Recent Issues
Volume 29, 2 issues
Volume 29
Issue 2, 549–1114
Issue 1, 1–548
Volume 28, 9 issues
Volume 28
Issue 9, 3973–4381
Issue 8, 3511–3972
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496
Volume 27, 9 issues
Volume 27
Issue 9, 3387–3831
Issue 8, 2937–3385
Issue 7, 2497–2936
Issue 6, 2049–2496
Issue 5, 1657–2048
Issue 4, 1273–1655
Issue 3, 823–1272
Issue 2, 417–821
Issue 1, 1–415
Volume 26, 8 issues
Volume 26
Issue 8, 3307–3833
Issue 7, 2855–3306
Issue 6, 2405–2853
Issue 5, 1907–2404
Issue 4, 1435–1905
Issue 3, 937–1434
Issue 2, 477–936
Issue 1, 1–476
Volume 25, 7 issues
Volume 25
Issue 7, 3257–3753
Issue 6, 2713–3256
Issue 5, 2167–2711
Issue 4, 1631–2166
Issue 3, 1087–1630
Issue 2, 547–1085
Issue 1, 1–546
Volume 24, 7 issues
Volume 24
Issue 7, 3219–3748
Issue 6, 2675–3218
Issue 5, 2149–2674
Issue 4, 1615–2148
Issue 3, 1075–1614
Issue 2, 533–1073
Issue 1, 1–532
Volume 23, 7 issues
Volume 23
Issue 7, 3233–3749
Issue 6, 2701–3231
Issue 5, 2165–2700
Issue 4, 1621–2164
Issue 3, 1085–1619
Issue 2, 541–1084
Issue 1, 1–540
Volume 22, 7 issues
Volume 22
Issue 7, 3761–4380
Issue 6, 3145–3760
Issue 5, 2511–3144
Issue 4, 1893–2510
Issue 3, 1267–1891
Issue 2, 645–1266
Issue 1, 1–644
Volume 21, 6 issues
Volume 21
Issue 6, 3191–3810
Issue 5, 2557–3190
Issue 4, 1931–2555
Issue 3, 1285–1930
Issue 2, 647–1283
Issue 1, 1–645
Volume 20, 6 issues
Volume 20
Issue 6, 3057–3673
Issue 5, 2439–3056
Issue 4, 1807–2438
Issue 3, 1257–1806
Issue 2, 629–1255
Issue 1, 1–627
Volume 19, 6 issues
Volume 19
Issue 6, 3031–3656
Issue 5, 2407–3030
Issue 4, 1777–2406
Issue 3, 1155–1775
Issue 2, 525–1154
Issue 1, 1–523
Volume 18, 5 issues
Volume 18
Issue 5, 2487–3110
Issue 4, 1865–2486
Issue 3, 1245–1863
Issue 2, 617–1244
Issue 1, 1–616
Volume 17, 5 issues
Volume 17
Issue 5, 2513–3134
Issue 4, 1877–2512
Issue 3, 1253–1876
Issue 2, 621–1252
Issue 1, 1–620
Volume 16, 4 issues
Volume 16
Issue 4, 1881–2516
Issue 3, 1247–1880
Issue 2, 625–1246
Issue 1, 1–624
Volume 15, 4 issues
Volume 15
Issue 4, 1843–2457
Issue 3, 1225–1842
Issue 2, 609–1224
Issue 1, 1–607
Volume 14, 5 issues
Volume 14
Issue 5, 2497–3000
Issue 4, 1871–2496
Issue 3, 1243–1870
Issue 2, 627–1242
Issue 1, 1–626
Volume 13, 5 issues
Volume 13
Issue 5, 2427–3054
Issue 4, 1835–2425
Issue 3, 1229–1833
Issue 2, 623–1227
Issue 1, 1–621
Volume 12, 5 issues
Volume 12
Issue 5, 2517–2855
Issue 4, 1883–2515
Issue 3, 1265–1882
Issue 2, 639–1263
Issue 1, 1–637
Volume 11, 4 issues
Volume 11
Issue 4, 1855–2440
Issue 3, 1255–1854
Issue 2, 643–1254
Issue 1, 1–642
Volume 10, 4 issues
Volume 10
Issue 4, 1855–2504
Issue 3, 1239–1853
Issue 2, 619–1238
Issue 1, 1–617
Volume 9, 4 issues
Volume 9
Issue 4, 1775–2415
Issue 3, 1187–1774
Issue 2, 571–1185
Issue 1, 1–569
Volume 8, 3 issues
