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Symplectic resolutions of character varieties

GWYN BELLAMY

TRAVIS SCHEDLER

We consider the connected component of the identity of G–character varieties of
compact Riemann surfaces of genus g > 0 for connected complex reductive groups G
of type A (eg SLn and GLn). We show that these varieties are Q–factorial symplectic
singularities and classify which admit symplectic resolutions. The classification
reduces to the semisimple case, where we show that a resolution exists if and only if
either g D 1 and G is a product of special linear groups of any rank and copies of the
group PGL2, or g D 2 and G D .SL2/m for some m.

14D20, 16D20; 16S80, 17B63

1 Introduction

The character varieties associated to the fundamental group of a topological space have
long been objects of study for topologists, group theorists and algebraic geometers.
The character varieties of reductive groups associated to the fundamental group of a
Riemann surface play a particularly prominent role in this theory since it has been
shown by Goldman that their smooth locus caries a natural symplectic structure (which
is complex algebraic, and in particular holomorphic). The aim of this article is to study
how this symplectic structure degenerates along the singular locus of the character
variety. This is motivated by earlier work [9] of the authors, where the case of quiver
varieties is considered. Our results for character varieties are based, in large part, on
the ideas developed in [9] but the proofs given here are independent of the latter.

Before explaining the main results, we introduce some notation. Let † be a compact
Riemann surface of genus g > 0 and � its fundamental group. Let G be a connected
complex reductive group whose simple quotients all have typeA (ie are all isomorphic to
PGLni for some ni ). TheG–character variety of† is the affine quotient Hom.�;G/==G.
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52 Gwyn Bellamy and Travis Schedler

In general, by Li [37], Hom.�;G/ is not connected. We will only consider the connected
component of the identity, Hom.�;G/ı, and set

Y.G; g/ WD Hom.�;G/ı==G:

We will refer to Y.G; g/ as the connected G–character variety. Note that, in the case
thatGDGLn or SLn, we have Hom.�;G/DHom.�;G/ı. We do not consider the case
where† has punctures; in this case it is natural to impose conditions on the monodromy
about the punctures and this situation is addressed by Schedler and Tirelli [44].

Goldman [27] shows that the symplectic structure on the smooth locus extends to
a Poisson structure on the whole complex algebraic variety. An important (in both
symplectic algebraic geometry and geometric representation theory) class of Poisson
varieties with generically nondegenerate Poisson structure are those with symplectic
singularities in the sense of Beauville [6]. To have symplectic singularities requires
a strong compatibility between the symplectic form and resolutions of singularities.
However, once one knows that a given space has symplectic singularities, it allows
one to make strong statements about the quantizations and Poisson deformations of the
space. For instance, Namikawa [42] tells us that the (formal) Poisson deformations of
such a space are unobstructed, if it is an affine variety. Our first result shows that:

Theorem 1.1 The irreducible variety Y.G; g/ has symplectic singularities.

Since, by [6, Proposition 1.3], all symplectic singularities are rational Gorenstein
(meaning Gorenstein with rational singularities, and not meaning the varieties to be
rational), we deduce:

Corollary 1.2 The variety Y.G; g/ has rational Gorenstein singularities.

The fact that the character variety has rational singularities was established for large
genus by Aizenbud and Avni [1]. Corollary 1.2 shows that the bound on the genus g
appearing in [1, Theorem IX] is not required, at least when G is of type A. Budur
and Zordan [15; 16] show that Hom.�;GLn/ and Hom.�;SLn/ also have rational
singularities.

Theorem 1.1 immediately raises the question of whether the character varieties admit
(complex algebraic) symplectic resolutions; these are resolutions of singularities where
the symplectic form on the smooth locus of the singularity extends to a symplectic
form on the whole of the resolution. This is a very strong condition, and symplectic
resolutions are correspondingly rare. Our main result is a complete classification of
when these character varieties admit symplectic resolutions. As usual in these situations,
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Symplectic resolutions of character varieties 53

much of the effort is spent in proving that certain obstructions to the existence of
symplectic resolutions exist in many examples. Such an obstruction is known to exist
when the variety is singular, Q–factorial and terminal.

Using Drézet’s theorem [19] on (local) factoriality of GIT quotients, we show that:

Theorem 1.3 The variety Y.G; g/ is Q–factorial. In the case of g > 1 and .n; g/¤
.2; 2/, it is moreover locally factorial for G D GLn or SLn.

Here “locally factorial” means that the local rings are unique factorization domains,
which is equivalent to saying that every Weil divisor is Cartier; Q–factorial is the
weaker condition that some multiple of every Weil divisor is Cartier.

To apply Theorem 1.3 to the question of existence of symplectic resolutions, we need
to estimate the codimension of the singular locus. Thanks to Theorem 1.1 together
with Kaledin [30, Theorem 2.3], the singular locus of Y.G; g/ is a finite union of
even-dimensional strata: the symplectic leaves. In the case of G D GLn, this is proved
by Simpson [47] and by Sikora [45] when g D 1; by our methods, we can also reduce
the general case to these ones. Note that, ifG is abelian, ie a torus, then Y.G; g/ŠG2g ,
which is not interesting for our purposes.

Proposition 1.4 Assume that G is nonabelian. Then Y.G; g/ is singular. Its singular
locus has codimension at least four if and only if g > 1 and , in the case g D 2, no
simple quotient of G is isomorphic to PGL2.

