Download this article
Download this article For screen
For printing
Recent Issues

Volume 28
Issue 7, 3001–3510
Issue 6, 2483–2999
Issue 5, 1995–2482
Issue 4, 1501–1993
Issue 3, 1005–1499
Issue 2, 497–1003
Issue 1, 1–496

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
$d_p$–convergence and $\epsilon$–regularity theorems for entropy and scalar curvature lower bounds

Man-Chun Lee, Aaron Naber and Robin Neumayer

Geometry & Topology 27 (2023) 227–350
Bibliography
1 L Ahlfors, A Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950) 101 MR36841
2 B Allen, Almost non-negative scalar curvature on Riemannian manifolds conformal to tori, J. Geom. Anal. 31 (2021) 11190 MR4310167
3 B Allen, L Hernandez-Vazquez, D Parise, A Payne, S Wang, Warped tori with almost non-negative scalar curvature, Geom. Dedicata 200 (2019) 153 MR3956190
4 B Allen, C Sormani, Contrasting various notions of convergence in geometric analysis, Pacific J. Math. 303 (2019) 1 MR4044855
5 B Allen, C Sormani, Relating notions of convergence in geometric analysis, Nonlinear Anal. 200 (2020) MR4108435
6 L Ambrosio, N Gigli, G Savaré, Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case, from: "Analysis and numerics of partial differential equations" (editors F Brezzi, P Colli Franzone, U Gianazza, G Gilardi), Springer INdAM Ser. 4, Springer (2013) 63 MR3051398
7 L Ambrosio, S Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, from: "Measure theory in non-smooth spaces" (editor N Gigli), De Gruyter Open (2017) 1 MR3701735
8 L Ambrosio, S Honda, Local spectral convergence in RCD(K,N) spaces, Nonlinear Anal. 177 (2018) 1 MR3865185
9 D Bakry, M Émery, Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 775 MR772092
10 R H Bamler, A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature, Math. Res. Lett. 23 (2016) 325 MR3512888
11 P Burkhardt-Guim, Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow, Geom. Funct. Anal. 29 (2019) 1703 MR4034918
12 A J Cabrera Pacheco, C Ketterer, R Perales, Stability of graphical tori with almost nonnegative scalar curvature, Calc. Var. Partial Differential Equations 59 (2020) MR4127404
13 A Chau, L F Tam, C Yu, Pseudolocality for the Ricci flow and applications, Canad. J. Math. 63 (2011) 55 MR2779131
14 J Cheeger, Comparison and finiteness theorems for Riemannian manifolds, PhD thesis, Princeton University (1967) MR2616706
15 J Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970) 61 MR263092
16 J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 MR1708448
17 B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, III : Geometric-analytic aspects, 163, Amer. Math. Soc. (2010) MR2604955
18 B Chow, D Knopf, The Ricci flow : an introduction, 110, Amer. Math. Soc. (2004) MR2061425
19 B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) MR2274812
20 G De Cecco, G Palmieri, Integral distance on a Lipschitz Riemannian manifold, Math. Z. 207 (1991) 223 MR1109664
21 D M DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983) 157 MR697987
22 L C Evans, R F Gariepy, Measure theory and fine properties of functions, CRC Press (1992) MR1158660
23 B Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171 MR97720
24 F W Gehring, The Lp–integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973) 265 MR402038
25 N Gigli, A Mondino, G Savaré, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. 111 (2015) 1071 MR3477230
26 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) MR2307192
27 M Gromov, Dirac and Plateau billiards in domains with corners, Cent. Eur. J. Math. 12 (2014) 1109 MR3201312
28 M Gromov, H B Lawson Jr., Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 MR569070
29 P Hajłasz, Sobolev spaces on metric-measure spaces, from: "Heat kernels and analysis on manifolds, graphs, and metric spaces" (editors P Auscher, T Coulhon, A Grigor’yan), Contemp. Math. 338, Amer. Math. Soc. (2003) 173 MR2039955
30 P Hajłasz, P Koskela, Sobolev met Poincaré, 688, Amer. Math. Soc. (2000) MR1683160
31 R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) 255 MR664497
32 R S Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545 MR1333936
33 H J Hein, A Naber, New logarithmic Sobolev inequalities and an 𝜖–regularity theorem for the Ricci flow, Comm. Pure Appl. Math. 67 (2014) 1543 MR3245102
34 J Heinonen, P Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1 MR1654771
35 B Kleiner, J Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 MR2460872
36 P Li, R Schoen, Lp and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984) 279 MR766266
37 Y Li, Ricci flow on asymptotically Euclidean manifolds, Geom. Topol. 22 (2018) 1837 MR3780446
38 J Lott, C Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 MR2480619
39 O E Maasalo, The Gehring lemma in metric spaces, preprint (2007) arXiv:0704.3916
40 A Mondino, A Naber, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. 21 (2019) 1809 MR3945743
41 F Mugelli, G Talenti, Sobolev inequalities in 2-D hyperbolic space : a borderline case, J. Inequal. Appl. 2 (1998) 195 MR1671679
42 V H Nguyen, The sharp Poincaré–Sobolev type inequalities in the hyperbolic spaces n, J. Math. Anal. Appl. 462 (2018) 1570 MR3774305
43 G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002) arXiv:math/0211159
44 P Petersen, Riemannian geometry, 171, Springer (1998) MR1480173
45 R Schoen, S T Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979) 127 MR541332
46 N Shanmugalingam, Newtonian spaces : an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000) 243 MR1809341
47 W X Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989) 223 MR1001277
48 C Sormani, Scalar curvature and intrinsic flat convergence, from: "Measure theory in non-smooth spaces" (editor N Gigli), De Gruyter Open (2017) 288 MR3701743
49 C Sormani, S Wenger, The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differential Geom. 87 (2011) 117 MR2786592
50 K T Sturm, Generalized Ricci bounds and convergence of metric measure spaces, C. R. Math. Acad. Sci. Paris 340 (2005) 235 MR2123035
51 B Wang, The local entropy along Ricci flow, A : The no-local-collapsing theorems, Camb. J. Math. 6 (2018) 267 MR3855081
52 B Wang, The local entropy along Ricci flow, B: The pseudo-locality theorems, preprint (2020) arXiv:2010.09981
53 Q S Zhang, Bounds on volume growth of geodesic balls under Ricci flow, Math. Res. Lett. 19 (2012) 245 MR2923189
54 Q S Zhang, Extremal of log Sobolev inequality and W entropy on noncompact manifolds, J. Funct. Anal. 263 (2012) 2051 MR2956934