Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 8, 3511–3972
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Ancient mean curvature flows out of polytopes

Theodora Bourni, Mat Langford and Giuseppe Tinaglia

Geometry & Topology 26 (2022) 1849–1905
Bibliography
1 B Andrews, Harnack inequalities for evolving hypersurfaces, Math. Z. 217 (1994) 179 MR1296393
2 B Andrews, Noncollapsing in mean-convex mean curvature flow, Geom. Topol. 16 (2012) 1413 MR2967056
3 B Andrews, M Langford, J McCoy, Noncollapsing in fully nonlinear curvature flows, Ann. Inst. H. Poincaré C Anal. Non Linéaire 30 (2013) 23 MR3011290
4 S B Angenent, Shrinking doughnuts, from: "Nonlinear diffusion equations and their equilibrium states, III" (editors N G Lloyd, W M Ni, L A Peletier, J Serrin), Progr. Nonlinear Differential Equations Appl. 7, Birkhäuser (1992) 21 MR1167827
5 S Angenent, Formal asymptotic expansions for symmetric ancient ovals in mean curvature flow, Netw. Heterog. Media 8 (2013) 1 MR3043925
6 S Angenent, S Brendle, P Daskalopoulos, N Šešum, Unique asymptotics of compact ancient solutions to three-dimensional Ricci flow, Comm. Pure Appl. Math. 75 (2022) 1032 MR4400906
7 S Angenent, P Daskalopoulos, N Sesum, Unique asymptotics of ancient convex mean curvature flow solutions, J. Differential Geom. 111 (2019) 381 MR3934596
8 S Angenent, P Daskalopoulos, N Sesum, Uniqueness of two-convex closed ancient solutions to the mean curvature flow, Ann. of Math. 192 (2020) 353 MR4151080
9 S Angenent, Q You, Ancient solutions to curve shortening with finite total curvature, Trans. Amer. Math. Soc. 374 (2021) 863 MR4196380
10 I Bakas, C Sourdis, Dirichlet sigma models and mean curvature flow, J. High Energy Phys. (2007) MR2326594
11 R H Bamler, B Kleiner, On the rotational symmetry of 3–dimensional κ–solutions, J. Reine Angew. Math. 779 (2021) 37 MR4319063
12 T Bourni, M Langford, Type-II singularities of two-convex immersed mean curvature flow, Geom. Flows 2 (2017) 1 MR3562950
13 T Bourni, M Langford, A Mramor, On the construction of closed nonconvex nonsoliton ancient mean curvature flows, Int. Math. Res. Not. 2021 (2021) 757 MR4199238
14 T Bourni, M Langford, G Tinaglia, Convex ancient solutions to curve shortening flow, Calc. Var. Partial Differential Equations 59 (2020) MR4127403
15 T Bourni, M Langford, G Tinaglia, On the existence of translating solutions of mean curvature flow in slab regions, Anal. PDE 13 (2020) 1051 MR4109899
16 T Bourni, M Langford, G Tinaglia, Collapsing ancient solutions of mean curvature flow, J. Differential Geom. 119 (2021) 187 MR4318294
17 T Bourni, M Langford, G Tinaglia, Convex ancient solutions to mean curvature flow, from: "Differential geometry in the large" (editors O Dearricott, W Tuschmann, Y Nikolayevsky, T Leistner, D Crowley), London Math. Soc. Lecture Note Ser. 463, Cambridge Univ. Press (2021) 50 MR4420785
18 K A Brakke, The motion of a surface by its mean curvature, 20, Princeton Univ. Press (1978) MR0485012
19 S Brendle, Rotational symmetry of Ricci solitons in higher dimensions, J. Differential Geom. 97 (2014) 191 MR3231974
20 S Brendle, K Choi, Uniqueness of convex ancient solutions to mean curvature flow in higher dimensions, Geom. Topol. 25 (2021) 2195 MR4310889
21 P Bryan, M N Ivaki, Harnack estimate for mean curvature flow on the sphere, Asian J. Math. 24 (2020) 165 MR4143987
