the pattern shown in Figure 9. The top
contains ten octagons and eight pentagons.

In the 
0 case, we identify isometrically two pairs of top octagons as shown in Figure 10,
left. We end up with an oriented manifold N0 with corners that contains a totally
geodesic punctured torus with boundary on 
0 . We can easily check that every face
in N0 is embedded. We can colour arbitrarily all its faces except † (for instance by

A A

B

B

C

E

D

D

E

C

F

F

A A

B

B

C

E

D

D

E

C

F

F

Figure 8: The curves 
0 and 
1 in † .
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A A

B

B

C

E

D

D

E

C

F

F

A A

B

B

C

E

D

D

E

C

F

F

Figure 9: The result of attaching eight dodecahedra to † is to produce a
hyperbolic 3–manifold with corners, whose bottom is † , and whose top is
bent at right-angles along the pattern shown here.

assigning different colours to distinct facets), and then double N0 iteratively along its
coloured facets. At the end we get an oriented manifold N0�N0 with totally geodesic
boundary that consists of the original † and of many other copies of † that will not
be important for us.

In the 
1 case we would like to follow the same strategy but we encounter some
additional technicalities because 
1 is pleated. We cannot do a similar pairing, for
the following reason: in order to build an orientable surface inside an orientable 3–
manifold, we would need the pairing maps between facets to be orientation-reversing
both on the facets and on the pleated red curve isotopic to 
1 shown in Figure 9, right.
There is no such isometry between the octagons which contain the pleating points of 
1 .
In order to overcome this problem, we isotope 
1 as shown in Figure 10, right. Then
we attach four dodecahedra above each of the two grey octagons shown in Figure 10,
right. Let us call N 0

1
the resulting hyperbolic manifold with corners. By an accurate

analysis we discover that the top of N 0
1

is as in Figure 11.

We would like to pair the four grey facets as shown in Figure 11 and get as above a
manifold with corners N1 containing a punctured torus with boundary on 
1 . This

Q PP PQ QA A

B

B

C

E

D

D

E

C

F

F

A A

B

B

C

E

D

D

E

C

F

F

Figure 10: We pair the four grey octagons isometrically, as indicated by the
letters P and Q. The result is a new hyperbolic manifold with corners (left).
We isotope the curve (right).

Geometry & Topology, Volume 24 (2020)



Compact hyperbolic manifolds without spin structures 2661

P

P

P
F

F

1
2

1 1

11

2

2

2
1

1

11

1

A A

B

B

C

E

D

D

E

C

F

F

Figure 11: The top of N 0
1

. The pairing of the four grey facets as indicated
by the letters P and F would produce a big nonembedded facet, because all
the facets labelled with 1 or 2 glue up in the process. To avoid this, we first
mirror N 0

1
twice according to the chosen f1; 2g–colouring of these facets,

and get N 001 . After that, we pair the four new facets of N 001 containing the
four grey facets to get N1 .

can be done, but unfortunately a new difficulty emerges: the resulting manifold with
corners N1 has a nonembedded facet, because all the facets in N1 labelled with 1

or 2 in Figure 11 glue up to a single nonembedded facet in N1 . Nonembedded facets
cannot be coloured, so we cannot conclude as we did with N0 .

To solve this problem we make a more complicated construction. We colour the prob-
lematic facets of N 0

1
with two colours (1 and 2) as indicated in Figure 11. Specifically:

we assign the colour 1 to two pentagons and two octagons, and the colour 2 to two
pentagons and one octagon. We then mirror N 0

1
twice according to the colouring. Let

us call N 00
1

the resulting manifold with corners, tessellated by four copies of N 0
1

.

Every grey facet of N 0
1

labelled by either P or F is contained in a bigger facet of N 00
1

.
There is a unique way to pair isometrically these bigger facets of N 00

1
so that the original

grey facets of N 0
1

match as we desired (this holds because the colouring was chosen to be
compatible with that). If we pair them we obtain a new manifold with corners N1 . It is
not difficult to check that every facet of N1 is embedded. So now we conclude as we did
for N0 , that is, we build N1 from N1 by colouring everything except † and mirroring.

