Volume 25, issue 3 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Reflection positivity and invertible topological phases

Daniel S Freed and Michael J Hopkins

Geometry & Topology 25 (2021) 1165–1330
Bibliography
1 J F Adams, Prerequisites (on equivariant stable homotopy) for Carlsson’s lecture, from: "Algebraic topology" (editors I Madsen, B Oliver), Lecture Notes in Math. 1051, Springer (1984) 483 MR764596
2 J F Adams, H R Margolis, Modules over the Steenrod algebra, Topology 10 (1971) 271 MR294450
3 A Altland, M R Zirnbauer, Nonstandard symmetry classes in mesoscopic normal-superconducting hybrid structures, Phys. Rev. B 55 (1997) 1142
4 D W Anderson, E H Brown Jr., F P Peterson, The structure of the Spin cobordism ring, Ann. of Math. 86 (1967) 271 MR219077
5 D W Anderson, E H Brown Jr., F P Peterson, Pin cobordism and related topics, Comment. Math. Helv. 44 (1969) 462 MR261613
6 M F Atiyah, K–theory and reality, Q. J. Math. 17 (1966) 367 MR206940
7 M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 MR1001453
8 M F Atiyah, R Bott, A Shapiro, Clifford modules, Topology 3 (1964) 3 MR167985
9 M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 MR397797
10 M F Atiyah, I M Singer, Index theory for skew-adjoint Fredholm operators, Inst. Hautes Études Sci. Publ. Math. 37 (1969) 5 MR285033
11 D Ayala, J Francis, The cobordism hypothesis, preprint (2017) arXiv:1705.02240
12 J C Baez, J Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 MR1355899
13 A Bahri, P Gilkey, The eta invariant, Pinc bordism, and equivariant Spinc bordism for cyclic 2–groups, Pacific J. Math. 128 (1987) 1 MR883375
14 C Barwick, C Schommer-Pries, On the unicity of the homotopy theory of higher categories, preprint (2011) arXiv:1112.0040
15 A Beaudry, J A Campbell, A guide for computing stable homotopy groups, from: "Topology and quantum theory in interaction" (editors D Ayala, D S Freed, R E Grady), Contemp. Math. 718, Amer. Math. Soc. (2018) 89 MR3869642
16 M Berg, C DeWitt-Morette, S Gwo, E Kramer, The Pin groups in physics : C, P and T, Rev. Math. Phys. 13 (2001) 953 MR1845915
17 G Birkhoff, M K Bennett, Felix Klein and his “Erlanger Programm”, from: "History and philosophy of modern mathematics" (editors W Aspray, P Kitcher), Minnesota Stud. Philos. Sci. 11, Univ. Minnesota Press (1988) 145 MR945470
18 M Bökstedt, I Madsen, The cobordism category and Waldhausen’s K–theory, from: "An alpine expedition through algebraic topology" (editors C Ausoni, K Hess, B Johnson, W Lück, J Scherer), Contemp. Math. 617, Amer. Math. Soc. (2014) 39 MR3243393
19 E H Brown Jr., M Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976) 1 MR405403
20 G Brumfiel, J Morgan, The Pontrjagin dual of 3–dimensional spin bordism, preprint (2016) arXiv:1612.02860
21 U Bunke, Transgression of the index gerbe, Manuscripta Math. 109 (2002) 263 MR1948015
22 U Bunke, T Schick, Smooth K–theory, from: "From probability to geometry, II" (editors X Dai, R Léandre, X Ma, W Zhang), Astérisque 328, Soc. Math. France (2009) 45 MR2664467
23 D Calaque, C Scheimbauer, A note on the (,n)–category of cobordisms, Algebr. Geom. Topol. 19 (2019) 533 MR3924174
24 J A Campbell, Homotopy theoretic classification of symmetry protected phases, preprint (2017) arXiv:1708.04264
25 F Catanese, On the moduli spaces of surfaces of general type, J. Differential Geom. 19 (1984) 483 MR755236
26 X Chen, Z C Gu, X G Wen, Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order, Phys. Rev. B 82 (2010)
27 S Coleman, J Mandula, All possible symmetries of the S matrix, Phys. Rev. 159 (1967) 1251
28 C Cordova, D S Freed, H T Lam, N Seiberg, Anomalies in the space of coupling constants and their dynamical applications, I, SciPost Phys. 8 (2020)
