Recent Issues
Volume 28, 7 issues
Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
B Antieau , E
Elmanto , A primer for unstable
motivic homotopy theory , from: "Surveys on recent
developments in algebraic geometry" (editors I Coskun, T de
Fernex, A Gibney), Proc. Sympos. Pure Math. 95, Amer. Math.
Soc. (2017) 305 MR3727503
2
M Artin , A
Grothendieck , J L Verdier ,
Théorie des topos et cohomologie étale des schémas, Tome 3
: Exposés IX–XIX (SGA 4 3
) , 305, Springer (1973) MR0354654
3
J Ayoub , Les six opérations
de Grothendieck et le formalisme des cycles évanescents dans le
monde motivique, I , 314, Soc. Math. France (2007)
MR2423375
4
J Ayoub ,
A guide to (étale) motivic sheaves , from: "Proceedings
of the International Congress of Mathematicians, II" (editors
S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa
(2014) 1101 MR3728654
5
J Ayoub , La réalisation étale et
les opérations de Grothendieck , Ann. Sci. École Norm.
Sup. 47 (2014) 1 MR3205601
6
T Bachmann ,
Motivic
and real étale stable homotopy theory , Compos. Math.
154 (2018) 883 MR3781990
7
T Bachmann , E
Elmanto , P A Østvær , On étale motivic
spectra and Voevodsky’s convergence conjecture , preprint
(2020) arXiv:2003.04006
8
T Bachmann , M
Hoyois , Norms in
motivic homotopy theory , 425, Soc. Math. France (2021)
207 MRMR4288071
9
J M Boardman ,
Conditionally
convergent spectral sequences , from: "Homotopy
invariant algebraic structures" (editors J P Meyer, J
Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc.
(1999) 49 MR1718076
10
F Borceux , Handbook of
categorical algebra, III: Categories of sheaves , 52,
Cambridge Univ. Press (1994) MR1315049
11
A K Bousfield ,
The
localization of spectra with respect to homology ,
Topology 18 (1979) 257 MR551009
12
D C Cisinski ,
Descente par
éclatements en K –théorie
invariante par homotopie , Ann. of Math. 177 (2013) 425
MR3010804
13
D C Cisinski ,
F Déglise , Integral mixed motives in
equal characteristic , Doc. Math. Extra vol. (2015) 145
MR3404379
14
D C Cisinski ,
F Déglise , Étale
motives , Compos. Math. 152 (2016) 556 MR3477640
15
D C Cisinski ,
F Déglise , Triangulated
categories of mixed motives , Springer (2019) MR3971240
16
D Clausen , A
Mathew , Hyperdescent and
étale K –theory , Invent.
Math. 225 (2021) 981 MR4296353
17
F Déglise , Bivariant theories in
motivic stable homotopy , Doc. Math. 23 (2018) 997
MR3874952
18
D Dugger , Coherence for
invertible objects and multigraded homotopy rings ,
Algebr. Geom. Topol. 14 (2014) 1055 MR3180827
19
D Dugger , S
Hollander , D C Isaksen , Hypercovers and
simplicial presheaves , Math. Proc. Cambridge Philos.
Soc. 136 (2004) 9 MR2034012
20
D Dugger , D C
Isaksen , Motivic cell
structures , Algebr. Geom. Topol. 5 (2005) 615 MR2153114
21
B I Dundas , O
Röndigs , P A Østvær , Motivic functors ,
Doc. Math. 8 (2003) 489 MR2029171
22
W Dwyer , E
Friedlander , V Snaith , R Thomason ,
Algebraic
K –theory eventually surjects onto
topological K –theory ,
Invent. Math. 66 (1982) 481 MR662604
23
E Elmanto , H
Kolderup , On modules over
motivic ring spectra , Ann. K –Theory 5 (2020) 327 MR4113773
24
D Gepner , V
Snaith , On
the motivic spectra representing algebraic cobordism and
algebraic K –theory , Doc.
Math. 14 (2009) 359 MR2540697
25
J J Gutiérrez ,
O Röndigs , M Spitzweck , P A Østvær ,
Motivic
slices and coloured operads , J. Topol. 5 (2012) 727
MR2971612
26
C Hasemeyer , J
Hornbostel , Motives and etale
motives with finite coefficients , K –Theory 34 (2005) 195 MR2182375
27
J Heller , Motivic strict
ring spectra representing semi-topological cohomology
theories , Homology Homotopy Appl. 17 (2015) 107
MR3421465
28
J Hornbostel , S
Yagunov , Rigidity for
Henselian local rings and 𝔸 1 –representable theories , Math. Z.
