Volume 26, issue 3 (2022)

Download this article
Download this article For screen
For printing
Recent Issues

Volume 27
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Interests
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Asymptotically rigid mapping class groups, I: Finiteness properties of braided Thompson's and Houghton's groups

Anthony Genevois, Anne Lonjou and Christian Urech

Geometry & Topology 26 (2022) 1385–1434
Bibliography
1 J Aramayona, L Funar, Asymptotic mapping class groups of closed surfaces punctured along Cantor sets, Mosc. Math. J. 21 (2021) 1 MR4219034
2 J Belk, B Forrest, Rearrangement groups of fractals, Trans. Amer. Math. Soc. 372 (2019) 4509 MR4009393
3 J Belk, M C B Zaremsky, Twisted Brin–Thompson groups, Geom. Topol. 26 (2022) 1189
4 R W Bell, D Margalit, Braid groups and the co-Hopfian property, J. Algebra 303 (2006) 275 MR2253663
5 M Bestvina, N Brady, Morse theory and finiteness properties of groups, Invent. Math. 129 (1997) 445 MR1465330
6 T Brady, J Burillo, S Cleary, M Stein, Pure braid subgroups of braided Thompson’s groups, Publ. Mat. 52 (2008) 57 MR2384840
7 M R Bridson, A Haefliger, Metric spaces of non-positive curvature, 319, Springer (1999) MR1744486
8 M G Brin, Higher dimensional Thompson groups, Geom. Dedicata 108 (2004) 163 MR2112673
9 M G Brin, The algebra of strand splitting, I : A braided version of Thompson’s group V , J. Group Theory 10 (2007) 757 MR2364825
10 K S Brown, Cohomology of groups, 87, Springer (1982) MR672956
11 K S Brown, Finiteness properties of groups, J. Pure Appl. Algebra 44 (1987) 45 MR885095
12 K U Bux, Tangling and braiding the chessboard complex, preprint (2003) arXiv:math/0310420
13 K U Bux, Higher finiteness properties of braided groups, from: "Spectral structures and topological methods in mathematics" (editors M Baake, F Götze, W Hoffmann), Eur. Math. Soc. (2019) 299 MR4248149
14 K U Bux, Arc matching complexes and finiteness properties, Oberwolfach Rep. 17 (2021) 1121
15 K U Bux, M G Fluch, M Marschler, S Witzel, M C B Zaremsky, The braided Thompson’s groups are of type F, J. Reine Angew. Math. 718 (2016) 59 MR3545879
16 F Degenhardt, Endlichkeitseigenschaften gewisser Gruppen von Zöpfen unendlicher Ordnung, PhD thesis, Goethe-Universität Frankfurt am Main (2000)
17 P Dehornoy, The group of parenthesized braids, Adv. Math. 205 (2006) 354 MR2258261
18 C Druţu, M Kapovich, Geometric group theory, 63, Amer. Math. Soc. (2018) MR3753580
19 S Eilenberg, Sur les transformations périodiques de la surface de sphère, Fund. Math. 22 (1934) 28
20 D S Farley, Homological and finiteness properties of picture groups, Trans. Amer. Math. Soc. 357 (2005) 3567 MR2146639
21 L Funar, Braided Houghton groups as mapping class groups, An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. 53 (2007) 229 MR2386796
22 L Funar, C Kapoudjian, On a universal mapping class group of genus zero, Geom. Funct. Anal. 14 (2004) 965 MR2105950
23 L Funar, C Kapoudjian, The braided Ptolemy–Thompson group is finitely presented, Geom. Topol. 12 (2008) 475 MR2390352
24 L Funar, C Kapoudjian, The braided Ptolemy–Thompson group is asynchronously combable, Comment. Math. Helv. 86 (2011) 707 MR2803858
25 L Funar, C Kapoudjian, V Sergiescu, Asymptotically rigid mapping class groups and Thompson’s groups, from: "Handbook of Teichmüller theory, III" (editor A Papadopoulos), IRMA Lect. Math. Theor. Phys. 17, Eur. Math. Soc. (2012) 595 MR2952772
26 A Genevois, A Lonjou, C Urech, Asymptotically rigid mapping class groups, II: Strand diagrams and nonpositive curvature, preprint (2021) arXiv:2110.06721
27 A Genevois, A Lonjou, C Urech, Asymptotically rigid mapping class groups, III: Explicit presentations, in preparation
28 V Guba, M Sapir, Diagram groups, 620, Amer. Math. Soc. (1997) MR1396957
29 J L Harer, Stability of the homology of the mapping class groups of orientable surfaces, Ann. of Math. 121 (1985) 215 MR786348
30 A Hatcher, On triangulations of surfaces, Topology Appl. 40 (1991) 189 MR1123262
31 G Higman, Finitely presented infinite simple groups, 8, Aust. Nat. Univ. (1974) MR0376874
32 C H Houghton, The first cohomology of a group with permutation module coefficients, Arch. Math. (Basel) 31 (1978) 254 MR521478
33 B Hughes, Local similarities and the Haagerup property, Groups Geom. Dyn. 3 (2009) 299 MR2486801
34 Y Lodha, J T Moore, A nonamenable finitely presented group of piecewise projective homeomorphisms, Groups Geom. Dyn. 10 (2016) 177 MR3460335
35 N Monod, Groups of piecewise projective homeomorphisms, Proc. Natl. Acad. Sci. USA 110 (2013) 4524 MR3047655
36 V V Nekrashevych, Cuntz–Pimsner algebras of group actions, J. Operator Theory 52 (2004) 223 MR2119267
37 B E A Nucinkis, S St. John-Green, Quasi-automorphisms of the infinite rooted 2–edge-coloured binary tree, Groups Geom. Dyn. 12 (2018) 529 MR3813202
38 C E Röver, Constructing finitely presented simple groups that contain Grigorchuk groups, J. Algebra 220 (1999) 284 MR1714140
39 R Skipper, S Witzel, M C B Zaremsky, Simple groups separated by finiteness properties, Invent. Math. 215 (2019) 713 MR3910073
40 M Stein, Groups of piecewise linear homeomorphisms, Trans. Amer. Math. Soc. 332 (1992) 477 MR1094555
41 W Thumann, Operad groups and their finiteness properties, Adv. Math. 307 (2017) 417 MR3590523
42 S Witzel, Classifying spaces from Ore categories with Garside families, Algebr. Geom. Topol. 19 (2019) 1477 MR3954289
43 S Witzel, M C B Zaremsky, Thompson groups for systems of groups, and their finiteness properties, Groups Geom. Dyn. 12 (2018) 289 MR3781423