Volume 26, issue 3 (2022)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Pseudoholomorphic curves relative to a normal crossings symplectic divisor: compactification

Mohammad Farajzadeh-Tehrani

Geometry & Topology 26 (2022) 989–1075
Bibliography
1 D Abramovich, Q Chen, Stable logarithmic maps to Deligne–Faltings pairs, II, Asian J. Math. 18 (2014) 465 MR3257836
2 D Abramovich, Q Chen, D Gillam, Y Huang, M Olsson, M Satriano, S Sun, Logarithmic geometry and moduli, from: "Handbook of moduli, I" (editors G Farkas, I Morrison), Adv. Lect. Math. 24, International (2013) 1 MR3184161
3 D Abramovich, Q Chen, M Gross, B Siebert, Punctured logarithmic curves, preprint (2019)
4 D Abramovich, Q Chen, M Gross, B Siebert, Decomposition of degenerate Gromov–Witten invariants, Compos. Math. 156 (2020) 2020 MR4177284
5 D Abramovich, S Marcus, J Wise, Comparison theorems for Gromov–Witten invariants of smooth pairs and of degenerations, Ann. Inst. Fourier (Grenoble) 64 (2014) 1611 MR3329675
6 D Auroux, Mirror symmetry and T–duality in the complement of an anticanonical divisor, J. Gökova Geom. Topol. 1 (2007) 51 MR2386535
7 D A Cox, J B Little, H K Schenck, Toric varieties, 124, Amer. Math. Soc. (2011) MR2810322
8 S K Donaldson, Symplectic submanifolds and almost-complex geometry, J. Differential Geom. 44 (1996) 666 MR1438190
9 D Eisenbud, B Sturmfels, Binomial ideals, Duke Math. J. 84 (1996) 1 MR1394747
10 Y Eliashberg, A Givental, H Hofer, Introduction to symplectic field theory, from: "Visions in mathematics" (editors N Alon, J Bourgain, A Connes, M Gromov, V Milman), Birkhäuser (= GAFA special volume) (2000) 560 MR1826267
11 M Farajzadeh-Tehrani, Deformation theory of log pseudoholomorphic curves and logarithmic Ruan–Tian perturbations, preprint (2019) arXiv:1910.05201
12 M Farajzadeh-Tehrani, Pseudoholomorphic curves relative to a normal crossings symplectic divisor: VFC, work in progress (2021)
13 K Fukaya, Y G Oh, H Ohta, K Ono, Exponential decay estimates and smoothness of the moduli space of pseudoholomorphic curves, preprint (2016) arXiv:1603.07026
14 K Fukaya, K Ono, Arnold conjecture and Gromov–Witten invariant, Topology 38 (1999) 933 MR1688434
15 S Ganatra, D Pomerleano, A log PSS morphism with applications to Lagrangian embeddings, J. Topol. 14 (2021) 291 MR4235013
16 M Gromov, Pseudo holomorphic curves in symplectic manifolds, Invent. Math. 82 (1985) 307 MR809718
17 M Gross, B Siebert, Logarithmic Gromov–Witten invariants, J. Amer. Math. Soc. 26 (2013) 451 MR3011419
18 H Hofer, K Wysocki, E Zehnder, Applications of polyfold theory, I : The polyfolds of Gromov–Witten theory, 1179, Amer. Math. Soc. (2017) MR3683060
19 C Hummel, Gromov’s compactness theorem for pseudoholomorphic curves, 151, Birkhäuser (1997) MR1451624
20 E N Ionel, GW invariants relative to normal crossing divisors, Adv. Math. 281 (2015) 40 MR3366837
21 E N Ionel, T H Parker, Relative Gromov–Witten invariants, Ann. of Math. 157 (2003) 45 MR1954264
22 E N Ionel, T H Parker, The symplectic sum formula for Gromov–Witten invariants, Ann. of Math. 159 (2004) 935 MR2113018
23 A M Li, Y Ruan, Symplectic surgery and Gromov–Witten invariants of Calabi–Yau 3–folds, Invent. Math. 145 (2001) 151 MR1839289