3.3 Proof of Lemma 2.5

Let N DN0[N1[N2 be an abstract Y –shaped piece constructed by attaching the
three 3–manifolds with geodesic boundary N0 , N1 and N2 to the surface †, via an
isometry that preserves the tessellations into pentagons.
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†

N1 N2

N0

†

†

N1 N2

N0

Figure 12: We embed the Y –shaped piece N in a hyperbolic 4–manifold
with corners by forming an abstract regular neighbourhood of 120–cells.
Here we draw the construction in dimension 2 , with segments and pentagons
instead of dodecahedra and 120–cells (left). This may be seen as a two-step
procedure, where we first consider N1[N2 and N0 separately and then we
identify the grey 120–cells (right).

We now construct a hyperbolic 4–manifold with corners M by attaching 120–cells
to N in a similar fashion as in [19].

We visualise N geometrically as in Figure 12, left: we first glue N1 and N2 along †,
so that N1[N2 is a hyperbolic 3–manifold with geodesic boundary containing † in
its interior; then we attach N0 to † making (in an abstract sense) an angle �

2
with

N1[N2 .

Our aim is to construct an abstract “regular neighbourhood” of N by attaching 120–
cells to the dodecahedra as sketched in Figure 12, left. The construction goes as in
Figure 12, right: We consider the hyperbolic 3–manifolds N1[N2 and N0 with geo-
desic boundary separately. These manifolds decompose into right-angled dodecahedra,
so as in [19] we may attach two 120–cells to each dodecahedron (one “above” and the
other “below”) and get two hyperbolic 4–manifolds with corners that contain N1[N2

and N0 , respectively. (We can do this unambiguously because every isometry of a
dodecahedral facet extends uniquely to an isometry of the 120–cell.)

Now we identify in pairs the 120–cells in N0 incident to † with the 120–cells
in N1 [N2 that are incident to † from below, as in Figure 12, right. There is a
natural unambiguous way to do this, as suggested by the figure. Note that since the
manifolds Ni are nicely collared, all the 120–cells involved are indeed distinct.
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After this identification, we get a manifold with boundary M, which may be interpreted
as a regular neighbourhood of N , as suggested by Figure 12, left. We make a crucial
observation: the manifold M is still a hyperbolic 4–manifold with right-angled corners.

To see this, consider the tessellation of M into copies of the 120–cell, and choose
a pentagonal face F lying in the surface †. Now, consider one of the 120–cells
which contains F and intersects the 3–manifold N0 . In this 120–cell C there are two
dodecahedra D1 and D2 which contain F. One of the two dodecahedra, say D1 , is
contained in N0 , while D2 is contained in either N1 or N2 . All the other dodecahedra
in C are either incident to both D1 and D2 (there are five such dodecahedra), or they
are incident to D1 but not to D2 , or they are incident to D2 and not to D1 , or they
are disjoint from both D1 and D2 .

Any dodecahedron D0 which intersects D1 and not D2 is not incident to any dodeca-
hedron D00 which intersects D2 and not D1 (this can be checked with some patience
by looking at the combinatorics of the 120–cell). This fact is crucial here: if this
were not the case, there would be two 120–cells C1 and C2 in M, with Ci adjacent
to C along Di for i D 1; 2, with the property that the total interior angle along their
common pentagonal intersection would be equal to the forbidden angle 3�

2
. Note that

this bad configuration arises in flat geometry if we use hypercubes on cubes instead of
120–cells on dodecahedra.

We have thus proved that in the boundary of M no pair of facets intersect with the
forbidden interior angle 3�

2
. Therefore all interior angles in the boundary of M are in

fact right angles and M is a genuine hyperbolic manifold with corners. Finally, by
colouring arbitrarily the facets of M and then mirroring, we get a bigger compact,
orientable, hyperbolic manifold M without boundary containing N .

4 The surface subgroup �1.S /

In this section we prove the following:

Proposition 4.1 The surface S is �1 –injective in M, the group �1.S/ < Isom.H4/

is geometrically finite, and �M DH4=�1.S/ is diffeomorphic to the total space of the
rank-2 vector bundle over S of Euler number 1.

In particular, the �1 –injectivity of S will conclude the proof of Theorem 1.4, and the
covering �M !M will prove Corollary 1.8.

