Recent Issues
Volume 28, 8 issues
Volume 28
Issue 8, 3511–3972
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
J M Alonso ,
Finiteness
conditions on groups and quasi-isometries , J. Pure
Appl. Algebra 95 (1994) 121 MR1293049
2
L Bartholdi , Y de
Cornulier , D H Kochloukova , Homological finiteness
properties of wreath products , Q. J. Math. 66 (2015)
437 MR3356831
3
J Belk , C
Bleak , F Matucci , Embedding
right-angled Artin groups into Brin–Thompson groups ,
Math. Proc. Cambridge Philos. Soc. 169 (2020) 225 MR4138920
4
J Belk , B
Forrest , Rearrangement groups of
fractals , Trans. Amer. Math. Soc. 372 (2019) 4509
MR4009393
5
J Belk , F
Matucci , Röver’s simple
group is of type F ∞ ,
Publ. Mat. 60 (2016) 501 MR3521498
6
M Bestvina , N
Brady , Morse theory and
finiteness properties of groups , Invent. Math. 129
(1997) 445 MR1465330
7
A Björner , L
Lovász , S T Vrećica , R T
Živaljević , Chessboard complexes and
matching complexes , J. Lond. Math. Soc. 49 (1994) 25
MR1253009
8
C Bleak , L
Elliott , J Hyde , Sufficient conditions for a
group of homeomorphisms of the Cantor set to be
two-generated , preprint (2020) arXiv:2008.04791
9
C Bleak , D
Lanoue , A family of
non-isomorphism results , Geom. Dedicata 146 (2010) 21
MR2644268
10
M R Bridson ,
Controlled
embeddings into groups that have no non-trivial finite
quotients , from: "The Epstein birthday schrift"
(editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1,
Geom. Topol. Publ. (1998) 99 MR1668335
11
M G Brin ,
Higher
dimensional Thompson groups , Geom. Dedicata 108 (2004)
163 MR2112673
12
M G Brin ,
Presentations
of higher dimensional Thompson groups , J. Algebra 284
(2005) 520 MR2114568
13
M G Brin ,
On the
baker’s map and the simplicity of the higher dimensional
Thompson groups nV , Publ.
Mat. 54 (2010) 433 MR2675931
14
K S Brown ,
Finiteness
properties of groups , J. Pure Appl. Algebra 44 (1987)
45 MR885095
15
K S Brown ,
The
geometry of finitely presented infinite simple groups ,
from: "Algorithms and classification in combinatorial group
theory" (editors G Baumslag, C F Miller III), Math. Sci.
Res. Inst. Publ. 23, Springer (1992) 121 MR1230631
16
K S Brown , R
Geoghegan , An infinite-dimensional
torsion-free FP ∞ group , Invent. Math. 77 (1984)
367 MR752825
17
K U Bux ,
M G Fluch , M Marschler , S Witzel ,
M C B Zaremsky , The braided
Thompson’s groups are of type F ∞ , J. Reine Angew. Math. 718
(2016) 59 MR3545879
18
P J Cameron ,
Oligomorphic
permutation groups , 152, Cambridge Univ. Press (1990)
MR1066691
19
J W Cannon ,
W J Floyd , W R Parry ,
Introductory notes on Richard Thompson’s groups ,
Enseign. Math. 42 (1996) 215 MR1426438
20
P E Caprace , B
Rémy , Simplicity and
superrigidity of twin building lattices , Invent. Math.
176 (2009) 169 MR2485882
21
P E Caprace , B
Rémy , Non-distortion of
twin building lattices , Geom. Dedicata 147 (2010) 397
MR2660586
22
A Darbinyan , M
Steenbock , Embeddings into left-orderable simple
groups , preprint (2020) arXiv:2005.06183
23
M G Fluch , M
Marschler , S Witzel , M C B
Zaremsky , The Brin–Thompson
groups sV are of type F ∞ , Pacific J. Math. 266 (2013)
283 MR3130623
24
A P Goryushkin ,
Imbedding of
countable groups in 2 –generated
simple groups , Mat. Zametki 16 (1974) 231 MR382456
25
P Hall , On the embedding of
a group in a join of given groups , J. Austral. Math.
Soc. 17 (1974) 434 MR0376880
26
J Hennig , F
Matucci , Presentations for the
higher-dimensional Thompson groups nV , Pacific J. Math. 257 (2012) 53
MR2948458
27
J T Hyde ,
Constructing
2 –generated subgroups of the group
of homeomorphisms of Cantor space , PhD thesis,
University of St Andrews (2017)
28
D H Kochloukova ,
C Martínez-Pérez , B E A Nucinkis ,
Cohomological
finiteness properties of the Brin–Thompson–Higman groups
2 V and
3 V , Proc. Edinb. Math. Soc. 56 (2013)
777 MR3109758
29
D Quillen , Homotopy
properties of the poset of nontrivial p –subgroups of a group , Adv. Math. 28
(1978) 101 MR493916
30
P E Schupp ,
Embeddings
into simple groups , J. Lond. Math. Soc. 13 (1976) 90
MR401932
31
R Skipper , S
Witzel , M C B Zaremsky , Simple groups
separated by finiteness properties , Invent. Math. 215
(2019) 713 MR3910073
32
M Stein , Groups of piecewise linear
homeomorphisms , Trans. Amer. Math. Soc. 332 (1992) 477
MR1094555
33
S Witzel , Classifying spaces
from Ore categories with Garside families , Algebr.
Geom. Topol. 19 (2019) 1477 MR3954289
34
S Witzel ,
M C B Zaremsky , Thompson groups for systems
of groups, and their finiteness properties , Groups
Geom. Dyn. 12 (2018) 289 MR3781423