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2 Oliver Baues and Yoshinobu Kamishima

1 Introduction

Let X be a contractible Riemannian manifold, and suppose there exists a discrete
group � of isometries of X such that the quotient space

X=�

is compact. Then X is said to be divisible. If in addition � is torsion-free, the quotient
space is a compact aspherical manifold. Let

Isom.X /

denote the group of isometries of X. The action of the continuous part

GD Isom.X /0

of the isometry group on the space X may be seen as describing the local symmetry of
the quotient metric space X=� , which is a Riemannian orbifold.

Under the assumption that X=� is a manifold, Farb and Weinberger [8] proved the
fundamental fact that

X=Isom.X /0

is again a contractible manifold and gives rise to a Riemannian orbibundle

X=�!X=�Isom.X /0;

where the fibers are locally homogeneous spaces modeled on

XG D G=K;

with K a maximal compact subgroup of G.

In this setup, a basic observation is the fact that the continuous part of the isometry
group of the Riemannian quotient

X=Isom.X /0

may be nontrivial, and thereby reveals “hidden” local symmetries of the space X and
its quotient X=� . From this point of view, the local symmetry of X=� will be encoded
in an ensuing tower of orbifold fibrations with locally homogeneous fibers. And we can
say that X=� has “maximal” local symmetry if the tower finally stops over a locally
homogeneous orbifold.

This motivates the following formal definition:
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Isometry groups with radical and aspherical Riemannian manifolds with large symmetry 3

Definition 1.1 We say that M D X=� has large local symmetry if there exists a
tower of Riemannian orbibundles M !M1!M2! � � � !Mk D fptg with locally
homogeneous fibers.

The precise notion of Riemannian orbibundle with locally homogeneous fibers which
appears in Definition 1.1 and which is used in this paper may be found in Definition 5.4
below. It is modeled on the above geometric situation, where the bundle map is induced
by taking the quotient of an isometric action of a Lie group.

The purpose of this article is to initiate the study of the local symmetry of aspherical
spaces in terms of their naturally associated towers of Riemannian orbifold fibrations.

1.1 The radical quotient and divisibility

Our first step will be to associate to any compact aspherical Riemannian manifold a
canonical Riemannian orbifold fibration whose fibers are modeled on a Riemannian
homogeneous space of a solvable Lie group.

As a starting point, we are concerned with the action of the maximal connected normal
solvable subgroup

R� GD Isom.X /0;

which is called the solvable radical of G. We then call the quotient space

Y DX=R

the radical quotient of X.

Divisibility of the radical quotient As our first main result we show that the radical
quotient is a contractible Riemannian manifold, and that it is divisible by the image
of � in Isom.X=R/.

Theorem 1 (see Theorem 4.3) The radical quotient X=R is a contractible Riemannian
manifold , and the image ‚ of � in Isom.X=R/ acts properly discontinuously on X=R

with compact quotient.

Remark We may view this result as a parametrized version of the classical Bieberbach–
Auslander–Wang theorem (see Proposition 2.5), which concerns lattices in Lie groups.
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4 Oliver Baues and Yoshinobu Kamishima

Note that Theorem 1 shows that the radical quotient gives rise to an associated Rie-
mannian orbibundle of the form

(1-1) X=�! Y=‚

and this orbibundle has locally homogeneous fibers modeled on R. In the following,
we will study the geometry of this fibration in more detail.

Before doing so, let us mention the following topological result, which is of independent
interest and is used as a basic tool for the proof of Theorem 1. It asserts that there are
no compact Lie group actions normalized by properly discontinuous actions on acyclic
smooth manifolds with compact quotient:

Theorem 2 (see Theorem 3.5) Let X be an orientable acyclic manifold and � a
group which acts smoothly and properly discontinuously on X with compact quotient.
Let � be a compact Lie group acting faithfully and smoothly on X such that the action
is normalized by � . Then � D f1g.

The proof of Theorem 2 is based mainly on cohomology of groups acting on acyclic
complexes and application of the Smith theorem.

The first geometric application of Theorem 2 is the following.

Corollary 1 (see Corollary 3.7) Let X be a contractible Riemannian manifold which
is divisible. Then Isom.X / has no nontrivial compact normal subgroup.

Remark A similar result was obtained in [8, Claim II] for connected compact normal
subgroups of Isom.X / and is stated under the possibly stronger assumption that there
exists � such that X=� is a manifold. The result also holds for divisible Riemann-
ian manifolds X. Moreover, Corollary 1 strengthens the result to include possibly
nonconnected groups.

Based on (the proof of) Theorems 1 and 2, we carry out a detailed analysis of the
interaction of the smooth properly discontinuous action of the discrete group � on X

with the radicals of Isom.X /0. Some of the additional results which we obtain are
summarized in the following structure theorem:
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Isometry groups with radical and aspherical Riemannian manifolds with large symmetry 5

Theorem 3 (see Theorem 4.13) Let X be a contractible Riemannian manifold and
� � Isom.X / a discrete subgroup such that X=� is compact. Let R denote the solvable
radical of Isom.X /0. Then there exists a unique Riemannian metric on the quotient
X=R such that the map

X !X=R

is a Riemannian submersion. It follows further that :

(1) Isom.X /=R acts properly on X=R.

(2) The kernel of the action in .1/ is the maximal compact normal subgroup of
Isom.X /=R.

(3) The image of Isom.X /0 in Isom.X=R/ is a semisimple Lie group S of non-
compact type without finite subgroups in its center. Moreover , it is a closed
normal semisimple subgroup of Isom.X=R/0 (and therefore normal in a finite-
index subgroup of Isom.X=R/).

(4) Moreover , ‚\S is a uniform lattice in S.

Note that the Lie group S in (3) may have infinite (but discrete) center, and such
examples do naturally occur (see Section 6.2).

The geometry of the fibers appearing in the Riemannian orbibundle (1-1) is determined
by a Riemannian homogeneous space of a solvable Lie group. In fact, as we explain
now the fibers of the orbibundle (1-1) naturally carry the geometry of an infrasolv
orbifold:

Infrasolv orbifolds and orbibundles Let R be a simply connected solvable Lie group.
We let

Aff.R/DR Ì Aut.R/

denote its group of affine transformations. Consider a discrete subgroup

�� Aff.R/;

such that the homomorphic image of � in Aut.R/ has compact closure. We may
choose some left-invariant Riemannian metric on R such that � acts by isometries.
Then the quotient space

R=�

is an aspherical Riemannian orbifold. Compact orbifolds of this type are traditionally
called infrasolv orbifolds.
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6 Oliver Baues and Yoshinobu Kamishima

Remark Infrasolv manifolds form an important class of aspherical locally homoge-
neous Riemannian manifolds, and play a role in various geometrical contexts. See
Baues [1], Tuschmann [27] and Wilking [30] for review of infrasolv manifolds.

A Riemannian orbibundle will be called an infrasolv bundle if its fibers are compact
infrasolv orbifolds (with respect to the induced metric) which are all modeled on the
same Lie group R (see Definition 5.3).

We can then state our main result on the geometry of the Riemannian orbibundle (1-1)
which is associated to the radical quotient of X. Recall that R denotes the solvable
radical of Isom.X /.

Theorem 4 (see Theorem 5.5) There exists a simply connected solvable normal Lie
subgroup R0 of R such that X=� has an induced structure of Riemannian infrasolv
fiber space (modeled on R0) over the compact aspherical Riemannian orbifold Y=‚.

1.2 Infrasolv towers and manifolds of large symmetry

According to Theorem 1, the radical quotient Y DX=R is a contractible Riemannian
manifold and it is divisible by the image of � in Isom.Y /. In general, the isometry
group Isom.Y / will have a nontrivial continuous part Isom.Y /0, and also the radical
of Isom.Y /0 can be nontrivial. (We will discuss several types of examples below.)

We may thus repeat the process of taking radical quotients until the continuous part of
the isometry group is semisimple (or trivial). This gives rise to a canonical tower of
Riemannian orbibundles, which by Theorem 4 are infrasolv orbibundles, and filter the
space X=� . Such a tower will be called an infrasolv tower for X=�:

Corollary 2 (see Corollary 5.6) Every aspherical Riemannian orbifold X=� gives
rise to a canonical infrasolv tower

(1-2) X=�!X1=�1! � � � !X`= �̀ ;

where the solvable radical of Isom.X`/ is trivial.

Riemannian manifolds of large symmetry The length ` and structure of the tower
(1-2) describe canonical invariants of Riemannian metrics on X and X=� . The
following notion thus generalizes locally homogeneous Riemannian manifolds: if,
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Isometry groups with radical and aspherical Riemannian manifolds with large symmetry 7

in (1-2), X` D fptg or X` is a Riemannian homogeneous manifold of a semisimple Lie
group, then X=� has large local symmetry in the sense of Definition 1.1.

We illustrate the concept by constructing in Section 6 several examples of aspherical
manifolds with large symmetry. A simple example is a two-dimensional warped product
of circles

Mf D S1
� Nf S1

for a certain warping function Nf. Here Mf is diffeomorphic to a 2–torus whose universal
cover X satisfies Isom.X /0 DR (see Example 6.2). More generally, in this direction,
we may also take any (compact) locally symmetric space of noncompact type

N D‚nS=K;

and we can form the warped product (with fiber N and base S1)

MN;f D S1
� Nf N ! S1

to obtain Riemannian manifolds of large symmetry which are not locally homogeneous.

The above kind of examples for metrics of large symmetry are built on spaces which
admit locally homogeneous metrics from the beginning, and therefore may be seen as
“merely” exhibiting symmetry properties of particular Riemannian metrics on these
spaces. In the following we come to discuss the topological significance of the concept
of large symmetry.

1.3 Riemannian orbibundles arising from group extensions

We introduce now a general method to construct infrasolv bundles, starting from abstract
group extensions of the form

1!ƒ! �!‚! 1;

where the group ƒ, in general, will be a virtually polycyclic group and ‚ is a discrete
group which divides a contractible Riemannian manifold Y.

The basic construction is partially based on the notion of injective Seifert fiber spaces
(as developed by Lee and Raymond [17]). The details will be explained in Section 7.
As an application of this method, we can derive:

Geometry & Topology, Volume 27 (2023)



8 Oliver Baues and Yoshinobu Kamishima

Theorem 5 (see Theorem 7.5) Let ‚ be a torsion-free uniform lattice in the hyper-
bolic group PSO.n; 1/. Suppose

1! Zk
! �!‚! 1

is a central group extension which has infinite order. Then there exists a compact
aspherical manifold X=� such that :

(1) X=� admits a metric of large symmetry with length `D 1.

(2) For n� 3, X=� does not admit a locally homogeneous Riemannian metric. In
particular , � does not embed as a uniform lattice into a connected Lie group.

(3) For n D 2, X=� admits the structure of a locally homogeneous Riemannian
manifold. In particular , � embeds as a uniform lattice into a connected Lie
group.

The space X=� , also called a Seifert fibering over the compact hyperbolic manifold
Hn=‚, will inherit a Riemannian orbifold bundle structure over Hn=‚ with typical
fiber a k–torus and exceptional fiber a Euclidean space form. This construction can
be applied to any compact locally homogeneous symmetric manifold ‚nG=K of real
rank 1 such that H 2.‚;Zk/ has an element of infinite order.

