Volume 25, issue 4 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 25
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
Other MSP Journals
Complex algebraic compactifications of the moduli space of Hermitian Yang–Mills connections on a projective manifold

Daniel Greb, Benjamin Sibley, Matei Toma and Richard Wentworth

Geometry & Topology 25 (2021) 1719–1818
1 V Ancona, G Tomassini, Modifications analytiques, 943, Springer (1982) MR673560
2 M Artin, Algebraization of formal moduli, II : Existence of modifications, Ann. of Math. 91 (1970) 88 MR260747
3 S Bando, Y T Siu, Stable sheaves and Einstein–Hermitian metrics, from: "Geometry and analysis on complex manifolds" (editors T Mabuchi, J Noguchi, T Ochiai), World Sci. (1994) 39 MR1463962
4 D Barlet, Convexité de l’espace des cycles, Bull. Soc. Math. France 106 (1978) 373 MR518045
5 D Barlet, J Magnússon, Cycles analytiques complexes, II : L’espace des cycles, 27, Soc. Math. France (2020) MR4242816
6 P Belmans, A J de Jong, others, The Stacks project, electronic reference (2005–)
7 E Bishop, Conditions for the analyticity of certain sets, Michigan Math. J. 11 (1964) 289 MR168801
8 N Buchdahl, A Teleman, M Toma, A continuity theorem for families of sheaves on complex surfaces, J. Topol. 10 (2017) 995 MR3743066
9 H Cartan, Quotients of complex analytic spaces, from: "Contributions to function theory" (editor K Chandrasekharan), Tata Inst. Fund. Res. (1960) 1 MR0139769
10 D Chakrabarti, M C Shaw, The Cauchy–Riemann equations on product domains, Math. Ann. 349 (2011) 977 MR2777041
11 X Chen, S Sun, Algebraic tangent cones of reflexive sheaves, Int. Math. Res. Not. 2020 (2020) 10042 MR4190396
12 X Chen, S Sun, Analytic tangent cones of admissible Hermitian–Yang–Mills connections, Geom. Topol. (2021) 2061
13 X Chen, S Sun, Reflexive sheaves, Hermitian–Yang–Mills connections, and tangent cones, Invent. Math. 225 (2021) 73 MR4270664
14 G D Daskalopoulos, R A Wentworth, Convergence properties of the Yang–Mills flow on Kähler surfaces, J. Reine Angew. Math. 575 (2004) 69 MR2097548
15 I Dolgachev, Lectures on invariant theory, 296, Cambridge Univ. Press (2003) MR2004511
16 S K Donaldson, Anti self-dual Yang–Mills connections over complex algebraic surfaces and stable vector bundles, Proc. Lond. Math. Soc. 50 (1985) 1 MR765366
17 S K Donaldson, Connections, cohomology and the intersection forms of 4–manifolds, J. Differential Geom. 24 (1986) 275 MR868974
18 S K Donaldson, Infinite determinants, stable bundles and curvature, Duke Math. J. 54 (1987) 231 MR885784
19 S K Donaldson, Compactification and completion of Yang–Mills moduli spaces, from: "Differential geometry" (editors F J Carreras, O Gil-Medrano, A M Naveira), Lecture Notes in Math. 1410, Springer (1989) 145 MR1034277
20 S K Donaldson, Polynomial invariants for smooth four-manifolds, Topology 29 (1990) 257 MR1066174
21 S K Donaldson, P B Kronheimer, The geometry of four-manifolds, Oxford Univ. Press (1990) MR1079726
22 S Donaldson, E Segal, Gauge theory in higher dimensions, II, from: "Geometry of special holonomy and related topics" (editors N C Leung, S T Yau), Surv. Differential Geom. 16, International (2011) 1 MR2893675
23 G Ellingsrud, M Lehn, Irreducibility of the punctual quotient scheme of a surface, Ark. Mat. 37 (1999) 245 MR1714770
24 G B Folland, J J Kohn, The Neumann problem for the Cauchy–Riemann complex, 75, Princeton Univ. Press (1972) MR0461588
25 A Fujiki, G Schumacher, The moduli space of Hermite–Einstein bundles on a compact Kähler manifold, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987) 69 MR894698
26 W Fulton, Intersection theory, 2, Springer (1984) MR732620
27 D Gieseker, On the moduli of vector bundles on an algebraic surface, Ann. of Math. 106 (1977) 45 MR466475
28 D Gilbarg, N S Trudinger, Elliptic partial differential equations of second order, 224, Springer (1983) MR737190
29 D Greb, S Kebekus, T Peternell, Étale fundamental groups of Kawamata log terminal spaces, flat sheaves, and quotients of abelian varieties, Duke Math. J. 165 (2016) 1965 MR3522654
30 D Greb, J Ross, M Toma, Moduli of vector bundles on higher-dimensional base manifolds: construction and variation, Int. J. Math. 27 (2016) MR3605660
31 D Greb, M Toma, Compact moduli spaces for slope-semistable sheaves, Algebr. Geom. 4 (2017) 40 MR3592465
