Volume 25, issue 1 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Positive scalar curvature on manifolds with odd order abelian fundamental groups

Bernhard Hanke

Geometry & Topology 25 (2021) 497–546
Bibliography
1 N A Baas, On bordism theory of manifolds with singularities, Math. Scand. 33 (1973) 279 MR346824
2 A L Besse, Einstein manifolds, 10, Springer (1987) MR867684
3 B Botvinnik, Manifolds with singularities and the Adams–Novikov spectral sequence, 170, Cambridge Univ. Press (1992) MR1192127
4 B Botvinnik, Manifolds with singularities accepting a metric of positive scalar curvature, Geom. Topol. 5 (2001) 683 MR1857524
5 B Botvinnik, J Rosenberg, The Yamabe invariant for non-simply connected manifolds, J. Differential Geom. 62 (2002) 175 MR1988502
6 B Botvinnik, J Rosenberg, Positive scalar curvature for manifolds with elementary abelian fundamental group, Proc. Amer. Math. Soc. 133 (2005) 545 MR2093079
7 K S Brown, Cohomology of groups, 87, Springer (1982) MR672956
8 U Bunke, Index theory, eta forms, and Deligne cohomology, 928, Amer. Math. Soc. (2009) MR2191484
9 S Eilenberg, S Mac Lane, On the groups H,n), II : Methods of computation, Ann. of Math. 60 (1954) 49 MR65162
10 S Führing, A smooth variation of Baas–Sullivan theory and positive scalar curvature, Math. Z. 274 (2013) 1029 MR3078256
11 M Gromov, H B Lawson Jr., The classification of simply connected manifolds of positive scalar curvature, Ann. of Math. 111 (1980) 423 MR577131
12 B Hanke, Bordism of elementary abelian groups via inessential Brown–Peterson homology, J. Topol. 9 (2016) 725 MR3551835
13 B Hanke, D Kotschick, J Wehrheim, Dissolving four-manifolds and positive scalar curvature, Math. Z. 245 (2003) 545 MR2021570
14 D C Johnson, W S Wilson, The Brown–Peterson homology of elementary p–groups, Amer. J. Math. 107 (1985) 427 MR784291
15 D Joyce, A generalization of manifolds with corners, Adv. Math. 299 (2016) 760 MR3519481
16 S Kwasik, R Schultz, Positive scalar curvature and periodic fundamental groups, Comment. Math. Helv. 65 (1990) 271 MR1057244
17 J Milnor, On the cobordism ring Ω and a complex analogue, I, Amer. J. Math. 82 (1960) 505 MR119209
18 O K Mironov, Existence of multiplicative structures in the theory of cobordism with singularities, Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975) 1065 MR0402784
19 S A Mitchell, A proof of the Conner–Floyd conjecture, Amer. J. Math. 106 (1984) 889 MR749260
20 J Morava, A product for the odd-primary bordism of manifolds with singularities, Topology 18 (1979) 177 MR546788
21 S P Novikov, Some problems in the topology of manifolds connected with the theory of Thom spaces, Dokl. Akad. Nauk SSSR 132 (1960) 1031 MR0121815
22 D C Ravenel, W S Wilson, The Morava K–theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture, Amer. J. Math. 102 (1980) 691 MR584466
23 J Rosenberg, C–algebras, positive scalar curvature, and the Novikov conjecture, III, Topology 25 (1986) 319 MR842428
24 J Rosenberg, Manifolds of positive scalar curvature: a progress report, from: "Metric and comparison geometry" (editors J Cheeger, K Grove), Surv. Differ. Geom. 11, International (2007) 259 MR2408269
25 J Rosenberg, S Stolz, Metrics of positive scalar curvature and connections with surgery, from: "Surveys on surgery theory, II" (editors S Cappell, A Ranicki, J Rosenberg), Ann. of Math. Stud. 149, Princeton Univ. Press (2001) 353 MR1818778
26 R Schoen, S T Yau, On the structure of manifolds with positive scalar curvature, Manuscripta Math. 28 (1979) 159 MR535700
27 N Shimada, N Yagita, Multiplications in the complex bordism theory with singularities, Publ. Res. Inst. Math. Sci. 12 (1976) 259 MR0415642
28 S Stolz, Positive scalar curvature metrics: existence and classification questions, from: "Proceedings of the International Congress of Mathematicians, I" (editor S D Chatterji), Birkhäuser (1995) 625 MR1403963
29 R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 MR61823