Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
Author Index
To Appear
 
Other MSP Journals
Topological dualities in the Ising model

Daniel S Freed and Constantin Teleman

Geometry & Topology 26 (2022) 1907–1984
Bibliography
1 M Atiyah, Topological quantum field theories, Inst. Hautes Études Sci. Publ. Math. 68 (1988) 175 MR1001453
2 J C Baez, J Dolan, Higher-dimensional algebra and topological quantum field theory, J. Math. Phys. 36 (1995) 6073 MR1355899
3 B Balsam, A Kirillov Jr., Turaev–Viro invariants as an extended TQFT, preprint (2010) arXiv:1004.1533
4 J W Barrett, B W Westbury, Invariants of piecewise-linear 3–manifolds, Trans. Amer. Math. Soc. 348 (1996) 3997 MR1357878
5 J W Barrett, B W Westbury, Spherical categories, Adv. Math. 143 (1999) 357 MR1686423
6 D Ben-Zvi, J Francis, D Nadler, Integral transforms and Drinfeld centers in derived algebraic geometry, J. Amer. Math. Soc. 23 (2010) 909 MR2669705
7 D Ben-Zvi, S Gunningham, Symmetries of categorical representations and the quantum Ngô action, preprint (2017) arXiv:1712.01963
8 E H Brown Jr., M Comenetz, Pontrjagin duality for generalized homology and cohomology theories, Amer. J. Math. 98 (1976) 1 MR405403
9 J Cardy, Scaling and renormalization in statistical physics, 5, Cambridge Univ. Press (1996) MR1446000
10 C Córdova, T T Dumitrescu, K Intriligator, Exploring 2–group global symmetries, J. High Energy Phys. (2019) MR3925280
11 O Davidovich, State sums in two dimensional fully extended topological field theories, PhD thesis, University of Texas at Austin (2011)
12 A Debray, The low-energy TQFT of the generalized double semion model, Comm. Math. Phys. 375 (2020) 1079 MR4083885
13 C L Douglas, C Schommer-Pries, N Snyder, Dualizable tensor categories, 1308, Amer. Math. Soc. (2020) MR4254952
14 P Etingof, S Gelaki, D Nikshych, V Ostrik, Tensor categories, 205, Amer. Math. Soc. (2015) MR3242743
15 D S Freed, Higher algebraic structures and quantization, Comm. Math. Phys. 159 (1994) 343 MR1256993
16 D S Freed, The cobordism hypothesis, Bull. Amer. Math. Soc. 50 (2013) 57 MR2994995
17 D S Freed, Lectures on field theory and topology, 133, Amer. Math. Soc. (2019) MR3969923
18 D S Freed, M J Hopkins, Reflection positivity and invertible topological phases, Geom. Topol. 25 (2021) 1165 MR4268163
19 D S Freed, M J Hopkins, J Lurie, C Teleman, Topological quantum field theories from compact Lie groups, from: "A celebration of the mathematical legacy of Raoul Bott" (editor P R Kotiuga), CRM Proc. Lecture Notes 50, Amer. Math. Soc. (2010) 367 MR2648901
20 D S Freed, M J Hopkins, C Teleman, Loop groups and twisted K–theory, I, J. Topol. 4 (2011) 737 MR2860342
21 D S Freed, F Quinn, Chern–Simons theory with finite gauge group, Comm. Math. Phys. 156 (1993) 435 MR1240583
22 D S Freed, C Teleman, Relative quantum field theory, Comm. Math. Phys. 326 (2014) 459 MR3165462
23 D S Freed, C Teleman, Gapped boundary theories in three dimensions, Comm. Math. Phys. 388 (2021) 845 MR4334249
24 D Gaiotto, A Kapustin, N Seiberg, B Willett, Generalized global symmetries, J. High Energy Phys. 2015 (2015) MR3321281
25 T Hayashi, A canonical Tannaka duality for finite semisimple tensor categories, preprint (1999) arXiv:math/9904073
26 G ’t Hooft, On the phase transition towards permanent quark confinement, Nuclear Phys. B 138 (1978) 1 MR489444