Thanks to Namikawa [41], when a symplectic singularity has singular locus of codimen-
sion at least four, it has terminal singularities. On the other hand, it is well known that
a singular Q–factorial terminal variety does not admit a proper crepant resolution, and
hence not a symplectic one; see eg the proof of [9, Theorem 6.13]. Thus, Theorem 1.3
and Proposition 1.4 immediately imply:

Corollary 1.5 Assume G is nonabelian , g > 1 and , if g D 2, then no simple quotient
of G is isomorphic to PGL2. Then Y.G; g/ does not admit a proper symplectic
resolution. The same holds for any singular open subset.

In particular, the above implies that, for G D SLn;GLn or PGLn, the character variety
Y.G; g/ does not admit a symplectic resolution when n; g � 2 and .n; g/¤ .2; 2/. In
these cases we give a description of all the symplectic leaves, and hence the stratification
of the singular locus into iterated singular loci (all even-dimensional).
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54 Gwyn Bellamy and Travis Schedler

Remark 1.6 In the case G D GLn, parallel to [9, Remark 1.14], we can give an
alternative proof of the first statement of Corollary 1.5 using formal localization,
reducing to the quiver variety case which is considered in that article. The formal
neighborhood of the identity of Y.GLn; g/ is well known to identify with the formal
neighborhood of .0; : : : ; 0/ in the quotient�

.X1; Y1; : : : ; Xg ; Yg/ 2 gln

ˇ̌̌ dX
iD1

ŒXi ; Yi �D 0

�..
GLn:

See Proposition 3.14 for more details. The above quotient is the quiver variety associated
to the quiver Q with one vertex and g arrows. However, we cannot directly conclude
Theorem 1.3 using formal localization, and neither the stronger last statement of
Corollary 1.5.

Remark 1.7 As in the discussion after Corollary 1.11 of [9], one can obtain singular
open subsets U � Y.GLn; g/ in the case g > 1 and .n; g/¤ .2; 2/ for which the formal
neighborhood of every point does admit a resolution, even though the entire U does
not admit one by Corollary 1.5. Indeed, as mentioned in the preceding remark, the
formal neighborhoods identify with those of quiver varieties. Hence, one example is
given analogously to the one in [9] (after Corollary 1.11 therein): for nD 2 and g � 3,
take U to be the complement of the locus of representations of the form Y ˚2 for Y
one-dimensional (and hence irreducible). This locus is singular, terminal and locally
factorial, but it is not formally locally Q–factorial.

Remark 1.8 The question of whether the character variety

X.G;m/ WD Hom.Fm; G/==G ŠGm==G

associated to a free group (the “open surface” case) is Gorenstein or (locally) factorial
has been considered by Lawton and Manon [35]. Namely they show thatX is Gorenstein
for all connected reductive complex G, and that X is locally factorial when ŒG;G� is
simply connected. It follows that X is Q–factorial for all connected reductive G: as in
Section 1.2 below, writeGŠ .T �K/=Z forZ<.T �K/ a finite central subgroup, and
K simply connected semisimple; we may take K to be the universal cover of ŒG;G�.
It follows that X.G;m/ is a finite quotient of X.K;m/�Tm, the latter being locally
factorial by Boissière, Gabber and Serman [13], and hence X.G;m/ is Q–factorial.
Note that, thanks to Boutot [14], X.G;m/ also has rational singularities (being a
reductive quotient of a smooth variety), parallel to Corollary 1.2. Summarizing, for
open surfaces, character varieties of connected reductive groups are Q–factorial rational
Gorenstein singularities, just as we show here for closed surfaces with groups of type A.
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1.1 Construction of symplectic resolutions

As the preceding has made clear, in most cases there will not be a symplectic resolution.
Let us explain how to construct the ones that do exist.

First suppose that the genus is one. For the general linear group, Y.GLn; 1/ is well
known to be isomorphic to the symmetric product Sn.C� �C�/ WD .C� �C�/n=Sn
(see eg Joseph [29] and Gan and Ginzburg [24], as explained in Section 2.4 below).
The Hilbert scheme produces a symplectic resolution, Hilbn.C� �C�/! Y.GLn; 1/,
by the Hilbert–Chow map. That Hilbn.C� �C�/ is symplectic, owing to the fact that
C� �C� is a holomorphic symplectic surface, was observed by Beauville [5]. For
SLn < GLn, we have Y.SLn; 1/� Y.GLn; 1/ and the restriction of the Hilbert–Chow
morphism to the preimage of Y.SLn; 1/ is a symplectic resolution of the latter. This
preimage is the smooth symplectic subvariety Hilbn0.C

� �C�/ � Hilbn.C� �C�/,
of schemes of length n in C� �C� such that the product of all pairs in the support
is .1; 1/. See Section 2.4 for more details on these facts.

Similarly, we can produce a resolution for the group PGL2: here one obtains that
Y.PGL2; 1/ Š Y.SL2; 1/=Z22, which allows us to produce a partial resolution via
Hilb20.C

� �C�/=Z22, and finally blow it up to produce a symplectic resolution.

Finally, for genus at least two, there is one exceptional case where we have a resolution,
namely for Y.GL2; 2/, and hence also for Y.SL2; 2/: in these cases a resolution was
constructed by Lehn and Sorger [36] (in a slightly different context). Again, in this
case it turns out one only needs to blow up the reduced singular locus. Put together,
we obtain the following:

Theorem 1.9 (i) For g D 1, we have the projective symplectic resolutions

(1) Hilbn.C� �C�/! Y.GLn; 1/; Hilbn0.C
�
�C�/! Y.SLn; 1/;

given by the Hilbert–Chow morphism , and

(2) AHilb20.C
�
�C�/=Z22! Y.PGL2; 1/;

given by blowing up the (reduced ) singular locus (type A1 surface singularities
only).