Volume 8
Issue 3, 1013–1499
Issue 2, 511–1012
Issue 1, 1–509
Volume 7, 2 issues
Volume 7
Issue 2, 569–1073
Issue 1, 1–568
Volume 6, 2 issues
Volume 6
Issue 2, 495–990
Issue 1, 1–494
Volume 5, 2 issues
Volume 5
Issue 2, 441–945
Issue 1, 1–440
Volume 4, 1 issue
Volume 3, 1 issue
Volume 2, 1 issue
Volume 1, 1 issue
1
M Artin , Algebraic approximation of
structures over complete local rings , Inst. Hautes
Études Sci. Publ. Math. 36 (1969) 23 MR268188
2
T Aubin , Équations
du type Monge–Ampère sur les variétés kählériennes
compactes , Bull. Sci. Math. 102 (1978) 63 MR494932
3
R J Berman , S
Boucksom , P Eyssidieux , V Guedj , A
Zeriahi , Kähler–Einstein
metrics and the Kähler–Ricci flow on log Fano
varieties , J. Reine Angew. Math. 751 (2019) 27 MR3956691
4
R J Berman , H
Guenancia , Kähler–Einstein
metrics on stable varieties and log canonical pairs ,
Geom. Funct. Anal. 24 (2014) 1683 MR3283927
5
F Campana , H
Guenancia , M Păun , Metrics with cone
singularities along normal crossing divisors and holomorphic
tensor fields , Ann. Sci. École Norm. Sup. 46 (2013) 879
MR3134683
6
F Campana , M
Păun , Positivity
properties of the bundle of logarithmic tensors on compact
Kähler manifolds , Compos. Math. 152 (2016) 2350
MR3577897
7
B Claudon , S
Kebekus , B Taji , Generic positivity and
applications to hyperbolicity of moduli spaces , from:
"Hyperbolicity in algebraic varieties" (editors S Diverio, C
Voisin), Panoramas et Synthèses 56, Soc. Math. France (2022)
173
8
H Flenner , Restrictions of semistable
bundles on projective varieties , Comment. Math. Helv.
59 (1984) 635 MR780080
9
W Fulton , Intersection
theory , 2, Springer (1984) MR732620
10
D Greb , H
Guenancia , S Kebekus , Klt varieties with
trivial canonical class: holonomy, differential forms, and
fundamental groups , Geom. Topol. 23 (2019) 2051
MR3988092
11
D Greb , S
Kebekus , S J Kovács , T Peternell ,
Differential forms
on log canonical spaces , Publ. Math. Inst. Hautes
Études Sci. 114 (2011) 87 MR2854859
12
D Greb , S
Kebekus , T Peternell , B Taji , The Miyaoka–Yau inequality
and uniformisation of canonical models , Ann. Sci. École
Norm. Sup. 52 (2019) 1487 MR4061021
13
V Guedj , A
Zeriahi , The weighted
Monge–Ampère energy of quasiplurisubharmonic functions ,
J. Funct. Anal. 250 (2007) 442 MR2352488
14
H Guenancia ,
Kähler–Einstein
metrics with mixed Poincaré and cone singularities along a
normal crossing divisor , Ann. Inst. Fourier (Grenoble)
64 (2014) 1291 MR3330171
15
H Guenancia ,
Semistability
of the tangent sheaf of singular varieties , Algebr.
Geom. 3 (2016) 508 MR3568336
16
H Guenancia , M
Păun , Conic
singularities metrics with prescribed Ricci curvature : general
cone angles along normal crossing divisors , J.