27 C Itzykson, J M Drouffe, Statistical field theory, I: From Brownian motion to renormalization and lattice gauge theory, Cambridge Univ. Press (1989) MR1175176
28 T Johnson-Freyd, C Scheimbauer, (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories, Adv. Math. 307 (2017) 147 MR3590516
29 A Kapustin, N Seiberg, Coupling a QFT to a TQFT and duality, J. High Energy Phys. 2014 (2014)
30 R G Larson, D E Radford, Finite-dimensional cosemisimple Hopf algebras in characteristic 0 are semisimple, J. Algebra 117 (1988) 267 MR957441
31 C I Lazaroiu, On the structure of open-closed topological field theory in two dimensions, Nuclear Phys. B 603 (2001) 497 MR1839382
32 J Lurie, On the classification of topological field theories, from: "Current developments in mathematics, 2008" (editors D Jerison, B Mazur, T Mrowka, W Schmid, R Stanley, S T Yau), International (2009) 129 MR2555928
33 A Masuoka, Classification of semisimple Hopf algebras, from: "Handbook of algebra, V" (editor M Hazewinkel), Elsevier (2008) 429 MR2523456
34 G W Moore, G B Segal, D–branes and K–theory in 2D topological field theory, from: "Dirichlet branes and mirror symmetry" (editors M R Douglas, M Gross), Clay Math. Monogr. 4, Amer. Math. Soc. (2009) MR2567952
35 L Onsager, Crystal statistics, I : A two-dimensional model with an order-disorder transition, Phys. Rev. 65 (1944) 117 MR10315
36 V Ostrik, Module categories, weak Hopf algebras and modular invariants, Transform. Groups 8 (2003) 177 MR1976459
37 R Peirls, On Ising’s model of ferromagnetism, Math. Proc. Cambridge Philos. Soc. 32 (1936) 477
38 F Quinn, Lectures on axiomatic topological quantum field theory, from: "Geometry and quantum field theory" (editors D S Freed, K K Uhlenbeck), IAS/Park City Math. Ser. 1, Amer. Math. Soc. (1995) 323 MR1338394
39 G Segal, The definition of conformal field theory, from: "Topology, geometry and quantum field theory" (editor U Tillmann), Lond. Math. Soc. Lecture Note Ser. 308, Cambridge Univ. Press (2004) 421 MR2079383
40 M E Sweedler, Hopf algebras, Benjamin (1969) MR0252485
41 C Teleman, Five lectures on topological field theory, from: "Geometry and quantization of moduli spaces" (editors L Álvarez-Cónsul, J E Andersen, I Mundet i Riera), Birkhäuser (2016) 109 MR3675464
42 V Turaev, Homotopy quantum field theory, 10, Eur. Math. Soc. (2010) MR2674592
43 V G Turaev, O Y Viro, State sum invariants of 3–manifolds and quantum 6j–symbols, Topology 31 (1992) 865 MR1191386
44 P Ševera, (Non)abelian Kramers–Wannier duality and topological field theory, J. High Energy Phys. 2002 (2002) MR1915348
45 X G Wen, Topological orders in rigid states, Int. J. Modern Phys. B 4 (1990) 239 MR1043302
46 J H C Whitehead, On C1–complexes, Ann. of Math. 41 (1940) 809 MR2545
47 K G Wilson, Confinement of quarks, Phys. Rev. D 10 (1974) 2445
48 E Witten, Quantum field theory and the Jones polynomial, Comm. Math. Phys. 121 (1989) 351 MR990772
49 E Witten, On S–duality in abelian gauge theory, Selecta Math. 1 (1995) 383 MR1354602
50 E Witten, Dynamics of quantum field theory, from: "Quantum fields and strings: a course for mathematicians, II" (editors P Deligne, P Etingof, D S Freed, L C Jeffrey, D Kazhdan, J W Morgan, D R Morrison, E Witten), Amer. Math. Soc. (1999) 1119 MR1701615