Volume 26, issue 2 (2022)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Deformed dimensional reduction

Ben Davison and Tudor Pădurariu

Geometry & Topology 26 (2022) 721–776
Bibliography
1 K Behrend, J Bryan, B Szendrői, Motivic degree zero Donaldson–Thomas invariants, Invent. Math. 192 (2013) 111 MR3032328
2 A A Beĭlinson, J Bernstein, P Deligne, Faisceaux pervers, from: "Analysis and topology on singular spaces, I", Astérisque 100, Soc. Math. France (1982) 5 MR751966
3 A Cazzaniga, A Morrison, B Pym, B Szendrői, Motivic Donaldson–Thomas invariants of some quantized threefolds, J. Noncommut. Geom. 11 (2017) 1115 MR3713014
4 B Davison, The integrality conjecture and the cohomology of preprojective stacks, preprint (2016) arXiv:1602.02110
5 B Davison, The critical CoHA of a quiver with potential, Q. J. Math. 68 (2017) 635 MR3667216
6 B Davison, Refined invariants of finite-dimensional Jacobi algebras, preprint (2019) arXiv:1903.00659
7 B Davison, D Maulik, J Schürmann, B Szendrői, Purity for graded potentials and quantum cluster positivity, Compos. Math. 151 (2015) 1913 MR3414389
8 B Davison, S Meinhardt, Donaldson–Thomas theory for categories of homological dimension one with potential, preprint (2015) arXiv:1512.08898
9 B Davison, S Meinhardt, Motivic Donaldson–Thomas invariants for the one-loop quiver with potential, Geom. Topol. 19 (2015) 2535 MR3416109
10 B Davison, S Meinhardt, Cohomological Donaldson–Thomas theory of a quiver with potential and quantum enveloping algebras, Invent. Math. 221 (2020) 777 MR4132957
11 B Davison, A T Ricolfi, The local motivic DT/PT correspondence, J. Lond. Math. Soc. 104 (2021) 1384 MR4332481
12 J Denef, F Loeser, Motivic exponential integrals and a motivic Thom–Sebastiani theorem, Duke Math. J. 99 (1999) 285 MR1708026
13 J Denef, F Loeser, Geometry on arc spaces of algebraic varieties, from: "European Congress of Mathematics, I" (editors C Casacuberta, R M Miró-Roig, J Verdera, S Xambó-Descamps), Progr. Math. 201, Birkhäuser (2001) 327 MR1905328
14 G Dobrovolska, V Ginzburg, R Travkin, Moduli spaces, indecomposable objects and potentials over a finite field, preprint (2016) arXiv:1612.01733
15 A I Efimov, Cyclic homology of categories of matrix factorizations, Int. Math. Res. Not. 2018 (2018) 3834 MR3815168
16 T Ekedahl, The Grothendieck group of algebraic stacks, preprint (2009) arXiv:0903.3143
17 S M Gusein-Zade, I Luengo, A Melle-Hernández, A power structure over the Grothendieck ring of varieties, Math. Res. Lett. 11 (2004) 49 MR2046199
18 T Hausel, E Letellier, F Rodriguez-Villegas, Positivity for Kac polynomials and DT–invariants of quivers, Ann. of Math. 177 (2013) 1147 MR3034296
19 Y Hirano, Derived Knörrer periodicity and Orlov’s theorem for gauged Landau–Ginzburg models, Compos. Math. 153 (2017) 973 MR3631231
20 M U Isik, Equivalence of the derived category of a variety with a singularity category, Int. Math. Res. Not. 2013 (2013) 2787 MR3071664
21 B Keller, Deformed Calabi–Yau completions, J. Reine Angew. Math. 654 (2011) 125 MR2795754
22 M Kontsevich, Y Soibelman, Stability structures, motivic Donaldson–Thomas invariants and cluster transformations, preprint (2008) arXiv:0811.2435
23 M Kontsevich, Y Soibelman, Cohomological Hall algebra, exponential Hodge structures and motivic Donaldson–Thomas invariants, Commun. Number Theory Phys. 5 (2011) 231 MR2851153
24 L Le Bruyn, Brauer–Severi motives and Donaldson–Thomas invariants of quantized threefolds, J. Noncommut. Geom. 12 (2018) 671 MR3825198
25 Q T Lê, Proofs of the integral identity conjecture over algebraically closed fields, Duke Math. J. 164 (2015) 157 MR3299104
26 L Maxim, M Saito, J Schürmann, Symmetric products of mixed Hodge modules, J. Math. Pures Appl. 96 (2011) 462 MR2843222
27 S Meinhardt, M Reineke, Donaldson–Thomas invariants versus intersection cohomology of quiver moduli, J. Reine Angew. Math. 754 (2019) 143 MR4000572
28 J Nicaise, S Payne, A tropical motivic Fubini theorem with applications to Donaldson–Thomas theory, Duke Math. J. 168 (2019) 1843 MR3983293
29 M V Nori
30 D O Orlov, Triangulated categories of singularities, and equivalences between Landau–Ginzburg models, Mat. Sb. 197 (2006) 117 MR2437083
31 T Pădurariu, K–theoretic Hall algebras for quivers with potential, preprint (2019) arXiv:1911.05526
32 M Reineke, Cohomology of noncommutative Hilbert schemes, Algebr. Represent. Theory 8 (2005) 541 MR2199209
33 M Saito, Modules de Hodge polarisables, Publ. Res. Inst. Math. Sci. 24 (1988) 849 MR1000123
34 M Saito, Introduction to mixed Hodge modules, from: "Actes du Colloque de Théorie de Hodge", Astérisque 179–180, Soc. Math. France (1989) 10, 145 MR1042805
35 M Saito, Mixed Hodge modules and admissible variations, C. R. Acad. Sci. Paris Sér. I Math. 309 (1989) 351 MR1054250