Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Optimal destabilization of K–unstable Fano varieties via stability thresholds

Harold Blum, Yuchen Liu and Chuyu Zhou

Geometry & Topology 26 (2022) 2507–2564
DOI: 10.2140/gt.2022.26.2507
Bibliography
1 J Alper, H Blum, D Halpern-Leistner, C Xu, Reductivity of the automorphism group of K–polystable Fano varieties, Invent. Math. 222 (2020) 995 MR4169054
2 F Ambro, Variation of log canonical thresholds in linear systems, Int. Math. Res. Not. 2016 (2016) 4418 MR3556423
3 K Ascher, K DeVleming, Y Liu, Wall crossing for K–moduli spaces of plane curves, preprint (2019) arXiv:1909.04576
4 R J Berman, K–polystability of –Fano varieties admitting Kähler–Einstein metrics, Invent. Math. 203 (2016) 973 MR3461370
5 R J Berman, S Boucksom, M Jonsson, A variational approach to the Yau–Tian–Donaldson conjecture, J. Amer. Math. Soc. 34 (2021) 605 MR4334189
6 C Birkar, P Cascini, C D Hacon, J McKernan, Existence of minimal models for varieties of log general type, J. Amer. Math. Soc. 23 (2010) 405 MR2601039
7 H Blum, Existence of valuations with smallest normalized volume, Compos. Math. 154 (2018) 820 MR3778195
8 H Blum, D Halpern-Leistner, Y Liu, C Xu, On properness of K–moduli spaces and optimal degenerations of Fano varieties, Selecta Math. 27 (2021) MR4292783
9 H Blum, M Jonsson, Thresholds, valuations, and K–stability, Adv. Math. 365 (2020) MR4067358
10 H Blum, Y Liu, Openness of uniform K–stability in families of –Fano varieties, Ann. Sci. Éc. Norm. Supér. 55 (2022) 1 MR4411858
11 H Blum, Y Liu, C Xu, Openness of K–semistability for Fano varieties, Duke Math. J. 171 (2022) 2753 MR4505846
12 H Blum, Y Liu, C Xu, Z Zhuang, The existence of the Kähler–Ricci soliton degeneration, preprint (2021) arXiv:2103.15278
13 H Blum, C Xu, Uniqueness of K–polystable degenerations of Fano varieties, Ann. of Math. 190 (2019) 609 MR3997130
14 S Boucksom, T Hisamoto, M Jonsson, Uniform K–stability, Duistermaat–Heckman measures and singularities of pairs, Ann. Inst. Fourier (Grenoble) 67 (2017) 743 MR3669511
15 S Boucksom, M Jonsson, A non-Archimedean approach to K–stability, preprint (2018) arXiv:1805.11160
16 F Campana, Connexité rationnelle des variétés de Fano, Ann. Sci. École Norm. Sup. 25 (1992) 539 MR1191735
17 I A Cheltsov, Y A Rubinstein, K Zhang, Basis log canonical thresholds, local intersection estimates, and asymptotically log del Pezzo surfaces, Selecta Math. 25 (2019) MR3945265
18 W Chen, Boundedness of weak Fano pairs with alpha-invariants and volumes bounded below, Publ. Res. Inst. Math. Sci. 56 (2020) 539 MR4116691
19 X Chen, S Sun, B Wang, Kähler–Ricci flow, Kähler–Einstein metric, and K–stability, Geom. Topol. 22 (2018) 3145 MR3858762
20 V Datar, G Székelyhidi, Kähler–Einstein metrics along the smooth continuity method, Geom. Funct. Anal. 26 (2016) 975 MR3558304
21 R Dervan, Uniform stability of twisted constant scalar curvature Kähler metrics, Int. Math. Res. Not. 2016 (2016) 4728 MR3564626
22 R Dervan, K–semistability of optimal degenerations, Q. J. Math. 71 (2020) 989 MR4142719
23 R Dervan, G Székelyhidi, The Kähler–Ricci flow and optimal degenerations, J. Differential Geom. 116 (2020) 187 MR4146359
24 S K Donaldson, Scalar curvature and stability of toric varieties, J. Differential Geom. 62 (2002) 289 MR1988506
25 S K Donaldson, Lower bounds on the Calabi functional, J. Differential Geom. 70 (2005) 453 MR2192937
26 K Fujita, Toward criteria for K–stability of log Fano pairs, lecture notes (2019)
27 K Fujita, A valuative criterion for uniform K–stability of –Fano varieties, J. Reine Angew. Math. 751 (2019) 309 MR3956698
28 K Fujita, K–stability of log Fano hyperplane arrangements, J. Algebraic Geom. 30 (2021) 603 MR4372401
29 K Fujita, Y Odaka, On the K–stability of Fano varieties and anticanonical divisors, Tohoku Math. J. 70 (2018) 511 MR3896135
30 D Halpern-Leistner, Θ–stratifications, Θ–reductive stacks, and applications, from: "Algebraic geometry" (editors T de Fernex, B Hassett, M Mustaţă, M Olsson, M Popa, R Thomas), Proc. Sympos. Pure Math. 97, Amer. Math. Soc. (2018) 349 MR3821155
31 J Han, C Li, Algebraic uniqueness of Kähler–Ricci flow limits and optimal degenerations of Fano varieties, preprint (2020) arXiv:2009.01010
