Volume 25, issue 4 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
The cohomology rings of smooth toric varieties and quotients of moment-angle complexes

Matthias Franz

Geometry & Topology 25 (2021) 2109–2144
Abstract

Partial quotients of moment-angle complexes are topological analogues of smooth, not necessarily compact toric varieties. In 1998, Buchstaber and Panov proposed a formula for the cohomology ring of such a partial quotient in terms of a torsion product involving the corresponding Stanley–Reisner ring. We show that their formula gives the correct cup product if 2 is invertible in the chosen coefficient ring, but not in general. We rectify this by defining an explicit deformation of the canonical multiplication on the torsion product.

Keywords
toric variety, partial quotient, moment-angle complex, cohomology ring
Mathematical Subject Classification
Primary: 14M25, 57S12
Secondary: 14F45, 55N91
References
Publication
Received: 7 February 2020
Revised: 24 April 2020
Accepted: 23 May 2020
Published: 12 July 2021
Proposed: Frances Kirwan
Seconded: Dan Abramovich, Anna Wienhard
Authors
Matthias Franz
Department of Mathematics
University of Western Ontario
London, ON
Canada