22 P Bryan, M N Ivaki, J Scheuer, On the classification of ancient solutions to curvature flows on the sphere, preprint (2016) arXiv:1604.01694
23 P Bryan, J Louie, Classification of convex ancient solutions to curve shortening flow on the sphere, J. Geom. Anal. 26 (2016) 858 MR3472819
24 R Bryant, Ricci flow solitons in dimension three with SO(3)–symmetries, unpublished notes (2005)
25 F Chini, N M Møller, Ancient mean curvature flows and their spacetime tracks, preprint (2019) arXiv:1901.05481
26 F Chini, N M Møller, Bi-halfspace and convex hull theorems for translating solitons, Int. Math. Res. Not. 2021 (2021) 13011 MR4307681
27 K Choi, C Mantoulidis, Ancient gradient flows of elliptic functionals and Morse index, Amer. J. Math. 144 (2022) 541 MR4401511
28 B Chow, Geometric aspects of Aleksandrov reflection and gradient estimates for parabolic equations, Comm. Anal. Geom. 5 (1997) 389 MR1483984
29 B Chow, R Gulliver, Aleksandrov reflection and geometric evolution of hypersurfaces, Comm. Anal. Geom. 9 (2001) 261 MR1846204
30 P Daskalopoulos, Ancient solutions to geometric flows, from: "Proceedings of the International Congress of Mathematicians, III", Kyung Moon Sa (2014) 773 MR3729051
31 P Daskalopoulos, R Hamilton, N Sesum, Classification of compact ancient solutions to the curve shortening flow, J. Differential Geom. 84 (2010) 455 MR2669361
32 P Daskalopoulos, R Hamilton, N Sesum, Classification of ancient compact solutions to the Ricci flow on surfaces, J. Differential Geom. 91 (2012) 171 MR2971286
33 P Daskalopoulos, M del Pino, J King, N Sesum, Type I ancient compact solutions of the Yamabe flow, Nonlinear Anal. 137 (2016) 338 MR3485129
34 P Daskalopoulos, M del Pino, J King, N Sesum, New type I ancient compact solutions of the Yamabe flow, Math. Res. Lett. 24 (2017) 1667 MR3762689
35 P Daskalopoulos, M del Pino, N Sesum, Type II ancient compact solutions to the Yamabe flow, J. Reine Angew. Math. 738 (2018) 1 MR3794888
36 P Daskalopoulos, N Sesum, Eternal solutions to the Ricci flow on 2, Int. Math. Res. Not. 2006 (2006) MR2264733
37 K Ecker, G Huisken, Interior estimates for hypersurfaces moving by mean curvature, Invent. Math. 105 (1991) 547 MR1117150
38 V A Fateev, E Onofri, A B Zamolodchikov, Integrable deformations of the O(3) sigma model : the sausage model, Nuclear Phys. B 406 (1993) 521 MR1239623
39 B Grünbaum, Convex polytopes, 221, Springer (2003) MR1976856
40 R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) 255 MR664497
41 R S Hamilton, The Harnack estimate for the Ricci flow, J. Differential Geom. 37 (1993) 225 MR1198607
42 R S Hamilton, Convex hypersurfaces with pinched second fundamental form, Comm. Anal. Geom. 2 (1994) 167 MR1312684
43 R S Hamilton, Harnack estimate for the mean curvature flow, J. Differential Geom. 41 (1995) 215 MR1316556
44 R Haslhofer, Uniqueness of the bowl soliton, Geom. Topol. 19 (2015) 2393 MR3375531
45 R Haslhofer, O Hershkovits, Ancient solutions of the mean curvature flow, Comm. Anal. Geom. 24 (2016) 593 MR3521319
46 D Hoffman, T Ilmanen, F Martín, B White, Graphical translators for mean curvature flow, Calc. Var. Partial Differential Equations 58 (2019) MR3962912
47 G Huisken, Flow by mean curvature of convex surfaces into spheres, J. Differential Geom. 20 (1984) 237 MR772132
48 G Huisken, C Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, Acta Math. 183 (1999) 45 MR1719551
49 G Huisken, C Sinestrari, Mean curvature flow singularities for mean convex surfaces, Calc. Var. Partial Differential Equations 8 (1999) 1 MR1666878