29 X Dai, D S Freed, η–invariants and determinant lines, C. R. Acad. Sci. Paris Sér. I Math. 320 (1995) 585 MR1322342
30 P Deligne, Notes on spinors, from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 99 MR1701598
31 P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41 MR1701597
32 T tom Dieck, Transformation groups and representation theory, 766, Springer (1979) MR551743
33 F J Dyson, The threefold way: algebraic structure of symmetry groups and ensembles in quantum mechanics, J. Math. Phys. 3 (1962) 1199 MR177643
34 J Ebert, A vanishing theorem for characteristic classes of odd-dimensional manifold bundles, J. Reine Angew. Math. 684 (2013) 1 MR3181555
35 L Fidkowski, X Chen, A Vishwanath, Non-abelian topological order on the surface of a 3D topological superconductor from an exactly solved model, Phys. Rev. X 3 (2013)
36 L Fidkowski, A Kitaev, Effects of interactions on the topological classification of free fermion systems, Phys. Rev. B 81 (2010)
37 L Fidkowski, A Kitaev, Topological phases of fermions in one dimension, Phys. Rev. B 83 (2011)
38 D S Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343 MR1256993
39 D S Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. 50 (2013) 57 MR2994995
40 D S Freed, Anomalies and invertible field theories, from: "String-Math 2013" (editors R Donagi, M R Douglas, L Kamenova, M Roček), Proc. Sympos. Pure Math. 88, Amer. Math. Soc. (2014) 25 MR3330283
41 D S Freed, Lectures on Field theory and topology, 133, Amer. Math. Soc. (2019) MR3969923
42 D S Freed, M J Hopkins, Chern–Weil forms and abstract homotopy theory, Bull. Amer. Math. Soc. 50 (2013) 431 MR3049871
43 D S Freed, M J Hopkins, Consistency of M–theory on unorientable manifolds, preprint (2019) arXiv:1908.09916
44 D S Freed, M J Hopkins, C Teleman, Consistent orientation of moduli spaces, from: "The many facets of geometry" (editors O García-Prada, J P Bourguignon, S Salamon), Oxford Univ. Press (2010) 395 MR2681705
45 D S Freed, M J Hopkins, C Teleman, Loop groups and twisted K–theory, III, Ann. of Math. 174 (2011) 947 MR2831111
46 D S Freed, J Lott, An index theorem in differential K–theory, Geom. Topol. 14 (2010) 903 MR2602854
47 D S Freed, G W Moore, Setting the quantum integrand of M–theory, Comm. Math. Phys. 263 (2006) 89 MR2207325
48 D S Freed, G W Moore, Twisted equivariant matter, Ann. Henri Poincaré 14 (2013) 1927 MR3119923
49 L Fu, C L Kane, E J Mele, Topological insulators in three dimensions, Phys. Rev. Lett. 98 (2007)
50 D Gaiotto, A Kapustin, Spin TQFTs and fermionic phases of matter, Int. J. Mod. Phys. A 31 (2016)
51 D Gaiotto, A Kapustin, Z Komargodski, N Seiberg, Theta, time reversal and temperature, J. High Energy Phys. 2017 (2017) MR3662840
52 S Galatius, U Tillmann, I Madsen, M Weiss, The homotopy type of the cobordism category, Acta Math. 202 (2009) 195 MR2506750
53 J Glimm, A Jaffe, Quantum physics: a functional integral point of view, Springer (1987) MR887102
54 H Greaves, T Thomas, On the CPT theorem, Stud. Hist. Philos. Sci. B Stud. Hist. Philos. Modern Phys. 45 (2014) 46 MR3168090
55 J P C Greenlees, J P May, Equivariant stable homotopy theory, from: "Handbook of algebraic topology" (editor I M James), North-Holland (1995) 277 MR1361893
56 Z C Gu, X G Wen, Symmetry-protected topological orders for interacting fermions : fermionic topological nonlinear σ models and a special group supercohomology theory, Phys. Rev. B 90 (2014)
57 M Guo, P Putrov, J Wang, Time reversal, SU(N) Yang–Mills and cobordisms : interacting topological superconductors/insulators and quantum spin liquids in 3 + 1D, Ann. Physics 394 (2018) 244 MR3812704