(ii) For g D 2, we have the symplectic resolutions

(3) zY.GL2; 2/! Y.GL2; 2/; zY.SL2; 2/! Y.SL2; 2/;

obtained by blowing up the reduced singular locus.
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56 Gwyn Bellamy and Travis Schedler

The theorem will be proved in Sections 2.3 and 2.4. In Section 3.1, we explain the
closest approximation to such a resolution that exists in general.

1.2 Classification of symplectic resolutions

Many of the preceding results (in particular Theorems 1.1 and 1.3) reduce easily to the
case of general and special linear groups, handled in Section 2. We now explain how to
strengthen these results to a full classification of character varieties Y.G; g/ admitting
symplectic resolutions for G a (necessarily connected) reductive group whose simple
quotients are all of type A. The first step is to reduce to the case where G is semisimple.
Here “semisimple” means reductive with finite center.

Note that a general group G as above has the form

1!Z!H �K!G! 1;

where H is a torus, K is a semisimple connected group and Z <H �Z.K/ is finite.
Moreover,K can be chosen so that the compositionZ!H�K!H is injective. Since
H is central, this implies that Z2g acts freely on Y.H �K; g/D Y.H; g/�Y.K; g/.
We have Y.G; g/Š Y.H �K; g/=Z2g (see Section 3.2), and the two have the same
singularities. So, for most of our purposes, we can replace G by K.

In these terms our main result on symplectic resolutions takes the following general
form:

Theorem 1.10 Assume that G is nonabelian. The following are equivalent :

(a) The character variety Y.G; g/ admits a projective symplectic resolution.

(b) The character variety Y.K; g/ admits a projective symplectic resolution.

(c) One of the following two conditions holds:

(i) g D 1 and K Š
Q
j SLnj �PGLm2 for some m� 0.

(ii) g D 2 and K Š SLm2 for some m� 1.

In the cases in part (c), a resolution can be constructed thanks to Theorem 1.9. Namely,
by taking products, we get a resolution zY.K; g/! Y.K; g/, and then

.Y.H; g/� zY.K; g//=Z2g

produces a resolution of Y.G; g/.

We first prove these results for G D GLn or SLn, and then in Section 3 we deduce
the results for arbitrary type A reductive groups. Similar techniques are applicable to
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Symplectic resolutions of character varieties 57

Hitchin’s moduli spaces of semistable Higgs bundles over smooth projective curves;
see Tirelli [48].

Our classification of character varieties of type A admitting symplectic resolutions has
recently been used by Felisetti and Mauri [20] to prove the P DW conjecture in all
cases where a symplectic resolution exists.

Conventions

Throughout, a variety will mean a reduced, quasiprojective scheme of finite type over C.
If X is a (quasiprojective) variety equipped with the action of a reductive algebraic
group G, then X==G will denote the good quotient (when it exists). In this case, let
� W X ! X==G denote the quotient map. Then each fiber ��1.x/ contains a unique
closed G–orbit. Following Luna, this closed orbit is denoted T .x/.
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2 Character varieties for general and special linear groups

Recall from the introduction that † is a compact Riemannian surface of genus g > 0
and � is its fundamental group. For a connected reductive group G we have defined
the character varieties

Y.G; g/D Hom.�;G/ı==G;

where Hom.�;G/ı � Hom.�;G/ is the connected component containing the trivial
representation. These are affine varieties. By [37], Hom.�;G/ıDHom.�;G/ for both
GLn and SLn.
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58 Gwyn Bellamy and Travis Schedler

2.1 Quasi-Hamiltonian reduction

In this section we will only consider G D GLn or SLn. If g > 1 then the (complex)
dimension of Y.SLn; g/ is 2.g�1/.n2�1/, and when gD 1, it has dimension 2.n�1/.
On the other hand dimY.GLn; g/D dimY.SLn; g/C2g always. We begin by recalling
the basic properties of the affine varieties Hom.�;GL/ and Y.GLn; g/:

Theorem 2.1 [47, Section 11; 43] Assume g > 1.

(1) Both Hom.�;GLn/ and Y.GLn; g/ are reduced , irreducible and normal.

(2) Hom.�;GLn/ is a complete intersection in GL2gn .

(3) The generic points of Hom.�;GLn/ and Y.GLn; g/ correspond to irreducible
representations of the fundamental group � .

As shown originally by Goldman [26], the varietyX has a natural Poisson structure. This
Poisson structure becomes clear in the realization of these spaces as quasi-Hamiltonian
reductions; see [2], where it is shown that the symplectic structure defined by Goldman
on the smooth locus ofX agrees with the Poisson structure ofX as a quasi-Hamiltonian
reduction. In particular, if C.1;n/ denotes the dense open subset of X parametrizing
simple representations of � , then it is shown in [2] that the Poisson structure on C.1;n/
is nondegenerate.

