Volume 24, issue 6 (2020)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
$\mathrm{HF}=\mathrm{HM}$, III: Holomorphic curves and the differential for the ech/Heegaard Floer correspondence

Çağatay Kutluhan, Yi-Jen Lee and Clifford Henry Taubes

Geometry & Topology 24 (2020) 3013–3218
DOI: 10.2140/gt.2020.24.3013
Bibliography
1 D R Adams, Morrey spaces, Springer (2015) MR3467116
2 L V Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one complex variable, McGraw-Hill (1978) MR510197
3 H Hofer, K Wysocki, E Zehnder, Properties of pseudoholomorphic curves in symplectisations, I : Asymptotics, Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996) 337 MR1395676
4 M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263 MR2555941
5 M Hutchings, Embedded contact homology and its applications, from: "Proceedings of the International Congress of Mathematicians" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, P Gastesi), Hindustan Book Agency (2010) 1022 MR2827830
6 M Hutchings, M Sullivan, Rounding corners of polygons and the embedded contact homology of T3, Geom. Topol. 10 (2006) 169 MR2207793
7 M Hutchings, C H Taubes, Gluing pseudoholomorphic curves along branched covered cylinders, II, J. Symplectic Geom. 7 (2009) 29 MR2491716
8 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829
9 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 2855
10 R Lipshitz, A cylindrical reformulation of Heegaard Floer homology, Geom. Topol. 10 (2006) 955 MR2240908
11 D McDuff, D Salamon, J–holomorphic curves and quantum cohomology, 6, Amer. Math. Soc. (1994) MR1286255
12 C B Morrey Jr., Multiple integrals in the calculus of variations, 130, Springer (1966) MR0202511
13 P Ozsváth, Z Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. 159 (2004) 1027 MR2113019
14 P Ozsváth, Z Szabó, An introduction to Heegaard Floer homology, from: "Floer homology, gauge theory, and low-dimensional topology" (editors D A Ellwood, P S Ozsváth, A I Stipsicz, Z Szabó), Clay Math. Proc. 5, Amer. Math. Soc. (2006) 3 MR2249247
15 D Quillen, Determinants of Cauchy–Riemann operators on Riemann surfaces, Funktsional. Anal. i Prilozhen. 19 (1985) 37 MR783704
16 H Rafeiro, N Samko, S Samko, Morrey–Campanato spaces : an overview, from: "Operator theory, pseudo-differential equations, and mathematical physics" (editors Y I Karlovich, L Rodino, B Silbermann, I M Spitkovsky), Oper. Theory Adv. Appl. 228, Springer (2013) 293 MR3025501
17 J A Rasmussen, Floer homology and knot complements, PhD thesis, Harvard University (2003) arXiv:math/0306378v1 MR2704683
18 R Siefring, Relative asymptotic behavior of pseudoholomorphic half-cylinders, Comm. Pure Appl. Math. 61 (2008) 1631 MR2456182
19 C H Taubes, SW Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 MR1362874
20 C H Taubes, A compendium of pseudoholomorphic beasts in × (S1 × S2), Geom. Topol. 6 (2002) 657 MR1943381