58 P Heinzner, A Huckleberry, M R Zirnbauer, Symmetry classes of disordered fermions, Comm. Math. Phys. 257 (2005) 725 MR2164950
59 M A Hill, M J Hopkins, D C Ravenel, On the nonexistence of elements of Kervaire invariant one, Ann. of Math. 184 (2016) 1 MR3505179
60 M J Hopkins, Algebraic topology and modular forms, from: "Proceedings of the International Congress of Mathematicians, I" (editor T Li), Higher Ed. Press (2002) 291 MR1989190
61 M J Hopkins, I M Singer, Quadratic functions in geometry, topology, and M–theory, J. Differential Geom. 70 (2005) 329 MR2192936
62 T Johnson-Freyd, Spin, statistics, orientations, unitarity, Algebr. Geom. Topol. 17 (2017) 917 MR3623677
63 R Jost, Eine Bemerkung zum CTP theorem, Helv. Phys. Acta 30 (1957) 409 MR89720
64 C L Kane, E J Mele, 2 topological order and the quantum spin Hall effect, Phys. Rev. Lett. 95 (2005)
65 M Kapranov, Supergeometry in mathematics and physics, preprint (2015) arXiv:1512.07042
66 A Kapustin, Topological field theory, higher categories, and their applications, from: "Proceedings of the International Congress of Mathematicians, III" (editors R Bhatia, A Pal, G Rangarajan, V Srinivas, M Vanninathan, P Gastesi), Hindustan (2010) 2021 MR2827874
67 A Kapustin, Symmetry protected topological phases, anomalies, and cobordisms: beyond group cohomology, preprint (2014) arXiv:1403.1467
68 A Kapustin, R Thorngren, A Turzillo, Z Wang, Fermionic symmetry protected topological phases and cobordisms, J. High Energy Phys. 2015 (2015) MR3464750
69 D Kazhdan, Introduction to QFT, from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 377 MR1701603
70 R Kennedy, M R Zirnbauer, Bott periodicity for 2 symmetric ground states of gapped free-fermion systems, Comm. Math. Phys. 342 (2016) 909 MR3465435
71 R C Kirby, L R Taylor, A calculation of Pin+ bordism groups, Comment. Math. Helv. 65 (1990) 434 MR1069818
72 R C Kirby, L R Taylor, Pin structures on low-dimensional manifolds, from: "Geometry of low-dimensional manifolds, II" (editors S K Donaldson, C B Thomas), Lond. Math. Soc. Lect. Note Ser. 151, Cambridge Univ. Press (1990) 177 MR1171915
73 A Kitaev, Anyons in an exactly solved model and beyond, Ann. Physics 321 (2006) 2 MR2200691
74 A Kitaev, Periodic table for topological insulators and superconductors, AIP Conf. Proc. 1134 (2009) 22
75 A Kitaev, Toward topological classification of phases with short-range entanglement, video lecture (2011)
76 A Kitaev, On the classification of short-range entangled states, video lecture (2013)
77 A Kitaev, Short range entangled quantum states, lecture (2014)
78 A Kitaev, Homotopy-theoretic approach to SPT phases in action : 16 classification of three-dimensional superconductors, video lecture (2015)
79 K R Klonoff, An index theorem in differential K–theory, PhD thesis, University of Texas at Austin (2008)
80 M Kontsevich, G B Segal, Wick rotation and the positivity of energy in quantum field theory, in preparation
81 R J Lawrence, Triangulations, categories and extended topological field theories, from: "Quantum topology" (editors L H Kauffman, R A Baadhio), Ser. Knots Everything 3, World Sci. (1993) 191 MR1273575
82 H B Lawson Jr., M L Michelsohn, Spin geometry, 38, Princeton Univ. Press (1989) MR1031992
83 J Lott, Higher-degree analogs of the determinant line bundle, Comm. Math. Phys. 230 (2002) 41 MR1930571
84 Y M Lu, A Vishwanath, Theory and classification of interacting integer topological phases in two dimensions : a Chern–Simons approach, Phys. Rev. B 86 (2012)
85 J Lurie, On the classification of topological field theories, from: "Current developments in mathematics" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 129 MR2555928