Differential Geom. 103 (2016) 15 MR3488129
17
H Guenancia , D
Wu , On the boundary
behavior of Kähler–Einstein metrics on log canonical
pairs , Math. Ann. 366 (2016) 101 MR3552234
18
D Huybrechts , M
Lehn , The geometry of
moduli spaces of sheaves , E31, Friedr. Vieweg &
Sohn (1997) MR1450870
19
K Jabbusch , S
Kebekus , Families over
special base manifolds and a conjecture of Campana ,
Math. Z. 269 (2011) 847 MR2860268
20
T Jeffres , R
Mazzeo , Y A Rubinstein , Kähler–Einstein
metrics with edge singularities , Ann. of Math. 183
(2016) 95 MR3432582
21
Y Kawamata ,
Abundance
theorem for minimal threefolds , Invent. Math. 108
(1992) 229 MR1161091
22
R Kobayashi ,
Kähler–Einstein
metric on an open algebraic manifold , Osaka J. Math. 21
(1984) 399 MR752470
23
J Kollár , editor,
Flips
and abundance for algebraic threefolds , 211, Soc. Math.
France (1992) 1 MR1225842
24
J Kollár , Singularities of
pairs , from: "Algebraic geometry" (editors J Kollár, R
Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62,
Amer. Math. Soc. (1997) 221 MR1492525
25
J Kollár , S
Mori , Birational geometry
of algebraic varieties , 134, Cambridge Univ. Press
(1998) MR1658959
26
R Lazarsfeld ,
Positivity in
algebraic geometry, I : Classical setting : line bundles and
linear series , 48, Springer (2004) MR2095471
27
R Lazarsfeld ,
Positivity in
algebraic geometry, II : Positivity for vector bundles, and
multiplier ideals , 49, Springer (2004) MR2095472
28
G Megyesi , Chern classes of
ℚ –sheaves , from: "Flips
and abundance for algebraic threefolds" (editor J Kollár),
Astérisque 211, Soc. Math. France (1992) 115 MR1225842
29
Y Miyaoka , The Chern classes and
Kodaira dimension of a minimal variety , from:
"Algebraic geometry" (editor T Oda), Adv. Stud. Pure Math. 10,
North-Holland (1987) 449 MR946247
30
D Mumford , Towards an
enumerative geometry of the moduli space of curves ,
from: "Arithmetic and geometry, II" (editors M Artin, J Tate),
Progr. Math. 36, Birkhäuser (1983) 271 MR717614
31
C T Simpson ,
Constructing
variations of Hodge structure using Yang–Mills theory and
applications to uniformization , J. Amer. Math. Soc. 1
(1988) 867 MR944577
32
C T Simpson ,
Higgs bundles
and local systems , Inst. Hautes Études Sci. Publ. Math.
75 (1992) 5 MR1179076
33
J Song , X Wang ,
The greatest
Ricci lower bound, conical Einstein metrics and Chern number
inequality , Geom. Topol. 20 (2016) 49 MR3470713
34
G Tian , Kähler–Einstein metrics on
algebraic manifolds , from: "Transcendental methods in
algebraic geometry" (editors F Catanese, C Ciliberto), Lecture
Notes in Math. 1646, Springer (1996) 143 MR1603624
35
G Tian , S T
Yau , Existence of
Kähler–Einstein metrics on complete Kähler manifolds and their
applications to algebraic geometry , from: "Mathematical
aspects of string theory" (editor S T Yau), Adv. Ser.
Math. Phys. 1, World Sci. (1987) 574 MR915840
36
H Tsuji , Existence and degeneration
of Kähler–Einstein metrics on minimal algebraic varieties of
general type , Math. Ann. 281 (1988) 123 MR944606
37
S T Yau ,
Calabi’s
conjecture and some new results in algebraic geometry ,
Proc. Nat. Acad. Sci. U.S.A. 74 (1977) 1798 MR451180
38
S T Yau ,
On the
Ricci curvature of a compact Kähler manifold and the complex
Monge–Ampère equation, I , Comm. Pure Appl. Math. 31
(1978) 339 MR480350
39
Y Zhang , Miyaoka–Yau
inequality for minimal projective manifolds of general
type , Proc. Amer. Math. Soc. 137 (2009) 2749 MR2497488
40
Z Zhang , Scalar curvature bound
for Kähler–Ricci flows over minimal manifolds of general
type , Int. Math. Res. Not. 2009 (2009) 3901 MR2544732