Corollary 3 (see Corollary 7.6) There exists a compact aspherical Riemannian
manifold X=� of dimension four that admits a complete infrasolv tower of length one ,
which fibers over a three-dimensional hyperbolic manifold. Moreover , the manifold
X=� does not admit any locally homogeneous Riemannian metric.

The corollary shows the topological significance of the concept of large symmetry: The
class of aspherical smooth manifolds admitting a metric of large symmetry is strictly
larger than the class of manifolds which can be presented as a Riemannian locally
homogeneous space.

1.4 Smooth rigidity problem for manifolds of large symmetry

In a closing result for this paper we briefly touch on a particular differential topological
aspect of our topic. Namely, in the following we are concerned with the existence of
metrics of large symmetry on smooth manifolds homeomorphic to the torus.

An n–dimensional exotic torus is a compact smooth manifold homeomorphic to the
standard n–torus T n but not diffeomorphic to T n. Such manifolds are known to exist
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Isometry groups with radical and aspherical Riemannian manifolds with large symmetry 9

by Wall [29] or Hsiang and Shaneson [12], for example. We prove that every smooth
manifold homeomorphic to the torus which admits a metric of large symmetry must be
diffeomorphic to the standard torus T n. In other words:

Theorem 6 (see Theorem 8.2) Let � be an n–dimensional exotic torus. Then � does
not admit any Riemannian metric of large symmetry.

This result is embedded in a wider context of smooth rigidity results which are known
for certain classes of locally homogeneous manifolds (or orbifolds), for example locally
symmetric spaces (by Mostow strong rigidity [21]) or infrasolv manifolds (as in [1]).
In fact, since such spaces constitute the building blocks of manifolds of large symmetry,
we would like to pose the following:

Question Is the class of aspherical smooth manifolds admitting a metric of large
symmetry smoothly rigid? That is , given any two aspherical manifolds of large
symmetry with isomorphic fundamental group , are they diffeomorphic?

Organization of the paper The paper is organized as follows. In Section 2 we briefly
discuss proper actions of Lie groups, and properly discontinuous actions of discrete
subgroups. In Section 3 we prove Theorems 2 and 1. Topological concepts such
as group cohomology for infinite discrete groups and the Smith theorem for acyclic
manifolds play a role here. In Section 4 we study the action of the solvable radical
of the isometry group Isom.X / for divisible Riemannian manifolds X, and we prove
Theorem 1. Also the structure theorem, Theorem 3, is proved here. In Section 5 we
introduce the notion of infrasolv tower and the concept of large symmetry to prove our
cornerstone results Theorem 4 and Corollary 2. In Sections 6 and 7 we give several
examples of aspherical manifolds with large symmetry, as well as a general construction
method related to Seifert fiber spaces, which gives Theorem 5 and Corollary 3. In
Section 8 we prove the smooth rigidity theorem, Theorem 6, for topological tori with
large symmetry.
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politan University and Josai University in 2017–2018. He gratefully acknowledges the
support of the Japanese Science Foundation grants 15K04852 and 18K03284 during his
stay. Kamishima acknowledges the support of Mathematisches Institut Göttingen during
his stay in 2015. We thank the referee, whose extensive comments and suggestions
greatly improved the exposition of the paper.
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10 Oliver Baues and Yoshinobu Kamishima

2 Preliminaries

2.1 Solvable Lie groups

Let R be a connected solvable Lie group and T � R a maximal compact subgroup.
Let N be the nilpotent radical of R, that is, its maximal connected normal nilpotent
subgroup. The intersection N \T is the maximal compact subgroup of N, which is
central and characteristic in N, since N is nilpotent.

Lemma 2.1 Assume that N is simply connected. Then there exists a characteristic
simply connected subgroup R0 of R, with N �R0, such that RDR0 Ì T.

Proof Since the simply connected nilpotent Lie group N is contractible, R is a
topological product of N and R=N. In particular, the maximal compact subgroups
of R and R=N have the same dimension. Thus, dividing by N, we obtain a quotient map
R

p
�!R=N D T1�V2, where T1D p.T / and V2 is a vector group. Let V D V1�V2

be the universal covering group of T1�V2, where V1 covers T1. Let zR be the universal
covering of R. Then V D zR=N. Under the induced action of the automorphism
group Aut. zR/ on V D zR=N the identity component Aut. zR/0 acts trivially (see [14,
Chapter III, Theorem 7]). As Aut. zR/ (being isomorphic to the automorphism group
of the Lie algebra of R) is an algebraic group, Aut. zR/=Aut. zR/0 is finite. Note that
Aut.R/ is a subgroup of Aut. zR/. In particular, the image of Aut.R/ in GL.V / is
finite. As the factor V1 is invariant under Aut.R/, there is an invariant complementary
subspace in V, which projects to an Aut.R/–invariant vector subgroup V 0

2
of T1 �V2.

Then R0D p�1.V 0
2
/ is a subgroup of R which is invariant under Aut.R/. It is obvious

that R0 is simply connected and that RDR0 ÌT.

2.2 Discrete subgroups of Lie groups

Let G be a Lie group. We call a closed subgroup H of G uniform if G=H is compact. A
discrete uniform subgroup is called a uniform lattice. We note the following elementary
fact on uniform subgroups (compare [24, Theorem 1.13]):

Lemma 2.2 Let H be a uniform subgroup of G and L a closed subgroup of G. If
L=L\H is compact then LH is closed in G. Moreover , if H D � is discrete then
L=L\� is compact if and only if L� is closed in G.

Geometry & Topology, Volume 27 (2023)



Isometry groups with radical and aspherical Riemannian manifolds with large symmetry 11

Proof To prove the first claim, we consider the map L=L\H !G=H. Now, if � is
discrete, the map L=L\�!L�=� �G=� is a homeomorphism. This implies the
second part of the lemma.

Here is a simple application:

Lemma 2.3 Let � be a uniform subgroup of G. Let G0 denote the identity component
of G. Then � \G0 is a uniform lattice in G0.

Proof Since G=G0 is discrete, the image of � in G=G0 is discrete. Therefore �G0 is
closed in G. By Lemma 2.2, � \G0 is a uniform lattice of G0.

Lemma 2.4 Let � be a uniform lattice of G, L a closed normal subgroup of G and
� WG!G=L the quotient homomorphism. Assume that the identity component �.�/0

of the closure of �.�/ is contained in a compact normal subgroup K of G=L. Then
� \ ��1.K/ is a uniform lattice in ��1.K/.

Proof By Lemma 2.2, it is enough to show that ��1.K/� is closed in G. By
assumption, T D �.�/0 is a subgroup of K. As �.�/ D T �.�/, we observe that
K�.�/DK�.�/. Since K is compact, so is K=K\ �.�/. Clearly, �.�/ is a uniform
subgroup of G=L. Hence, by the first part of Lemma 2.2, K�.�/ is closed in G=L.
Therefore, ��1.K/� D ��1.K�.�// is closed in G.

2.2.1 Levi decomposition We will assume now that G is a connected Lie group. Let
R be the solvable radical of G (that is, R is the maximal connected normal solvable
subgroup of G). Then G admits a Levi decomposition

G DR �S:

The Levi subgroup S is a semisimple (not necessarily closed) immersed subgroup of G

and the intersection R\S is a totally disconnected subgroup of R and central in S.
We let K denote the maximal compact and connected normal subgroup of S. For the
following important fact; see [28, Chapter 4, Theorem 1.7; 26]:

Proposition 2.5 (Bieberbach–Auslander–Wang theorem) Let � be a uniform lattice
in G. Then the intersection .RK/\� is a uniform lattice in RK. In particular , in the
associated exact sequence

1!RK!G! S=K! 1;

the group � projects to a uniform lattice in a semisimple Lie group S=K of noncompact
type.
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12 Oliver Baues and Yoshinobu Kamishima

2.2.2 Straightening of embeddings Let � be a (uniform) lattice in a connected Lie
group G. It is a basic technique to modify a lattice � in a controlled way to obtain
another embedding of � to G which has possibly better properties. A useful result in
this direction is the following Mostow deformation theorem:

Proposition 2.6 (deformation of lattices; see [20, Theorem 5.5(b)]) Let G be a linear
Lie group , D its maximal reductive normal connected subgroup , and F its maximal
normal connected subgroup which does not contain any noncompact simple subgroups
normal in G. Then a finite-index subgroup of � can be deformed into a uniform
lattice � 0 of G, where

� 0 D .� 0\F / � .� 0\D/:

2.3 Proper actions

Let G be a Lie group which acts on a locally compact Hausdorff space X. For any
subset A of X, we put

�A.G/D fg 2G j g �A\A¤∅g:

The action of G on X is called proper if, for all compact subsets � �X, the set ��.G/
is compact.

The following lemma is concerned with quotients of proper actions.

Lemma 2.7 Let G be a Lie group which acts properly on a smooth manifold X. Let
R be a closed normal subgroup of G. Then the quotient group LDG=R acts properly
on the quotient space W DX=R.

Proof Choose an arbitrary compact subset x� from W and consider its preimage K
in X. Since R acts properly on X, there exists a compact subset � of X such that
KDR � �. (Use the slice theorem [23; 15] for the action of R on the manifold X.) It
follows that

�K.G/D ��.G/R:

Note that �K.G/ projects onto �x�.L/ under the natural homomorphism G!L. Then
�x�.L/ is compact as it is the image of the compact set ��.G/.

2.3.1 Isometries of Riemannian manifolds Let X be a Riemannian manifold. By a
theorem of Myers and Steenrod [22], the group

G D Isom.X /
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Isometry groups with radical and aspherical Riemannian manifolds with large symmetry 13

of isometries of X acts properly on X. For x 2M, let

Gx D fh 2G j hx D xg

denote the isotropy group at x. Let � be a discrete subgroup of Isom.X /.

Lemma 2.8 Assume that X=� is compact. Then the group � is a uniform lattice in
Isom.X /. In particular , � \ Isom.X /0 is a uniform lattice in the connected component
Isom.X /0.

Proof As Isom.X / acts properly, the quotient X=Isom.X / is Hausdorff. For the
natural map X=�!X=Isom.X /, each fiber over a point Œx� 2X=Isom.X / is homeo-
morphic to Isom.X /xnIsom.X /=� and it is closed in X=� . As the stabilizer Isom.X /x
is always compact and X=� is compact, it follows that Isom.X /=� is compact. In view
of Lemma 2.3, this shows that Isom.X /0\� is a uniform subgroup of Isom.X /0.

3 Smooth crystallographic actions

Let X be a contractible smooth manifold and � a properly discontinuous group of
diffeomorphisms of X. If the quotient space

X=�

is compact, we call the action of � on X crystallographic. In this section we are mostly
concerned with the action of compact Lie groups on X=� .

3.1 Cohomology of groups acting on acyclic spaces

Let � be a group which has a properly discontinuous cellular action on a CW complex X.
Let R D Z or R D Zp for some prime p. The space X is called acyclic over R if
Hi.X;R/Df0g for i ¤ 0 and H0.X;R/DR. (If RDZ then X is called acyclic.) Let
R� denote the group ring for � with R–coefficients. We have the following important
observation:

Proposition 3.1 (main lemma) Assume that X is acyclic over R and X=� is com-
pact ; then H�.�;R�/DH�c .X;R/.