32 R Hartshorne, Algebraic geometry, 52, Springer (1977) MR0463157
33 T Hisamoto, Geometric flow, multiplier ideal sheaves and optimal destabilizer for a Fano manifold, preprint (2019) arXiv:1901.08480
34 C Jiang, Boundedness of –Fano varieties with degrees and alpha-invariants bounded from below, Ann. Sci. École Norm. Sup. 53 (2020) 1235 MR4174851
35 G R Kempf, Instability in invariant theory, Ann. of Math. 108 (1978) 299 MR506989
36 G Kempf, F F Knudsen, D Mumford, B Saint-Donat, Toroidal embeddings, I, 339, Springer (1973) MR0335518
37 J Kollár, Rational curves on algebraic varieties, 32, Springer (1996) MR1440180
38 J Kollár, Singularities of pairs, from: "Algebraic geometry" (editors J Kollár, R Lazarsfeld, D R Morrison), Proc. Sympos. Pure Math. 62, Amer. Math. Soc. (1997) 221 MR1492525
39 J Kollár, Singularities of the minimal model program, 200, Cambridge Univ. Press (2013) MR3057950
40 J Kollár, Y Miyaoka, S Mori, Rational connectedness and boundedness of Fano manifolds, J. Differential Geom. 36 (1992) 765 MR1189503
41 J Kollár, S Mori, Birational geometry of algebraic varieties, 134, Cambridge Univ. Press (1998) MR1658959
42 C Li, Remarks on logarithmic K–stability, Commun. Contemp. Math. 17 (2015) MR3313212
43 C Li, K–semistability is equivariant volume minimization, Duke Math. J. 166 (2017) 3147 MR3715806
44 C Li, Minimizing normalized volumes of valuations, Math. Z. 289 (2018) 491 MR3803800
45 C Li, Y Liu, Kähler–Einstein metrics and volume minimization, Adv. Math. 341 (2019) 440 MR3872852
46 C Li, Y Liu, C Xu, A guided tour to normalized volume, from: "Geometric analysis" (editors J Chen, P Lu, Z Lu, Z Zhang), Progr. Math. 333, Birkhäuser (2020) 167 MR4181002
47 C Li, X Wang, C Xu, On the proper moduli spaces of smoothable Kähler–Einstein Fano varieties, Duke Math. J. 168 (2019) 1387 MR3959862
48 C Li, X Wang, C Xu, Algebraicity of the metric tangent cones and equivariant K–stability, J. Amer. Math. Soc. 34 (2021) 1175 MR4301561
49 C Li, C Xu, Special test configuration and K–stability of Fano varieties, Ann. of Math. 180 (2014) 197 MR3194814
50 C Li, C Xu, Stability of valuations: higher rational rank, Peking Math. J. 1 (2018) 1 MR4059992
51 C Li, C Xu, Stability of valuations and Kollár components, J. Eur. Math. Soc. 22 (2020) 2573 MR4118616
52 Y Liu, The volume of singular Kähler–Einstein Fano varieties, Compos. Math. 154 (2018) 1131 MR3797604
53 Y Liu, C Xu, Z Zhuang, Finite generation for valuations computing stability thresholds and applications to K–stability, Ann. of Math. 196 (2022) 507 MR4445441
54 D Mumford, J Fogarty, F Kirwan, Geometric invariant theory, 34, Springer (1994) MR1304906
55 Y Odaka, S Sun, Testing log K–stability by blowing up formalism, Ann. Fac. Sci. Toulouse Math. 24 (2015) 505 MR3403730
56 J Ross, G Székelyhidi, Twisted Kähler–Einstein metrics, Pure Appl. Math. Q. 17 (2021) 1025 MR4278957
57 Y A Rubinstein, Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics, Adv. Math. 218 (2008) 1526 MR2419932
58 Y A Rubinstein, On the construction of Nadel multiplier ideal sheaves and the limiting behavior of the Ricci flow, Trans. Amer. Math. Soc. 361 (2009) 5839 MR2529916
59 G Székelyhidi, Optimal test-configurations for toric varieties, J. Differential Geom. 80 (2008) 501 MR2472481
60 G Székelyhidi, Greatest lower bounds on the Ricci curvature of Fano manifolds, Compos. Math. 147 (2011) 319 MR2771134
61 G Tian, On stability of the tangent bundles of Fano varieties, Int. J. Math. 3 (1992) 401 MR1163733
62 G Tian, Kähler–Einstein metrics with positive scalar curvature, Invent. Math. 130 (1997) 1 MR1471884
63 M Xia, On sharp lower bounds for Calabi-type functionals and destabilizing properties of gradient flows, Anal. PDE 14 (2021) 1951 MR4308671
64 C Xu, A minimizing valuation is quasi-monomial, Ann. of Math. 191 (2020) 1003 MR4088355
65 C Xu, Z Zhuang, Uniqueness of the minimizer of the normalized volume function, Camb. J. Math. 9 (2021) 149 MR4325260
66 C Zhou, Z Zhuang, Some criteria for uniform K–stability, Math. Res. Lett. 28 (2021) 1613 MR4471722
67 Z Zhuang, Fano varieties with large Seshadri constants, Adv. Math. 340 (2018) 883 MR3886183
68 Z Zhuang, Optimal destabilizing centers and equivariant K–stability, Invent. Math. 226 (2021) 195 MR4309493