Recent Issues
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
J M Alonso ,
Finiteness
conditions on groups and quasi-isometries , J. Pure
Appl. Algebra 95 (1994) 121 MR1293049
2
L Bartholdi , Y de
Cornulier , D H Kochloukova , Homological finiteness
properties of wreath products , Q. J. Math. 66 (2015)
437 MR3356831
3
J Belk , C
Bleak , F Matucci , Embedding
right-angled Artin groups into Brin–Thompson groups ,
Math. Proc. Cambridge Philos. Soc. 169 (2020) 225 MR4138920
4
J Belk , B
Forrest , Rearrangement groups of
fractals , Trans. Amer. Math. Soc. 372 (2019) 4509
MR4009393
5
J Belk , F
Matucci , Röver’s simple
group is of type F ∞ ,
Publ. Mat. 60 (2016) 501 MR3521498
6
M Bestvina , N
Brady , Morse theory and
finiteness properties of groups , Invent. Math. 129
(1997) 445 MR1465330
7
A Björner , L
Lovász , S T Vrećica , R T
Živaljević , Chessboard complexes and
matching complexes , J. Lond. Math. Soc. 49 (1994) 25
MR1253009
8
C Bleak , L
Elliott , J Hyde , Sufficient conditions for a
group of homeomorphisms of the Cantor set to be
two-generated , preprint (2020) arXiv:2008.04791
9
C Bleak , D
Lanoue , A family of
non-isomorphism results , Geom. Dedicata 146 (2010) 21
MR2644268
10
M R Bridson ,
Controlled
embeddings into groups that have no non-trivial finite
quotients , from: "The Epstein birthday schrift"
(editors I Rivin, C Rourke, C Series), Geom. Topol. Monogr. 1,
Geom. Topol. Publ. (1998) 99 MR1668335
11
M G Brin ,
Higher
dimensional Thompson groups , Geom. Dedicata 108 (2004)
163 MR2112673
12
M G Brin ,
Presentations
of higher dimensional Thompson groups , J. Algebra 284
(2005) 520 MR2114568
13
M G Brin ,
On the
baker’s map and the simplicity of the higher dimensional
Thompson groups nV , Publ.
Mat. 54 (2010) 433 MR2675931
14
K S Brown ,
Finiteness
properties of groups , J. Pure Appl. Algebra 44 (1987)
45 MR885095
15
K S Brown ,
The
geometry of finitely presented infinite simple groups ,
from: "Algorithms and classification in combinatorial group
theory" (editors G Baumslag, C F Miller III), Math. Sci.
Res. Inst. Publ. 23, Springer (1992) 121 MR1230631
16
K S Brown , R
Geoghegan , An infinite-dimensional
torsion-free FP ∞ group , Invent. Math. 77 (1984)
367 MR752825
17
K U Bux ,
M G Fluch , M Marschler , S Witzel ,
M C B Zaremsky , The braided
Thompson’s groups are of type F ∞ , J. Reine Angew. Math. 718
(2016) 59 MR3545879
18
P J Cameron ,
Oligomorphic
permutation groups , 152, Cambridge Univ. Press (1990)
MR1066691
19
J W Cannon ,
W J Floyd , W R Parry ,
Introductory notes on Richard Thompson’s groups ,
Enseign. Math. 42 (1996) 215 MR1426438
20
P E Caprace , B
Rémy , Simplicity and
superrigidity of twin building lattices , Invent. Math.
176 (2009) 169 MR2485882
21
P E Caprace , B
Rémy , Non-distortion of
twin building lattices , Geom. Dedicata 147 (2010) 397
MR2660586
22
A Darbinyan , M
Steenbock , Embeddings into left-orderable simple
groups , preprint (2020) arXiv:2005.06183
23
M G Fluch , M
Marschler , S Witzel , M C B
Zaremsky , The Brin–Thompson
groups sV are of type F ∞ , Pacific J. Math. 266 (2013)
283 MR3130623
24
A P Goryushkin ,
Imbedding of
countable groups in 2 –generated
simple groups , Mat. Zametki 16 (1974) 231 MR382456
25
P Hall , On the embedding of
a group in a join of given groups , J. Austral. Math.
Soc. 17 (1974) 434 MR0376880
26
J Hennig , F
Matucci , Presentations for the
higher-dimensional Thompson groups nV , Pacific J. Math. 257 (2012) 53
MR2948458
27
J T Hyde ,
Constructing
2 –generated subgroups of the group
of homeomorphisms of Cantor space , PhD thesis,
University of St Andrews (2017)
28
D H Kochloukova ,
C Martínez-Pérez , B E A Nucinkis ,
Cohomological
finiteness properties of the Brin–Thompson–Higman groups
2 V and
3 V , Proc. Edinb. Math. Soc. 56 (2013)
777 MR3109758
29
D Quillen , Homotopy
properties of the poset of nontrivial p –subgroups of a group , Adv. Math. 28
(1978) 101 MR493916
30
P E Schupp ,
Embeddings
into simple groups , J. Lond. Math. Soc. 13 (1976) 90
MR401932
31
R Skipper , S
Witzel , M C B Zaremsky , Simple groups
separated by finiteness properties , Invent. Math. 215
(2019) 713 MR3910073
32
M Stein , Groups of piecewise linear
homeomorphisms , Trans. Amer. Math. Soc. 332 (1992) 477
MR1094555
33
S Witzel , Classifying spaces
from Ore categories with Garside families , Algebr.
Geom. Topol. 19 (2019) 1477 MR3954289
34
S Witzel ,
M C B Zaremsky , Thompson groups for systems
of groups, and their finiteness properties , Groups
Geom. Dyn. 12 (2018) 289 MR3781423