Here, H�.�;R�/ denotes the group cohomology of � with R�–coefficients (see [5] for
definition) and H�c .X;R/ denotes (cellular) cohomology of X with compact supports.
This “main lemma” is the analogue of [7, Lemma F.2.2] (based on [5, Proposition 7.5,
Exercise 4]), where both references deal with Z–coefficients only.
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14 Oliver Baues and Yoshinobu Kamishima

Remark The isomorphism in Proposition 3.1 is actually an isomorphism of�–modules
where the action on the left-side cohomology is induced from the right-action on the
coefficient module Zp Œ��. For any group � , the groups H i.�;Zp Œ��/ are computed by
taking the cohomology of the cochain complex Hom�.F�;Zp Œ��/, where F�! Z is
any ZŒ��–projective resolution; see [5, Chapter III, Section 1]. Note that, if � is a finite
group, then H i.�;Zp Œ��/D 0, i > 0. Indeed, for a finite group � and any coefficient
ring R, RŒ�� D Map.�;R/ D Hom.ZŒ��;R�/ D CoInd�1 .R/, whence, according to
Shapiro’s lemma, H�.�;RŒ��/DH�.1;R/. In view of this fact, the course of proof
of the above main lemma runs through almost verbatim as in [7, Lemma F.2.2] over
any coefficient ring R.

Every proper smooth action on a smooth manifold X has an invariant simplicial
structure. In particular, if � acts properly discontinuously and smoothly on X, then
X can be given the structure of a simplicial complex with simplicial action; see [13,
Theorem II]. We deduce:

Theorem 3.2 Let � be a group which acts smoothly and properly discontinuously
with compact quotient on an n–dimensional R–orientable smooth manifold X. If X is
acyclic over R, then H n.�; �R/DR and H i.�; �R/D f0g for i ¤ n.

Proof By Poincaré duality for noncompact manifolds (see [11, Theorem 26.6]),
H i

c .X;R/ D Hn�i.X;R/. As X is acyclic, we deduce that H n
c .X;R/ D R and

H i
c .X;R/ D f0g for i ¤ n. By Illman’s result [13], we may assume that X and the

action of � are cellular. Therefore, Proposition 3.1 implies the theorem.

3.1.1 Smooth actions on manifolds Let � be a group which acts properly discon-
tinuously and smoothly with compact quotient on the smooth manifold X. Under the
assumption that X is acyclic (over the integers) we show that there are no compact
group actions on X which are normalized by � . Results of this type generalize the
well-known fact (see [6]) that the only compact Lie groups which act on compact
aspherical manifolds are tori.

Lemma 3.3 Let T be a compact torus acting faithfully and smoothly on X, where X

is an orientable acyclic manifold. Assume that the action is normalized by � . Then
T D f1g.
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Proof By Theorem 3.2, H n.�; �Z/D Z, where nD dim X, and H i.�; �Z/D f0g

for i ¤ n. Let X T be the fixed-point set of T. Since X is an acyclic manifold and
the action of T is smooth, Smith theory implies that the fixed-point set X T is also
acyclic. (See [4, Chapter IV, Corollary 1.5].) Note in particular that X T is nonempty
and a connected manifold. By [4, Chapter IV, Theorem 2.1] the manifold X T is also
orientable. Since � normalizes T, it acts on the acyclic manifold X T with compact
quotient. Again, by Theorem 3.2, we also have H r .�; �Z/D Z, where r D dim X T.
This implies dim X D dim X T and, hence, T D f1g.

Closely related is the following fact (which is well known in the case that � acts freely;
compare eg [17, Lemma 3.1.13]):

Lemma 3.4 Let C � Diff.X / be a finite group of diffeomorphisms of the smooth
manifold X. Assume further that C is normalized by � . If X is acyclic and orientable
over Zp, where p is prime , then p does not divide the order of C. In particular , if X is
acyclic and orientable , then C D f1g.

Proof Let C.p/ be a p–Sylow subgroup of C. Since X is acyclic over Zp , the Smith
theorem (see [4, Chapter III, Theorems 5.2 and 7.11]) implies that the fixed-point set
X C.p/ is also acyclic over Zp . In particular, X C.p/ is a connected manifold. It is also
orientable over Zp , by the proof of [4, Chapter IV, Theorem 2.1]. As � normalizes C,
it acts on the set of p–Sylow subgroups of C. Therefore, we may assume (after going
down to a subgroup of finite index in �) that � normalizes C.p/. In particular, �
leaves X C.p/ invariant. Since X C.p/ is a connected manifold which is acyclic and
orientable over Zp , Theorem 3.2 implies dim X D dim X C.p/. Hence, C.p/D f1g

From the above, we deduce that properly discontinuous actions on acyclic smooth
manifolds do not normalize compact Lie groups:

Theorem 3.5 Let X be an orientable acyclic manifold and let � be a group which acts
smoothly and properly discontinuously on X with compact quotient. Let � be a compact
Lie group acting faithfully and smoothly on X such that the action is normalized by � .
Then � D f1g.

Proof Since � normalizes also the center of �, which is an extension of a toral group
by a finite group, we may in light of Lemmas 3.3 and 3.4 assume from the beginning
that � is connected and semisimple with trivial center. Moreover, since � is semisimple,
the group of outer automorphisms Out.�/ is finite. Therefore, by going down to a finite-
index subgroup of � if necessary, we may assume that conjugation with the elements
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of � induces inner automorphisms of �. As � normalizes �, the group DD �� is a
Lie group of diffeomorphisms which acts properly on X. In view of the fact that the
center of � is trivial, this implies that there exists a closed subgroup � 0 � �� , which
centralizes �, such that

DD � �� D � �� 0:

(Indeed, given ` 2 D, define �.`/ W �! � by �.`/.k/D `k`�1 for all k 2 �. For each
 2 � , let k 2 � be the unique element, such that �. / D �.k /. Since the center
of � is trivial, the map  7! k�1

  is a homomorphism with kernel � \ �. Hence, the
subgroup

� 0 D f 0 D k�1
  j  2 �g

has the required properties.) Since � 0 centralizes �, � must be trivial, by Lemma 3.3.

We next turn to a related auxiliary result, which plays a role in Section 4.2.

Lemma 3.6 Let p W X ! Y be a fiber bundle of contractible manifolds. Let � act
properly discontinuously on X with compact quotient and assume that the action
descends equivariantly to a smooth action on Y. Then any compact torus T acting on Y

which is normalized by the image of � acts trivially.

Proof The fixed-point set Y T is an acyclic orientable manifold (see Lemma 3.3).
Since the fibers of the bundle are contractible (implicitly using the long exact homotopy
sequence of the fiber bundle and Whitehead’s theorem), the preimage p�1.Y T / is also
acyclic (by application of the Leray–Serre spectral sequence of a fibration). The latter
is acted upon by � , since the action of T is normalized by the image of � . Now, as in
the proof of Lemma 3.3, H r .�; �Z/D Z, where r D dim X, and, by Proposition 3.1,
H i.�; �Z/Df0g for i > dim p�1.Y T /, so that r D dim p�1.Y T /. Therefore, Y DY T,
which implies that T acts trivially on Y.

3.2 First application to Riemannian manifolds

It was proved in [8, Claim II] that Isom.X /0 contains no compact connected factor
under the somewhat stronger assumption that X=� is a manifold. By the above, this
generalizes to divisible Riemannian manifolds X and simultaneously strengthens the
statement to include possibly nonconnected compact normal groups:

Corollary 3.7 Let X be a contractible Riemannian manifold which is divisible. Then
Isom.X / has no nontrivial compact normal subgroup.
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4 Isometry groups with radical

Let X be contractible Riemannian manifold which is divisible; that is, there exists a
discrete group � of isometries such that the quotient space

X=�

is compact. In this section, we are concerned with the properties of the action of the
continuous part

GD Isom.X /0

of Isom.X / on X. In particular, we study the action of the maximal connected normal
solvable subgroup

R� G;

which is called the solvable radical of G. One main goal here is to show that the radical
quotient

X=R

is a Riemannian manifold which is divisible by the image of � in Isom.X=R/. To this
end, a detailed analysis for the action of Isom.X / on X=R is required.

4.1 Principal bundle structure of the radical quotient

As our starting point, we show here that the quotient

q WX !X=R

inherits a natural structure of a principal bundle, where the base is a contractible
manifold and the structure group is a simply connected solvable Lie group R0 which is
contained in R.

Let N be the nilpotent radical of R. Then N is a closed and characteristic subgroup of
Isom.X /.

Lemma 4.1 N is simply connected. In particular , N has no (nontrivial ) compact
subgroup and N acts properly and freely on X.

Proof Let T be the maximal compact subgroup of N. Then T is a compact torus
which acts effectively on X. As N is nilpotent, T is central and characteristic in N,
and also characteristic in G. Therefore, � normalizes T. Lemma 3.3 implies that
T D f1g.
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Therefore, X=N is a contractible manifold and

X !X=N

is a principal bundle with group N.

We continue with our study of the action of R on X. Let T be a maximal compact
subgroup of R (which is a compact torus). By Lemma 4.1, T intersects N only triv-
ially. Hence, Lemma 2.1 asserts that we may choose a simply connected solvable
characteristic subgroup R0 of R, with N� R0, such that

(4-1) RD R0 �T and R0\TD f1g:

Since the maximal compact subgroup of R0 is trivial, R0 acts freely on X. Indeed, the
geometry of the R–orbits on X is controlled by R0, and, as the following proposition
shows, the quotient map

q WX !X=R

is a principal bundle with group R0.

Proposition 4.2 The compact torus T acts trivially on X=N. Consequently , we have:

(1) R0 acts simply transitively on each fiber of q.

(2) X=R is a contractible manifold.

(3) T is faithfully represented on N by conjugation.

(4) For every x 2X, the stabilizer Rx at x is conjugate to T by an element of N.

Proof The image of T is the maximal compact subgroup of the abelian group R=N (see
the proof of Lemma 2.1), and it is a characteristic subgroup of R=N. Since Isom.X /
normalizes R, it follows that the induced action of Isom.X / on

Z DX=N

normalizes the induced action of T. We choose the unique Riemannian metric on Z

which makes the map X !Z a Riemannian submersion. Since N is characteristic in
Isom.X /, there is a homomorphism

Isom.X /! Isom.Z/:

With respect to the induced actions, � normalizes T. Therefore, Lemma 3.6 implies
that T acts trivially on Z. This implies that X=RDX=.R0T/DX=R0. In particular,
(1) and (2) hold.
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Let ZT.N/ � T denote the centralizer of N in T. Since T acts trivially on the space
Z DX=N, T and therefore also its subgroup ZT.N/ act on each orbit N �x, the latter
centralizing the simply transitive action of N. Since N is simply connected nilpotent,
N does not contain any nontrivial compact subgroups. The same is true for the centralizer
of the simply transitive action of N (which is diffeomorphic to N). This implies that the
compact group ZT.N/ acts trivially on each orbit of N. We deduce that ZT.N/D f1g,
which proves (3).

