Volume 25, issue 7 (2021)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
On the monopole Lefschetz number of finite-order diffeomorphisms

Jianfeng Lin, Daniel Ruberman and Nikolai Saveliev

Geometry & Topology 25 (2021) 3591–3628
Bibliography
1 N Anvari, A splitting formula in instanton Floer homology, preprint (2019) arXiv:1901.02570
2 M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, I, Math. Proc. Cambridge Philos. Soc. 77 (1975) 43 MR397797
3 M F Atiyah, V K Patodi, I M Singer, Spectral asymmetry and Riemannian geometry, III, Math. Proc. Cambridge Philos. Soc. 79 (1976) 71 MR397799
4 S J Baldridge, Seiberg–Witten invariants, orbifolds, and circle actions, Trans. Amer. Math. Soc. 355 (2003) 1669 MR1946410
5 M Boileau, S Boyer, C M Gordon, Branched covers of quasi-positive links and L-spaces, J. Topol. 12 (2019) 536 MR4072174
6 M Boileau, S Boyer, C M Gordon, On definite strongly quasipositive links and L-space branched covers, Adv. Math. 357 (2019) MR4016557
7 S Boyer, C M Gordon, L Watson, On L-spaces and left-orderable fundamental groups, Math. Ann. 356 (2013) 1213 MR3072799
8 G Burde, H Zieschang, Knots, 5, de Gruyter (1985) MR808776
9 M B Can, Ç Karakurt, Calculating Heegaard–Floer homology by counting lattice points in tetrahedra, Acta Math. Hungar. 144 (2014) 43 MR3267169
10 S E Cappell, R Lee, E Y Miller, Self-adjoint elliptic operators and manifold decompositions, II : Spectral flow and Maslov index, Comm. Pure Appl. Math. 49 (1996) 869 MR1399200
11 V Colin, P Ghiggini, K Honda, Equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, Proc. Natl. Acad. Sci. USA 108 (2011) 8100 MR2806645
12 V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, I, preprint (2012) arXiv:1208.1074
13 V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions, II, preprint (2012) arXiv:1208.1077
14 V Colin, P Ghiggini, K Honda, The equivalence of Heegaard Floer homology and embedded contact homology, III: From hat to plus, preprint (2012) arXiv:1208.1526
15 O Collin, N Saveliev, Equivariant Casson invariants via gauge theory, J. Reine Angew. Math. 541 (2001) 143 MR1876288
16 E Eftekhary, Seifert fibered homology spheres with trivial Heegaard Floer homology, preprint (2009) arXiv:0909.3975
17 K A Frøyshov, Equivariant aspects of Yang–Mills Floer theory, Topology 41 (2002) 525 MR1910040
18 K A Frøyshov, Monopole Floer homology for rational homology 3–spheres, Duke Math. J. 155 (2010) 519 MR2738582
19 M Furuta, H Ohta, Differentiable structures on punctured 4–manifolds, Topology Appl. 51 (1993) 291 MR1237394
20 P M Gilmer, Configurations of surfaces in 4–manifolds, Trans. Amer. Math. Soc. 264 (1981) 353 MR603768
21 C M Herald, Flat connections, the Alexander invariant, and Casson’s invariant, Comm. Anal. Geom. 5 (1997) 93 MR1456309
22 S Jabuka, Concordance invariants from higher order covers, Topology Appl. 159 (2012) 2694 MR2923439
23 P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) MR2388043
24 P Kronheimer, T Mrowka, Knots, sutures, and excision, J. Differential Geom. 84 (2010) 301 MR2652464
25 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, I : Heegaard Floer homology and Seiberg–Witten Floer homology, Geom. Topol. 24 (2020) 2829 MR4194305
26 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 2855 MR4194306
27 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, III : holomorphic curves and the differential for the ech/Heegaard Floer correspondence, Geom. Topol. 24 (2020) 3013 MR4194307
28 Ç Kutluhan, Y J Lee, C Taubes, HF = HM, IV : The Seiberg–Witten Floer homology and ech correspondence, Geom. Topol. 24 (2020) 3219 MR4194308
29 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 MR4194309
30 J Levine, Knot modules, I, Trans. Amer. Math. Soc. 229 (1977) 1 MR461518
31 Y Lim, The equivalence of Seiberg–Witten and Casson invariants for homology 3–spheres, Math. Res. Lett. 6 (1999) 631 MR1739221
32 Y Lim, Seiberg–Witten moduli spaces for 3–manifolds with cylindrical-end T2 × +, Commun. Contemp. Math. 2 (2000) 461 MR1806944
33 J Lin, D Ruberman, N Saveliev, On the Frøyshov invariant and monopole Lefschetz number, preprint (2018) arXiv:1802.07704
34 J Lin, D Ruberman, N Saveliev, A splitting theorem for the Seiberg–Witten invariant of a homology S1 × S3, Geom. Topol. 22 (2018) 2865 MR3811774
35 L Ma, Fiber sum formulae for the Casson–Seiberg–Witten invariant of integral homology S1 × S3, preprint (2019) arXiv:1910.07683
36 L Ma, A surgery formula for the Casson–Seiberg–Witten invariant of integral homology S1 × S3, J. Topol. 14 (2021) 913
37 C Manolescu, Pin(2)–equivariant Seiberg–Witten Floer homology and the triangulation conjecture, J. Amer. Math. Soc. 29 (2016) 147 MR3402697
38 R R Mazzeo, R B Melrose, Analytic surgery and the eta invariant, Geom. Funct. Anal. 5 (1995) 14 MR1312019
39 R Meyerhoff, D Ruberman, Cutting and pasting and the η–invariant, Duke Math. J. 61 (1990) 747 MR1084457
40 T Mrowka, D Ruberman, N Saveliev, Seiberg–Witten equations, end-periodic Dirac operators, and a lift of Rohlin’s invariant, J. Differential Geom. 88 (2011) 333 MR2838269
41 D Mullins, The generalized Casson invariant for 2–fold branched covers of S3 and the Jones polynomial, Topology 32 (1993) 419 MR1217078
42 W D Neumann, F Raymond, Seifert manifolds, plumbing, μ–invariant and orientation reversing maps, from: "Algebraic and geometric topology" (editor R J Milgram), Lecture Notes in Math. 664, Springer (1978) 163 MR518415
43 L I Nicolaescu, Notes on Seiberg–Witten theory, 28, Amer. Math. Soc. (2000) MR1787219
44 D Ruberman, N Saveliev, Rohlin’s invariant and gauge theory, I : Homology 3–tori, Comment. Math. Helv. 79 (2004) 618 MR2081729
45 D Ruberman, N Saveliev, Rohlin’s invariant and gauge theory, II : Mapping tori, Geom. Topol. 8 (2004) 35 MR2033479
46 D Ruberman, N Saveliev, Casson-type invariants from the Seiberg–Witten equations, from: "New ideas in low dimensional topology" (editors L H Kauffman, V O Manturov), Ser. Knots Everything 56, World Sci. (2015) 507 MR3381333
47 R Rustamov, On plumbed L–spaces, preprint (2005) arXiv:math/0505349
48 C H Taubes, The Seiberg–Witten invariants and 4-manifolds with essential tori, Geom. Topol. 5 (2001) 441 MR1833751
49 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 MR2746723
50 E Witten, Monopoles and four-manifolds, Math. Res. Lett. 1 (1994) 769 MR1306021