32 A Grothendieck, Techniques de construction et théorèmes d’existence en géométrie algébrique, IV : Les schémas de Hilbert, from: "Séminaire Bourbaki, 1960/1961", Benjamin (1966) MR1611822
33 L Hörmander, L2 estimates and existence theorems for the operator, Acta Math. 113 (1965) 89 MR179443
34 D Huybrechts, M Lehn, The geometry of moduli spaces of sheaves, Cambridge Univ. Press (2010) MR2665168
35 S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) MR909698
36 J Kollár, Quotients by finite equivalence relations, from: "Current developments in algebraic geometry" (editors L Caporaso, J McKernan, M Mustaţă, M Popa), Math. Sci. Res. Inst. Publ. 59, Cambridge Univ. Press (2012) 227 MR2931872
37 A Langer, Semistable sheaves in positive characteristic, Ann. of Math. 159 (2004) 251 MR2051393
38 J Le Potier, Fibré déterminant et courbes de saut sur les surfaces algébriques, from: "Complex projective geometry" (editors G Ellingsrud, C Peskine, G Sacchiero, S A Strømme), Lond. Math. Soc. Lect. Note Ser. 179, Cambridge Univ. Press (1992) 213 MR1201385
39 J Li, Algebraic geometric interpretation of Donaldson’s polynomial invariants, J. Differential Geom. 37 (1993) 417 MR1205451
40 M Lübke, C Okonek, Moduli spaces of simple bundles and Hermitian–Einstein connections, Math. Ann. 276 (1987) 663 MR879544
41 M Lübke, A Teleman, The Kobayashi–Hitchin correspondence, World Sci. (1995) MR1370660
42 M Maruyama, Openness of a family of torsion free sheaves, J. Math. Kyoto Univ. 16 (1976) 627 MR429899
43 M Maruyama, On boundedness of families of torsion free sheaves, J. Math. Kyoto Univ. 21 (1981) 673 MR637512
44 V B Mehta, A Ramanathan, Semistable sheaves on projective varieties and their restriction to curves, Math. Ann. 258 (1982) 213 MR649194
45 K Miyajima, Kuranishi family of vector bundles and algebraic description of the moduli space of Einstein–Hermitian connections, Publ. Res. Inst. Math. Sci. 25 (1989) 301 MR1003790
46 J W Morgan, Comparison of the Donaldson polynomial invariants with their algebro-geometric analogues, Topology 32 (1993) 449 MR1231956
47 A Naber, D Valtorta, Energy identity for stationary Yang Mills, Invent. Math. 216 (2019) 847 MR3955711
48 H Nakajima, Compactness of the moduli space of Yang–Mills connections in higher dimensions, J. Math. Soc. Japan 40 (1988) 383 MR945342
49 C Okonek, M Schneider, H Spindler, Vector bundles on complex projective spaces, 3, Birkhäuser (1980) MR561910
50 M Pavel, Moduli spaces of slope-semistable pure sheaves, preprint (2021) arXiv:2105.09395
51 S Sedlacek, A direct method for minimizing the Yang–Mills functional over 4–manifolds, Comm. Math. Phys. 86 (1982) 515 MR679200
52 M C Shaw, Global solvability and regularity for on an annulus between two weakly pseudoconvex domains, Trans. Amer. Math. Soc. 291 (1985) 255 MR797058
53 M C Shaw, The closed range property for on domains with pseudoconcave boundary, from: "Complex analysis" (editors P Ebenfelt, N Hungerbühler, J J Kohn, N Mok, E J Straube), Birkhäuser (2010) 307 MR2885124
54 B Sibley, Asymptotics of the Yang–Mills flow for holomorphic vector bundles over Kähler manifolds : the canonical structure of the limit, J. Reine Angew. Math. 706 (2015) 123 MR3393366
55 B Sibley, R A Wentworth, Analytic cycles, Bott–Chern forms, and singular sets for the Yang–Mills flow on Kähler manifolds, Adv. Math. 279 (2015) 501 MR3345190
56 T Tao, G Tian, A singularity removal theorem for Yang–Mills fields in higher dimensions, J. Amer. Math. Soc. 17 (2004) 557 MR2053951
57 G Tian, Gauge theory and calibrated geometry, I, Ann. of Math. 151 (2000) 193 MR1745014
58 G Tian, B Yang, Compactification of the moduli spaces of vortices and coupled vortices, J. Reine Angew. Math. 553 (2002) 17 MR1944806
59 K Uhlenbeck, A priori estimates for Yang–Mills fields, unpublished manuscript
60 K K Uhlenbeck, Connections with Lp bounds on curvature, Comm. Math. Phys. 83 (1982) 31 MR648356
61 K K Uhlenbeck, Removable singularities in Yang–Mills fields, Comm. Math. Phys. 83 (1982) 11 MR648355
62 K Uhlenbeck, S T Yau, On the existence of Hermitian–Yang–Mills connections in stable vector bundles, Comm. Pure Appl. Math. 39 (1986) MR861491
63 K Wehrheim, Uhlenbeck compactness, Eur. Math. Soc. (2004) MR2030823
64 B Yang, The uniqueness of tangent cones for Yang–Mills connections with isolated singularities, Adv. Math. 180 (2003) 648 MR2020554