It will be useful for us to reinterpret the quasi-Hamiltonian reduction Y.GLn; g/ as a
moduli space of semisimple representations of the multiplicative preprojective algebra.
LetQ be the quiver with a single vertex and g loops, labeled a1; : : : ; ag . Let a�i denote
the loop dual to ai in the doubled quiver Q. Associated to Q is the multiplicative
preprojective algebra ƒ.Q/, as defined in [18]. Namely, CQ!ƒ.Q/ is the universal
homomorphism such that each 1C aia�i and 1C a�i ai is invertible and

gY
iD1

.1C aia
�
i /.1C a

�
i ai /

�1
D 1:

Here the product is ordered. Following [17], letƒ.Q/0 denote the universal localization
of ƒ.Q/, where each ai is also required to be invertible. Let .T � Rep.Q; n//ı denote
the space of all n–dimensional representations .Ai ; A�i / of CQ such that 1CAiA�i ,
1CA�i Ai and Ai are invertible for all i . It is an open, GLn–stable affine subset of
T � Rep.Q; n/. The action of GLn on .T � Rep.Q; n//ı is quasi-Hamiltonian, with
multiplicative moment map

‰ W Rep.ƒ.Q/0; n/! GLn; .Ai ; A
�
i / 7!

gY
iD1

.1CAiA
�
i /.1CA

�
i Ai /

�1:
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Symplectic resolutions of character varieties 59

As noted in [17, Proposition 2], the category ƒ.Q/0–mod of finite dimensional ƒ.Q/0–
modules is equivalent to �–mod, in such a way that we have a GL–equivariant identifi-
cation

‰�1.1/ ��! Hom.�;GLn/; .Ai ; A
�
i / 7! .Ai ; Bi /D .Ai ; A

�1
i CA

�
i /:

Hence, we have an identification of Poisson varieties

‰�1.1/==GLn D Y.GLn; g/:

See [10] for further details.

2.2 Symplectic singularities

We recall from [6, Definition 1.1] that a variety X is said to be a symplectic singularity
if it is normal, its smooth locus has a symplectic 2–form !, and, for any resolution of
singularities f W Y !X, the rational 2–form f �! is regular. Moreover, f is said to be
a symplectic resolution if the 2–form f �! is also nondegenerate. In particular, this
makes Y an algebraic symplectic manifold.

The space Y.GLn; g/ has a stratification by representation type, which is also the
stratification by stabilizer type; see [39, Theorem 5.4]. We say that a weighted partition �
of n is a sequence .`1; �1I : : : I `k; �k/, where each `i and �i is a positive integer and

�1 � �2 � � � � ;

kX
iD1

`i�i D n:

Lemma 2.2 Assume n; g > 1.

(1) The strata C� of Y.GLn; g/ are labeled by weighted partitions of n such that

dimC� D 2

�
kC .g� 1/

kX
iD1

�2i

�
:

(2) If .n; g/¤ .2; 2/, then dimY.GLn; g/� dimC� � 4 for all � ¤ .1; n/.

(3) If .n; g/¤ .2; 2/ and �¤ .1; n/, then dimY.GLn; g/�dimC� � 8 unless either

(i) .n; g/D .3; 2/ and � D .1; 2I 1; 1/, or

(ii) .n; g/D .2; 3/ and � D .1; 1I 1; 1/.
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Proof By Theorem 2.1, the set of points C.1;n/ in Y.GLn; g/ parametrizing irreducible
representations of � is a dense open subset contained in the smooth locus. Therefore,
dimC.1;n/ D 2.1Cn

2.g� 1//. An arbitrary semisimple representation of � of dimen-
sion n has the form x D x

˚`1
1 ˚ � � �˚ x

˚`k
k

, where the xi are pairwise nonisomorphic
irreducible �–modules of dimension �i and nD

Pk
iD1 `i�i . Thus, the representation

type strata correspond to weighted partitions of n. Let C� denote the locally closed
subvariety of all such representations. Though the xi are pairwise distinct, there will
generally exist i and j for which �i D �j . Reordering if necessary, we write the multiset
ff�1; : : : ; �kgg as ffm1 � �1; : : : ; mr � �rgg, with �i ¤ �j and r � k. Then

C� Š S
m1;ıC.1;�1/ � � � � �S

mr ;ıC.1;�r /;

where Sn;ıX is the open subset of SnX consisting of n pairwise distinct points. Thus,

dimC� D

rX
iD1

2.1C �2i .g� 1//mi D 2

�
kC .g� 1/

kX
iD1

�2i

�
:

For the second part, notice that

(4) dimY.GLn; g/� dimC� D 2.n
2.g� 1/C 1/� 2

kX
iD1

.�2i .g� 1/C 1/

D 2.g� 1/

kX
i;jD1

.`i`i � ıi;j /�i�j � 2.k� 1/:

Since
Pk
i;jD1.`i j̀�ıi;j /�i�j�.k�1/�1, we clearly have dimY.GLn; g/�dimC��4

when g>2. When gD2, a simple computation shows that dimY.GLn; g/�dimC�D2

if and only if nD 2 and � D .1; 1I 1; 1/.

For the third part, we use again (4), noticing the following points: the right-hand side
of (4) is increasing in g; the right-hand side is increased if we replace .`i ; ni / by
.`i � 1; ni I 1; ni /; the right-hand side is increased if we replace .1; a/ and .1; b/ by
.1; aC b/ (when aC b < n); and for a > b > 1, the right-hand side is increased if
we replace .1; a/ and .1; b/ by .1; aC 1/ and .1; b � 1/. Since it suffices to prove
the inequality after performing operations that increase the right-hand side, the result
follows once we observe that the inequality holds in the following cases:

(i) for � D .1; n� 1I 1; 1/ whenever n� 4 as well as .1; 1I 1; 1I 1; 1/;

(ii) for � D .1; 1I 1; 1/ whenever g � 4, as well as � D .2; 1/ for g D 3.
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Symplectic resolutions of character varieties 61

