Volume 25, issue 4 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 8, 3511–3972
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Kähler manifolds with almost nonnegative curvature

Man-Chun Lee and Luen-Fai Tam

Geometry & Topology 25 (2021) 1979–2015
Bibliography
1 R H Bamler, E Cabezas-Rivas, B Wilking, The Ricci flow under almost nonnegative curvature conditions, Invent. Math. 217 (2019) 95 MR3958792
2 D Burago, Y Burago, S Ivanov, A course in metric geometry, 33, Amer. Math. Soc. (2001) MR1835418
3 H D Cao, The Kähler–Ricci flow on Fano manifolds, from: "An introduction to the Kähler–Ricci flow" (editors S Boucksom, P Eyssidieux, V Guedj), Lecture Notes in Math. 2086, Springer (2013) 239 MR3185335
4 H D Cao, B L Chen, X P Zhu, Recent developments on Hamilton’s Ricci flow, from: "Geometric flows" (editors H D Cao, S T Yau), Surv. Differ. Geom. 12, International (2008) 47 MR2488948
5 A Chau, L F Tam, On the complex structure of Kähler manifolds with nonnegative curvature, J. Differential Geom. 73 (2006) 491 MR2228320
6 A Chau, L F Tam, On the Steinness of a class of Kähler manifolds, J. Differential Geom. 79 (2008) 167 MR2420016
7 J Cheeger, M Gromov, M Taylor, Finite propagation speed, kernel estimates for functions of the Laplace operator, and the geometry of complete Riemannian manifolds, J. Differential Geom. 17 (1982) 15 MR658471
8 B L Chen, Strong uniqueness of the Ricci flow, J. Differential Geom. 82 (2009) 363 MR2520796
9 B L Chen, X P Zhu, On complete noncompact Kähler manifolds with positive bisectional curvature, Math. Ann. 327 (2003) 1 MR2005119
10 X X Chen, On Kähler manifolds with positive orthogonal bisectional curvature, Adv. Math. 215 (2007) 427 MR2355611
11 B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, I : Geometric aspects, 135, Amer. Math. Soc. (2007) MR2302600
12 B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, II : Analytic aspects, 144, Amer. Math. Soc. (2008) MR2365237
13 S Donaldson, S Sun, Gromov–Hausdorff limits of Kähler manifolds and algebraic geometry, Acta Math. 213 (2014) 63 MR3261011
14 M Gill, Convergence of the parabolic complex Monge–Ampère equation on compact Hermitian manifolds, Comm. Anal. Geom. 19 (2011) 277 MR2835881
15 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, 152, Birkhäuser (1999) MR1699320
16 R S Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545 MR1333936
17 R Hochard, Short-time existence of the Ricci flow on complete, noncollapsed 3–manifolds with Ricci curvature bounded from below, preprint (2016) arXiv:1603.08726
18 R Hochard, Theórèmes d’existence en temps court du flot de Ricci pour des variétés non-complètes, non-éffondrées, à courbure minorée, PhD thesis, Université de Bourdeaux (2019)
19 S Huang, L F Tam, Kähler–Ricci flow with unbounded curvature, Amer. J. Math. 140 (2018) 189 MR3749193
20 Y Lai, Ricci flow under local almost nonnegative curvature conditions, Adv. Math. 343 (2019) 353 MR3881661
21 M C Lee, L F Tam, Some curvature estimates of Kähler–Ricci flow, Proc. Amer. Math. Soc. 147 (2019) 2641 MR3951439
22 M C Lee, L F Tam, Chern–Ricci flows on noncompact complex manifolds, J. Differential Geom. 115 (2020) 529 MR4120818
23 M C Lee, L F Tam, Some local maximum principles along Ricci flows, Canad. J. Math. (2020) 1
24 X Li, L Ni, Kähler–Ricci shrinkers and ancient solutions with nonnegative orthogonal bisectional curvature, J. Math. Pures Appl. 138 (2020) 28 MR4098770