As R acts properly on X, the stabilizer Rx is compact. Since dimRxDdimR�dimR0D

dimT, Rx is maximal compact in R, as well. By the conjugacy of maximal compact
subgroups of R, Rx is conjugate to T, and, in fact, the conjugation is given by an element
of the nilradical N (since T and Rx are contained in the center of respective Cartan
subgroups of R, and the latter are conjugate by N— see [3, Chapter VII, Section 3,
Theorem 3]) — thus proving (4).

4.2 Divisibility of the radical quotient

Since q WX ! Y is a principal bundle, we may equip the radical quotient

Y DX=R

with the unique Riemannian structure such that q WX ! Y is a Riemannian submersion.
Since R is normal in Isom.X /, we also have a well-defined homomorphism

(4-2) � W Isom.X /! Isom.Y /:

Let
‚D �.�/

denote the image of � in Isom.Y /.

The main goal of this subsection is to show:

Theorem 4.3 ‚ is a discrete subgroup of Isom.Y /. In particular , ‚ acts properly
discontinuously on Y and Y=‚ is compact.

Hence, in particular, the Riemannian manifold Y is divisible.

Remark We may view Theorem 4.3 as a parametrized version of Proposition 2.5.

To prepare the proof of Theorem 4.3, we consider the kernel of the homomorphism �

in (4-2) (additional information on ker� will be derived in Proposition 4.11 below).
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By construction of Y, the action of Isom.X / on Y factors over the quotient Isom.X /=R.
Then we note:

Lemma 4.4 The image of ker� in Isom.X /=R is compact. In particular , ker� has
finitely many connected components.

Proof Note that, by Lemma 2.7, Isom.X /=R acts properly on Y. In particular, the ker-
nel of this action is compact. This shows that ker� has compact image in Isom.X /=R.

Recall that, by Lemma 2.8,
�0 D G\�

is a uniform lattice in GD Isom.X /0 and consider the projection homomorphism

 W G! G=R:

Note that by the proof of Proposition 2.5, the identity component

T D  .�0/
0
� G=R

is a compact torus.

Lemma 4.5 T acts trivially on Y.

Proof By Proposition 4.2, Y is a contractible manifold. The action of the compact
torus T on Y is normalized by the induced action of � on Y. Hence, Lemma 3.6
implies that T acts trivially on Y.

Proposition 4.6 (radical kernel is solvable lattice) The group

�D � \ ker�

is a uniform lattice in ker�. In particular , � is a virtually polycyclic group.

Proof The image of ker� is a normal subgroup of Isom.X /=R and it is compact by
Lemma 4.4. By Lemma 4.5, it also contains

T D  .�0/
0:

Hence, by Lemma 2.4, � \ ker� is a uniform lattice in ker�. Since ker� is a Lie
group, which is an extension of a compact group by a solvable group, it follows that
the Lie group ker� is amenable. As is well known, the discreteness of � together with
amenability of ker� implies that � \ ker� is virtually polycyclic. (See for example
[19, Lemma 2.2(b)].)
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We are ready for the:

Proof of Theorem 4.3 Since � \ ker� is a uniform lattice in ker�, the image ‚
of � in �.Isom.X // D Isom.X /=ker� is a uniform lattice, see Lemma 2.2. Since
Isom.X /=R acts properly on Y, Isom.X /=ker� is a closed subgroup in Isom.Y /. We
conclude that ‚ is discrete in Isom.Y /. Hence, ‚ acts properly discontinuously on Y,
and, in particular, Y=‚ is Hausdorff. The natural surjective map X=�! Y=‚ shows
that Y=‚ is compact.

4.3 Action of Isom.X/ on the radical quotient

We choose a Levi decomposition (see Section 2.2.1)

Isom.X /0 D R � S;

where S is a semisimple subgroup and R is the solvable radical of Isom.X /0. Moreover,
let

K � S

denote the maximal compact normal subgroup of S.

Now Theorem 4.3 combined with Theorem 3.5 implies:

Proposition 4.7 The action of K on the quotient Y which is induced by

� W Isom.X /! Isom.Y /

is trivial. In particular , every finite subgroup in the center of S acts trivially on Y.

Proof Since R �K is characteristic in Isom.X /0, it is normalized by � . Therefore, the
image of K is normalized by ‚ D �.�/ in Isom.Y /, with Y D X=R. We may now
apply Theorem 3.5 to deduce that K acts trivially on Y.

That is, we have shown that K is contained in ker�.

Strengthening Lemma 4.4, we add the following observation:

Proposition 4.8 The image of ker� in Isom.X /=R is the unique maximal compact
normal subgroup of Isom.X /=R. In particular , ker� has finitely many connected
components.
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Proof Let K1 be the image in Isom.Y / of any compact normal subgroup K1 of
Isom.X /=R. As before, let ‚ be the image of � . By Theorem 4.3, ‚ acts properly
discontinuously with compact quotient on Y and ‚ normalizes the compact group K1.
Therefore Theorem 3.5 implies K1 D f1g, which implies that K1 is contained in the
image of ker�. On the other hand, Lemma 4.4 asserts that the image of ker� is compact.
Since the image is also a normal subgroup of Isom.X /=R, our claim follows.

Consider R0 � R as in Proposition 4.2.

Lemma 4.9 Let D be a compact Lie group of diffeomorphisms of X which centralizes
R and acts trivially on Y. Then DD f1g.

Proof Since D acts trivially on Y, D centralizes the simply transitive action of R0 on
each fiber of the map X ! Y. Since, R0 is a simply connected solvable Lie group, its
centralizer in the diffeomorphism group of the fiber (being isomorphic to R0) does not
contain any nontrivial compact subgroup. Hence, the induced action of D on each fiber
must be trivial. Therefore, D acts trivially on X. This implies DD f1g.

In the view of Proposition 4.7, we deduce:

Proposition 4.10 Any compact subgroup of ker� acts faithfully on R by conjugation.
In particular , this holds for the maximal compact normal subgroup K of S.

We derive some additional observations on the kernel of

� W Isom.X /! Isom.Y /:

Proposition 4.11 The following hold :

(1) ker� acts faithfully on each fiber of q WX ! Y.

(2) .ker�/0 D R �K0.

(3) K is contained in ker�, and R �K is of finite index in ker� \G.

Proof Recall that R0 acts simply transitively on the fibers of q and let R0 �p for p 2X

be a fiber. Since R0 is characteristic in Isom.X /, ker� normalizes R0. Consider the
subgroup Tp of elements in ker�, which act trivially on the orbit R0 �p. Since R0 acts
freely, Tp centralizes R0 in Isom.X /. Also Tp is compact, since ker� acts properly
on X. Therefore, with Proposition 4.10 we have (1).
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Clearly, S\ker� is a normal subgroup of S, and, by Proposition 4.8, the homomorphism

ker�! Isom.X /=R

projects Isom.X /0 \ ker� (and therefore also S\ ker�) onto the maximal compact
normal subgroup

x� � G=RD S=R\ S:

The induced surjective homomorphism

S\ ker�!x�

has kernel R\ S, which is central in S.

Since .ker�/0 is a normal subgroup of GD Isom.X /0, R� ker� is also the solvable
radical of .ker�/0. Let H be a Levi subgroup of .ker�/0 with H � S. (Any Levi
subgroup of .ker�/0 is contained in a Levi subgroup of G. Therefore, H � S exists
since all Levi subgroups are conjugate by an element of R. See [14, Chapter III,
Section 9].) Since

.ker�/0 D R �H;

the Levi subgroup H D .S \ ker�/0 projects onto x�0, and is normal in S. Since
the projection has discrete kernel, x�0 is semisimple (and also compact). Therefore,
�1.x�

0/ is finite. This shows that the covering group H is compact. Since K0 is the
maximal compact connected normal subgroup in S, H � K0. On the other hand, by
Proposition 4.7, K � ker�. Therefore, K0 �H. This proves (2).

Since x� is compact, it has only finitely many connected components. Since ker� \ S

projects surjectively on the image x� of ker�, using (2), it follows that K0.S\R/ is of
finite index in ker�\S. Hence, also K.S\R/ is of finite index in ker�\S. Therefore,
(3) follows.

The following example shows that, in general, the maximal finite normal subgroup C in
the center of S can be nontrivial, even if S has no connected compact normal subgroup.
Of course, this can only happen provided that the isometry group has a nontrivial
connected radical on which S, or C, acts faithfully. (Indeed, by Proposition 4.7, the
induced action of C on the radical quotient Y is always trivial.) However, even if the
radical R of Isom.X / is trivial, S can have infinite center as in Example 6.4.

Example 4.12 (compact locally homogeneous manifolds with radical) Let S be a
semisimple Lie group of noncompact type which is faithfully represented on a vector
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space V. Since S is linear, its center C is finite. Let K be a maximal compact subgroup
of S. Since C is finite, C is contained in K. Put

G D V Ì S:

Now consider the contractible manifold

X D V �K S DG=K:

Then G acts properly and faithfully on X. Choose a G–invariant Riemannian metric
such that G D Isom.X /0. Since V is the solvable radical, the radical quotient

Y DX=V D S=K

is a Riemannian symmetric space of noncompact type. Now choose V and a uniform
subgroup ‚ of S such that ‚ is arithmetic with respect to a lattice ƒ in V. (By a
classical result of Borel [2] such ‚ and V always exist.) Then the group � DƒÌ‚
is a discrete uniform subgroup of Isom.X /. This constructs a corresponding compact
locally homogeneous quotient X=� with G D Isom.X /0.

4.4 Divisible Riemannian manifolds

Summarizing the above we arrive at the following structure theorem for the continuous
part of the isometry group of a contractible Riemannian manifold which is divisible.

Theorem 4.13 (main theorem on radicals in isometry groups) Let X be a contractible
Riemannian manifold and � � Isom.X / a discrete subgroup such that X=� is compact.
Let R denote the solvable radical of Isom.X /0. Then the following hold :

(1) The maximal compact normal subgroup of Isom.X /0 is trivial.

(2) The nilpotent radical N of Isom.X /0 is simply connected and �\N is a uniform
lattice in N.

(3) The radical quotients X=N and X=R are contractible Riemannian manifolds.

With respect to the Riemannian quotient metric on X=R and the induced homomorphism

� W Isom.X /! Isom.X=R/;
it follows further that :

(4) The image‚ of � in Isom.X=R/ is discrete (and a uniform lattice in Isom.X=R/).

(5) Isom.X /=R acts properly on X=R.

(6) The kernel of the action in (5) is the maximal compact normal subgroup of
Isom.X /=R.
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(7) The image S of Isom.X /0 in Isom.X=R/ is a semisimple Lie group of non-
compact type without finite subgroups in its center , and it is a closed normal
subgroup of Isom.X=R/0. (In particular , it is normal in a finite-index subgroup
of Isom.X=R/.)

(8) Moreover , ‚\S is a uniform lattice in S.

Proof Recall that (1) is a consequence of Corollary 3.7, and (3) is proved in Proposition
4.2. Next, (4) and (5) are contained in Theorem 4.3 and Lemma 2.7, whereas (6) is
Proposition 4.8. For (2), observe that by (1), Isom.X /0 has no connected compact
normal semisimple subgroup. Since �\ Isom.X /0 is a lattice in Isom.X /0, a result of
Mostow [20, Lemma 3.9] shows that � \N is a uniform lattice in N (which is simply
connected by Lemma 4.1).

