Recent Issues
Volume 27, 8 issues
Volume 27
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
A Alishahi , E
Eftekhary , Knot Floer homology
and the unknotting number , Geom. Topol. 24 (2020) 2435
MR4194296
2
I Dai , J Hom ,
M Stoffregen , L Truong , An infinite-rank
summand of the homology cobordism group , preprint (2018)
arXiv:1810.06145
3
J Hanselman , L
Watson , A calculus for bordered Floer homology ,
preprint (2015) arXiv:1508.05445
4
M Hedden , On knot Floer homology
and cabling, II , Int. Math. Res. Not. 2009 (2009) 2248
MR2511910
5
M Hedden , C
Livingston , D Ruberman , Topologically slice
knots with nontrivial Alexander polynomial , Adv. Math.
231 (2012) 913 MR2955197
6
M Hedden , L
Watson , On the geography
and botany of knot Floer homology , Selecta Math. 24
(2018) 997 MR3782416
7
J Hom , A note on cabling and
L –space surgeries , Algebr.
Geom. Topol. 11 (2011) 219 MR2764041
8
J Hom , The knot Floer complex and
the smooth concordance group , Comment. Math. Helv. 89
(2014) 537 MR3260841
9
J Hom , An infinite-rank
summand of topologically slice knots , Geom. Topol. 19
(2015) 1063 MR3336278
10
J Hom , On the concordance genus
of topologically slice knots , Int. Math. Res. Not. 2015
(2015) 1295 MR3340357
11
J Hom , A note on the concordance
invariants epsilon and upsilon , Proc. Amer. Math. Soc.
144 (2016) 897 MR3430863
12
J Hom , A survey on
Heegaard Floer homology and concordance , J. Knot Theory
Ramifications 26 (2017) MR3604497
13
M H Kim , K
Park , An infinite-rank
summand of knots with trivial Alexander polynomial , J.
Symplectic Geom. 16 (2018) 1749 MR3934241
14
D Krcatovich ,
A
restriction on the Alexander polynomials of L –space knots , Pacific J. Math. 297
(2018) 117 MR3864231
15
R Lipshitz , P
Ozsváth , D Thurston , Bordered Heegaard Floer
homology: invariance and pairing , preprint (2008) arXiv:0810.0687
16
C Manolescu ,
An introduction
to knot Floer homology , from: "Physics and mathematics
of link homology" (editors M Khovanov, J Walcher), Contemp.
Math. 680, Amer. Math. Soc. (2016) 99 MR3591644
17
B Owens , S
Strle , Immersed disks,
slicing numbers and concordance unknotting numbers ,
Comm. Anal. Geom. 24 (2016) 1107 MR3622316
18
P S Ozsváth ,
A I Stipsicz , Z Szabó , Concordance
homomorphisms from knot Floer homology , Adv. Math. 315
(2017) 366 MR3667589
19
P Ozsváth , Z
Szabó , Knot Floer homology and
the four-ball genus , Geom. Topol. 7 (2003) 615 MR2026543
20
P Ozsváth , Z
Szabó , Holomorphic disks and
genus bounds , Geom. Topol. 8 (2004) 311 MR2023281
21
P Ozsváth , Z
Szabó , Holomorphic disks
and knot invariants , Adv. Math. 186 (2004) 58 MR2065507
22
P Ozsváth , Z
Szabó , On knot Floer
homology and lens space surgeries , Topology 44 (2005)
1281 MR2168576
23
P S Ozsváth , Z
Szabó , Knot Floer homology
and integer surgeries , Algebr. Geom. Topol. 8 (2008)
101 MR2377279
24
P Ozsváth , Z
Szabó , Bordered
knot algebras with matchings , Quantum Topol. 10 (2019)
481 MR4002230
25
I Petkova , Cables of thin knots and
bordered Heegaard Floer homology , Quantum Topol. 4
(2013) 377 MR3134023
26
J A Rasmussen ,
Floer homology and knot complements , PhD thesis, Harvard
University (2003) arXiv:math/0306378
MR2704683
27
I Zemke , Connected sums and
involutive knot Floer homology , Proc. Lond. Math. Soc.
119 (2019) 214 MR3957835
28
I Zemke , Link cobordisms and absolute
gradings on link Floer homology , Quantum Topol. 10
(2019) 207 MR3950650