Geometry & Topology, Volume 24 (2020)



2664 Bruno Martelli, Stefano Riolo and Leone Slavich

The strategy to prove Proposition 4.1 is to exhibit a convex fundamental domain D for
the action of �1.S/ on H4 induced by the inclusion S �M which, a priori, is not
necessarily faithful. The fundamental domain D will be a right-angled convex 20–gon,
as defined by Kuiper [16]: this is a polyhedron with 20 cyclically consecutive facets,
each isometric to the complement in H3 of two open halfspaces with disjoint closures
in H3 . The domain D is tessellated into infinitely many right-angled 120–cells. We use
Poincaré’s fundamental polyhedron theorem to prove that D is indeed a fundamental
domain and that the action of �1.S/ is faithful.

Since D is a finite-sided polytope, the manifold �M D H4=�1.S/ is geometrically
finite. Moreover, D is homeomorphic to the product D2 �R2 , and the pairing maps
preserve both the boundary of the disc D2 � f.0; 0/g and the R2 –fibration to produce
a plane bundle over the surface S with Euler number S �S D 1.

The construction of D is not complicated: we cut S into an appropriate pleated disc D2 ,
lift it to H4 and then expand it orthogonally to a domain D. The only technical problem
is that we are not able to visualise H4 and its tessellation into right-angled 120–cells,
so many simple geometric sentences like “these two hyperplanes in H4 do not intersect”
have to be verified by analysing S carefully.

Remark 4.2 Proposition 4.1 shows in particular the following fact: there is a co-
compact arithmetic group � � Isom.H4/ that contains a geometrically finite surface
subgroup �1.S/ such that S has genus 3 and �M DH4=�1.S/ is a bundle over S

with S �S D 1. Here � is the reflection group of the Coxeter simplex associated to the
right-angled 120–cell; see the beginning of Section 5.

We note that it is possible to deduce Theorem 1.4 directly from this fact using a
separability argument, without need of the explicit construction of M. We thank Alan
Reid for pointing this out to us.

The argument goes as follows. Since � is GFERF [3], the geometrically finite sub-
group �1.S/ is separable in � . By [15, Lemma 6.3], the closure of �1.S/ in the
profinite completion y� is isomorphic to the profinite completion 1�1.S/ . Moreover,
by [15, Proposition 6.8] the group 1�1.S/ is torsion-free, and by the arguments of [15,
Section 7.1] one shows that there is a torsion-free orientation-preserving subgroup
� 0 < � of finite index that contains �1.S/. By separability, one can assume that S

embeds in a finite-index cover of the closed manifold H4=� 0 .

We note however that the determination of such a �1.S/ inside � is a nonobvious
task: in the case described here, we really needed the Y –shaped piece, or at least
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the portion of it which is close to S, to construct a surface S with S �S D 1. If one
could prove that some of the Gromov–Lawson–Thurston examples with odd S �S are
contained in some arithmetic lattice, then more nonspin arithmetic, closed, hyperbolic
four-manifolds would arise.

4.1 Cutting the surface S

The surface S lies in the two-skeleton of M and is tessellated into 16 right-angled
pentagons, where 4, 6 and 6 of them lie in S0 , S1 and S2 , respectively. The tes-
sellation is shown in Figure 13: the patient reader may check that there are indeed
16 pentagons in the figure. The 16 edges where the surface S is pleated are thicker
in the figure: there are 6 in the interior of S1 , 6 in the interior of S2 , and 4 in the
graph ‚. The one-holed torus S0 is totally geodesic. One checks easily that every
vertex contributes with 0 to S �S in the Gromov–Lawson–Thurston formula, except
the two vertices of ‚, drawn in white in the picture, which contribute with 1

2
each.

Their link is represented in Figure 2, right.

S2 S0

S1

‚
v

Figure 13: The surface S is tessellated into 16 right-angled pentagons. It
is pleated along the thick edges and smooth along the thin edges. The two
vertices that contribute with 1

2
to the self-intersection S �S are the vertices

of ‚ and are drawn in white.
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Figure 14: The pleated disc D2 with its tessellation into 16 right-angled
pentagons. It is pleated at right angles along the thick edges and smooth along
the thin edges. The red edges correspond to the graph ‚ .

We now cut S open along all the thin edges of Figure 13, except those incident either
to the vertex v or to one of the two white vertices. The result is a pleated disc D2 as
in Figure 14, tessellated into 16 pentagons and having v at its centre. We lift it to a
disc D2 �H4 contained in the 2–skeleton of the tessellation of H4 into copies of the
120–cell. A crucial fact to note here is that we have obtained D2 by cutting S only
along thin (that is, nonpleated) edges of S.

