Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 3, 1115–1691
Issue 2, 549–1114
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
Seiberg–Witten and Gromov invariants for self-dual harmonic $2$–forms

Chris Gerig

Geometry & Topology 26 (2022) 3307–3365
DOI: 10.2140/gt.2022.26.3307
Bibliography
1 E Calabi, An intrinsic characterization of harmonic one-forms, from: "Global analysis" (editors D C Spencer, S Iyanaga), Princeton Math. Ser. 29, Princeton Univ. Press (1969) 101 MR0253370
2 D Cristofaro-Gardiner, The absolute gradings on embedded contact homology and Seiberg–Witten Floer cohomology, Algebr. Geom. Topol. 13 (2013) 2239 MR3073915
3 C Gerig, Circle-valued Morse theory and Seiberg–Witten invariants of 3–manifolds, in preparation
4 C Gerig, Taming the pseudoholomorphic beasts in × (S1 × S2), Geom. Topol. 24 (2020) 1791 MR4173922
5 R E Gompf, Handlebody construction of Stein surfaces, Ann. of Math. 148 (1998) 619 MR1668563
6 K Honda, A note on Morse theory of harmonic 1–forms, Topology 38 (1999) 223 MR1644028
7 K Honda, Transversality theorems for harmonic forms, Rocky Mountain J. Math. 34 (2004) 629 MR2072799
8 M Hutchings, Embedded contact homology as a (symplectic) field theory, in preparation
9 M Hutchings, Reidemeister torsion in generalized Morse theory, Forum Math. 14 (2002) 209 MR1880912
10 M Hutchings, The embedded contact homology index revisited, from: "New perspectives and challenges in symplectic field theory" (editors M Abreu, F Lalonde, L Polterovich), CRM Proc. Lecture Notes 49, Amer. Math. Soc. (2009) 263 MR2555941
11 M Hutchings, Y J Lee, Circle-valued Morse theory and Reidemeister torsion, Geom. Topol. 3 (1999) 369 MR1716272
12 M Hutchings, Y J Lee, Circle-valued Morse theory, Reidemeister torsion, and Seiberg–Witten invariants of 3–manifolds, Topology 38 (1999) 861 MR1679802
13 M Hutchings, C H Taubes, Proof of the Arnold chord conjecture in three dimensions, II, Geom. Topol. 17 (2013) 2601 MR3190296
14 A Jaffe, C Taubes, Vortices and monopoles: structure of static gauge theories, 2, Birkhäuser (1980) MR614447
15 P Kronheimer, T Mrowka, Monopoles and three-manifolds, 10, Cambridge Univ. Press (2007) MR2388043
16 P Kronheimer, T Mrowka, P Ozsváth, Z Szabó, Monopoles and lens space surgeries, Ann. of Math. 165 (2007) 457 MR2299739
17 Ç Kutluhan, Y J Lee, C H Taubes, HF = HM, V : Seiberg–Witten Floer homology and handle additions, Geom. Topol. 24 (2020) 3471 MR4194309
18 C LeBrun, Yamabe constants and the perturbed Seiberg–Witten equations, Comm. Anal. Geom. 5 (1997) 535 MR1487727
19 T J Li, A K Liu, The equivalence between SW and Gr in the case where b+ = 1, Int. Math. Res. Not. 1999 (1999) 335 MR1683312
20 K Luttinger, C Simpson, A normal form for the birth/flight of closed selfdual 2–form degeneracies, unpublished (1996)
21 N Manton, P Sutcliffe, Topological solitons, Cambridge Univ. Press (2004) MR2068924
22 C Okonek, A Teleman, 3–dimensional Seiberg–Witten invariants and non-Kählerian geometry, Math. Ann. 312 (1998) 261 MR1671784
23 P Ozsváth, Z Szabó, The symplectic Thom conjecture, Ann. of Math. 151 (2000) 93 MR1745017
24 D A Salamon, Seiberg–Witten invariants of mapping tori, symplectic fixed points, and Lefschetz numbers, Turkish J. Math. 23 (1999) 117 MR1701642
25 C H Taubes, Arbitrary N–vortex solutions to the first order Ginzburg–Landau equations, Comm. Math. Phys. 72 (1980) 277 MR573986
26 C H Taubes, Counting pseudo-holomorphic submanifolds in dimension 4, J. Differential Geom. 44 (1996) 818 MR1438194
27 C H Taubes, SW Gr : from the Seiberg–Witten equations to pseudo-holomorphic curves, J. Amer. Math. Soc. 9 (1996) 845 MR1362874
28 C H Taubes, Gr SW : from pseudo-holomorphic curves to Seiberg–Witten solutions, J. Differential Geom. 51 (1999) 203 MR1728301
29 C H Taubes, Gr = SW : counting curves and connections, J. Differential Geom. 52 (1999) 453 MR1761081
30 C H Taubes, Seiberg–Witten and Gromov invariants for symplectic 4–manifolds, 2, International (2000) MR1798809
31 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, I, Geom. Topol. 14 (2010) 2497 MR2746723
32 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, II, Geom. Topol. 14 (2010) 2583 MR2746724
33 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, III, Geom. Topol. 14 (2010) 2721 MR2746725
34 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, IV, Geom. Topol. 14 (2010) 2819 MR2746726
35 C H Taubes, Embedded contact homology and Seiberg–Witten Floer cohomology, V, Geom. Topol. 14 (2010) 2961 MR2746727
36 V Turaev, Torsion invariants of Spinc–structures on 3–manifolds, Math. Res. Lett. 4 (1997) 679 MR1484699
37 V Turaev, A combinatorial formulation for the Seiberg–Witten invariants of 3–manifolds, Math. Res. Lett. 5 (1998) 583 MR1666856
38 C Wendl, Automatic transversality and orbifolds of punctured holomorphic curves in dimension four, Comment. Math. Helv. 85 (2010) 347 MR2595183