Recall that Y.SLn; g/ is the character variety associated to the compact Riemann
surface †, of genus g, with values in SLn. Let T Š .C�/2g denote the 2g–torus. Let
% W Hom.�;GL/! T be the map sending .Ai ; Bi / to .det.Ai /; det.Bi //. This map is
GLn–equivariant, where the action on T is trivial. Moreover, it fits into a commutative
diagram of GLn–varieties

(5)

Hom.�;SLn/�Z2gn
T

�
//

pr
''

Hom.�;GLn/

%
yy

T

where Z2gn acts freely on T, and the map Hom.�;SLn/� T ! Hom.�;GLn/ sends
..Ai ; Bi /; .ti ; si // to .tiAi ; siBi /. Therefore it descends to a commutative diagram

(6)

Y.SLn; g/�Z2gn
T

�
//

pr
&&

Y.GLn; g/

%
zz

T

where Z2gn acts freely on Y.SLn; g/ � T. As in [22, Corollary 2.6] (see also [46,
Proposition 5]), we deduce that:

Lemma 2.3 The variety Y.GLn; g/ is an étale locally trivial fiber bundle over T with
fiber Y.SLn; g/.

Lemma 2.3 implies that the dimension estimates in Lemma 2.2(2)–(3) hold for Y.SLn; g/
too.

Proof of Theorem 1.1 for Y.SLn; g/ and Y.GLn; g/ When gD 1 the claim follows
from Proposition 2.8. The case .n; g/ D .2; 2/ is dealt with in Corollary 2.6 below.
The case nD 1 is trivial.

Therefore, we assume n; g > 1 and .n; g/ ¤ .2; 2/. Recall from Theorem 2.1 that
Y.GLn; g/ is normal. First, we deduce from this that Y.SLn; g/ is also normal.
Lemma 2.3 implies that Y.SLn; g/ is an irreducible variety of dimension 2.g�1/.n2�1/
since dimY.GLn; g/D2n2.g�1/C2. If Y.SLn; g/were not normal, then Y.SLn; g/�T
would also not be normal. But the fact that Y.SLn; g/�Z2gn

T Š Y.GLn; g/ is normal
and the map Y.SLn; g/� T ! Y.GLn; g/ is étale implies by [40, Proposition 3.17]
that Y.SLn; g/�T is normal. Thus, Y.SLn; g/ is normal.

By Theorem 2.1, the Poisson structure on the dense open subset C.1;n/ of Y.GLn; g/ is
nondegenerate. This implies that the Poisson structure on the whole of the smooth locus
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is nondegenerate since the complement to C.1;n/ in Y.GLn; g/ has codimension at
least four. The identification Y.SLn; g/�Z2gn

T Š Y.GLn; g/ of Lemma 2.3 is Poisson,
where we equip Y.SLn; g/�T with the product Poisson structure. We deduce that the
Poisson structure on the smooth locus of Y.SLn; g/ is nondegenerate, and the singular
locus of Y.SLn; g/ has codimension at least four when .n; g/¤ .2; 2/.

Since Y.SLn; g/ and Y.GLn; g/ are normal and their singular locus has codimension at
least four, it follows from Flenner’s theorem [21] that they have symplectic singularities.

In the proof of Theorem 1.1, we have only used the fact that C.1;n/ is contained in
the smooth locus. As shown by Goldman [26], the singular locus is precisely the
complement to C.1;n/.

Lemma 2.4 The singular locus of Y.SLn; g/ and Y.GLn; g/ is precisely the comple-
ment to the open stratum C.1;n/.

Proof Let GDGLn or SLn and PG WDG=Z.G/. The explicit description of the strata
given in Lemma 2.2 shows that if � 2 Hom.�;G/ is a semisimple representation that
is not simple then its stabilizer under PG has strictly positive dimension. Therefore, it
follows from the formula for the dimension of TŒ��X given in Section 1.5 of [26] that
Œ�� belongs to the singular locus of X.

As for quiver varieties, the symplectic leaves of the character varietyX are the stabilizer
type strata C� . For g > 1 and G DGLn, this result is contained in [47] and it is in [45]
when g D 1. The same statement holds for Y.SLn; g/ using Lemma 2.3.

2.3 The case .n; g/D .2 ; 2/

The case .n; g/D .2; 2/ can be thought of as a “local model” for the moduli space M2v

of semistable sheaves with Mukai vector 2v on an abelian or K3 surface, where v is
primitive with hv; vi D 2. Therefore, we are able to emulate the arguments of Lehn
and Sorger [36] and Kaledin and Lehn [32] in this case. Lemma 2.2(1) says that
Y.GL2; 2/ has three strata: C.1;2/, consisting of simple representations E; C.1;1I1;1/,
consisting of semisimple representations E D F1˚F2, where F1 and F2 are a pair
of nonisomorphic one-dimensional representations of �; and C.2;1/, the stratum of
semisimple representations E D F˚2, where F is a one-dimensional representation.
By Lemma 2.4, the singular locus of Y.GL2; 2/ equals C.1;1I1;1/ D C.1;1I1;1/ tC.2;1/.
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Theorem 2.5 The blowup � W zY.GL2; 2/!Y.GL2; 2/ along the reduced ideal defining
the singular locus of Y.GL2; 2/ defines a semismall resolution of singularities.

Here, a map X ! Y is called semismall if dimX �Y X D dimX.

