Volume 26, issue 3 (2022)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Twisted Brin–Thompson groups

James Belk and Matthew C B Zaremsky

Geometry & Topology 26 (2022) 1189–1223
Bibliography
1 J M Alonso, Finiteness conditions on groups and quasi-isometries, J. Pure Appl. Algebra 95 (1994) 121 MR1293049
2 L Bartholdi, Y de Cornulier, D H Kochloukova, Homological finiteness properties of wreath products, Q. J. Math. 66 (2015) 437 MR3356831
3 J Belk, C Bleak, F Matucci, Embedding right-angled Artin groups into Brin–Thompson groups, Math. Proc. Cambridge Philos. Soc. 169 (2020) 225 MR4138920
4 J Belk, B Forrest, Rearrangement groups of fractals, Trans. Amer. Math. Soc. 372 (2019) 4509 MR4009393
5 J Belk, F Matucci, Röver’s simple group is of type F, Publ. Mat. 60 (2016) 501 MR3521498
6 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
7 A Björner, L Lovász, S T Vrećica, R T Živaljević, Chessboard complexes and matching complexes, J. Lond. Math. Soc. 49 (1994) 25 MR1253009
8 C Bleak, L Elliott, J Hyde, Sufficient conditions for a group of homeomorphisms of the Cantor set to be two-generated, preprint (2020) arXiv:2008.04791
9 C Bleak, D Lanoue, A family of non-isomorphism results, Geom. Dedicata 146 (2010) 21 MR2644268
10 M R Bridson, Controlled embeddings into groups that have no non-trivial finite quotients, from: "The Epstein birthday schrift" (editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1, Geom. Topol. Publ. (1998) 99 MR1668335
11 M G Brin, Higher dimensional Thompson groups, Geom. Dedicata 108 (2004) 163 MR2112673
12 M G Brin, Presentations of higher dimensional Thompson groups, J. Algebra 284 (2005) 520 MR2114568
13 M G Brin, On the baker’s map and the simplicity of the higher dimensional Thompson groups nV , Publ. Mat. 54 (2010) 433 MR2675931
14 K S Brown, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987) 45 MR885095
15 K S Brown, The geometry of finitely presented infinite simple groups, from: "Algorithms and classification in combinatorial group theory" (editors G Baumslag, C F Miller III), Math. Sci. Res. Inst. Publ. 23, Springer (1992) 121 MR1230631
16 K S Brown, R Geoghegan, An infinite-dimensional torsion-free FP group, Invent. Math. 77 (1984) 367 MR752825
17 K U Bux, M G Fluch, M Marschler, S Witzel, M C B Zaremsky, The braided Thompson’s groups are of type F, J. Reine Angew. Math. 718 (2016) 59 MR3545879
18 P J Cameron, Oligomorphic permutation groups, 152, Cambridge Univ. Press (1990) MR1066691
19 J W Cannon, W J Floyd, W R Parry, Introductory notes on Richard Thompson’s groups, Enseign. Math. 42 (1996) 215 MR1426438
20 P E Caprace, B Rémy, Simplicity and superrigidity of twin building lattices, Invent. Math. 176 (2009) 169 MR2485882
21 P E Caprace, B Rémy, Non-distortion of twin building lattices, Geom. Dedicata 147 (2010) 397 MR2660586
22 A Darbinyan, M Steenbock, Embeddings into left-orderable simple groups, preprint (2020) arXiv:2005.06183
23 M G Fluch, M Marschler, S Witzel, M C B Zaremsky, The Brin–Thompson groups sV are of type F, Pacific J. Math. 266 (2013) 283 MR3130623
24 A P Goryushkin, Imbedding of countable groups in 2–generated simple groups, Mat. Zametki 16 (1974) 231 MR382456
25 P Hall, On the embedding of a group in a join of given groups, J. Austral. Math. Soc. 17 (1974) 434 MR0376880
26 J Hennig, F Matucci, Presentations for the higher-dimensional Thompson groups nV , Pacific J. Math. 257 (2012) 53 MR2948458
27 J T Hyde, Constructing 2–generated subgroups of the group of homeomorphisms of Cantor space, PhD thesis, University of St Andrews (2017)
28 D H Kochloukova, C Martínez-Pérez, B E A Nucinkis, Cohomological finiteness properties of the Brin–Thompson–Higman groups 2V and 3V , Proc. Edinb. Math. Soc. 56 (2013) 777 MR3109758
29 D Quillen, Homotopy properties of the poset of nontrivial p–subgroups of a group, Adv. Math. 28 (1978) 101 MR493916
30 P E Schupp, Embeddings into simple groups, J. Lond. Math. Soc. 13 (1976) 90 MR401932
31 R Skipper, S Witzel, M C B Zaremsky, Simple groups separated by finiteness properties, Invent. Math. 215 (2019) 713 MR3910073
32 M Stein, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992) 477 MR1094555
33 S Witzel, Classifying spaces from Ore categories with Garside families, Algebr. Geom. Topol. 19 (2019) 1477 MR3954289
34 S Witzel, M C B Zaremsky, Thompson groups for systems of groups, and their finiteness properties, Groups Geom. Dyn. 12 (2018) 289 MR3781423