Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 5, 2251–2782
Issue 4, 1693–2250
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the journal
Ethics and policies
Peer-review process
 
Submission guidelines
Submission form
Editorial board
 
Subscriptions
 
ISSN (electronic): 1364-0380
ISSN (print): 1465-3060
 
Author index
To appear
 
Other MSP journals
Quantisation of derived Lagrangians

Jonathan P Pridham

Geometry & Topology 26 (2022) 2405–2489
DOI: 10.2140/gt.2022.26.2405
Abstract

We investigate quantisations of line bundles on derived Lagrangians X over 0–shifted symplectic derived Artin N–stacks Y . In our derived setting, a deformation quantisation consists of a curved A– deformation of the structure sheaf 𝒪Y , equipped with a curved A–morphism to the ring of differential operators on ; for line bundles on smooth Lagrangian subvarieties of smooth symplectic algebraic varieties, this simplifies to deforming (,𝒪Y ) to a DQ module over a DQ algebroid.

For each choice of formality isomorphism between the E2– and P2–operads, we construct a map from the space of nondegenerate quantisations to power series with coefficients in relative cohomology groups of the respective de Rham complexes. When is a square root of the dualising line bundle, this leads to an equivalence between even power series and certain anti-involutive quantisations, ensuring that the deformation quantisations always exist for such line bundles. This gives rise to a dg category of algebraic Lagrangians, an algebraic Fukaya category of the form envisaged by Behrend and Fantechi. We also sketch a generalisation of these quantisation results to Lagrangians on higher n–shifted symplectic derived stacks.

Keywords
deformation quantisation, derived algebraic geometry, Lagrangians
Mathematical Subject Classification 2010
Primary: 14A22, 14D23, 53D55
References
Publication
Received: 11 September 2018
Revised: 15 June 2021
Accepted: 16 July 2021
Published: 13 December 2022
Proposed: Richard P Thomas
Seconded: Mark Gross, Dan Abramovich
Authors
Jonathan P Pridham
School of Mathematics and Maxwell Institute
The University of Edinburgh
Edinburgh
United Kingdom