The boundary of the disc D2 is subdivided into 20 sides as shown in Figure 13, and
each side is realised in H4 as a union of geodesic arcs, with each arc corresponding
to an edge of a pentagon. Notice that some of the sides are pleated, ie some of the
corresponding geodesic arcs make right angles at their common endpoint. The 20 sides
and the 16 pentagons in the figure are labelled with some letters A, B, C, D, E, F

and P0 , P1 , P2 , P3 , respectively; the reason for this marking will be explained soon.

4.2 The fundamental domain D

Now, to each side s in the boundary of D2 we wish to associate a hyperplane Hs

in H4 . We proceed in the following way. Consider a pentagon P � D2 which
intersects s in one of its edges. There is a unique hyperplane Hs in H4 which
contains s and intersects P orthogonally along s . Notice that the pentagon P is not
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uniquely determined, as some sides of D2 intersect more than one pentagon. However,
the resulting hyperplane Hs does not depend on the choice of P.

Consider a hyperplane Hs constructed as above. Its intersection with the pentagon
P is a geodesic arc, with P lying in one of the two halfspaces determined by Hs .
Let us call Hs such a halfspace. We define the set D �H4 as the intersection of the
halfspaces of the form Hs , where s varies over the sides of the disc D2 :

DD
\

s

Hs:

Consider now two hyperplanes Hs and Hs0 , corresponding to adjacent sides s and s0 in
the boundary of D2 . Clearly these two hyperplanes intersect along a hyperbolic plane
that contains the common vertex of s and s0 and is orthogonal to the adjacent pentagon
in D2 . We claim that these are the only intersections between the hyperplanes Hs :

Claim 4.3 Suppose that s and s0 are nonadjacent sides of the disc D2 . Then the
corresponding hyperplanes Hs and Hs0 do not intersect in H4 .

By construction, the hyperplanes Hs are hyperplanes in the tessellation of H4 into
copies of the 120–cell. Before proving Claim 4.3, we take a closer look at the combi-
natorial properties of this tessellation.

4.3 The 120–cell tessellation of H4 is naturally coloured

Consider a right-angled hyperbolic 120–cell C �H4 . By reflecting it along its facets
we produce a tessellation of H4 into copies of C. Now, consider a k –dimensional
face F of this tessellation and let H be the k –dimensional subspace in H4 which
contains it. The face F is obtained by applying a number of reflections to some unique
k –dimensional face F0 of C, and any other face F 0�H of the tessellation is obtained
in the same way from the same face F0 of C. Therefore, it makes sense to label the
whole subspace H with the face F0 of C. We have therefore defined a “labelling”
function from the set of k –dimensional subspaces of the tessellation to the set of
k –dimensional faces of C.

Now, consider two hyperplanes H1 and H2 of the tessellation. A necessary condition
for H1 and H2 to intersect is that their labels should correspond to a pair of adjacent
facets of the 120–cell C. Conversely, if their labels correspond to nonadjacent facets
of C, the hyperplanes cannot intersect. The intersection patterns for the facets of C can
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P

Figure 15: The five simplices adjacent to an edge of the 600–cell C � . If the
central edge corresponds to a pentagon P of the 120–cell C, the five white
vertices correspond to the dodecahedral facets of C which intersect P in one
of its edges.

be visualised much more easily by considering the dual polytope to C, the 600–cell C � .
This polytope has 600 tetrahedral facets, 1200 triangular faces, 720 edges and 120

vertices, and its boundary is a simplicial complex homeomorphic to the 3–sphere. The
correspondences between the strata of the two polytopes is as follows:

� fdodecahedra of C g $ fvertices of C �g.

� fpentagons of C g $ fedges of C �g.

� fedges of C g $ ftriangles of C �g.

� fvertices of C g $ ftetrahedra of C �g.

Clearly, two dodecahedral facets of C intersect if and only if the corresponding vertices
of C � are joined by an edge. Now, consider a pentagon P in C, corresponding to an
edge e of C � . There are five distinct tetrahedra in C � which have e as an edge, as
shown in Figure 15. There are exactly five vertices in these tetrahedra which are not
vertices of e , and these correspond to the dodecahedral facets of C which intersect P

orthogonally in an edge.