Proof Fix points E 2 C.1;1I1;1/ and E 0 2 C.2;1/. The character variety Y.GLn; g/
is the moduli space of representations of the group algebra CŒ�� of the fundamental
group � of a genus g surface. The group algebra CŒ�� is a two-dimensional Calabi–Yau
algebra. Then [12, Theorems 6.3 and 6.6]1 and [34, Corollary 5.21] imply that the
formal neighborhoods of E and E 0 in Y.GLn; g/ can be identified with the formal
neighborhood of 0 in the quiver varieties associated to the corresponding ext quiver of
these points. In the case of E, this is the quiver with two vertices, an arrow in each
direction and a loop at each vertex; the dimension vector is .1; 1/. For E 0 this is the
quiver with one vertex and two loops; the dimension vector is .2/.

Let O D fB 2 sp.4/ j B2 D 0; rkB D 2g. The set O is a six-dimensional nilpotent
adjoint Sp.4/–orbit in sp.4/. We define N to be the closure of O in sp.4/; this variety is
a union of three nilpotent orbits. The quiver varieties associated to the above ext quivers
are then isomorphic to C8 � .C2=Z2/ and C4 �N, respectively; see [9, Theorem 5.1].
By Artin approximation [3, Corollary 1.6], these identification of formal neighborhoods
lift to isomorphisms of analytic germs

.Y.GL2; 2/; E/Š .C8
� .C2=Z2/; 0/; .Y.GL2; 2/; E 0/Š .C4

�N ; 0/:

Clearly, blowing up C8�.C2=Z2/ along the singular locus gives a semismall resolution
of singularities. The key result [32, Remark 5.4] — see also [36, Théorème 2.1] — says
that blowing up along the reduced ideal defining the singular locus in C4 �N also
produces a semismall resolution of singularities.

Corollary 2.6 The blowup zY.GL2; 2/ of Y.GL2; 2/ along the reduced ideal defining
the singular locus of Y.GL2; 2/ is a smooth symplectic variety and Y.GL2; 2/ has
symplectic singularities.

Proof Let � W zY.GL2; 2/! Y.GL2; 2/ denote the blowup map. The singularities of
Y.GL2; 2/ in an analytic neighborhood of a point in C.1;1I1;1/ are equivalent to an A1
singularity. Therefore the pullback ��! of the symplectic 2–form ! on the smooth
locus of Y.GL2; 2/ extends to a symplectic 2–form on ��1.U /, where U is the open
set C.1;2/ [ C.1;1I1;1/. Since � is semismall, ��1.C.2;1// has codimension at least

1Thanks to Raf Bocklandt for pointing out these results.
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three in zY.GL2; 2/. Therefore, ��! extends to a symplectic 2–form on the whole of
zY.GL2; 2/. Since Y.GL2; 2/ is normal and � is birational, it is a symplectic resolution.
In particular, Y.GL2; 2/ has symplectic singularities.

Corollary 2.7 The blowup zY.SL2; 2/ of Y.SL2; 2/ along the reduced ideal defining
the singular locus of Y.SL2; 2/ is a smooth symplectic variety and Y.SL2; 2/ has
symplectic singularities.

Proof Let I denote the reduced ideal in CŒY.SL2; 2/� defining the singular locus.
Since the singular locus is stable under the action of Z2gn , so too is I. Therefore,
the action of Z2gn lifts to the blowup zY.SL2; 2/ making � W zY.SL2; 2/ ! Y.SL2; 2/
equivariant. Theorem 2.5, together with the fact that

zY.GL2; 2/Š zY.SL2; 2/�Z2gn
T;

implies that zY.SL2; 2/ is smooth. Moreover, the fact that zY.GL2; 2/! Y.GL2; 2/ is
semismall implies that � W zY.SL2; 2/! Y.SL2; 2/ is semismall. The argument that this
implies that � is a symplectic resolution is identical to the first part of the proof of
Corollary 2.6.

Looking at the proofs of the preceding corollaries, we see that the above blowup provides
symplectic resolutions of Y.GL2; 2/ and Y.SL2; 2/. This verifies Theorem 1.9(ii).

2.4 The genus one case

Recall that G equals either GL or SL. Let T be a maximal torus in G. The following
is well known. It can be deduced from the corresponding statement for the commuting
variety in g� g, where gD LieG; see [29; 24, Sections 2.7 and 2.8].

Proposition 2.8 Fix g D 1. As symplectic singularities , the G–character variety of †
is isomorphic to .T �T /=Sn.

Unlike the case g > 1, it is not clear whether Hom.�;G/ is reduced, but it is shown
in [24] that the corresponding G–character variety is reduced. This is the main
difficulty: the above statement on the level of the reduced character variety was
proved earlier by Joseph [29]. In the case G D GL, the Hilbert–Chow morphism
defines a symplectic resolution � W Hilbn.C� �C�/! .T �T /=Sn. Similarly, the
preimage Hilbn0.C

� �C�/ � Hilbn.C� �C�/ of Y.SLn; 1/ � Y.GLn; 1;) under �
defines a symplectic resolution of Y.SLn; 1/. Notice that the case nD 1 is trivial since
Y.GL1; 1/DC� �C� with its standard symplectic structure.
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We also need one additional case in genus one, aside from general and special linear
groups, which is best treated here:

Proposition 2.9 The character variety Y.PGL2; 1/ admits a projective resolution of
singularities , given by the blowup of Hilb20.C

� �C�/=Z22 along the singular locus.

Proof Observe that PGL2D SL2=Z2. Hence, Y.PGL2; 1/D Y.SL2; 1/=Z22. Now, the
Z22–action lifts to the resolution Hilb20.C

� �C�/! Y.SL2; 1/, acting by negation in
each of the factors of C�. Then we have the birational projective Poisson morphism
Hilb20.C

� �C�/=Z22! Y.PGL2; 1/.