24 J Li, Stable morphisms to singular schemes and relative stable morphisms, J. Differential Geom. 57 (2001) 509 MR1882667
25 J Li, G Tian, Virtual moduli cycles and Gromov–Witten invariants of algebraic varieties, J. Amer. Math. Soc. 11 (1998) 119 MR1467172
26 T J Li, C Y Mak, Geometry of symplectic log Calabi–Yau pairs, ICCM Not. 6 (2018) 42 MR3961489
27 D McDuff, D Salamon, J–holomorphic curves and quantum cohomology, 6, Amer. Math. Soc. (1994) MR1286255
28 D McDuff, D Salamon, Introduction to symplectic topology, Oxford Univ. Press (1998) MR1698616
29 D McDuff, D Salamon, J–holomorphic curves and symplectic topology, 52, Amer. Math. Soc. (2004) MR2045629
30 D McDuff, K Wehrheim, Smooth Kuranishi atlases with isotropy, Geom. Topol. 21 (2017) 2725 MR3687107
31 M McLean, Reeb orbits and the minimal discrepancy of an isolated singularity, Invent. Math. 204 (2016) 505 MR3489704
32 P Pansu, Compactness, from: "Holomorphic curves in symplectic geometry" (editors M Audin, J Lafontaine), Progr. Math. 117, Birkhäuser (1994) 233 MR1274932
33 J Pardon, An algebraic approach to virtual fundamental cycles on moduli spaces of pseudoholomorphic curves, Geom. Topol. 20 (2016) 779 MR3493097
34 B Parker, Exploded manifolds, Adv. Math. 229 (2012) 3256 MR2900440
35 B Parker, On the value of thinking tropically to understand Ionel’s GW invariants relative normal crossing divisors, preprint (2014) arXiv:1407.3020
36 B Parker, Holomorphic curves in exploded manifolds: compactness, Adv. Math. 283 (2015) 377 MR3383807
37 B Parker, Tropical gluing formulae for Gromov–Witten invariants, preprint (2017) arXiv:1703.05433
38 B Parker, De Rham theory of exploded manifolds, Geom. Topol. 22 (2018) 1 MR3720340
39 B Parker, Holomorphic curves in exploded manifolds: regularity, Geom. Topol. 23 (2019) 1621 MR3988088
40 B Parker, Holomorphic curves in exploded manifolds: virtual fundamental class, Geom. Topol. 23 (2019) 1877 MR3981319
41 J W Robbin, D A Salamon, A construction of the Deligne–Mumford orbifold, J. Eur. Math. Soc. 8 (2006) 611 MR2262197
42 Y Ruan, G Tian, Higher genus symplectic invariants and sigma models coupled with gravity, Invent. Math. 130 (1997) 455 MR1483992
43 M F Tehrani, Towards a degeneration formula for the Gromov–Witten invariants of symplectic manifolds, preprint (2017) arXiv:1710.00599v1
44 M F Tehrani, K Fukaya, Gromov–Witten theory via Kuranishi structures, from: "Virtual fundamental cycles in symplectic topology" (editor J W Morgan), Math. Surveys Monogr. 237, Amer. Math. Soc. (2019) 111 MR3931095
45 M F Tehrani, M McLean, A Zinger, Normal crossings singularities for symplectic topology, Adv. Math. 339 (2018) 672 MR3866910
46 M F Tehrani, M McLean, A Zinger, Singularities and semistable degenerations for symplectic topology, C. R. Math. Acad. Sci. Paris 356 (2018) 420 MR3787532
47 M F Tehrani, M McLean, A Zinger, Normal crossings singularities for symplectic topology, II, preprint (2019) arXiv:1908.09390
48 M F Tehrani, A Zinger, On symplectic sum formulas in Gromov–Witten theory, preprint (2014) arXiv:1404.1898
49 R Ye, Gromov’s compactness theorem for pseudoholomorphic curves, Trans. Amer. Math. Soc. 342 (1994) 671 MR1176088
50 A Zinger, Basic Riemannian geometry and Sobolev estimates used in symplectic topology, preprint (2010) arXiv:1012.3980