Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Power operations in the Stolz–Teichner program

Tobias Barthel, Daniel Berwick-Evans and Nathaniel Stapleton

Geometry & Topology 26 (2022) 1773–1848
Bibliography
1 M Ando, Isogenies of formal group laws and power operations in the cohomology theories En, Duke Math. J. 79 (1995) 423 MR1344767
2 M Ando, Power operations in elliptic cohomology and representations of loop groups, Trans. Amer. Math. Soc. 352 (2000) 5619 MR1637129
3 M F Atiyah, Power operations in K–theory, Q. J. Math. 17 (1966) 165 MR202130
4 M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 MR1001453
5 M Atiyah, G Segal, On equivariant Euler characteristics, J. Geom. Phys. 6 (1989) 671 MR1076708
6 A Baker, Hecke operators as operations in elliptic cohomology, J. Pure Appl. Algebra 63 (1990) 1 MR1037690
7 A Baker, C Thomas, Classifying spaces, Virasoro equivariant bundles, elliptic cohomology and moonshine, preprint (1999)
8 T Barthel, N Stapleton, The character of the total power operation, Geom. Topol. 21 (2017) 385 MR3608717
9 M Batchelor, The structure of supermanifolds, Trans. Amer. Math. Soc. 253 (1979) 329 MR536951
10 K Behrend, P Xu, Differentiable stacks and gerbes, J. Symplectic Geom. 9 (2011) 285 MR2817778
11 D Berwick-Evans, Equivariant elliptic cohomology, gauged sigma models, and discrete torsion, Trans. Amer. Math. Soc. 375 (2021) 369 MR4358671
12 D Berwick-Evans, Supersymmetric field theories and the elliptic index theorem with complex coefficients, Geom. Topol. 25 (2021) 2287 MR4310891
13 D Berwick-Evans, A Tripathy, A model for complex analytic equivariant elliptic cohomology from quantum field theory, preprint (2018) arXiv:1805.04146
14 D Berwick-Evans, A Tripathy, A de Rham model for complex analytic equivariant elliptic cohomology, Adv. Math. 380 (2021) MR4205106
15 D Blottière, Differentiable stacks and Lie groupoids, preprint (2007)
16 L Borisov, A Libgober, Elliptic genera of singular varieties, Duke Math. J. 116 (2003) 319 MR1953295
17 R R Bruner, J P May, J E McClure, M Steinberger, H ring spectra and their applications, 1176, Springer (1986) MR836132
18 P M Cheung, Supersymmetric field theories and generalized cohomology, PhD thesis, Stanford University (2006) MR2709632
19 P Deligne, J W Morgan, Notes on supersymmetry (following Joseph Bernstein), from: "Quantum fields and strings: a course for mathematicians, I" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 41 MR1701597
20 J A Devoto, Equivariant elliptic homology and finite groups, Michigan Math. J. 43 (1996) 3 MR1381597
21 R Dijkgraaf, G Moore, E Verlinde, H Verlinde, Elliptic genera of symmetric products and second quantized strings, Comm. Math. Phys. 185 (1997) 197 MR1463039
22 F Dumitrescu, Superconnections and parallel transport, PhD thesis, University of Notre Dame (2006) MR2711311
23 N Ganter, Orbifold genera, product formulas and power operations, Adv. Math. 205 (2006) 84 MR2254309
24 N Ganter, Stringy power operations in Tate K–theory, preprint (2007) arXiv:math/0701565
25 N Ganter, Hecke operators in equivariant elliptic cohomology and generalized Moonshine, from: "Groups and symmetries" (editors J Harnad, P Winternitz), CRM Proc. Lecture Notes 47, Amer. Math. Soc. (2009) 173 MR2500561
26 N Ganter, Global Mackey functors with operations and n–special lambda rings, preprint (2013) arXiv:1301.4616
27 N Ganter, Power operations in orbifold Tate K–theory, Homology Homotopy Appl. 15 (2013) 313 MR3079210
