Volume 26, issue 1 (2022)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Chromatic splitting for the $K(2)$–local sphere at $p=2$

Agnès Beaudry, Paul G Goerss and Hans-Werner Henn

Geometry & Topology 26 (2022) 377–476
DOI: 10.2140/gt.2022.26.377
Bibliography
1 A Adem, R J Milgram, Cohomology of finite groups, 309, Springer (1994) MR1317096
2 T Barthel, A Beaudry, Chromatic structures in stable homotopy theory, from: "Handbook of homotopy theory" (editor H Miller), CRC (2020) 163 MR4197985
3 T Bauer, Computation of the homotopy of the spectrum tmf, from: "Groups, homotopy and configuration spaces" (editors N Iwase, T Kohno, R Levi, D Tamaki, J Wu), Geom. Topol. Monogr. 13, Geom. Topol. (2008) 11 MR2508200
4 A Beaudry, The algebraic duality resolution at p = 2, Algebr. Geom. Topol. 15 (2015) 3653 MR3450774
5 A Beaudry, The chromatic splitting conjecture at n = p = 2, Geom. Topol. 21 (2017) 3213 MR3692966
6 A Beaudry, Towards the homotopy of the K(2)–local Moore spectrum at p = 2, Adv. Math. 306 (2017) 722 MR3581316
7 M Behrens, The homotopy groups of SE(2) at p 5 revisited, Adv. Math. 230 (2012) 458 MR2914955
8 I Bobkova, P G Goerss, Topological resolutions in K(2)–local homotopy theory at the prime 2, J. Topol. 11 (2018) 918 MR3989433
9 R Bruner, Algebraic and geometric connecting homomorphisms in the Adams spectral sequence, from: "Geometric applications of homotopy theory, II" (editors M G Barratt, M E Mahowald), Lecture Notes in Math. 658, Springer (1978) 131 MR513570
10 C Bujard, Finite subgroups of extended Morava stabilizer groups, preprint (2012) arXiv:1206.1951
11 E S Devinatz, A Lyndon–Hochschild–Serre spectral sequence for certain homotopy fixed point spectra, Trans. Amer. Math. Soc. 357 (2005) 129 MR2098089
12 E S Devinatz, M J Hopkins, Homotopy fixed point spectra for closed subgroups of the Morava stabilizer groups, Topology 43 (2004) 1 MR2030586
13 C L Douglas, J Francis, A G Henriques, M A Hill, editors, Topological modular forms, 201, Amer. Math. Soc. (2014) MR3223024
14 P G Goerss, H W Henn, M Mahowald, The rational homotopy of the K(2)–local sphere and the chromatic splitting conjecture for the prime 3 and level 2, Doc. Math. 19 (2014) 1271 MR3312144
15 P Goerss, H W Henn, M Mahowald, C Rezk, A resolution of the K(2)–local sphere at the prime 3, Ann. of Math. 162 (2005) 777 MR2183282
16 P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), Lond. Math. Soc. Lect. Note Ser. 315, Cambridge Univ. Press (2004) 151 MR2125040
17 H W Henn, A mini-course on Morava stabilizer groups and their cohomology, from: "Algebraic topology" (editors N H V Hung, L Schwartz), Lecture Notes in Math. 2194, Springer (2017) 149 MR3790894
18 H W Henn, The centralizer resolution of the K(2)–local sphere at the prime 2, from: "Homotopy theory: tools and applications" (editors D G Davis, H W Henn, J F Jardine, M W Johnson, C Rezk), Contemp. Math. 729, Amer. Math. Soc. (2019) 93 MR3959597
19 H W Henn, N Karamanov, M Mahowald, The homotopy of the K(2)–local Moore spectrum at the prime 3 revisited, Math. Z. 275 (2013) 953 MR3127044
20 M J Hopkins, B H Gross, The rigid analytic period mapping, Lubin–Tate space, and stable homotopy theory, Bull. Amer. Math. Soc. 30 (1994) 76 MR1217353
21 M J Hopkins, J H Smith, Nilpotence and stable homotopy theory, II, Ann. of Math. 148 (1998) 1 MR1652975
22 M Hovey, Bousfield localization functors and Hopkins’ chromatic splitting conjecture, from: "The Čech centennial" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 225 MR1320994
23 M Hovey, Operations and co-operations in Morava E–theory, Homology Homotopy Appl. 6 (2004) 201 MR2076002
24 M Hovey, N P Strickland, Morava K–theories and localisation, 666, Amer. Math. Soc. (1999) MR1601906
25 J Kohlhaase, On the Iwasawa theory of the Lubin–Tate moduli space, Compos. Math. 149 (2013) 793 MR3069363
26 O Lader, Une résolution projective pour le second groupe de Morava pour p 5 et applications, PhD thesis, Université de Strasbourg (2013)
27 M Lazard, Groupes analytiques p–adiques, Inst. Hautes Études Sci. Publ. Math. 26 (1965) 389 MR209286
28 W H Lin, D M Davis, M E Mahowald, J F Adams, Calculation of Lin’s Ext groups, Math. Proc. Cambridge Philos. Soc. 87 (1980) 459 MR569195
29 M Mahowald, The image of J in the EHP sequence, Ann. of Math. 116 (1982) 65 MR662118
30 M Mahowald, C Rezk, Topological modular forms of level 3, Pure Appl. Math. Q. 5 (2009) 853 MR2508904
31 H R Miller, D C Ravenel, W S Wilson, Periodic phenomena in the Adams–Novikov spectral sequence, Ann. of Math. 106 (1977) 469 MR458423
32 J Morava, Noetherian localisations of categories of cobordism comodules, Ann. of Math. 121 (1985) 1 MR782555
33 D C Ravenel, The cohomology of the Morava stabilizer algebras, Math. Z. 152 (1977) 287 MR431168
34 D C Ravenel, A novice’s guide to the Adams–Novikov spectral sequence, from: "Geometric applications of homotopy theory, II" (editors M G Barratt, M E Mahowald), Lecture Notes in Math. 658, Springer (1978) 404 MR513586
35 D C Ravenel, Localization with respect to certain periodic homology theories, Amer. J. Math. 106 (1984) 351 MR737778
36 D C Ravenel, Complex cobordism and stable homotopy groups of spheres, 121, Academic (1986) MR860042
37 D C Ravenel, Nilpotence and periodicity in stable homotopy theory, 128, Princeton Univ. Press (1992) MR1192553
38 C Rezk, Notes on the Hopkins–Miller theorem, from: "Homotopy theory via algebraic geometry and group representations" (editors M Mahowald, S Priddy), Contemp. Math. 220, Amer. Math. Soc. (1998) 313 MR1642902
39 K Shimomura, The Adams–Novikov E2–term for computing π(L2V (0)) at the prime 2, Topology Appl. 96 (1999) 133 MR1702307
40 K Shimomura, X Wang, The Adams–Novikov E2–term for π(L2S0) at the prime 2, Math. Z. 241 (2002) 271 MR1935487
41 K Shimomura, A Yabe, The homotopy groups π(L2S0), Topology 34 (1995) 261 MR1318877
42 J H Silverman, The arithmetic of elliptic curves, 106, Springer (1986) MR817210
43 N P Strickland, Gross–Hopkins duality, Topology 39 (2000) 1021 MR1763961
44 N Strickland, Level three structures, preprint (2018) arXiv:1803.09962
45 P Symonds, T Weigel, Cohomology of p–adic analytic groups, from: "New horizons in pro-p groups" (editors M du Sautoy, D Segal, A Shalev), Progr. Math. 184, Birkhäuser (2000) 349 MR1765127