Volume 26, issue 2 (2022)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Algebraic cobordism and étale cohomology

Elden Elmanto, Marc Levine, Markus Spitzweck and Paul Arne Østvær

Geometry & Topology 26 (2022) 477–586
Bibliography
1 B Antieau, E Elmanto, A primer for unstable motivic homotopy theory, from: "Surveys on recent developments in algebraic geometry" (editors I Coskun, T de Fernex, A Gibney), Proc. Sympos. Pure Math. 95, Amer. Math. Soc. (2017) 305 MR3727503
2 M Artin, A Grothendieck, J L Verdier, Théorie des topos et cohomologie étale des schémas, Tome 3 : Exposés IX–XIX (SGA 43 ), 305, Springer (1973) MR0354654
3 J Ayoub, Les six opérations de Grothendieck et le formalisme des cycles évanescents dans le monde motivique, I, 314, Soc. Math. France (2007) MR2423375
4 J Ayoub, A guide to (étale) motivic sheaves, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 1101 MR3728654
5 J Ayoub, La réalisation étale et les opérations de Grothendieck, Ann. Sci. École Norm. Sup. 47 (2014) 1 MR3205601
6 T Bachmann, Motivic and real étale stable homotopy theory, Compos. Math. 154 (2018) 883 MR3781990
7 T Bachmann, E Elmanto, P A Østvær, On étale motivic spectra and Voevodsky’s convergence conjecture, preprint (2020) arXiv:2003.04006
8 T Bachmann, M Hoyois, Norms in motivic homotopy theory, 425, Soc. Math. France (2021) 207 MRMR4288071
9 J M Boardman, Conditionally convergent spectral sequences, from: "Homotopy invariant algebraic structures" (editors J P Meyer, J Morava, W S Wilson), Contemp. Math. 239, Amer. Math. Soc. (1999) 49 MR1718076
10 F Borceux, Handbook of categorical algebra, III: Categories of sheaves, 52, Cambridge Univ. Press (1994) MR1315049
11 A K Bousfield, The localization of spectra with respect to homology, Topology 18 (1979) 257 MR551009
12 D C Cisinski, Descente par éclatements en K–théorie invariante par homotopie, Ann. of Math. 177 (2013) 425 MR3010804
13 D C Cisinski, F Déglise, Integral mixed motives in equal characteristic, Doc. Math. Extra vol. (2015) 145 MR3404379
14 D C Cisinski, F Déglise, Étale motives, Compos. Math. 152 (2016) 556 MR3477640
15 D C Cisinski, F Déglise, Triangulated categories of mixed motives, Springer (2019) MR3971240
16 D Clausen, A Mathew, Hyperdescent and étale K–theory, Invent. Math. 225 (2021) 981 MR4296353
17 F Déglise, Bivariant theories in motivic stable homotopy, Doc. Math. 23 (2018) 997 MR3874952
18 D Dugger, Coherence for invertible objects and multigraded homotopy rings, Algebr. Geom. Topol. 14 (2014) 1055 MR3180827
19 D Dugger, S Hollander, D C Isaksen, Hypercovers and simplicial presheaves, Math. Proc. Cambridge Philos. Soc. 136 (2004) 9 MR2034012
20 D Dugger, D C Isaksen, Motivic cell structures, Algebr. Geom. Topol. 5 (2005) 615 MR2153114
21 B I Dundas, O Röndigs, P A Østvær, Motivic functors, Doc. Math. 8 (2003) 489 MR2029171
22 W Dwyer, E Friedlander, V Snaith, R Thomason, Algebraic K–theory eventually surjects onto topological K–theory, Invent. Math. 66 (1982) 481 MR662604
23 E Elmanto, H Kolderup, On modules over motivic ring spectra, Ann. K–Theory 5 (2020) 327 MR4113773
24 D Gepner, V Snaith, On the motivic spectra representing algebraic cobordism and algebraic K–theory, Doc. Math. 14 (2009) 359 MR2540697
25 J J Gutiérrez, O Röndigs, M Spitzweck, P A Østvær, Motivic slices and coloured operads, J. Topol. 5 (2012) 727 MR2971612
26 C Hasemeyer, J Hornbostel, Motives and etale motives with finite coefficients, K–Theory 34 (2005) 195 MR2182375
27 J Heller, Motivic strict ring spectra representing semi-topological cohomology theories, Homology Homotopy Appl. 17 (2015) 107 MR3421465
