Volume 25, issue 1 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
A vanishing theorem for tautological classes of aspherical manifolds

Fabian Hebestreit, Markus Land, Wolfgang Lück and Oscar Randal-Williams

Geometry & Topology 25 (2021) 47–110
Bibliography
1 A Bartels, F T Farrell, W Lück, The Farrell–Jones conjecture for cocompact lattices in virtually connected Lie groups, J. Amer. Math. Soc. 27 (2014) 339 MR3164984
2 A Bartels, W Lück, On crossed product rings with twisted involutions, their module categories and L–theory, from: "Cohomology of groups and algebraic K–theory" (editors L Ji, K Liu, S T Yau), Adv. Lect. Math. 12, International (2010) 1 MR2655174
3 A Bartels, W Lück, The Borel conjecture for hyperbolic and CAT(0)–groups, Ann. of Math. 175 (2012) 631 MR2993750
4 A Bartels, W Lück, H Reich, The K–theoretic Farrell–Jones conjecture for hyperbolic groups, Invent. Math. 172 (2008) 29 MR2385666
5 A Bartels, W Lück, H Reich, On the Farrell–Jones conjecture and its applications, J. Topol. 1 (2008) 57 MR2365652
6 A Bartels, H Reich, Coefficients for the Farrell–Jones conjecture, Adv. Math. 209 (2007) 337 MR2294225
7 O Baues, F Grunewald, Automorphism groups of polycyclic-by-finite groups and arithmetic groups, Publ. Math. Inst. Hautes Études Sci. 104 (2006) 213 MR2264837
8 A Berglund, I Madsen, Rational homotopy theory of automorphisms of manifolds, Acta Math. 224 (2020) 67 MR4086715
9 A Borel, Cohomology of arithmetic groups, from: "Proceedings of the International Congress of Mathematicians, I" (editor R D James) (1975) 435 MR0578905
10 A Borel, F Hirzebruch, Characteristic classes and homogeneous spaces, I, Amer. J. Math. 80 (1958) 458 MR102800
11 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) MR1744486
12 M R Bridson, P H Kropholler, Dimension of elementary amenable groups, J. Reine Angew. Math. 699 (2015) 217 MR3305926
13 K S Brown, Cohomology of groups, 87, Springer (1982) MR672956
14 D Burghelea, The cyclic homology of the group rings, Comment. Math. Helv. 60 (1985) 354 MR814144
15 D Burghelea, R Lashof, M Rothenberg, Groups of automorphisms of manifolds, 473, Springer (1975) MR0380841
16 M Bustamante, F T Farrell, Y Jiang, Rigidity and characteristic classes of smooth bundles with nonpositively curved fibers, J. Topol. 9 (2016) 934 MR3551844
17 S E Cappell, Unitary nilpotent groups and Hermitian K–theory, I, Bull. Amer. Math. Soc. 80 (1974) 1117 MR358815
18 S Cappell, S Weinberger, M Yan, Closed aspherical manifolds with center, J. Topol. 6 (2013) 1009 MR3145148
19 A Casson, D H Gottlieb, Fibrations with compact fibres, Amer. J. Math. 99 (1977) 159 MR436144
20 A Casson, D Jungreis, Convergence groups and Seifert fibered 3–manifolds, Invent. Math. 118 (1994) 441 MR1296353
21 S R Costenoble, S Waner, Equivariant ordinary homology and cohomology, 2178, Springer (2016) MR3585352
22 C J Earle, J Eells, A fibre bundle description of Teichmüller theory, J. Differential Geom. 3 (1969) 19 MR276999
23 J Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, J. Reine Angew. Math. 684 (2013) 1 MR3181555
24 J Ebert, O Randal-Williams, Generalised Miller–Morita–Mumford classes for block bundles and topological bundles, Algebr. Geom. Topol. 14 (2014) 1181 MR3180831
25 B Eckmann, Cyclic homology of groups and the Bass conjecture, Comment. Math. Helv. 61 (1986) 193 MR856086
26 A Engel, M Marcinkowski, Burghelea conjecture and asymptotic dimension of groups, J. Topol. Anal. 12 (2020) 321
27 N E Enkelmann, W Lück, M Pieper, M Ullmann, C Winges, On the Farrell–Jones conjecture for Waldhausen’s A–theory, Geom. Topol. 22 (2018) 3321 MR3858766
28 C Faber, A conjectural description of the tautological ring of the moduli space of curves, from: "Moduli of curves and abelian varieties" (editors C Faber, E Looijenga), Aspects Math. E33, Vieweg (1999) 109 MR1722541
29 F T Farrell, W C Hsiang, On the rational homotopy groups of the diffeomorphism groups of discs, spheres and aspherical manifolds, from: "Algebraic and geometric topology, I" (editor R J Milgram), Proc. Sympos. Pure Math. 32, Amer. Math. Soc. (1978) 325 MR520509
30 F T Farrell, L E Jones, Rigidity and other topological aspects of compact nonpositively curved manifolds, Bull. Amer. Math. Soc. 22 (1990) 59 MR1001606
31 F T Farrell, L E Jones, The lower algebraic K–theory of virtually infinite cyclic groups, K–Theory 9 (1995) 13 MR1340838
32 M H Freedman, The disk theorem for four-dimensional manifolds, from: "Proceedings of the International Congress of Mathematicians, I" (editors Z Ciesielski, C Olech), PWN (1984) 647 MR804721