50 G Huisken, C Sinestrari, Convex ancient solutions of the mean curvature flow, J. Differential Geom. 101 (2015) 267 MR3399098
51 J Isenberg, H Wu, Mean curvature flow of noncompact hypersurfaces with type-II curvature blow-up, J. Reine Angew. Math. 754 (2019) 225 MR4000574
52 N J Korevaar, R Kusner, B Solomon, The structure of complete embedded surfaces with constant mean curvature, J. Differential Geom. 30 (1989) 465 MR1010168
53 Y Lai, A family of 3d steady gradient solitons that are flying wings, preprint (2020) arXiv:2010.07272
54 B Lambert, J D Lotay, F Schulze, Ancient solutions in Lagrangian mean curvature flow, Ann. Sc. Norm. Super. Pisa Cl. Sci. 22 (2021) 1169 MR4334316
55 M Langford, A general pinching principle for mean curvature flow and applications, Calc. Var. Partial Differential Equations 56 (2017) MR3669776
56 M Langford, S Lynch, Sharp one-sided curvature estimates for fully nonlinear curvature flows and applications to ancient solutions, J. Reine Angew. Math. 765 (2020) 1 MR4129354
57 S L Lukyanov, E S Vitchev, A B Zamolodchikov, Integrable model of boundary interaction: the paperclip, Nuclear Phys. B 683 (2004) 423 MR2057110
58 S L Lukyanov, A B Zamolodchikov, Dual form of the paperclip model, Nuclear Phys. B 744 (2006) 295 MR2229176
59 S Lynch, H T Nguyen, Pinched ancient solutions to the high codimension mean curvature flow, Calc. Var. Partial Differential Equations 60 (2021) MR4201652
60 J M S Ma, Ancient solutions to the curve shortening flow spanning the halfplane, Trans. Amer. Math. Soc. 374 (2021) 4207 MR4251227
61 A Mramor, A Payne, Ancient and eternal solutions to mean curvature flow from minimal surfaces, Math. Ann. 380 (2021) 569 MR4263692
62 W W Mullins, Two-dimensional motion of idealized grain boundaries, J. Appl. Phys. 27 (1956) 900 MR78836
63 J von Neumann, Discussion: shape of metal grains, from: "Metal interfaces", American Society for Metals (1952) 108
64 L Ni, Ancient solutions to Kähler–Ricci flow, Math. Res. Lett. 12 (2005) 633 MR2189227
65 L Ni, Closed type I ancient solutions to Ricci flow, from: "Recent advances in geometric analysis" (editors Y I Lee, C S Lin, M P Tsui), Adv. Lect. Math. 11, International (2010) 147 MR2648942
66 G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002) arXiv:math/0211159
67 S Risa, C Sinestrari, Ancient solutions of geometric flows with curvature pinching, J. Geom. Anal. 29 (2019) 1206 MR3935256
68 S Risa, C Sinestrari, Strong spherical rigidity of ancient solutions of expansive curvature flows, Bull. Lond. Math. Soc. 52 (2020) 94 MR4072034
69 M Sáez, O C Schnürer, Mean curvature flow without singularities, J. Differential Geom. 97 (2014) 545 MR3263514
70 W Sheng, X J Wang, Singularity profile in the mean curvature flow, Methods Appl. Anal. 16 (2009) 139 MR2563745
71 K Sonnanburg, A Liouville theorem for mean curvature flow, preprint (2017) arXiv:1711.02261
72 J Spruck, L Xiao, Complete translating solitons to the mean curvature flow in 3 with nonnegative mean curvature, Amer. J. Math. 142 (2020) 993 MR4101337
73 X J Wang, Convex solutions to the mean curvature flow, Ann. of Math. 173 (2011) 1185 MR2800714
74 B White, The size of the singular set in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 13 (2000) 665 MR1758759
75 B White, The nature of singularities in mean curvature flow of mean-convex sets, J. Amer. Math. Soc. 16 (2003) 123 MR1937202