4.4 Proof of Claim 4.3

Consider the pleated disc D2 of Figure 14. By the discussion above, every pentagon
of D2 is labelled by some pentagon of C, and every side s of D2 is labelled by the
facet of C that is assigned to the corresponding hyperplane Hs .
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˛
ˇ

P0

P1

P2

P3

Figure 16: Labels for the pentagons and sides of D2 , seen dually in the
600–cell C � . The pentagons are drawn as red edges, while the hyperplanes
corresponding to the sides are drawn as white vertices. The figure shows only
the portion of 600–cell that is of interest for us.

With some patience one discovers that the pentagons are marked with only four distinct
labels P0 , P1 , P2 and P3 , as shown in Figure 14. The four pentagons with label P0

are those lying in the totally geodesic one-holed torus S0 . The remaining pentagons
have labels P1 , P2 and P3 , and those in the upper (resp. lower) half of the picture
lie in S1 (resp. S2 ). A careful analysis shows that the sides of D2 are marked with
six different labels A, B, C, D, E and F as shown in Figure 14. By dualising the
120–cell, we associate to the four pentagons four distinct edges and to the boundary
hyperplanes six distinct vertices of the 600–cell as in Figure 16.

Note that there is an edge connecting the vertex with label A to the vertex with label B,
as one would expect by noticing that there are adjacent sides of D2 with labels A

and B. More importantly, we point out that there are no extra edges in the 600–cell
connecting any pair of the vertices A, B, C, D, E and F apart from those shown in
the figure. This means that we can, for instance, prove that Hs \Hs0 D∅ if the two
edges s and s0 have labels A and C, or A and D, and so on.

This excludes many possible unwanted intersections, but not all. For example, a
hyperplane Hs with label B associated to a side s of D2 could intersect a hyperplane
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Hs0 with label C associated to a side s0 of D2 , with s not adjacent to s0. In order to
exclude this type of intersection we proceed as follows. Consider the internal edges
of D2 with labels ˛ , ˇ and 
 as shown in Figure 14. Note that these edges are not
pleated, therefore there are three hyperplanes in H4 , each containing one these edges
and orthogonal to the disc D2 . By a slight abuse of notation, we label these three
hyperplanes by ˛ , ˇ and 
 , respectively. They correspond to three vertices of the
600–cell, as shown in Figure 16. Each of these hyperplanes separates H4 into two
halfspaces. Now, for every possible unwanted intersection between hyperplanes Hs

and Hs0 with adjacent labels (but with nonadjacent sides s and s0 ), we can always find
at least one hyperplane with label ˛ , ˇ or 
 that separates Hs and Hs0 , ie such that
Hs and Hs0 lie in opposite halfspaces with respect to the chosen hyperplane. Therefore
Hs and Hs0 turn out to be disjoint.

For example, consider in Figure 14 the upper left side with label B and the lower right
side with label C. The two corresponding hyperplanes are separated by any of the
three hyperplanes ˛ , ˇ and 
 . Similarly, consider the two hyperplanes with label F.
They are separated by the hyperplane with label ˇ . By repeating this reasoning for all
possible pairs of nonadjacent sides with adjacent labels, we conclude that there are no
unwanted intersections between the hyperplanes Hs , and Claim 4.3 is proven.

4.5 Conclusion of the proof of Proposition 4.1

First, we notice that the interior of the pleated disc D2 is entirely contained in the
interior of the domain D . This follows from the fact that none of the internal edges
of the tessellation of D2 into pentagons is contained in a bounding hyperplane Hs

of D , and therefore D2 cannot intersect the bounding hyperplanes of D in its interior.
This can be verified by noticing that none of the triangular faces of the 600–cell
corresponding to the internal edges of D2 has vertices with label A, B, C, D, E or F.

Following Kuiper’s terminology [16, Section 3.1], the polyhedron D is a right-angled
4–dimensional convex 20–gon. It has 20 cyclically consecutive facets; each facet
contains one side of D2 and is isometric to H3 minus two open halfspaces with
disjoint closures in H3 . Two consecutive facets are incident at a right angle along a
copy of H2 . This is a consequence of Claim 4.3.

We now split each side labelled with A in Figure 14 into two sides (which we still label
with the letter A), by cutting it at its middle point. The number of sides of D2 grows
from 20 to 22. We also split the corresponding facets of D into two facets (along
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the plane orthogonal to the middle point of the original A), which we now think as
meeting with a dihedral angle � . Now the domain D is a 22–gon, with consecutive
facets meeting either at �

2
or � angle.