To prove (7), we first observe that S D �.Isom.X /0/ acts properly on X=R, by (5).
In particular, S must be a closed subgroup of Isom.X=R/. By Proposition 4.11, the
maximal compact normal subgroup of S, where S is a Levi subgroup of GD Isom.X /0,
is contained in ker�. Therefore, S D �.S/, is semisimple of noncompact type. By (4),
X=R is divisible by ‚D �.�/, and S is normalized by this action. By Theorem 3.5,
S must be without finite normal subgroups.

Next we show that S is centralized by the nilpotent radical NX=R of Isom.X=R/0.
Let ‚1 D NX=R \‚, where ‚D �.�/. Since ‚ normalizes S, ŒS; ‚1�� S \NX=R.
The latter is a disconnected subgroup and therefore connectedness of S implies that
ŒS; ‚1�D f1g. Therefore, S centralizes ‚1.

Moreover, since ‚ divides X=R, ‚0 D ‚ \ Isom.X=R/0 is a uniform lattice in
Isom.X=R/0. By (2), ‚1 is thus a uniform lattice in the simply connected nilpotent
group NX=R. Since S centralizes ‚1 (which is Zariski-dense with respect to the natural
algebraic structure of NX=R; see [24, Theorem 2.1]), it also centralizes NX=R.

By the Maltsev Harish-Chandra theorem [14, Chapter III, page 92], all Levi subgroups
of a Lie group are conjugate by elements of its nilpotent radical. Note that the inter-
section Lo of all Levi subgroups of Isom.X=R/0 is a semisimple normal — in fact,
characteristic — subgroup of Isom.X=R/. Being centralized by NX=R, we conclude
that S is contained in Lo.

Since Lo is characteristic in Isom.X=R/0, it is normalized by ‚. The same holds for
the maximal compact factor of Lo. As a consequence of Theorem 3.5, any compact
factor of Lo is trivial. Now, as follows from [20, Lemma 3.1(1)], the adjoint image
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of Lo, acting on the Lie algebra of Isom.X=R/0, is contained in the Zariski closure of
the adjoint image of the uniform lattice ‚0. Since ‚0 normalizes S, its adjoint image
stabilizes the Lie subalgebra belonging to S, and the same is true for the Zariski closure
of the adjoint image of ‚0. In particular, this holds for the adjoint image of Lo. This
shows that S is a normal semisimple subgroup of Lo. As a semisimple factor of L0,
it is also normal in Isom.X=R/0. Similarly, the simple factors of Lo are permuted
by Isom.X=R/. Hence, a finite-index subgroup of Isom.X=R/ normalizes S. This
completes (7).

Since the quotient of X=R by ‚ is compact, ‚ is a uniform lattice in �.Isom.X //
which acts properly on X=R by (5). By Lemma 2.3, ‚ intersects S as a uniform lattice.
So (8) is proved.

5 Infrasolv towers

5.1 Review of infrasolv spaces

Infra R–geometry Let R be a connected Lie group and Aff.R/ its group of affine
transformations. By definition, Aff.R/ is precisely the normalizer of the left translation
action of R on itself in the group of all diffeomorphisms of R. The group Aut.R/ of
continuous automorphisms of R is then naturally a subgroup of Aff.R/. Identifying R

with its group of left translations gives rise to a semidirect product decomposition

Aff.R/DR Ì Aut.R/:

The associated projection homomorphism

Aff.R/! Aut.R/;

is called the holonomy homomorphism. Let

�� Aff.R/

be a discrete subgroup which acts properly discontinuously on R. Then the quotient
space

R=�

is called an orbifold with R–geometry.

Infrasolv spaces We assume now that R is a simply connected solvable Lie group.
Traditionally, a space with R–geometry is called infrasolv if it admits an underlying
compatible Riemannian geometry.
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Definition 5.1 A compact space R=� with R–geometry is called an infrasolv orbifold
if the closure of the holonomy image of � in Aut.R/ is compact. If the infrasolv
orbifold R=� is a manifold, it is called an infrasolv manifold.

Equivalently, we can say that R=� is infrasolv if and only if the closure of R�

in Aff.R/ acts properly on R. In particular, if R=� is infrasolv, there exist left-
invariant Riemannian metrics on R preserved by � (these are not necessarily unique)
and any such compatible metric gives rise to an associated infrasolv Riemannian
structure on R=�.

Remark (equivalence of infrasolv structures) A presentation of orbifolds M DR=�,
where R and � are as above, is called an infrasolv structure for the space M. Two
infrasolv structures on M are considered equivalent if they are related by an affine map
of R.

Lemma 5.2 Any Riemannian space X with a simply transitive isometric action of R,
and a cocompact properly discontinuous subgroup � of isometries of X, which normal-
izes this action , defines an infrasolv orbifold structure with R–geometry on X=�.
This infrasolv structure is unique up to a right multiplication of R.

Proof Let Aff.X;R/ denote the normalizer of R in Diff.X /. Fixing a point p 2 X

defines identifications

RDX and Aff.X;R/DR Ì Aut.R/;

and hence a corresponding embedding �� Aff.R/. This gives X=� the structure of
an orbifold with R–geometry.

Because the identifications depend on the choice of basepoint p 2X, the embedding
of � is defined up to conjugation with a right multiplication of R. This already proves
the uniqueness statement for the structure of orbifold with R–geometry.

Furthermore, with these identifications in place, Aut.R/ corresponds to the stabilizer
of p in Aff.X;R/. For ı 2�, let

ı D r�; r 2R; � 2 Aut.R/;

be its corresponding holonomy decomposition. Observe that � is an isometry, since ı
and r are. Furthermore, the linear isotropy representation of Aut.R/ on the tangent
space TpX at p is an isomorphism of Aut.R/ onto a closed subgroup of GL.TpX /.
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Since � is an isometry, its image under the linear isotropy map is contained in a compact
subgroup of GL.TpX /. This shows that the holonomy image of � has compact closure
in Aut.R/. Therefore, the structure of orbifold with R–geometry on X=� is infrasolv
(and the metric induced from X is a compatible Riemannian metric).

5.2 Infrasolv fiber spaces

We introduce now a notion of orbibundles whose fibers carry an affine geometry
modeled on the solvable Lie group R. We use a characterization in terms of group
actions on the universal cover.

Let X be a simply connected manifold on which R acts properly and freely. Then let
Diff.X;R/ denote the normalizer of R in Diff.X /. Consider a subgroup

� � Diff.X;R/

which acts properly discontinuously on X. Let � � � be the normal subgroup of �
which acts trivially on the quotient manifold

Y DX=R:

Put
‚D �=�

and assume further that ‚ acts properly discontinuously on Y. Thus, in this case,
Y=‚ is a Hausdorff space; in fact, it is an orbifold.

We consider the projection map p WX=�! Y=‚ induced by q WX ! Y. Since ‚ acts
properly discontinuously, the fiber stabilizers

�y D f 2 � j y D yg; y 2 Y;

are finite extension groups of �. Since � � Diff.X;R/ normalizes R, the restriction
of �y to q�1.y/ acts by affine transformations with respect to the simply transitive
action of R on q�1.y/. Therefore, the fibers

p�1. Ny/DR=�y

carry the structure of a space with R–geometry.

Definition 5.3 The projection map

p WX=�! Y=‚

is called a fiber bundle with R–geometry over the base Y=‚. It is called an infrasolv
fiber space if the fibers of p are (compact) infrasolv orbifolds.
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Given an infrasolv fiber space p and, in addition, Riemannian metrics on X and Y,
invariant by R, � and ‚, respectively, such that

X ! Y

is a Riemannian submersion, we call p a Riemannian infrasolv bundle (or fiber space)
modeled on the group R.

5.2.1 Riemannian orbibundles More generally we define the notion of Riemannian
orbibundle with locally homogeneous fibers as follows.

Let X be a Riemannian manifold and consider a closed subgroup L� Isom.X / such
that Y DX=L is a Riemannian manifold with the induced Riemannian metric (meaning
that the projection map p WX ! Y is a Riemannian submersion).

Definition 5.4 Given a properly discontinuous subgroup � of isometries of X that
normalizes L such that the image ‚ of � in Isom.Y / is discrete, then the map X=�!

Y=‚ induced by p is called a Riemannian orbibundle with locally homogeneous fibers.

With this definition, the fibers of such an orbibundle map are locally homogeneous
Riemannian orbifolds modeled on a homogenous space of L. Riemannian infrasolv
bundles appearing above are thus Riemannian orbibundles whose fibers are infrasov
manifolds.

5.3 Structure theorems

Applying the results in Sections 4.1 and 4.2, we can state now:

Theorem 5.5 Let X be a contractible Riemannian manifold which is divisible and let
� � Isom.X / be a discrete subgroup such that X=� is compact. Let R be the solvable
radical of Isom.X / and put Y D X=R. Let ‚ denote the homomorphic image of �
in Isom.Y /. Then X=� has an induced structure of Riemannian infrasolv fiber space
over the compact aspherical Riemannian orbifold Y=‚.

Proof By Proposition 4.2(1), there exists a simply connected characteristic subgroup
R0 of R, acting properly and freely on X, such that Y DX=R0 is a contractible manifold.
Moreover, the metric on X descends to Y such that the map X ! Y is a Riemannian
submersion. Since R0 is characteristic in Isom.X /, we have � �Diff.X;R0/. Consider
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the associated homomorphism � W Isom.X /! Isom.Y /. Then the image ‚D �.�/
acts properly discontinuously, by Theorem 4.3. Hence, the map p WX=�! Y=‚ is a
fiber bundle with R0–geometry over the base orbifold Y=‚.

Obviously, since X=� is compact, the fibers of p are compact. It remains to show that
the bundle is infrasolv. That is, we have to show that the holonomy of every fiber has
compact closure.

For this, note that the metric of X restricts to a R�y–invariant Riemannian metric on the
R–orbit q�1.y/. As remarked in Lemma 5.2, this implies that the fibers are infrasolv.

Remark (infrasolv structure on the fibers) The infrasolv structure on the fibers
depends on the choice of group R0, which is not necessarily unique. However, once R0

is fixed the structures are defined up to equivalence (compare Lemma 5.2).

Remark (addition to Theorem 5.5) The geometry of the fibers of the bundle p

constructed in the proof of Theorem 5.5 is determined by the holonomy image of �
in the fibers of the map X ! Y. Since �� ker�, Proposition 4.11(3) shows that, up
to finite index, the holonomy of the fibers is contained in the holonomy image of the
subgroup R �K � Isom.X /.

The theorem applies in particular to compact aspherical Riemannian manifolds

M DX=�:

Since M is a manifold, � acts freely on X, and � � Isom.X / is a discrete torsion-free
subgroup isomorphic to the fundamental group �1.M /. Then M inherits the structure
of an infrasolv fiber space

M ! Y=‚

over the base Y=‚ which, in general, is an orbifold. However, the fibers of the bundle
map are always infrasolv manifolds, since � acts freely on X.