28 J Hornbostel, S Yagunov, Rigidity for Henselian local rings and 𝔸1–representable theories, Math. Z. 255 (2007) 437 MR2262740
29 M Hovey, Spectra and symmetric spectra in general model categories, J. Pure Appl. Algebra 165 (2001) 63 MR1860878
30 M Hoyois, From algebraic cobordism to motivic cohomology, J. Reine Angew. Math. 702 (2015) 173 MR3341470
31 M Hoyois, Cdh descent in equivariant homotopy K–theory, Doc. Math. 25 (2020) 457 MR4124487
32 M Hoyois, S Kelly, P A Østvær, The motivic Steenrod algebra in positive characteristic, J. Eur. Math. Soc. 19 (2017) 3813 MR3730515
33 M Hoyois, A Krishna, P A Østvær, 𝔸1–contractibility of Koras–Russell threefolds, Algebr. Geom. 3 (2016) 407 MR3549169
34 J F Jardine, Simplicial presheaves, J. Pure Appl. Algebra 47 (1987) 35 MR906403
35 J F Jardine, Generalized étale cohomology theories, 146, Birkhäuser (1997) MR1437604
36 J F Jardine, Motivic symmetric spectra, Doc. Math. 5 (2000) 445 MR1787949
37 K Kato, S Saito, Global class field theory of arithmetic schemes, from: "Applications of algebraic K–theory to algebraic geometry and number theory, I" (editors S J Bloch, R K Dennis, E M Friedlander, M R Stein), Contemp. Math. 55, Amer. Math. Soc. (1986) 255 MR862639
38 A Khan, Motivic homotopy theory in derived algebraic geometry, PhD thesis, Universität Duisburg-Essen (2016)
39 M Levine, K–theory and motivic cohomology of schemes, preprint (1999)
40 M Levine, Inverting the motivic Bott element, K–Theory 19 (2000) 1 MR1740880
41 M Levine, Techniques of localization in the theory of algebraic cycles, J. Algebraic Geom. 10 (2001) 299 MR1811558
42 M Levine, Chow’s moving lemma and the homotopy coniveau tower, K–Theory 37 (2006) 129 MR2274672
43 M Levine, The homotopy coniveau tower, J. Topol. 1 (2008) 217 MR2365658
44 M Levine, Convergence of Voevodsky’s slice tower, Doc. Math. 18 (2013) 907 MR3084567
45 J Lurie, Higher topos theory, 170, Princeton Univ. Press (2009) MR2522659
46 J Lurie, Spectral algebraic geometry, preprint (2016)
47 J Lurie, Higher algebra, preprint (2017)
48 A Mathew, N Naumann, J Noel, Nilpotence and descent in equivariant stable homotopy theory, Adv. Math. 305 (2017) 994 MR3570153
49 C Mazza, V Voevodsky, C Weibel, Lecture notes on motivic cohomology, 2, Amer. Math. Soc. (2006) MR2242284
50 J S Milne, Étale cohomology, 33, Princeton Univ. Press (1980) MR559531
51 J Milnor, Algebraic K–theory and quadratic forms, Invent. Math. 9 (1970) 318 MR260844
52 S A Mitchell, Hypercohomology spectra and Thomason’s descent theorem, from: "Algebraic K–theory" (editor V P Snaith), Fields Inst. Commun. 16, Amer. Math. Soc. (1997) 221 MR1466977
53 F Morel, An introduction to 𝔸1–homotopy theory, from: "Contemporary developments in algebraic K–theory" (editors M Karoubi, A O Kuku, C Pedrini), ICTP Lect. Notes 15, Abdus Salam Int. Cent. Theoret. Phys. (2004) 357 MR2175638
54 F Morel, The stable 𝔸1–connectivity theorems, K–Theory 35 (2005) 1 MR2240215
55 F Morel, 𝔸1–algebraic topology over a field, 2052, Springer (2012) MR2934577
56 F Morel, V Voevodsky, 𝔸1–homotopy theory of schemes, Inst. Hautes Études Sci. Publ. Math. 90 (1999) 45 MR1813224
57 N Naumann, M Spitzweck, P A Østvær, Motivic Landweber exactness, Doc. Math. 14 (2009) 551 MR2565902
58 J Neukirch, Algebraic number theory, 322, Springer (1999) MR1697859
59 S Oka, Multiplications on the Moore spectrum, Mem. Fac. Sci. Kyushu Univ. Ser. A 38 (1984) 257 MR760188
60 K M Ormsby, P A Østvær, Stable motivic π1 of low-dimensional fields, Adv. Math. 265 (2014) 97 MR3255457
61 G Quick, Stable étale realization and étale cobordism, Adv. Math. 214 (2007) 730 MR2349718