25 G Liu, Gromov–Hausdorff limits of Kähler manifolds and the finite generation conjecture, Ann. of Math. 184 (2016) 775 MR3549623
26 G Liu, Gromov–Hausdorff limits of Kähler manifolds with bisectional curvature lower bound, Comm. Pure Appl. Math. 71 (2018) 267 MR3745153
27 G Liu, On Yau’s uniformization conjecture, Camb. J. Math. 7 (2019) 33 MR3922359
28 G Liu, G Székelyhidi, Gromov–Hausdorff limits of Kähler manifolds with Ricci curvature bounded below, preprint (2018) arXiv:1804.08567
29 J Lott, Z Zhang, Ricci flow on quasiprojective manifolds, II, J. Eur. Math. Soc. 18 (2016) 1813 MR3519542
30 A D McLeod, P M Topping, Global regularity of three-dimensional Ricci limit spaces, preprint (2018) arXiv:1803.00414
31 A D McLeod, P M Topping, Pyramid Ricci flow in higher dimensions, Math. Z. 296 (2020) 511 MR4140751
32 L Ni, Vanishing theorems on complete Kähler manifolds and their applications, J. Differential Geom. 50 (1998) 89 MR1678481
33 L Ni, Ancient solutions to Kähler–Ricci flow, Math. Res. Lett. 12 (2005) 633 MR2189227
34 L Ni, Y Niu, Gap theorem on Kähler manifolds with nonnegative orthogonal bisectional curvature, J. Reine Angew. Math. 763 (2020) 111 MR4104280
35 L Ni, L F Tam, Plurisubharmonic functions and the structure of complete Kähler manifolds with nonnegative curvature, J. Differential Geom. 64 (2003) 457 MR2032112
36 L Ni, L F Tam, Kähler–Ricci flow and the Poincaré–Lelong equation, Comm. Anal. Geom. 12 (2004) 111 MR2074873
37 L Ni, L F Tam, Poincaré–Lelong equation via the Hodge–Laplace heat equation, Compos. Math. 149 (2013) 1856 MR3133296
38 L Ni, F Zheng, Comparison and vanishing theorems for Kähler manifolds, Calc. Var. Partial Differential Equations 57 (2018) MR3858834
39 Y Niu, A note on nonnegative quadratic orthogonal bisectional curvature, Proc. Amer. Math. Soc. 142 (2014) 3975 MR3251737
40 G Perelman, Alexandrov spaces with curvature bounded below, II, preprint (1991)
41 G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002) arXiv:math/0211159
42 P Petersen, Riemannian geometry, 171, Springer (1998) MR1480173
43 M Sherman, B Weinkove, Interior derivative estimates for the Kähler–Ricci flow, Pacific J. Math. 257 (2012) 491 MR2972475
44 W X Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989) 223 MR1001277
45 W X Shi, Ricci flow and the uniformization on complete noncompact Kähler manifolds, J. Differential Geom. 45 (1997) 94 MR1443333
46 M Simon, Local results for flows whose speed or height is bounded by c∕t, Int. Math. Res. Not. 2008 (2008) MR2439551
47 M Simon, Ricci flow of noncollapsed three manifolds whose Ricci curvature is bounded from below, J. Reine Angew. Math. 662 (2012) 59 MR2876261
48 M Simon, P M Topping, Local control on the geometry in 3D Ricci flow, preprint (2016) arXiv:1611.06137
49 M Simon, P M Topping, Local mollification of Riemannian metrics using Ricci flow, and Ricci limit spaces, Geom. Topol. 25 (2021) 913 MR4251438
50 V Tosatti, B Weinkove, On the evolution of a Hermitian metric by its Chern–Ricci form, J. Differential Geom. 99 (2015) 125 MR3299824
51 H H Wu, F Zheng, Examples of positively curved complete Kähler manifolds, from: "Geometry and analysis, I" (editor L Ji), Adv. Lect. Math. 17, International (2011) 517 MR2882437
52 S T Yau, A review of complex differential geometry, from: "Several complex variables and complex geometry, II" (editors E Bedford, J P D’Angelo, R E Greene, S G Krantz), Proc. Sympos. Pure Math. 52, Amer. Math. Soc. (1991) 619 MR1128577