Volume 25, issue 6 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
$(\mathbb{RP}^{2n-1},\xi_{\mathrm{std}})$ is not exactly fillable for $n\ne 2^k$

Zhengyi Zhou

Geometry & Topology 25 (2021) 3013–3052
Bibliography
1 M Abouzaid, P Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14 (2010) 627 MR2602848
2 M S Borman, Y Eliashberg, E Murphy, Existence and classification of overtwisted contact structures in all dimensions, Acta Math. 215 (2015) 281 MR3455235
3 F Bourgeois, A Morse–Bott approach to contact homology, from: "Symplectic and contact topology: interactions and perspectives" (editors Y Eliashberg, B Khesin, F Lalonde), Fields Inst. Commun. 35, Amer. Math. Soc. (2003) 55 MR1969267
4 F Bourgeois, Y Eliashberg, H Hofer, K Wysocki, E Zehnder, Compactness results in symplectic field theory, Geom. Topol. 7 (2003) 799 MR2026549
5 F Bourgeois, A Oancea, Symplectic homology, autonomous Hamiltonians, and Morse–Bott moduli spaces, Duke Math. J. 146 (2009) 71 MR2475400
6 J Bowden, Exactly fillable contact structures without Stein fillings, Algebr. Geom. Topol. 12 (2012) 1803 MR2979998
7 J Bowden, D Crowley, A I Stipsicz, The topology of Stein fillable manifolds in high dimensions, I, Proc. Lond. Math. Soc. 109 (2014) 1363 MR3293153
8 J Bowden, F Gironella, A Moreno, Bourgeois contact structures: tightness, fillability and applications, preprint (2019) arXiv:1908.05749
9 K Cieliebak, A Floer, H Hofer, K Wysocki, Applications of symplectic homology, II : Stability of the action spectrum, Math. Z. 223 (1996) 27 MR1408861
10 K Cieliebak, A Oancea, Symplectic homology and the Eilenberg–Steenrod axioms, Algebr. Geom. Topol. 18 (2018) 1953 MR3797062
11 S Courte, Questions and open problems, (2012)
12 L Diogo, S T Lisi, Symplectic homology of complements of smooth divisors, J. Topol. 12 (2019) 967 MR4072162
13 Y Eliashberg, Classification of overtwisted contact structures on 3–manifolds, Invent. Math. 98 (1989) 623 MR1022310
14 Y Eliashberg, Legendrian and transversal knots in tight contact 3–manifolds, from: "Topological methods in modern mathematics" (editors L R Goldberg, A V Phillips), Publish or Perish (1993) 171 MR1215964
15 Y Eliashberg, Unique holomorphically fillable contact structure on the 3–torus, Internat. Math. Res. Notices (1996) 77 MR1383953
16 Y Eliashberg, S S Kim, L Polterovich, Geometry of contact transformations and domains: orderability versus squeezing, Geom. Topol. 10 (2006) 1635 MR2284048
17 J B Etnyre, K Honda, Tight contact structures with no symplectic fillings, Invent. Math. 148 (2002) 609 MR1908061
18 P Ghiggini, Strongly fillable contact 3–manifolds without Stein fillings, Geom. Topol. 9 (2005) 1677 MR2175155
19 K Irie, Hofer–Zehnder capacity of unit disk cotangent bundles and the loop product, J. Eur. Math. Soc. 16 (2014) 2477 MR3283403
20 O Lazarev, Contact manifolds with flexible fillings, Geom. Funct. Anal. 30 (2020) 188 MR4081058
21 P Massot, K Niederkrüger, C Wendl, Weak and strong fillability of higher dimensional contact manifolds, Invent. Math. 192 (2013) 287 MR3044125
22 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2012) MR2954391
23 M McLean, Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math. 204 (2016) 505 MR3489704
24 J W Milnor, J D Stasheff, Characteristic classes, 76, Princeton Univ. Press (1974) MR0440554
25 A F Ritter, Floer theory for negative line bundles via Gromov–Witten invariants, Adv. Math. 262 (2014) 1035 MR3228449
26 P Seidel, A biased view of symplectic cohomology, from: "Current developments in mathematics, 2006" (editors B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2008) 211 MR2459307
27 Z Zhou, Quotient theorems in polyfold theory and S1–equivariant transversality, Proc. Lond. Math. Soc. 121 (2020) 1337 MR4133710
28 Z Zhou, Symplectic fillings of asymptotically dynamically convex manifolds, I, J. Topol. 14 (2021) 112 MR4186135