62 M Robalo, K–theory and the bridge from motives to noncommutative motives, Adv. Math. 269 (2015) 399 MR3281141
63 O Röndigs, P A Østvær, Modules over motivic cohomology, Adv. Math. 219 (2008) 689 MR2435654
64 O Röndigs, P A Østvær, Rigidity in motivic homotopy theory, Math. Ann. 341 (2008) 651 MR2399164
65 O Röndigs, P A Østvær, Slices of hermitian K–theory and Milnor’s conjecture on quadratic forms, Geom. Topol. 20 (2016) 1157 MR3493102
66 O Röndigs, M Spitzweck, P A Østvær, The motivic Hopf map solves the homotopy limit problem for K–theory, Doc. Math. 23 (2018) 1405 MR3874943
67 O Röndigs, M Spitzweck, P A Østvær, The first stable homotopy groups of motivic spheres, Ann. of Math. 189 (2019) 1 MR3898173
68 A Rosenschon, P A Østvær, The homotopy limit problem for two-primary algebraic K–theory, Topology 44 (2005) 1159 MR2168573
69 A Rosenschon, P A Østvær, Descent for K–theories, J. Pure Appl. Algebra 206 (2006) 141 MR2220086
70 J P Serre, Cohomologie galoisienne, 5, Springer (1964) MR0180551
71 S S Shatz, Profinite groups, arithmetic, and geometry, 67, Princeton Univ. Press (1972) MR0347778
72 B Shipley, H–algebra spectra are differential graded algebras, Amer. J. Math. 129 (2007) 351 MR2306038
73 M Spitzweck, Relations between slices and quotients of the algebraic cobordism spectrum, Homology Homotopy Appl. 12 (2010) 335 MR2771593
74 M Spitzweck, Slices of motivic Landweber spectra, J. K–Theory 9 (2012) 103 MR2887201
75 M Spitzweck, A commutative 1–spectrum representing motivic cohomology over Dedekind domains, 157, Soc. Math. France (2018) 110 MR3865569
76 M Spitzweck, Algebraic cobordism in mixed characteristic, Homology Homotopy Appl. 22 (2020) 91 MR4093171
77 M Spitzweck, P A Østvær, The Bott inverted infinite projective space is homotopy algebraic K–theory, Bull. Lond. Math. Soc. 41 (2009) 281 MR2496504
78 R W Thomason, Algebraic K–theory and étale cohomology, Ann. Sci. École Norm. Sup. 18 (1985) 437 MR826102
79 B Totaro, Adjoint functors on the derived category of motives, J. Inst. Math. Jussieu 17 (2018) 489 MR3789179
80 V Voevodsky, 𝔸1–homotopy theory, from: "Proceedings of the International Congress of Mathematicians, I" (editors G Fischer, U Rehmann), Deutsche Mathematiker Vereinigung (1998) 579 MR1648048
81 V Voevodsky, Open problems in the motivic stable homotopy theory, I, from: "Motives, polylogarithms and Hodge theory, I" (editors F Bogomolov, L Katzarkov), Int. Press Lect. Ser. 3, International (2002) 3 MR1977582
82 V Voevodsky, Motivic cohomology with 2–coefficients, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 59 MR2031199
83 V Voevodsky, Reduced power operations in motivic cohomology, Publ. Math. Inst. Hautes Études Sci. 98 (2003) 1 MR2031198
84 V Voevodsky, Cancellation theorem, Doc. Math. Extra vol. (2010) 671 MR2804268
85 V Voevodsky, Simplicial radditive functors, J. K–Theory 5 (2010) 201 MR2640203
86 V Voevodsky, On motivic cohomology with ∕l–coefficients, Ann. of Math. 174 (2011) 401 MR2811603
87 V Voevodsky, O Röndigs, P A Østvær, Voevodsky’s Nordfjordeid lectures : motivic homotopy theory, from: "Motivic homotopy theory" (editors B I Dundas, M Levine, P A Østvær, O Röndigs, V Voevodsky), Springer (2007) 147 MR2334215
88 V Voevodsky, A Suslin, E M Friedlander, Cycles, transfers, and motivic homology theories, 143, Princeton Univ. Press (2000) MR1764197
89 C A Weibel, Homotopy algebraic K–theory, from: "Algebraic K–theory and algebraic number theory" (editors M R Stein, R K Dennis), Contemp. Math. 83, Amer. Math. Soc. (1989) 461 MR991991
90 G M Wilson, The eta-inverted sphere over the rationals, Algebr. Geom. Topol. 18 (2018) 1857 MR3784021