By construction �1.S/ acts isometrically on H4 and by examining Figures 13 and 14
we check that the action is generated by some pairing on the 22 sides of D2 that give
rise to S. Every side with label B, D, E or F is paired to a side with the same letter,
while the four sides labelled by C are paired with the four sides labelled by A.

Since all the sides in @D2 are made of thin (that is, nonpleated) edges, the isometry in
�1.S/ that sends a side s to some side s0 also sends isometrically the hyperplane Hs

to Hs0 . Therefore it pairs isometrically the corresponding facets of D. It is crucial here
that @D2 is made of thin edges.

Summing up, the action of �1.S/ on H4 is generated by some face pairings of D .
By Poincaré’s fundamental polyhedron theorem, the action is faithful and D is a
fundamental domain; see [10, Theorem 4.14]. Moreover, since D is finite-sided, the
Kleinian group �1.S/ is geometrically finite.

Finally, being a convex 22–gon, the domain D is homeomorphic to D2�R2 , with D2

itself embedded as D2 � f.0; 0/g. The R2 –fibration can be adjusted to be preserved
by the pairing maps and everything can be smoothed, so the quotient �M DH4=�1.S/

is diffeomorphic to a rank-2 real vector bundle over S with Euler number S �S D 1.

5 Proof of Theorem 1.1

We now prove Theorem 1.1. We have built in Theorem 1.4 a nonspin hyperbolic
4–manifold M which is tessellated into copies of the right-angled 120–cell C. Since
C is a regular polytope, the manifold M is an orbifold covering of the characteristic
simplex �Š C=Isom.C / of C.

Let � < Isom.H4/ be the Coxeter group generated by reflections in the facets of �.
By [6] (see also [27]), � is arithmetic of simplest type, and the associated admissible
quadratic form f of signature .4; 1/ is defined over the field k D QŒ

p
5�. More

specifically, � is a subgroup of the group O.f;Rk/, where Rk is the ring of integers
of the field k .

We will apply the following result from [15]:
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Lemma 5.1 Let M n be an orientable, arithmetic hyperbolic n–manifold of sim-
plest type, with associated quadratic form f defined over a field k . Suppose that
the group �1.M

n/ < O.f/ is contained in the subgroup of k –points O.f; k/. Then
M n geodesically embeds in an orientable hyperbolic .nC1/–manifold M nC1 which
is itself arithmetic of simplest type, with associated form g defined over the same
field k . Moreover, �1.M

nC1/ <O.g; k/. If M n is compact and defined over a proper
extension of Q, so is M nC1 .

Sketch of proof Choose the form g D y2C f, where y denotes a new coordinate.
Notice that g has signature .nC1; 1/ and is admissible over k because so is f. By [15,
Proposition 2.1], a torsion-free arithmetic lattice � D �1.M

n/ < O.f; k/ injects in an
arithmetic lattice ƒ<O.g; k/ < Isom.HnC1/. Moreover the group � is geometrically
finite and therefore separable in ƒ by [3]. Separability of � allows us to find a torsion-
free, finite-index subgroup ƒ0 < ƒ which contains � , and such that M n embeds
geodesically in M nC1 D HnC1=ƒ0 . Finally, note that M n and M nC1 are defined
over the same field k . By [21, Proposition 6.4.4], if k is a proper extension of Q, then
both M n and M nC1 are compact.

The hypothesis of Lemma 5.1 hold in particular for �1.M / < � <O.f;Rk/ <O.f; k/.
We now build a sequence of n–dimensional manifolds M n , n � 4, by choosing
M 4 DM and repeatedly applying Lemma 5.1 so that each M n embeds as a totally
geodesic submanifold in M nC1 .

Each M n is not spin by a standard argument: the manifold M 4 is not spin, hence
w2.M

4/ ¤ 0, and M n � M nC1 has a trivial normal bundle (since they are both
orientable and the codimension is 1), so by the natural properties of the Stiefel–Whitney
classes w2.M

n/¤ 0 implies w2.M
nC1/¤ 0.

More specifically, we have

w.TM nC1
jM n/D w.TM n/ ^ w.�M n/D w.TM n/:

If w2.TM n/ ¤ 0, then w2.TM nC1jM n/ ¤ 0 and by naturality of Stiefel–Whitney
classes we also get w2.TM nC1/¤ 0.
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