Download this article
Download this article For screen
For printing
Recent Issues

Volume 29
Issue 2, 549–862
Issue 1, 1–548

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
$d_p$–convergence and $\epsilon$–regularity theorems for entropy and scalar curvature lower bounds

Man-Chun Lee, Aaron Naber and Robin Neumayer

Geometry & Topology 27 (2023) 227–350
Bibliography
1 L Ahlfors, A Beurling, Conformal invariants and function-theoretic null-sets, Acta Math. 83 (1950) 101 MR36841
2 B Allen, Almost non-negative scalar curvature on Riemannian manifolds conformal to tori, J. Geom. Anal. 31 (2021) 11190 MR4310167
3 B Allen, L Hernandez-Vazquez, D Parise, A Payne, S Wang, Warped tori with almost non-negative scalar curvature, Geom. Dedicata 200 (2019) 153 MR3956190
4 B Allen, C Sormani, Contrasting various notions of convergence in geometric analysis, Pacific J. Math. 303 (2019) 1 MR4044855
5 B Allen, C Sormani, Relating notions of convergence in geometric analysis, Nonlinear Anal. 200 (2020) MR4108435
6 L Ambrosio, N Gigli, G Savaré, Heat flow and calculus on metric measure spaces with Ricci curvature bounded below—the compact case, from: "Analysis and numerics of partial differential equations" (editors F Brezzi, P Colli Franzone, U Gianazza, G Gilardi), Springer INdAM Ser. 4, Springer (2013) 63 MR3051398
7 L Ambrosio, S Honda, New stability results for sequences of metric measure spaces with uniform Ricci bounds from below, from: "Measure theory in non-smooth spaces" (editor N Gigli), De Gruyter Open (2017) 1 MR3701735
8 L Ambrosio, S Honda, Local spectral convergence in RCD(K,N) spaces, Nonlinear Anal. 177 (2018) 1 MR3865185
9 D Bakry, M Émery, Hypercontractivité de semi-groupes de diffusion, C. R. Acad. Sci. Paris Sér. I Math. 299 (1984) 775 MR772092
10 R H Bamler, A Ricci flow proof of a result by Gromov on lower bounds for scalar curvature, Math. Res. Lett. 23 (2016) 325 MR3512888
11 P Burkhardt-Guim, Pointwise lower scalar curvature bounds for C0 metrics via regularizing Ricci flow, Geom. Funct. Anal. 29 (2019) 1703 MR4034918
12 A J Cabrera Pacheco, C Ketterer, R Perales, Stability of graphical tori with almost nonnegative scalar curvature, Calc. Var. Partial Differential Equations 59 (2020) MR4127404
13 A Chau, L F Tam, C Yu, Pseudolocality for the Ricci flow and applications, Canad. J. Math. 63 (2011) 55 MR2779131
14 J Cheeger, Comparison and finiteness theorems for Riemannian manifolds, PhD thesis, Princeton University (1967) MR2616706
15 J Cheeger, Finiteness theorems for Riemannian manifolds, Amer. J. Math. 92 (1970) 61 MR263092
16 J Cheeger, Differentiability of Lipschitz functions on metric measure spaces, Geom. Funct. Anal. 9 (1999) 428 MR1708448
17 B Chow, S C Chu, D Glickenstein, C Guenther, J Isenberg, T Ivey, D Knopf, P Lu, F Luo, L Ni, The Ricci flow : techniques and applications, III : Geometric-analytic aspects, 163, Amer. Math. Soc. (2010) MR2604955
18 B Chow, D Knopf, The Ricci flow : an introduction, 110, Amer. Math. Soc. (2004) MR2061425
19 B Chow, P Lu, L Ni, Hamilton’s Ricci flow, 77, Amer. Math. Soc. (2006) MR2274812
20 G De Cecco, G Palmieri, Integral distance on a Lipschitz Riemannian manifold, Math. Z. 207 (1991) 223 MR1109664
21 D M DeTurck, Deforming metrics in the direction of their Ricci tensors, J. Differential Geom. 18 (1983) 157 MR697987
22 L C Evans, R F Gariepy, Measure theory and fine properties of functions, CRC Press (1992) MR1158660
23 B Fuglede, Extremal length and functional completion, Acta Math. 98 (1957) 171 MR97720
24 F W Gehring, The Lp–integrability of the partial derivatives of a quasiconformal mapping, Acta Math. 130 (1973) 265 MR402038
