Volume 25, issue 5 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Conformal blocks from vertex algebras and their connections on $\overline{\mathcal{M}}_{g,n}$

Chiara Damiolini, Angela Gibney and Nicola Tarasca

Geometry & Topology 25 (2021) 2235–2286
Bibliography
1 T Abe, Rationality of the vertex operator algebra V L+ for a positive definite even lattice L, Math. Z. 249 (2005) 455 MR2115454
2 T Abe, C2–cofiniteness of the 2–cycle permutation orbifold models of minimal Virasoro vertex operator algebras, Comm. Math. Phys. 303 (2011) 825 MR2786218
3 T Abe, C2–cofiniteness of 2–cyclic permutation orbifold models, Comm. Math. Phys. 317 (2013) 425 MR3010190
4 T Abe, G Buhl, C Dong, Rationality, regularity, and C2–cofiniteness, Trans. Amer. Math. Soc. 356 (2004) 3391 MR2052955
5 T Abe, K Nagatomo, Finiteness of conformal blocks over compact Riemann surfaces, Osaka J. Math. 40 (2003) 375 MR1988696
6 D Adamović, A Milas, On the triplet vertex algebra 𝒲(p), Adv. Math. 217 (2008) 2664 MR2397463
7 C Ai, C2–cofiniteness of cyclic-orbifold vertex operator superalgebras, Algebra Colloq. 24 (2017) 315 MR3639037
8 V Alexeev, A Gibney, D Swinarski, Higher-level 𝔰𝔩2 conformal blocks divisors on 0,n, Proc. Edinb. Math. Soc. 57 (2014) 7 MR3165010
9 T Arakawa, A remark on the C2–cofiniteness condition on vertex algebras, Math. Z. 270 (2012) 559 MR2875849
10 T Arakawa, Associated varieties of modules over Kac–Moody algebras and C2–cofiniteness of W–algebras, Int. Math. Res. Not. 2015 (2015) 11605 MR3456698
11 T Arakawa, Rationality of W–algebras : principal nilpotent cases, Ann. of Math. 182 (2015) 565 MR3418525
12 M Arap, A Gibney, J Stankewicz, D Swinarski, 𝔰𝔩n level 1 conformal blocks divisors on 0,n, Int. Math. Res. Not. 2012 (2012) 1634 MR2913186
13 E Arbarello, C De Concini, V G Kac, C Procesi, Moduli spaces of curves and representation theory, Comm. Math. Phys. 117 (1988) 1 MR946992
14 M F Atiyah, Complex analytic connections in fibre bundles, Trans. Amer. Math. Soc. 85 (1957) 181 MR86359
15 B Bakalov, A Kirillov Jr., Lectures on tensor categories and modular functors, 21, Amer. Math. Soc. (2001) MR1797619
16 A Beauville, Y Laszlo, Conformal blocks and generalized theta functions, Comm. Math. Phys. 164 (1994) 385 MR1289330
17 A Beauville, Y Laszlo, C Sorger, The Picard group of the moduli of G–bundles on a curve, Compos. Math. 112 (1998) 183 MR1626025
18 A Beilinson, J Bernstein, A proof of Jantzen conjectures, from: "I M Gelfand seminar, I" (editors S Gelfand, S Gindikin), Adv. Soviet Math. 16, Amer. Math. Soc. (1993) 1 MR1237825
19 A Beilinson, V Drinfeld, Chiral algebras, 51, Amer. Math. Soc. (2004) MR2058353
20 A Beilinson, B Feigin, B Mazur, Introduction to algebraic field theory on curves, unpublished manuscript (1991)
21 A Beilinson, D Kazhdan, Flat projective connections, preprint (1991)
22 A A Beilinson, V V Schechtman, Determinant bundles and Virasoro algebras, Comm. Math. Phys. 118 (1988) 651 MR962493
23 P Belkale, Unitarity of the KZ/Hitchin connection on conformal blocks in genus 0 for arbitrary Lie algebras, J. Math. Pures Appl. 98 (2012) 367 MR2968161
24 R E Borcherds, Vertex algebras, Kac–Moody algebras, and the Monster, Proc. Nat. Acad. Sci. U.S.A. 83 (1986) 3068 MR843307
25 G Codogni, Vertex algebras and Teichmüller modular forms, preprint (2019) arXiv:1901.03079
26 C Damiolini, A Gibney, On global generation of vector bundles on the moduli space of curves from representations of vertex operator algebras, preprint (2021) arXiv:2107.06923