5.4 Towers of infrasolv fiber spaces

Using Theorem 5.5 we construct a sequence of Riemannian submersions

qi WX !Xi ;

subsequently dividing by the solvable radical Ri of Isom.Xi/. That is, assuming that
qi is constructed, we put

XiC1 DXi=Ri
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and define qiC1 WX !XiC1 as the composition of qi with the projection Xi !XiC1.
In this way, we obtain a tower of Riemannian submersions

(5-1) X !X1! � � � !Xk ;

and the induced maps Isom.Xj /! Isom.XjC1/ for j C 1� i compose to homomor-
phisms

�i W Isom.X /! Isom.Xi/

such that
�i D �i.�/

acts properly discontinuously and with compact quotient

Xi=�i :

If, for some `, Isom.X`/ has trivial solvable radical, the process terminates, and we
call ` the length of the tower.

In view of Theorems 4.13 and 5.5, the following properties are satisfied:

Corollary 5.6 (infrasolv tower for X ) (1) Xi is a contractible Riemannian mani-
fold and the projection Xi !XiC1 is a principal bundle with structure group a
simply connected solvable Lie group.

(2) The maps Xi=�i ! XiC1=�iC1 for i C 1 � ` are Riemannian infrasolv fiber
spaces.

(3) Isom.X`/0 is a semisimple (or trivial ) Lie group of noncompact type which has
no nontrivial finite subgroups in its center.

Any sequence of maps

(5-2) X=�!X1=�1! � � � !Xk=�k

such that, at each step, Xi=�i!XiC1=�iC1 is a Riemannian infrasolv bundle will be
called an infrasolv tower for X over the base

Xk=�k :

We call the tower complete if the solvable radical of Isom.Xk/
0 is trivial. Thus, for a

complete tower,
SD Isom.Xk/

0

is semisimple and the center of S is a finitely generated abelian group (which is torsion-
free, by Corollary 3.7.) Let rk denote the rank of Z, where Z is the center of S. Set
X DX0.
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Definition 5.7 The solvable rank of the complete infrasolv tower is the integer

r D

k�1X
iD0

.dim Xi � dim XiC1/C rk D dim X � dim Xk C rk :

The definition is motivated by Example 6.4.

Corollary 5.8 The group � contains a normal polycyclic subgroup of rank equal to r .

Proof Indeed, we have rank�i=�iC1D dim Xi�dim XiC1. (Recall that any virtually
polycyclic group which acts properly discontinuously with compact quotient on a
contractible manifold X has virtual cohomological dimension vcd� D dim X ; see
Theorem 3.2. Furthermore, rank� D vcd� , see [5].)

6 Aspherical manifolds with large symmetry

We give some examples of Riemannian metrics on aspherical manifolds which exhibit
various types of local symmetry.

6.1 Warped product metrics

A special case of Riemannian submersions X ! Y are warped products X D Y �f F

of Riemannian manifolds Y and F, where f W Y !R>0 denotes the warping function.
The manifolds .y � F / for y 2 Y are called the fibers of the warped product. The
following lemma describes fiber preserving warped product isometries:

Lemma 6.1 Assume that the function f is bounded. Then every isometry ˆ of X

which maps fibers to fibers is of the form ˆ D  � �, where � 2 Isom.F / and
 2 Isom.Y / satisfies f ı D f.

Proof Indeed, sinceˆ is an isometry which preserves the fibers, it induces an isometry
 of the base Y. It also respects the horizontal distribution of the warped product,
which is tangent to the horizontal leaves Y �x for x 2 F. Therefore, ˆD  �� for
some map � W F ! F. Writing g D gY � fgF for the warped product metric, we see
that ˆ is an isometry if and only if, for all y 2 Y and v 2 TxF,

f . .y//gF;�.x/.d�x.v/; d�x.v//D f .y/gF;x.v; v/:
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Therefore, keeping x fixed, we deduce that there exists a unique �D �. / > 0 such
that the relation

f . .y//D �f .y/

holds for all y 2 Y. Consequently, � is a homothety for gF with factor ��1. Clearly,
the map k 7! �. k/ defines a homomorphism from a cyclic group to R>0. Hence, if
f is bounded, it follows that �D 1.

Compact aspherical manifolds of large symmetry are easily constructed using warped
product metrics. The following simple example exhibits a compact aspherical Riemann-
ian surface Mf , diffeomorphic to the two-torus, whose metric has large symmetry, in
the sense of Definition 1.1. Its associated solvtower is of length two. (In particular, the
metric is not locally homogeneous.)

Example 6.2 (torus of revolution) Consider the warped product of circles Mf D

S1 � Nf S1 which is covered by X DR�
f

R, where

(6-1) f .x/D 2C sin x:

Accordingly, X has metric g D dx2Cf dy2. Then Isom.X / contains the translation
group V DR� 2�Z, and, putting ƒD Z� 2�Z, we have that

Mf DX=ƒ:

We claim that V 0DR must be the nilpotent radical of Isom.X /0. Note that Isom.X /0

has no semisimple part (otherwise X is isometric to the hyperbolic plane, which is
absurd since T 2 has no metric of negative curvature). Therefore, Isom.X /0 is solvable.
We can infer from Lemma 6.1 that the nilpotent radical is one-dimensional. Indeed,
since the nilradical acts freely, it is at most two-dimensional. In particular, it must be
abelian, and therefore respects the fibers of the warped product. Therefore, the radical
quotient for X coincides with the warped product projection

X ! .R; dx2/:

It gives a Riemannian submersion over the real line, whose fibers are the orbits of
Isom.X /0 D V 0, which are permuted by Isom.X /.

More generally, for any Riemannian manifold N, we can form the warped product

MN;f D S1
� Nf N;
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where Nf is as in (6-1). Take, for example, a (compact) locally symmetric space of
noncompact type

N D‚nS=K

as fiber. Put
X D B �f S=K

for the lifted warped product on the universal cover, where B DR is the real line. By
Theorem 5.5 and Proposition 4.11, S acts locally faithfully on the radical quotient of X.
It follows that the nilpotent radical of Isom.X /0 is at most one-dimensional, and it is
therefore centralized by S. In particular, the nilradical of Isom.X /0 acts on the fibers
of the warped product, which are the orbits of S. We deduce from Lemma 6.1 that the
nilradical of Isom.X /0 must be trivial. Hence,

Isom.X /0 D S

is semisimple, and the base of the lifted warped product

X D B �f S=K

is a Euclidean space. We proved:

Proposition 6.3 The compact aspherical Riemannian warped product

M
‚nS=K ; Nf

! S1

with f as in (6-1) satisfies Isom.X /0 D S is semisimple. Moreover , the isometry
group of the base of the warped product metric on X is

Isom.B/D Isom.R/:

6.2 Metrics on fSL.2 ; R/ and its compact quotients

Let fSL.2;R/

denote the universal covering group of SL.2;R/.

Example 6.4 Consider the group manifold X D fSL.2;R/ with any left-invariant
Riemannian metric. Then, by the left action on itself,fSL.2;R/� Isom.X /

is represented as a subgroup of the isometry group. Let R denote the solvable radical
of Isom.X /0 and Z the center of fSL.2;R/. Two principal cases do occur:
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(I) The radical R is a one-dimensional vector group and acts freely on X. The
Riemannian quotient X=R is (up to scaling) isometric to the hyperbolic plane H2,
so that the associated fibering

XeSL.2;R/!H2

is a Riemannian submersion, and

Isom.X /0 D RfSL.2;R/; R\fSL.2;R/D Z:

(II) Isom.X /0 DfSL.2;R/.

Proof Observe that Isom.X /0 is reductive with Levi subgroup fSL.2;R/. In fact, let
S be a Levi subgroup containing fSL.2;R/. Then

X DXS D S=K;

where K is maximal compact in S and S D fSL.2;R/K. Assuming K ¤ f1g, either
K D SO.3/ or K D S1. In the first case, X is of constant curvature. In particular,
S D Isom.X /0 is a linear group. This contradicts fSL.2;R/ � S. Similarly, in the
latter case, S is a four-dimensional simple group. Such a group doesn’t exist. Hence,fSL.2;R/ is a Levi subgroup of Isom.X /0. Similarly, we see that the radical R of
Isom.X /0 is at most one-dimensional and fSL.2;R/ must intersect R in a cocompact
lattice (because R is simply connected and noncompact).

Assume that the radical R is nontrivial. Since R is abelian and centralizing fSL.2;R/,
it arises as a one-parameter group of right-translations on fSL.2;R/. Since Isom.X /0

acts properly, the adjoint representation of this one-parameter group defines a compact
subgroup of inner automorphisms of the Lie algebra of SL.2;R/. It also preserves the
scalar product on the tangent space of the identity, which defines the left-invariant Rie-
mannian metric on X. In particular, R arises from the subgroup fSO.2;R/ in fSL.2;R/,
which covers (a conjugate of) SO.2/. Moreover, X=RD SL.2;R/=SO.2/DH2. This
is type (I).

Remark The second case actually occurs and is the generic one. For example,
take a standard basis fX;Y;H g of the Lie algebra of SL.2;R/ with ŒH;X � D 2X,
ŒH;Y �D�2Y and ŒX;Y �DH. Define it as orthonormal basis for the scalar product
at the tangent space at the identity. We verify that this scalar product is not preserved
by any compact subgroup in the adjoint image of SL.2;R/. Hence, this defines a
left-invariant metric on fSL.2;R/, which is of type (II).
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Proof We show that the scalar product does not admit a one parameter group of inner
isometries. Let B D aH C bX C cY 2 sl.2;R/, where a, b and c are real numbers.
Then ad.B/ W sl.2;R/! sl.2;R/ is represented, with respect to the basis fH;X;Y g,
by a matrix of the form 0@ 0 �c b

�2b 2a 0

2c 0 �2a

1A :
Now this matrix is skew if and only if B D 0.

Associated principal circle bundle over Kähler manifolds Now let � �fSL.2;R/
be a (uniform) lattice. Then �D � \Z has finite index in Z (by [24, Corollary 5.17])
and � projects to a uniform lattice

‚D �=�� PSL2 RD Isom.H2/0:

Let � act by left multiplication on fSL.2;R/ and put

M DX=� D �nfSL.2;R/:
Therefore:

(I) The Sasakian case Since Isom.X /0 has a radical R isomorphic to the real line,
there is an induced infrasolv tower of length k D 1 over a compact hyperbolic
orbifold:

M !H2=‚;

where X=RDH2. The map is actually a principal circle bundle and a Riemannian
submersion. These manifolds M and their geometry play a prominent role in
the classification of three manifolds. Compare [9].

(II) Isom.X /0 D S D fSL.2;R/ is semisimple with infinite cyclic center Z. The
Riemannian manifold X therefore does not admit an infrasolv-fibering.

In both cases, M is locally homogeneous (in particular, M has large symmetry) and
the solvable rank of the metrics (see Definition 5.7) satisfies r D 1.

7 Constructing Riemannian manifolds from group extensions

In this section we introduce a method which allows us to construct examples of
aspherical Riemannian orbibundles

p WX=�! Y=‚
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which arise from associated group extensions of the form

1!ƒ! �!‚! 1:

In our setup, ƒ, in general, will be a virtually polycyclic group. We will work out the
details only in a specific, particularly simple case. Our main purpose here is to construct
an aspherical manifold, which supports Riemannian metrics of large symmetry, but
at the same time does not admit any locally homogeneous Riemannian metric; see
Corollary 7.6. The method though generalizes considerably. The basic construction is
partially based on the notion of injective Seifert fiber spaces (see [17] for an extensive
account).