25 N Gigli, A Mondino, G Savaré, Convergence of pointed non-compact metric measure spaces and stability of Ricci curvature bounds and heat flows, Proc. Lond. Math. Soc. 111 (2015) 1071 MR3477230
26 M Gromov, Metric structures for Riemannian and non-Riemannian spaces, Birkhäuser (2007) MR2307192
27 M Gromov, Dirac and Plateau billiards in domains with corners, Cent. Eur. J. Math. 12 (2014) 1109 MR3201312
28 M Gromov, H B Lawson Jr., Spin and scalar curvature in the presence of a fundamental group, I, Ann. of Math. 111 (1980) 209 MR569070
29 P Hajłasz, Sobolev spaces on metric-measure spaces, from: "Heat kernels and analysis on manifolds, graphs, and metric spaces" (editors P Auscher, T Coulhon, A Grigor’yan), Contemp. Math. 338, Amer. Math. Soc. (2003) 173 MR2039955
30 P Hajłasz, P Koskela, Sobolev met Poincaré, 688, Amer. Math. Soc. (2000) MR1683160
31 R S Hamilton, Three-manifolds with positive Ricci curvature, J. Differential Geometry 17 (1982) 255 MR664497
32 R S Hamilton, A compactness property for solutions of the Ricci flow, Amer. J. Math. 117 (1995) 545 MR1333936
33 H J Hein, A Naber, New logarithmic Sobolev inequalities and an 𝜖–regularity theorem for the Ricci flow, Comm. Pure Appl. Math. 67 (2014) 1543 MR3245102
34 J Heinonen, P Koskela, Quasiconformal maps in metric spaces with controlled geometry, Acta Math. 181 (1998) 1 MR1654771
35 B Kleiner, J Lott, Notes on Perelman’s papers, Geom. Topol. 12 (2008) 2587 MR2460872
36 P Li, R Schoen, Lp and mean value properties of subharmonic functions on Riemannian manifolds, Acta Math. 153 (1984) 279 MR766266
37 Y Li, Ricci flow on asymptotically Euclidean manifolds, Geom. Topol. 22 (2018) 1837 MR3780446
38 J Lott, C Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009) 903 MR2480619
39 O E Maasalo, The Gehring lemma in metric spaces, preprint (2007) arXiv:0704.3916
40 A Mondino, A Naber, Structure theory of metric measure spaces with lower Ricci curvature bounds, J. Eur. Math. Soc. 21 (2019) 1809 MR3945743
41 F Mugelli, G Talenti, Sobolev inequalities in 2-D hyperbolic space : a borderline case, J. Inequal. Appl. 2 (1998) 195 MR1671679
42 V H Nguyen, The sharp Poincaré–Sobolev type inequalities in the hyperbolic spaces n, J. Math. Anal. Appl. 462 (2018) 1570 MR3774305
43 G Perelman, The entropy formula for the Ricci flow and its geometric applications, preprint (2002) arXiv:math/0211159
44 P Petersen, Riemannian geometry, 171, Springer (1998) MR1480173
45 R Schoen, S T Yau, Existence of incompressible minimal surfaces and the topology of three-dimensional manifolds with nonnegative scalar curvature, Ann. of Math. 110 (1979) 127 MR541332
46 N Shanmugalingam, Newtonian spaces : an extension of Sobolev spaces to metric measure spaces, Rev. Mat. Iberoamericana 16 (2000) 243 MR1809341
47 W X Shi, Deforming the metric on complete Riemannian manifolds, J. Differential Geom. 30 (1989) 223 MR1001277
48 C Sormani, Scalar curvature and intrinsic flat convergence, from: "Measure theory in non-smooth spaces" (editor N Gigli), De Gruyter Open (2017) 288 MR3701743
49 C Sormani, S Wenger, The intrinsic flat distance between Riemannian manifolds and other integral current spaces, J. Differential Geom. 87 (2011) 117 MR2786592
50 K T Sturm, Generalized Ricci bounds and convergence of metric measure spaces, C. R. Math. Acad. Sci. Paris 340 (2005) 235 MR2123035
51 B Wang, The local entropy along Ricci flow, A : The no-local-collapsing theorems, Camb. J. Math. 6 (2018) 267 MR3855081
52 B Wang, The local entropy along Ricci flow, B: The pseudo-locality theorems, preprint (2020) arXiv:2010.09981
53 Q S Zhang, Bounds on volume growth of geodesic balls under Ricci flow, Math. Res. Lett. 19 (2012) 245 MR2923189
54 Q S Zhang, Extremal of log Sobolev inequality and W entropy on noncompact manifolds, J. Funct. Anal. 263 (2012) 2051 MR2956934