Recent Issues
Volume 28, 7 issues
Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
Abstract
Thomason’s étale descent theorem for Bott periodic algebraic
K –theory is
generalized to any
M G L
module over a regular Noetherian scheme of finite dimension. Over
arbitrary Noetherian schemes of finite dimension, this generalizes
the analogue of Thomason’s theorem for Weibel’s homotopy
K –theory.
This is achieved by amplifying the effects from the case of motivic cohomology,
using the slice spectral sequence in the case of the universal example of
algebraic cobordism. We also obtain integral versions of these statements:
Bousfield localization at étale motivic cohomology is the universal way
to impose étale descent for these theories. As applications, we describe
the étale local objects in modules over these spectra and show that they
satisfy the full six functor formalism, construct an étale descent spectral
sequence converging to Bott-inverted motivic Landweber exact theories,
and prove cellularity and effectivity of the étale versions of these motivic
spectra.
A correction was submitted on 4 March 2024 and posted online
on 14 March 2024.
Keywords
motivic homotopy theory, étale motives, slice spectral
sequence, algebraic cobordism, algebraic K-theory, motivic
cohomology, étale cohomology, descent, slice filtration
Mathematical Subject Classification 2010
Primary: 14F20, 14F42, 19E15, 19D55, 55P42, 55P43
Supplementary material
Correction
Publication
Received: 7 February 2019
Revised: 1 March 2021
Accepted: 31 March 2021
Published: 15 June 2022
Proposed: Mark Behrens
Seconded: Stefan Schwede, Haynes R Miller
Correction posted: 14 March 2024
© 2022 MSP (Mathematical Sciences
Publishers).