86 H R Margolis, Spectra and the Steenrod algebra : modules over the Steenrod algebra and the stable homotopy category, 29, North-Holland (1983) MR738973
87 M A Metlitski, S–duality of u(1) gauge theory with 𝜃 = π on non-orientable manifolds : applications to topological insulators and superconductors, preprint (2015) arXiv:1510.05663
88 M A Metlitski, L Fidkowski, X Chen, A Vishwanath, Interaction effects on 3D topological superconductors : surface topological order from vortex condensation, the 16 fold way and fermionic Kramers doublets, preprint (2014) arXiv:1406.3032
89 G W Moore, G B Segal, D–branes and K–theory in 2D topological field theory, from: "Dirichlet branes and mirror symmetry" (editors P S Aspinwall, T Bridgeland, A Craw, M R Douglas, M Gross, A Kapustin, G W Moore, G Segal, B Szendrői, P M H Wilson), Clay Math. Monogr. 4, Amer. Math. Soc. (2009) 27 MR2567952
90 S Morrison, K Walker, Blob homology, Geom. Topol. 16 (2012) 1481 MR2978449
91 R M Nandkishore, M Hermele, Fractons, Ann. Rev. Condensed Matter Phys. 10 (2019) 295
92 H K Nguyen, Higher bordism categories, Master’s thesis, Universität Bonn (2014)
93 M L Ortiz, Differential equivariant K–theory, PhD thesis, University of Texas at Austin (2009)
94 K Osterwalder, R Schrader, Axioms for Euclidean Green’s functions, II, Comm. Math. Phys. 42 (1975) 281 MR376002
95 X L Qi, T L Hughes, S C Zhang, Topological field theory of time-reversal invariant insulators, Phys. Rev. B 78 (2008)
96 M Reid, The moduli space of 3–folds with K = 0 may nevertheless be irreducible, Math. Ann. 278 (1987) 329 MR909231
97 B L Reinhart, Cobordism and the Euler number, Topology 2 (1963) 173 MR153021
98 S Ryu, A P Schnyder, A Furusaki, A W W Ludwig, Topological insulators and superconductors: tenfold way and dimensional hierarchy, New J. Phys. 12 (2010)
99 C Schommer-Pries, Invertible topological field theories, preprint (2017) arXiv:1712.08029
100 S Schwede, Lecture notes on equivariant stable homotopy theory, (2020)
101 G Segal, Classifying spaces and spectral sequences, Inst. Hautes Études Sci. Publ. Math. 34 (1968) 105 MR232393
102 G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 421 MR2079383
103 G Segal, Three roles of quantum field theory, I–VI, video lectures (2011)
104 N Seiberg, E Witten, Gapped boundary phases of topological insulators via weak coupling, Prog. Theor. Exp. Phys. 12 (2016) MR3628684
105 S Sternberg, Lectures on differential geometry, Prentice-Hall (1964) MR0193578
106 S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 MR2742432
107 R E Stong, Notes on cobordism theory, Princeton Univ. Press (1968) MR0248858
108 R F Streater, A S Wightman, PCT, spin and statistics, and all that, Benjamin (1964) MR0161603
109 R Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv. 28 (1954) 17 MR61823
110 A M Turner, F Pollmann, E Berg, Topological phases of one-dimensional fermions: an entanglement point of view, Phys. Rev. B 83 (2011)
111 C Wang, A C Potter, T Senthil, Classification of interacting electronic topological insulators in three dimensions, Science 343 (2014) 629
112 C Wang, T Senthil, Interacting fermionic topological insulators/superconductors in three dimensions, Phys. Rev. B 89 (2014)
113 X G Wen, SPT order and algebraic topology, lecture notes (2015)
114 E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 MR990772
115 E Witten, What one can hope to prove about three-dimensional gauge theory, video lecture (2012)
116 E Witten, Fermion path integrals and topological phases, Rev. Mod. Phys. 88 (2016)
117 Y Z You, Z Wang, J Oon, C Xu, Topological number and fermion Green’s function for strongly interacting topological superconductors, Phys. Rev. B 90 (2014)