28 D Gepner, L Meier, On equivariant topological modular forms, preprint (2020) arXiv:2004.10254
29 P G Goerss, M J Hopkins, Moduli spaces of commutative ring spectra, from: "Structured ring spectra" (editors A Baker, B Richter), Lond. Math. Soc. Lect. Note Ser. 315, Cambridge Univ. Press (2004) 151 MR2125040
30 D Grady, D Pavlov, Extended field theories are local and have classifying spaces, preprint (2020) arXiv:2011.01208
31 F Han, Supersymmetric QFTs, super loop spaces and Bismut–Chern character, PhD thesis, University of California, Berkeley (2008) MR2712304
32 H Hohnhold, M Kreck, S Stolz, P Teichner, Differential forms and 0–dimensional supersymmetric field theories, Quantum Topol. 2 (2011) 1 MR2763085
33 H Hohnhold, S Stolz, P Teichner, From minimal geodesics to supersymmetric field theories, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lect. Notes 50, Amer. Math. Soc. (2010) 207 MR2648897
34 M J Hopkins, N J Kuhn, D C Ravenel, Generalized group characters and complex oriented cohomology theories, J. Amer. Math. Soc. 13 (2000) 553 MR1758754
35 Z Huan, Quasi-elliptic cohomology and its power operations, J. Homotopy Relat. Struct. 13 (2018) 715 MR3870771
36 P S Landweber, D C Ravenel, R E Stong, Periodic cohomology theories defined by elliptic curves, from: "The Čech centennial" (editors M Cenkl, H Miller), Contemp. Math. 181, Amer. Math. Soc. (1995) 317 MR1320998
37 J Lurie, Elliptic cohomology, III: Tempered cohomology, preprint (2019)
38 J Morava, Moonshine elements in elliptic cohomology, from: "Groups and symmetries" (editors J Harnad, P Winternitz), CRM Proc. Lect. Notes 47, Amer. Math. Soc. (2009) 247 MR2500565
39 E Peterson, Formal geometry and bordism operations, 177, Cambridge Univ. Press (2019) MR3890071
40 C Rezk, Isogenies, power operations, and homotopy theory, from: "Proceedings of the International Congress of Mathematicians, II" (editors S Y Jang, Y R Kim, D W Lee, I Ye), Kyung Moon Sa (2014) 1125 MR3728655
41 C J Schommer-Pries, Central extensions of smooth 2–groups and a finite-dimensional string 2–group, Geom. Topol. 15 (2011) 609 MR2800361
42 C Schommer-Pries, N Stapleton, Singular cohomology from supersymmetric field theories, Adv. Math. 390 (2021) MR4298593
43 S Schwede, Global homotopy theory, 34, Cambridge Univ. Press (2018) MR3838307
44 G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 421 MR2079383
45 A Stoffel, Dimensional reduction and the equivariant Chern character, Algebr. Geom. Topol. 19 (2019) 109 MR3910579
46 A Stoffel, Supersymmetric field theories from twisted vector bundles, Comm. Math. Phys. 367 (2019) 417 MR3936122
47 S Stolz, P Teichner, What is an elliptic object?, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lect. Note Ser. 308, Cambridge Univ. Press (2004) 247 MR2079378
48 S Stolz, P Teichner, Supersymmetric field theories and generalized cohomology, from: "Mathematical foundations of quantum field theory and perturbative string theory" (editors H Sati, U Schreiber), Proc. Sympos. Pure Math. 83, Amer. Math. Soc. (2011) 279 MR2742432
49 N P Strickland, Morava E–theory of symmetric groups, Topology 37 (1998) 757 MR1607736
50 H Tamanoi, Generalized orbifold Euler characteristic of symmetric products and equivariant Morava K–theory, Algebr. Geom. Topol. 1 (2001) 115 MR1805937
51 H Tamanoi, Infinite product decomposition of orbifold mapping spaces, Algebr. Geom. Topol. 9 (2009) 569 MR2491586
52 C B Thomas, Elliptic cohomology, Kluwer (1999) MR1742240