7.1 Fiberings over hyperbolic Riemannian orbifolds

Setup As a base space of our tentative fibration, we choose a hyperbolic orbifold (that
is, a space of constant negative curvature)

Hn=‚:

Here, ‚� PSO.n; 1/ is a discrete uniform subgroup, and

PSO.n; 1/D Isom.Hn/0

denotes the identity component of the group of isometries of real hyperbolic space Hn.
In addition, we consider a central group extension

(7-1) 1! Zk
! �!‚! 1:

Up to isomorphism, (7-1) is determined by its extension class

Œf � 2H 2.‚;Zk/;

where f is a two-cocycle with values in Zk . Recall that (by the Borel density theorem)
the lattice ‚ does not contain any solvable or finite normal subgroup. Therefore, we
remark:

.�/ The image of Zk in � is the maximal virtually solvable normal subgroup of � .

First construction step Consider the standard inclusion Zk � Rk , where Zk is a
lattice in Rk . Using the cocycle f for (7-1), we obtain a pushout diagram of group
extensions,

(7-2)
1 // Zk //

\

� //

\

‚ // 1

1 // Rk // Rk �� // ‚ // 1
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Second construction step The Seifert construction shows that there exists a proper
action of the pushout Rk �� on the product manifold

(7-3) X DRk
�Hn:

This action extends the translation action of Rk on the left factor of X, and induces the
original action of ‚ on Hn. Thus, the quotient X=� is a compact aspherical orbifold
and

(7-4) T k
!X=�!Hn=‚

is a Seifert fibering with typical fiber a k–torus T k . See [17, Theorem 7.2.4, Sections
7.3–7.4].

Third construction step The total space X=� of the fibration (7-4) carries a compat-
ible Riemannian metric of large local symmetry:

Proposition 7.1 (metric of large symmetry on X=�) There exists a Riemannian
metric g on X such that

(1) Rk �� acts properly by isometries , and

(2) the projection map X !Hn is a Riemannian submersion.

Proof Since Rk , ‚ and also (according to [17, Theorem 7.2.4]) � act properly, we
infer in light of the fact that �\Rk is lattice in Rk that the pushout Rk �� acts properly
on X. Thus, there exists an Rk � �–invariant Riemannian metric g0 on X (see [15],
for example). Let H be the horizontal distribution orthogonal to the orbits of Rk with
respect to this metric. If p W X ! Hn is the projection onto the second factor of X,
the induced bundle map p� W H ! T Hn identifies horizontal spaces in X with the
respective tangent spaces of Hn.

Put u D T CA and v D S CB for u; v 2 TxX , S and T tangent to the fibers, and
A;B 2 H. Let gH denote the hyperbolic metric and define a Riemannian metric g

on X by putting

(7-5) g.u; v/D g0.T;S/CgH.p�A; p�B/:

Therefore, the metric g has the same horizontal spaces H as g0, and also p WX !Hn is
a Riemannian submersion, by construction. Also Rk �� acts isometrically on the fibers,
and the horizontal distribution H for g is invariant by Rk �� . Since Rk acts trivially
on H, the metric g is clearly invariant by Rk . Moreover, since p is �–equivariant and
‚ acts by isometries on the base, also � acts by isometries with respect to g.
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Corollary 7.2 The compact orbifold X=� admits a metric which has a complete
infrasolv tower of length one and of solvable rank k (see Definition 5.7). In particular ,
X=� carries a metric of large symmetry.

Suppose g is any Riemannian metric on X which satisfies Proposition 7.1(1)–(2). Then
the situation is sufficiently rigid that the radical projection

q WX !X=R;

as defined in Section 4.2, actually coincides with the projection map onto the second
factor of (7-3). More precisely:

Proposition 7.3 (rigidity of the projection) For any metric on X satisfying Proposition
7.1(1)–(2):

(1) The image of Rk in Isom.X / is the maximal simply connected normal solvable
subgroup R0 of Isom.X /.

(2) The fibers of q are Euclidean spaces on which Rk acts simply transitively by
translations.

(3) The radical quotient X=R is isometric to Hn, and the projection map onto the
second factor of (7-3) corresponds to the radical projection q.

Proof Write Isom.X /0 D GD R � S, as in Section 4.3. Put �0 D � \G. Then �0 is a
uniform lattice in G. Consider the projection homomorphism

� W Isom.X /! Isom.X=R/

corresponding to the Riemannian submersion q. If the image

S0 D �.Isom.X /0/D �.S/

is not the trivial group, it is a semisimple Lie group of noncompact type and �.�0/ is a
uniform lattice in S0. (See Theorem 4.13(7).)

Denote with V the vector subgroup of Isom.X / which arises by the isometric action
of Rk on X. By construction, V is normalized by �0 and the image �.V / in S0 is
normalized by the uniform lattice �.�0/. By Borel’s density theorem (applied to the
adjoint form of S0), S0 does not contain any abelian connected subgroup normalized
by �.�0/. This shows that V is contained in ker�. Consequently, V acts by isometries
on each fiber of the projection q, and by construction the action is free.
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Next, observe that the fibers of q WX !X=R are at most k–dimensional. Indeed, by
Proposition 4.6,

radG.�/D �0\ ker�

is a virtually polycyclic normal subgroup, and it acts with compact quotient on each
fiber q�1.y/. This shows that dim q�1.y/ D rank radG.�/; see, for example, the
argument given in the proof of Corollary 5.8. As observed in .�/ (following (7-1)), we
must have radG.�/� Zk , and consequently rank radG.�/� k.

We deduce that V is a simply transitive group of isometries on each fiber q�1.y/.
Since any left-invariant metric on a vector space is flat (and unique up to an affine
transformation), this implies that q�1.y/ is isometric to an Euclidean space Ek on
which V acts by translations. In particular, (2) holds.

Recall from Proposition 4.11 that ker� acts faithfully on q�1.y/ by isometries, so
ker� embeds as a subgroup of the Euclidean group Isom.Ek/. It follows that the above
translation group V is normal in ker�, and it is the nilpotent radical of .ker�/0. Recall
that a maximal simply connected normal subgroup R0 of R, containing the nilpotent
radical of R, acts simply transitively on the fibers. We conclude that V D R0. In
particular (1), holds.

So far it is shown that the Riemannian submersions q and the projection to Hn have
the same fibers. Clearly, any two Riemannian submersions fi WX ! Bi with the same
fibers give rise to an isometry h W B1 ! B2 such that f2 D h ı f1. Therefore, (3)
holds.

Next we turn to describe the continuous symmetries of arbitrary �–invariant metrics
on X. We will show that these are mainly determined by the group extension (7-1).

7.2 Symmetry and rigidity of fiberings

A Riemannian submersion q WX!Y will be called �–compatible if the following hold:
� � Isom.X / permutes the fibers of q, the image of the induced map � W �! Isom.Y /
is a discrete uniform subgroup, and the kernel of � is virtually solvable.

Proposition 7.4 Let q WX ! Y be a �–compatible Riemannian submersion such that
Y is a homogeneous Riemannian space , with Isom.Y /0 semisimple of noncompact
type. Then the adjoint form of Isom.Y /0 is isomorphic to PSO.n; 1/.
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Proof Put S D Isom.Y /0, ‚� D �.�/ \ S and �0 D ��1.‚�/. Note that �0 is
a finite-index normal subgroup in � . It follows that ƒ0 D �0 \Zk is the maximal
solvable normal subgroup of �0. In particular, �0 satisfies an exact sequence 1!ƒ0!

�0! ‚0! 1, analogous to (7-1), where ‚0 is (isomorphic to) a uniform lattice in
PSO.n; 1/.

Let y� W �0!
yS denote the induced map, where yS is the adjoint form of S. Since the

image �.�/ divides Y, �.�/\S is a uniform lattice in S, and y�.�0/ is a uniform lattice
in yS.

Observe that ker y� is an extension of an abelian group (the center of S intersected
with �.�0/) by ker� \ �0, and the latter is a normal subgroup of �0, and virtually
solvable by assumption. By the remark .�/ following (7-1), ker� \�0 is contained
in the characteristic central subgroup ƒ0 of �0. In particular, ker� \ �0 is abelian.
Reiterating the argument, we conclude that, in fact, the image of ker y� in ‚0 must be
trivial.

A symmetric argument with respect to the homomorphism y� W �0!
y�.�0/ shows that

ker y� Dƒ0. We conclude that there exists an isomorphism of uniform lattices

x� W‚0!
y�.�0/:

If n� 3, the Mostow strong rigidity theorem [21, Theorem A0] states that x� extends
to an isomorphism PSO.n; 1/! yS0. In the case nD 2, ‚0 is a surface group, and so
is y�.�0/. Therefore, yS0 is isomorphic to PSO.2; 1/.

The symmetry properties of �–invariant metrics on X are tightly coupled to the group
extension (7-1):

Theorem 7.5 (isometry group and extension class) Let ‚ be a torsion-free lattice in
PSO.n; 1/. Assume that the extension class for � , defined by (7-1), has infinite order.
Then the following hold for the manifold X=�:

(1) X=� admits a metric of large symmetry.

(2) For n� 3, X=� does not admit a locally homogeneous Riemannian metric.

(3) For n D 2, X=� admits the structure of a locally homogeneous Riemannian
manifold. In particular , � embeds into a connected Lie group.
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Proof Now (1) is just a special case of Corollary 7.2.

For (2), suppose that there exists a �–invariant homogeneous Riemannian metric
on X. In particular, G D Isom.X /0 acts transitively on X. By Theorem 4.13, the
radical projection q WX ! Y is �–compatible and the image S0 D �.G/� Isom.Y / is
semisimple of noncompact type, and normal in Isom.Y /0. Since � is not solvable, it is
clear that Y and S0 are nontrivial. Since G acts transitively on X, S0 acts transitively
on Y. It is clear by now that S0 is a Levi subgroup of Isom.Y /0. If necessary (see
Example 6.4), we may repeat the process of dividing out the radical. In any case,
there exists a �–compatible Riemannian submersion q WX ! Y, where S0 D �.G/D

Isom.Y /0 is semisimple of noncompact type and acts transitively on Y. Note that,
by (possibly repeated) application of Proposition 4.6, the kernel of the natural map
�! Isom.Y / is virtually polycyclic (see [25, Chapter 1, Proposition 2]); in particular,
it is virtually solvable. By Proposition 7.4, S0 is locally isomorphic to PSO.n; 1/. So
is the noncompact type semisimple part S of a Levi subgroup of G.

Now we are assuming n� 3. Therefore, S is, in fact, a finite cover of PSO.n; 1/, and
from the beginning the image S0 of the radical projection in Isom.Y /D Isom.X=R/
is PSO.n; 1/. As before, we write

GD Isom.X /0 D R � SD RK0S;

where K0 is compact semisimple. Also, by going down to a finite-index subgroup, we
may assume that � � Isom.X /0. The inclusion of � then satisfies � \ .R �K0/D Zk .