27 C Damiolini, A Gibney, N Tarasca, On factorization and vector bundles of conformal blocks from vertex algebras, preprint (2019) arXiv:1909.04683
28 C Damiolini, A Gibney, N Tarasca, Vertex algebras of CohFT-type, preprint (2019) arXiv:1910.01658
29 C Dong, J Lepowsky, Generalized vertex algebras and relative vertex operators, 112, Birkhäuser (1993) MR1233387
30 C Dong, H Li, G Mason, Regularity of rational vertex operator algebras, Adv. Math. 132 (1997) 148 MR1488241
31 C Dong, H Li, G Mason, Twisted representations of vertex operator algebras, Math. Ann. 310 (1998) 571 MR1615132
32 C Dong, H Li, G Mason, Modular-invariance of trace functions in orbifold theory and generalized moonshine, Comm. Math. Phys. 214 (2000) 1 MR1794264
33 N Fakhruddin, Chern classes of conformal blocks, from: "Compact moduli spaces and vector bundles" (editors V Alexeev, A Gibney, E Izadi, J Kollár, E Looijenga), Contemp. Math. 564, Amer. Math. Soc. (2012) 145 MR2894632
34 F Falceto, K Gawędzki, A Kupiainen, Scalar product of current blocks in WZW theory, Phys. Lett. B 260 (1991) 101 MR1107911
35 G Faltings, Stable G–bundles and projective connections, J. Algebraic Geom. 2 (1993) 507 MR1211997
36 G Faltings, A proof for the Verlinde formula, J. Algebraic Geom. 3 (1994) 347 MR1257326
37 G Felder, The KZB equations on Riemann surfaces, from: "Symétries quantiques" (editors A Connes, K Gawedzki, J Zinn-Justin), North-Holland (1998) 687 MR1616332
38 E Frenkel, D Ben-Zvi, Vertex algebras and algebraic curves, 88, Amer. Math. Soc. (2004) MR2082709
39 E Frenkel, V Kac, M Wakimoto, Characters and fusion rules for W–algebras via quantized Drinfeld–Sokolov reduction, Comm. Math. Phys. 147 (1992) 295 MR1174415
40 I B Frenkel, Y Z Huang, J Lepowsky, On axiomatic approaches to vertex operator algebras and modules, 494, Amer. Math. Soc. (1993) MR1142494
41 I B Frenkel, J Lepowsky, A Meurman, A natural representation of the Fischer–Griess Monster with the modular function J as character, Proc. Nat. Acad. Sci. U.S.A. 81 (1984) 3256 MR747596
42 I Frenkel, J Lepowsky, A Meurman, Vertex operator algebras and the Monster, 134, Academic (1988) MR996026
43 M R Gaberdiel, A Neitzke, Rationality, quasirationality and finite W–algebras, Comm. Math. Phys. 238 (2003) 305 MR1990879
44 K Gawędzki, Lectures on conformal field theory, from: "Quantum fields and strings: a course for mathematicians, II" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 727 MR1701610
45 K Gawędzki, A Kupiainen, SU(2) Chern–Simons theory at genus zero, Comm. Math. Phys. 135 (1991) 531 MR1091577
46 N Giansiracusa, A Gibney, The cone of type A, level 1, conformal blocks divisors, Adv. Math. 231 (2012) 798 MR2955192
47 A Gibney, D Jensen, H B Moon, D Swinarski, Veronese quotient models of M0,n and conformal blocks, Michigan Math. J. 62 (2013) 721 MR3160539
48 N J Hitchin, Flat connections and geometric quantization, Comm. Math. Phys. 131 (1990) 347 MR1065677
49 G Höhn, Conformal designs based on vertex operator algebras, Adv. Math. 217 (2008) 2301 MR2388095
50 Y Z Huang, Two-dimensional conformal geometry and vertex operator algebras, 148, Birkhäuser (1997) MR1448404
51 Y Z Huang, Vertex operator algebras, the Verlinde conjecture, and modular tensor categories, Proc. Nat. Acad. Sci. U.S.A. 102 (2005) 5352 MR2140309
52 P Jitjankarn, G Yamskulna, C2–cofiniteness of the vertex algebra V L+ when L is a nondegenerate even lattice, Comm. Algebra 38 (2010) 4404 MR2764827