We claim that the singularities on the source are all type A1 surface singularities,
and hence reduced. This is because, writing Z2 D f�I; I g 2 SL2, the fixed locus
of .�I; I / 2 SL22 consists of the two points f.i; 1/; .�i; 1/g; f.i;�1/; .�i;�1/g 2
Hilb2.C� �C�/, which do not include any of the fixed points for .I;�I / (namely,
the two points f.˙1; i/; .˙1;�i/g 2Hilb2.C��C�/) or for .�I;�I / (the two points
f.i;˙i/; .�i;�i/g 2 Hilb2.C� �C�/). Thus, the nontrivial isotropy groups of points
on Hilb20.C

� �C�/ are all of size two, at which we get type A1 surface singularities.
This is also a priori clear since Z22 acts symplectically on the surface Hilb20.C

��C�/,
and so the linearization of the isotropy group of a point is isomorphic to a subgroup of
Sp2 D SL2, which cannot be Z22.

Now, since Hilb20.C
� �C�/=Z22 only has type A1 surface singularities, the blowup of

the singular locus is a symplectic resolution, which by composition gives a symplectic
resolution of Y.PGL2; 1/.

This immediately implies Theorem 1.9(i).

2.5 Factoriality

In this section we show that the character variety is locally factorial when n; g � 2 and
.n; g/¤ .2; 2/. We begin with the GL–character variety. Recall that � WHom.�;GLn/!
Y.GLn; g/ is the quotient map. We begin with the following dimension estimates of
Crawley-Boevey and Shaw:

Theorem 2.10 [18, Theorem 7.2 and Corollary 7.3] Consider a stratum C� in
Y.GLn; g/ of representation type .`1; �1I : : : I `k; �k/. Then , for all z 2 C� , the fiber
��1.z/ � Hom.�;GLn/ has dimension at most n2g �

P
t .�

2
t .g � 1/C 1/, so the

dimension of ��1.C�/ is at most n2gC
P
t .�

2
t .g� 1/C 1/.
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The action of GL on Hom.�;GLn/ factors through PGLn. Let Hom.�;GLn/free denote
the open subset of Hom.�;GLn/ where PGLn acts freely.

Lemma 2.11 Assume that n; g > 1 and .n; g/¤ .2; 2/. The variety Hom.�;GLn/
is normal and locally factorial. The complement to Hom.�;GLn/free in Hom.�;GLn/
has codimension at least four.

Proof By Theorem 2.1(2), Hom.�;GLn/ is a complete intersection and hence Cohen–
Macaulay. Thus, it satisfies .S2/. By a theorem of Grothendieck [33, Theorem 3.12], in
order to show that Hom.�;GLn/ is locally factorial, it suffices to check that it satisfies
.R3/ too. We need to check the second claim that the complement to Hom.�;GLn/free

in Hom.�;GLn/ has codimension at least four.

Note that the free locus is the same as the locus of representations whose endomorphism
algebra has dimension one. These are the “bricks”. We represent Hom.�;GLn/ as the
union of preimages of the (finitely many) strata, and consider over each such preimage
the nonfree locus.

If the preimage of the stratum has codimension at least four, it can be ignored. Thus,
we just need to show that the complement to ��1.C /free has codimension at least
four for those strata C with codim ��1.C /� 3. Since we are explicitly excluding the
case .n; g/D .2; 2/, Theorem 2.10, together with Lemma 2.2(3), implies that we are
reduced to considering the cases .n; g/D .3; 2/ and � D .1; 2I 1; 1/, or .n; g/D .2; 3/
and � D .1; 1I 1; 1/.

The semisimple part of a fiber ��1.M/ is the GL–orbit of M, which has dimension
n2 � dim End.M/. If ��1.C /ss denotes the semisimple part of the preimage of the
stratum C then

codimHom.�;GLn/ �
�1.C /ss D dim Hom.�;GLn/� dimC � .n2� dim End.M//

and the difference codimHom.�;GLn/ �
�1.C /ss� codimY.GLn;g/ C equals

2n2g� .n2� 1/� dimC � .n2� dim End.M//� .2n2.g� 1/C 2� dimC/

D dim End.M/� 1:

That is, the semisimple part of the preimage ��1.C / has codimension (in Hom.�;GLn/)
at least the codimension of C itself (in Y.GLn; g/). Thus, if C has codimension at
least four (which is the case for us), then we can ignore the semisimple part of ��1.C /.
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Next, if we consider a stratum C of type .1; aI 1; b/, note that every representation in
this stratum is either semisimple or an indecomposable extension of two nonisomorphic
representations. The latter type is a brick, since there is a unique simple quotient and a
unique simple subrepresentation and the two are nonisomorphic. Therefore, applying the
previous paragraph together with Lemma 2.2(2) shows that we can ignore ��1.C / (the
nonfree locus has overall codimension at least four). This proves the final assertion.

If Hom.�;SL/free denotes the open subset of Hom.�;SL/ where PGL acts freely, then
Lemma 2.3 implies that the statement of Lemma 2.11 holds for Hom.�;SL/free too.

Proof of Theorem 1.3 for Y.SLn; g/ and Y.GLn; g/ Let X WD Y.SLn; g/ or
Y.GLn; g/. First we suppose that n; g > 1 and .n; g/¤ .2; 2/. Let Xs denote the dense
open subset of X consisting of simple representations and Hom.�;G/s its preimage
in Hom.�;G/. Then � W Hom.�;G/! Xs is a principal PGL–bundle. Moreover, by
Lemma 2.2(2), the complement to Xs has codimension at least four in X. We are
therefore in the situation where we can apply the results of Drézet’s theorem to X.