255 (2007) 437 MR2262740
29
M Hovey , Spectra and
symmetric spectra in general model categories , J. Pure
Appl. Algebra 165 (2001) 63 MR1860878
30
M Hoyois , From algebraic
cobordism to motivic cohomology , J. Reine Angew. Math.
702 (2015) 173 MR3341470
31
M Hoyois , Cdh descent in equivariant
homotopy K –theory , Doc.
Math. 25 (2020) 457 MR4124487
32
M Hoyois , S
Kelly , P A Østvær , The motivic Steenrod algebra
in positive characteristic , J. Eur. Math. Soc. 19
(2017) 3813 MR3730515
33
M Hoyois , A
Krishna , P A Østvær , 𝔸 1 –contractibility of Koras–Russell
threefolds , Algebr. Geom. 3 (2016) 407 MR3549169
34
J F Jardine ,
Simplicial
presheaves , J. Pure Appl. Algebra 47 (1987) 35 MR906403
35
J F Jardine ,
Generalized étale
cohomology theories , 146, Birkhäuser (1997) MR1437604
36
J F Jardine ,
Motivic
symmetric spectra , Doc. Math. 5 (2000) 445 MR1787949
37
K Kato , S
Saito , Global class field
theory of arithmetic schemes , from: "Applications of
algebraic K –theory to algebraic
geometry and number theory, I" (editors S J Bloch,
R K Dennis, E M Friedlander, M R Stein),
Contemp. Math. 55, Amer. Math. Soc. (1986) 255 MR862639
38
A Khan , Motivic homotopy
theory in derived algebraic geometry , PhD thesis,
Universität Duisburg-Essen (2016)
39
M Levine , K –theory and motivic cohomology of
schemes , preprint (1999)
40
M Levine , Inverting the motivic
Bott element , K –Theory 19
(2000) 1 MR1740880
41
M Levine ,
Techniques of localization in the theory of algebraic
cycles , J. Algebraic Geom. 10 (2001) 299 MR1811558
42
M Levine , Chow’s moving lemma
and the homotopy coniveau tower , K –Theory 37 (2006) 129 MR2274672
43
M Levine , The homotopy coniveau
tower , J. Topol. 1 (2008) 217 MR2365658
44
M Levine , Convergence of Voevodsky’s
slice tower , Doc. Math. 18 (2013) 907 MR3084567
45
J Lurie , Higher topos
theory , 170, Princeton Univ. Press (2009) MR2522659
46
J Lurie , Spectral algebraic
geometry , preprint (2016)
47
J Lurie , Higher algebra , preprint
(2017)
48
A Mathew , N
Naumann , J Noel , Nilpotence and
descent in equivariant stable homotopy theory , Adv.
Math. 305 (2017) 994 MR3570153
49
C Mazza , V
Voevodsky , C Weibel , Lecture
notes on motivic cohomology , 2, Amer. Math. Soc. (2006)
MR2242284
50
J S Milne ,
Étale cohomology , 33, Princeton Univ. Press (1980)
MR559531
51
J Milnor , Algebraic K –theory and quadratic forms , Invent.
Math. 9 (1970) 318 MR260844
52
S A Mitchell ,
Hypercohomology
spectra and Thomason’s descent theorem , from:
"Algebraic K –theory" (editor
V P Snaith), Fields Inst. Commun. 16, Amer. Math. Soc.
(1997) 221 MR1466977
53
F Morel , An
introduction to 𝔸 1 –homotopy theory , from: "Contemporary
developments in algebraic K –theory" (editors M Karoubi, A O Kuku, C
Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret.
Phys. (2004) 357 MR2175638
54
F Morel , The stable
𝔸 1 –connectivity theorems ,
K –Theory 35 (2005) 1 MR2240215
55
F Morel , 𝔸 1 –algebraic topology over a field ,
2052, Springer (2012) MR2934577
56
F Morel , V
Voevodsky , 𝔸 1 –homotopy theory of schemes ,
Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 MR1813224
57
N Naumann , M
Spitzweck , P A Østvær , Motivic Landweber
exactness , Doc. Math. 14 (2009) 551 MR2565902
58
J Neukirch ,
Algebraic
number theory , 322, Springer (1999) MR1697859
59
S Oka , Multiplications on
the Moore spectrum , Mem. Fac. Sci. Kyushu Univ. Ser. A
38 (1984) 257 MR760188
60
K M Ormsby ,
P A Østvær , Stable motivic
π 1 of low-dimensional fields , Adv.