33 M H Freedman, F Quinn, Topology of 4–manifolds, 39, Princeton Univ. Press (1990) MR1201584
34 M H Freedman, P Teichner, 4–manifold topology, I : Subexponential groups, Invent. Math. 122 (1995) 509 MR1359602
35 D Gabai, Convergence groups are Fuchsian groups, Ann. of Math. 136 (1992) 447 MR1189862
36 S Galatius, I Grigoriev, O Randal-Williams, Tautological rings for high-dimensional manifolds, Compos. Math. 153 (2017) 851 MR3705243
37 S Galatius, I Madsen, U Tillmann, Divisibility of the stable Miller–Morita–Mumford classes, J. Amer. Math. Soc. 19 (2006) 759 MR2219303
38 S Galatius, O Randal-Williams, Stable moduli spaces of high-dimensional manifolds, Acta Math. 212 (2014) 257 MR3207759
39 S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, II, Ann. of Math. 186 (2017) 127 MR3665002
40 S Galatius, O Randal-Williams, Homological stability for moduli spaces of high dimensional manifolds, I, J. Amer. Math. Soc. 31 (2018) 215 MR3718454
41 D H Gottlieb, A certain subgroup of the fundamental group, Amer. J. Math. 87 (1965) 840 MR189027
42 D H Gottlieb, Poincaré duality and fibrations, Proc. Amer. Math. Soc. 76 (1979) 148 MR534407
43 M Gromov, Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math. 53 (1981) 53 MR623534
44 M Gromov, Hyperbolic groups, from: "Essays in group theory" (editor S M Gersten), Math. Sci. Res. Inst. Publ. 8, Springer (1987) 75 MR919829
45 P Holm, The microbundle representation theorem, Acta Math. 117 (1967) 191 MR208618
46 R Ji, Nilpotency of Connes’ periodicity operator and the idempotent conjectures, K–Theory 9 (1995) 59 MR1340840
47 H Kammeyer, W Lück, H Rüping, The Farrell–Jones conjecture for arbitrary lattices in virtually connected Lie groups, Geom. Topol. 20 (2016) 1275 MR3523058
48 R C Kirby, L C Siebenmann, Foundational essays on topological manifolds, smoothings, and triangulations, 88, Princeton Univ. Press (1977) MR0645390
49 J M Kister, Microbundles are fibre bundles, Ann. of Math. 80 (1964) 190 MR180986
50 N H Kuiper, R K Lashof, Microbundles and bundles, I : Elementary theory, Invent. Math. 1 (1966) 1 MR216506
51 E Looijenga, On the tautological ring of g, Invent. Math. 121 (1995) 411 MR1346214
52 W Lück, Isomorphism conjectures in K– and L–theory, book project (2021)
53 W Lück, H Reich, The Baum–Connes and the Farrell–Jones conjectures in K– and L–theory, from: "Handbook of K–theory, II" (editors E M Friedlander, D R Grayson), Springer (2005) 703 MR2181833
54 I Madsen, U Tillmann, The stable mapping class group and Q(P+), Invent. Math. 145 (2001) 509 MR1856399
55 I Madsen, M Weiss, The stable moduli space of Riemann surfaces : Mumford’s conjecture, Ann. of Math. 165 (2007) 843 MR2335797
56 M Mather, Pull-backs in homotopy theory, Canad. J. Math. 28 (1976) 225 MR402694
57 J P May, J Sigurdsson, Parametrized homotopy theory, 132, Amer. Math. Soc. (2006) MR2271789
58 E Y Miller, The homology of the mapping class group, J. Differential Geom. 24 (1986) 1 MR857372
59 S Morita, Characteristic classes of surface bundles, Bull. Amer. Math. Soc. 11 (1984) 386 MR752805
60 D Mumford, Towards an enumerative geometry of the moduli space of curves, from: "Arithmetic and geometry, II" (editors M Artin, J Tate), Progr. Math. 36, Birkhäuser (1983) 271 MR717614
61 C Neofytidis, Fundamental groups of aspherical manifolds and maps of non-zero degree, Groups Geom. Dyn. 12 (2018) 637 MR3813205
62 P Ontaneda, Riemannian hyperbolization, Publ. Math. Inst. Hautes Études Sci. 131 (2020) 1 MR4106793
63 O Randal-Williams, An upper bound for the pseudoisotopy stable range, Math. Ann. 368 (2017) 1081 MR3673647
64 A A Ranicki, Algebraic L–theory, III : Twisted Laurent extensions, from: "Algebraic K–theory, III : Hermitian K–theory and geometric application" (editor H Bass), Lecture Notes in Math. 343 (1973) 412 MR0414663
65 A A Ranicki, Algebraic L–theory and topological manifolds, 102, Cambridge Univ. Press (1992) MR1211640
66 H Reich, M Varisco, Algebraic K–theory, assembly maps, controlled algebra, and trace methods, from: "Space, time, matter" (editors J Brüning, M Staudacher), de Gruyter (2018) 1 MR3792301
67 D J S Robinson, A course in the theory of groups, 80, Springer (1996) MR1357169
68 H Rüping, The Farrell–Jones conjecture for S–arithmetic groups, J. Topol. 9 (2016) 51 MR3465840
69 M S Weiss, Dalian notes on rational Pontryagin classes, preprint (2015) arXiv:1507.00153
70 M Weiss, B Williams, Automorphisms of manifolds and algebraic K–theory, II, J. Pure Appl. Algebra 62 (1989) 47 MR1026874