Since the nilpotent radical N of R is simply connected and S is a finite cover of
PSO.n; 1/, it is not difficult to see that (up to dividing a finite group in the center),
G is a linear group (see for example [10, Theorems 3(1) and 7]). Recall further that,
by Corollary 3.7, the maximal compact normal semisimple subgroup of G is trivial.
Moreover, by Theorem 4.13(2), the intersection of � with N is a lattice in N. Since
the extension (7-1) is central, the Borel density theorem implies that N is centralized
by S. Hence, S is a factor of G. Therefore, the deformation theorem of Mostow,
Proposition 2.6, states that (a finite-index subgroup of) the lattice � can be deformed
into a lattice � 0, where � 0 D .� 0\RK0/ � .� 0\S/.

It follows that a finite-index subgroup of � splits as a direct product with factor Zk .
However, this is impossible, since the extension class for � is assumed to have infinite
order. The contradiction shows that (2) holds.

For (3) recall that any torsion-free lattice z� in ePSL.2;R/ admits an exact sequence
of the form 1! Z! z�!‚! 1, where ‚ is a lattice in PSL.2;R/. The extension
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class of the exact sequence, is determined by the index of z�\Z, where Z is the center
of ePSL.2;R/. From another point of view, this identifies with the Euler-number of the
associated circle bundle

ePSL.2;R/=z�!H2=‚:

Such bundles are studied in detail in [16, Theorem 8.5(b)].

Since H2=‚ is an orientable surface, we have

H 2.H2=‚;Z/DH 2.‚;Z/Š Z:

In particular, in the case k D 1, nD 2, there exists for any extension class of infinite
order a locally homogeneous orbifold X=� , where X DePSL.2;R/ and � embeds as
a lattice in ePSL.2;R/. This proves (3) in the case k D 1.

For k � 2, we sketch the proof as follows: Let Œf � 2H 2.‚;Zk/ be an extension class.
By the natural coefficient isomorphism

H 2.‚;Zk/DH 2.‚;Z/k ;

the class Œf � corresponds to extension classes Œfi � 2H 2.‚;Z/, and there exist corre-
sponding central group extensions Z! �i!‚ for i D 1; : : : ; k. We may now form
the fibered product with respect to the maps �i!‚ to obtain an extension

(7-6) 1! Zk
! �!‚! 1

representing the extension class Œf �. For this recall that the fibered product �!‚ is
constructed as the preimage of the diagonal via the induced map

(7-7) �1 � � � � ��k !‚k :

In the same way we construct an associated aspherical manifold X=� which is a torus
bundle over H2=‚ as the fibered product of spaces

ePSL.2;R/=z�i!H2=‚

occurring in the case k D 1. From Example 6.4(I) recall that the groups �i each embed
as a uniform lattice into a Lie group of the form

R �Z ePSL.2;R/;

which is an R–bundle over PSL.2;R/. Thus � embeds as a uniform lattice into the
corresponding k–fold fibered product

(7-8) 1!Rk
! G! PSL.2;R/! 1

and, moreover, X is a homogenous space for the connected Lie group G.
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Groups which satisfy the assumption of Theorem 7.5 are obtained by finding a discrete
cocompact hyperbolic group ‚ whose representative cocycle Œf � 2H 2.‚;Zk/ is of
infinite order. For example, there exists a compact hyperbolic 3–manifold H3=‚,
whose Betti number b1 is not zero in H1.‚;Z/; see [18]. As H1.‚;Z/˝ Zk D

H1.‚;Z
k/ Š H 2.‚IZk/, the fundamental group ‚ has representative cocycles of

infinite order in H 2.‚;Zk/.

Corollary 7.6 There exists a compact aspherical Riemannian manifold X=� of
dimension 4 that admits a complete infrasolv tower of length one which fibers over a
three-dimensional hyperbolic manifold. Moreover , the manifold X=� does not admit
any locally homogeneous Riemannian metric.

8 Application to tori

An n–dimensional exotic torus � is a compact smooth manifold homeomorphic to
the standard n–torus T n but not diffeomorphic to T n. In this section we shall prove
that an exotic torus has no large symmetry (compare Definition 1.1). In the proof we
replace the infrasolv tower (5-2) with its associated infranil tower, which is obtained
by naturally dissecting infrasolv orbibundles into a composition of infranil orbibundles.

8.1 Infrasolv orbibundle fiber over infranil orbibundles

Let
p WX=�! Y=‚

be an infrasolv fiber bundle with associated group extension

(8-1) 1!�! �!‚! 1;

as in Definition 5.3, where Y DX=R. The induced homomorphism

� W Isom.X /! Isom.Y /

satisfies �D ker� \� . Recall that the bundle p is modeled on the maximal simply
connected normal subgroup R0 of R, which acts freely on X. If N is the nilpotent
radical of RD R0T, then it is a simply connected characteristic subgroup with N� R0.
As N acts freely on X by Lemma 4.1, we may put

Z DX=N; VD R0=N;
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where Z carries the Riemannian quotient metric from X. Then the homomorphism �

factors over Isom.Z/ as

(8-2)

Isom.X /� �
�

//

�1 ��

‚� Isom.Y /

Q� Isom.Z/
�2

??

As � � Diff.X;R0/, note that �1.�/DQ� Diff.Z;V/. (Recall from Section 5.2 that
Diff.X;R0/ specifies the normalizer of R0 in the diffeomorphism group of X.)

Proposition 8.1 The infrasolv fiber bundle p W X=� ! Y=‚ decomposes into a
composition of an infranil bundle and an infra-abelian bundle:

X=�

p1
##

p
// Y=‚

Z=Q

p2

;;

Proof Let N!X
q1
�!Z be the principal bundle associated to the action of N on X.

As � � Diff.X;R0/, ker�1 \ � normalizes N and may be seen as a group of affine
transformations of the fibers of q1. This induces an embedding

ker�1\� � Aff.N/

such that ker�1 \ � acts properly discontinuously on N. If we note that N\ � is a
uniform lattice in N from Theorem 4.13(2), then N\� is a finite-index subgroup of
ker�1\� . Thus the quotient

N=.ker�1\�/

is an infranil orbifold. Also G D N� is a closed subgroup of Isom.X /. As N is normal
in G, we apply Lemma 2.7 to deduce that

G=ND �=� \N

acts properly (discontinuously) on X=NDZ. In particular,

QD �=.ker�1\�/

acts properly discontinuously on Z with compact quotient. Thus,

p1 WX=�!Z=Q

is an infranil fiber bundle (compare the proof of Theorem 5.5).
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Next observe that p2 WZ=Q! Y=‚ is a fiber bundle with V–geometry in the sense
of Definition 5.3. By the commutative diagram (8-2), it is easy to see that �1.�/D

ker�2\Q. In particular, �1.�/ acts properly discontinuously on V by affine transfor-
mations, and the quotient V=�1.�/ is a compact Hausdorff space.

From Proposition 4.11(2), .ker�/0 D R0.TK0/. As � � ker� and ker� has finitely
many components, �\ .ker�/0 is a finite-index subgroup of �. On the other hand, if
we apply Proposition 4.7 to �1 W Isom.X /! Isom.Z/, then it is noted that TK� ker�1.
Since �\ .ker�/0 � R0.TK0/ and �1.R0/D V,

�1.�\ .ker�/0/� V

is a discrete uniform subgroup of V. Hence, V=�1.�/ is a compact Euclidean orbifold.
As a consequence, p2 WZ=Q! Y=‚ is an infra-abelian bundle.

8.2 Exotic tori

We come now to the proof of:

Theorem 8.2 Let � be an n–dimensional exotic torus. Then � does not admit any
Riemannian metric of large symmetry.

Proof Put � D �1.�/Š Zn and let X be the universal covering space of � . Suppose
that � has large symmetry. This implies that there exists a tower of Riemannian
submersions with locally homogeneous fibers

(8-3) X=�!X1=�1! � � � !X`�1= �̀ �1! fptg:

As �i divides Xi , applying Lemma 3.4 to each �i � Isom.Xi/ shows that �i is torsion-
free; that is, �i is a free abelian subgroup for i D 0; : : : ; `. By Lemma 2.8, each
�i\Isom.Xi/

0 is a uniform abelian subgroup in Isom.Xi/
0 and therefore Proposition 2.5

implies
Isom.Xi/

0
D RiKi ;

where Ri is the solvable radical and Ki is a compact connected semisimple group. Also,
since �i \ Isom.Xi/

0 is torsion-free, the radical Ri is nontrivial.

By the definition of Riemannian orbifold fibration (Definition 1.1), for each i , there
exists a connected subgroup Li � Isom.Xi/

0 normalized by �i such that XiC1DXi=Li

and �i \ Li is a uniform lattice in Li . As above, Li D R0iK
0
i must be an extension of a
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compact group by a nontrivial solvable Lie group. In view of Theorem 4.13(3), (6),
XiC1 D Xi=Li D Xi=R

0
i is contractible and a radical quotient. Now Theorem 5.5

implies that each map Xi=�i!XiC1=�iC1 is an infrasolv fiber space in the sense of
Definition 5.3. Therefore, (8-3) is an infrasolv tower.

By Proposition 8.1, each infrasolv bundle Xi=�i!XiC1=�iC1 dissects into infranil
bundles

(8-4) Xi=�i!Zi=Qi!XiC1=�iC1:

Since Qi acts properly discontinuously and Zi=Qi is compact, note that Ki acts trivially
on Zi DXi=Ni as in the proof of Proposition 4.7.

Inserting Zi=Qi to the sequence (8-3), we may assume from the beginning that the
tower (8-3) is an infranil tower.

With this assumption in place, we put �i D ker�i \ �i , where �i W Isom.Xi/ !

Isom.XiC1/ denotes the natural map for i D 0; : : : ; `� 1. Since the tower is infranil,
�i is contained in Aff.Ni/, and the holonomy image of �i has compact closure in
Aut.Ni/. On the other hand, Ni \ �i is a uniform lattice in Ni by Theorem 4.13(2).
Since Ni \�i is free abelian, Ni is isomorphic to the vector space Rni for ni D dimNi .
Then �i is a Bieberbach group in the Euclidean group E.Rni /. As �i is free abelian,
we have �i DRni \�i .

As �i normalizes Rni , associated with the group extension

1!�i! �i! �iC1! 1

there is an injective Seifert fibering (see [17])

(8-5) Rni=�i!Xi=�i
pi
�!XiC1=�iC1;

where Rni=�i is the standard ni–torus.

Since X`�1= �̀ �1!X` D fptg is also a Seifert fibering, Rn`�1=�n`�1
DX`�1= �̀ �1

is an n`�1–torus. Assume inductively from (8-5) that X1=�1 is diffeomorphic to
T n1 D Rn1=Zn1 . Let x� W �1 ! Zn1 be an isomorphism induced by an equivariant
diffeomorphism x' W X1! Rn1 . Then we have an isomorphism � W �!�0 �Zn1 Š

Zn0Cn1 which makes the diagram

(8-6)

1 // �0
//

id
��

� //

�
��

�1
//

x�
��

1

1 // �0
// �0 �Zn1 // Zn1 // 1

Geometry & Topology, Volume 27 (2023)



48 Oliver Baues and Yoshinobu Kamishima

commutative. By the Lee–Raymond–Seifert rigidity for abelian fiber [17], there exists
a fiber-preserving equivariant diffeomorphism

.�; '/ W .�;X /! .Zn;Rn/:

Hence, X=� is diffeomorphic to the torus T n .nD n0Cn1/. This proves the induction
step and finishes the proof.
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