Math. 265 (2014) 97 MR3255457
61
G Quick , Stable étale
realization and étale cobordism , Adv. Math. 214 (2007)
730 MR2349718
62
M Robalo , K –theory and the bridge from motives to
noncommutative motives , Adv. Math. 269 (2015) 399
MR3281141
63
O Röndigs , P A
Østvær , Modules over
motivic cohomology , Adv. Math. 219 (2008) 689 MR2435654
64
O Röndigs , P A
Østvær , Rigidity in motivic
homotopy theory , Math. Ann. 341 (2008) 651 MR2399164
65
O Röndigs , P A
Østvær , Slices of hermitian
K –theory and Milnor’s conjecture
on quadratic forms , Geom. Topol. 20 (2016) 1157
MR3493102
66
O Röndigs , M
Spitzweck , P A Østvær , The motivic
Hopf map solves the homotopy limit problem for K –theory , Doc. Math. 23 (2018) 1405
MR3874943
67
O Röndigs , M
Spitzweck , P A Østvær , The first stable
homotopy groups of motivic spheres , Ann. of Math. 189
(2019) 1 MR3898173
68
A Rosenschon ,
P A Østvær , The homotopy limit
problem for two-primary algebraic K –theory , Topology 44 (2005) 1159
MR2168573
69
A Rosenschon ,
P A Østvær , Descent for
K –theories , J. Pure Appl.
Algebra 206 (2006) 141 MR2220086
70
J P Serre ,
Cohomologie galoisienne , 5, Springer (1964) MR0180551
71
S S Shatz ,
Profinite
groups, arithmetic, and geometry , 67, Princeton Univ.
Press (1972) MR0347778
72
B Shipley , H ℤ –algebra
spectra are differential graded algebras , Amer. J.
Math. 129 (2007) 351 MR2306038
73
M Spitzweck ,
Relations between
slices and quotients of the algebraic cobordism
spectrum , Homology Homotopy Appl. 12 (2010) 335
MR2771593
74
M Spitzweck ,
Slices
of motivic Landweber spectra , J. K –Theory 9 (2012) 103 MR2887201
75
M Spitzweck ,
A commutative
ℙ 1 –spectrum representing motivic cohomology
over Dedekind domains , 157, Soc. Math. France (2018)
110 MR3865569
76
M Spitzweck ,
Algebraic
cobordism in mixed characteristic , Homology Homotopy
Appl. 22 (2020) 91 MR4093171
77
M Spitzweck ,
P A Østvær , The Bott inverted
infinite projective space is homotopy algebraic K –theory , Bull. Lond. Math. Soc. 41
(2009) 281 MR2496504
78
R W Thomason ,
Algebraic
K –theory and étale
cohomology , Ann. Sci. École Norm. Sup. 18 (1985) 437
MR826102
79
B Totaro , Adjoint functors on
the derived category of motives , J. Inst. Math. Jussieu
17 (2018) 489 MR3789179
80
V Voevodsky ,
𝔸 1 –homotopy theory , from:
"Proceedings of the International Congress of Mathematicians,
I" (editors G Fischer, U Rehmann), Deutsche Mathematiker
Vereinigung (1998) 579 MR1648048
81
V Voevodsky ,
Open
problems in the motivic stable homotopy theory, I ,
from: "Motives, polylogarithms and Hodge theory, I" (editors F
Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International
(2002) 3 MR1977582
82
V Voevodsky ,
Motivic
cohomology with ℤ ∕ 2 –coefficients , Publ. Math. Inst.
Hautes Études Sci. 98 (2003) 59 MR2031199
83
V Voevodsky ,
Reduced
power operations in motivic cohomology , Publ. Math.
Inst. Hautes Études Sci. 98 (2003) 1 MR2031198
84
V Voevodsky ,
Cancellation
theorem , Doc. Math. Extra vol. (2010) 671 MR2804268
85
V Voevodsky ,
Simplicial
radditive functors , J. K –Theory 5 (2010) 201 MR2640203
86
V Voevodsky ,
On
motivic cohomology with ℤ ∕l –coefficients , Ann. of Math. 174
(2011) 401 MR2811603
87
V Voevodsky , O
Röndigs , P A Østvær , Voevodsky’s
Nordfjordeid lectures : motivic homotopy theory , from:
"Motivic homotopy theory" (editors B I Dundas, M Levine,
P A Østvær, O Röndigs, V Voevodsky), Springer (2007) 147
MR2334215
88
V Voevodsky , A
Suslin , E M Friedlander , Cycles, transfers,
and motivic homology theories , 143, Princeton Univ. Press
(2000) MR1764197
89
C A Weibel ,
Homotopy
algebraic K –theory , from:
"Algebraic K –theory and algebraic
number theory" (editors M R Stein, R K Dennis),
Contemp. Math. 83, Amer. Math. Soc. (1989) 461 MR991991
90
G M Wilson ,
The
eta-inverted sphere over the rationals , Algebr. Geom.
Topol. 18 (2018) 1857 MR3784021