53 S Kobayashi, Differential geometry of complex vector bundles, 15, Princeton Univ. Press (1987) MR909698
54 M L Kontsevich, The Virasoro algebra and Teichmüller spaces, Funktsional. Anal. i Prilozhen. 21 (1987) 78 MR902301
55 S Kumar, M S Narasimhan, A Ramanathan, Infinite Grassmannians and moduli spaces of G–bundles, Math. Ann. 300 (1994) 41 MR1289830
56 Y Laszlo, Hitchin’s and WZW connections are the same, J. Differential Geom. 49 (1998) 547 MR1669720
57 J Lepowsky, H Li, Introduction to vertex operator algebras and their representations, 227, Birkhäuser (2004) MR2023933
58 H S Li, Local systems of vertex operators, vertex superalgebras and modules, J. Pure Appl. Algebra 109 (1996) 143 MR1387738
59 E Looijenga, From WZW models to modular functors, from: "Handbook of moduli, II" (editors G Farkas, I Morrison), Adv. Lect. Math. 25, International (2013) 427 MR3184182
60 A Marian, D Oprea, R Pandharipande, The first Chern class of the Verlinde bundles, from: "String–Math 2012" (editors R Donagi, S Katz, A Klemm, D R Morrison), Proc. Sympos. Pure Math. 90, Amer. Math. Soc. (2015) 87 MR3409789
61 A Marian, D Oprea, R Pandharipande, A Pixton, D Zvonkine, The Chern character of the Verlinde bundle over g,n, J. Reine Angew. Math. 732 (2017) 147 MR3717090
62 M Miyamoto, Modular invariance of vertex operator algebras satisfying C2–cofiniteness, Duke Math. J. 122 (2004) 51 MR2046807
63 M Miyamoto, A 3–orbifold theory of lattice vertex operator algebra and 3–orbifold constructions, from: "Symmetries, integrable systems and representations" (editors K Iohara, S Morier-Genoud, B Rémy), Springer Proc. Math. Stat. 40, Springer (2013) 319 MR3077690
64 K Nagatomo, A Tsuchiya, Conformal field theories associated to regular chiral vertex operator algebras, I : Theories over the projective line, Duke Math. J. 128 (2005) 393 MR2145740
65 C Pauly, Espaces de modules de fibrés paraboliques et blocs conformes, Duke Math. J. 84 (1996) 217 MR1394754
66 T R Ramadas, The “Harder–Narasimhan trace” and unitarity of the KZ/Hitchin connection : genus 0, Ann. of Math. 169 (2009) 1 MR2480600
67 G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 421 MR2079383
68 C Sorger, La formule de Verlinde, from: "Séminaire Bourbaki, 1994/95", Astérisque 237, Soc. Math. France (1996) 87 MR1423621
69 Y Tsuchimoto, On the coordinate-free description of the conformal blocks, J. Math. Kyoto Univ. 33 (1993) 29 MR1203889
70 A Tsuchiya, Y Kanie, Vertex operators in the conformal field theory on 1 and monodromy representations of the braid group, Lett. Math. Phys. 13 (1987) 303 MR895293
71 A Tsuchiya, K Ueno, Y Yamada, Conformal field theory on universal family of stable curves with gauge symmetries, from: "Integrable systems in quantum field theory and statistical mechanics" (editors M Jimbo, T Miwa, A Tsuchiya), Adv. Stud. Pure Math. 19, Academic (1989) 459 MR1048605
72 K Ueno, On conformal field theory, from: "Vector bundles in algebraic geometry" (editors N J Hitchin, P E Newstead, W M Oxbury), Lond. Math. Soc. Lect. Note Ser. 208, Cambridge Univ. Press (1995) 283 MR1338420
73 G Yamskulna, C2–cofiniteness of the vertex operator algebra V L+ when L is a rank one lattice, Comm. Algebra 32 (2004) 927 MR2063790
74 Y Zhu, Global vertex operators on Riemann surfaces, Comm. Math. Phys. 165 (1994) 485 MR1301621
75 Y Zhu, Modular invariance of characters of vertex operator algebras, J. Amer. Math. Soc. 9 (1996) 237 MR1317233