Volume 25, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
$(\mathbb{RP}^{2n-1},\xi_{\mathrm{std}})$ is not exactly fillable for $n\ne 2^k$

Zhengyi Zhou

Geometry & Topology 25 (2021) 3013–3052
Bibliography
1 M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 MR2602848
2 M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 MR3455235
3 F Bourgeois, A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55 MR1969267
4 F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 MR2026549
5 F Bourgeois, A Oancea, Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 MR2475400
6 J Bowden, Exactly fillable contact structures without Stein fillings, Algebr. Geom. Topol. 12 (2012) 1803 MR2979998
7 J Bowden, D Crowley, A I Stipsicz, The topology of Stein fillable manifolds in high dimensions, I, Proc. Lond. Math. Soc. 109 (2014) 1363 MR3293153
8 J Bowden, F Gironella, A Moreno, Bourgeois contact structures: tightness, fillability and applications, preprint (2019) arXiv:1908.05749
9 K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 MR1408861
10 K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 MR3797062
11 S Courte, Questions and open problems, (2012)
12 L Diogo, S T Lisi, Symplectic homology of complements of smooth divisors, J. Topol. 12 (2019) 967 MR4072162
13 Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 MR1022310
14 Y Eliashberg, Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 171 MR1215964
15 Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77 MR1383953
16 Y Eliashberg, S S Kim, L Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635 MR2284048
17 J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609 MR1908061
18 P Ghiggini, Strongly fillable contact 3–manifolds without Stein fillings, Geom. Topol. 9 (2005) 1677 MR2175155
19 K Irie, Hofer–Zehnder capacity of unit disk cotangent bundles and the loop product, J. Eur. Math. Soc. 16 (2014) 2477 MR3283403
20 O Lazarev, Contact manifolds with flexible fillings, Geom. Funct. Anal. 30 (2020) 188 MR4081058
21 P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287 MR3044125
22 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012) MR2954391
23 M McLean, Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math. 204 (2016) 505 MR3489704
24 J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974) MR0440554
25 A F Ritter, Floer theory for negative line bundles via Gromov–Witten invariants, Adv. Math. 262 (2014) 1035 MR3228449
26 P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211 MR2459307
27 Z Zhou, Quotient theorems in polyfold theory and S1–equivariant transversality, Proc. Lond. Math. Soc. 121 (2020) 1337 MR4133710
28 Z Zhou, Symplectic fillings of asymptotically dynamically convex manifolds, I, J. Topol. 14 (2021) 112 MR4186135