The stratum C� of type � D .n; 1/ is contained in the closure of all other strata
in X. If y 2 T .x/ is a lift in Hom.�;G/ of a point x of C� then y corresponds
to the representation C˚n, where C denotes here the trivial �–module. Therefore,
PGLy D PGLn has no nontrivial characters. In particular, PGLy will act trivially on Ly
for any PGL–equivariant line bundle on Hom.�;G/. Hence, we deduce from Drézet’s
theorem [19, théorème A] that X is factorial at every point of the closed stratum C�.

Now consider an arbitrary stratum C� in X. If X is factorial at one point of the stratum
then it will be factorial at every point in the stratum. On the other hand, the main result
of [13] says that the subset of factorial points of X is an open subset. Since this open
subset is a union of strata and contains the unique closed stratum, it must be the whole
of X. This completes the proof in these cases.

In the case that .n; g/D .2; 2/, as observed in [32, Remark 4.6] — see also [33] and
[23, Proposition 7.3] — the varieties Y.GLn; g/ and Y.SLn; g/ are Q–factorial (but not
locally factorial). In the case g D 1, by Proposition 2.8, it follows that Y.GLn; g/ and
Y.SLn; g/ are Q–factorial, being finite quotients of smooth (hence locally factorial)
varieties (see eg [8, Section 2.4]).

Remark 2.12 A similar analysis has been performed in [44] in order to classify which
moduli spaces of semisimple representations of an arbitrary multiplicative deformed
preprojective algebra admit symplectic resolutions.
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3 Arbitrary type A groups

Now let G be connected reductive, all of whose simple quotients are of type A. We
begin this section by stating (but not yet proving) a refined version of Theorem 1.10,
giving the closest thing to a symplectic resolution that can exist in general. Then
we explain a general procedure to reduce statements about G to those about a finite
covering, and hence to the case of SLn. This is already enough, thanks to Section 2,
to prove Theorems 1.1 and 1.3, which we do in Section 3.3. Next, we explain how to
estimate codimension of fixed loci under translation by finite-order central elements
of G. This, together with the preceding reduction, is enough to prove Proposition 1.4.
Finally, we put all these results together and prove Theorems 3.1 and 1.10.

3.1 Relative minimal models

Most of our main results are consequences of the more general Theorem 3.1, which
describes for all character varieties of type A the closest thing to a symplectic resolution
that can exist. Namely, a Q–factorial terminalization f WX ! Y of Y is a Q–factorial
variety X with terminal singularities and a crepant projective birational morphism
f WX ! Y. Such pairs can always be constructed as a special type of relative minimal
model thanks to [11, Corollary 1.4.3]; hence, we will sometimes use this terminology.
Note that f is actually maximal crepant in the sense that any further crepant proper
birational morphism X 0!X is an isomorphism.

Given a connected reductive group G, we write, as in Section 1.2, G D .H �K/=Z,
whereK is semisimple and Z <H �Z.K/ is a finite subgroup with Z!H �K!H

injective. Then Y.G; g/D Y.H �K; g/=Z2g , where the Z2g–action on the product
Y.H �K; g/D Y.H; g/�Y.K; g/ is free because of the injectivity of Z!H. It will
be convenient also to write K DK0=C0, where K0 D

Qm
iD1 SLni is simply connected

and C0 <Z.K0/. Then G is a finite quotient of the product G WDH �K0 of a torus
with special linear groups.

Finally, in the situation of genus one, we will also need the intermediate group K1 DQm�m1
iD1 SLni � PGLm12 , which fits into a chain K0 � K1 � K such that m1 is

maximal. In other words, K1 is the quotient of K0 by the subgroup of C0 generated
by elements which are �I2 in some factor SL2 and the identity in other factors. Let
C1 be the quotient of C0 such that K DK1=C1.

Note that Y.K0; g/D
Q
i Y.SLni ; g/; each factor Y.SLni ; g/ either admits a symplectic

resolution (when g D 1 or .n; g/D .2; 2/ by Theorem 1.9), or is Q–factorial terminal
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(by Theorem 1.3 and Proposition 1.4 for the SLn case). Similarly, in the case g D 1,

Y.K1; 1/D

m�m1Y
iD1

Y.SLni ; 1/�Y.PGL2; 1/m1 :

In this case each factor admits a symplectic resolution by Theorem 1.9. Thus, by
taking symplectic resolutions of factors admitting them, we obtain a Q–factorial
terminalization zY.K0; g/! Y.K0; g/ for g > 1 and zY.K1; 1/! Y.K1; 1/ for g D 1.
To see that the result is indeed Q–factorial, we note that it is a product of Q–factorial
varieties, and apply the main result of [13].

In general, automorphisms do not lift to Q–factorial terminalizations. However, we
claim that a Q–factorial terminalization zY.G; g/ of Y.G; g/ may be obtained from the
aforementioned one by taking a finite quotient:

Theorem 3.1 (i) If gD 1, a Q–factorial terminalization of Y.K; 1/ is given by the
quotient of zY.K1; 1/ by a (unique) lift of the action of C 21 .

(ii) If g� 2, a Q–factorial terminalization of Y.K; g/ can be obtained as the quotient
of zY.K0; g/ by a (unique) lift of the action of C 2g0 .

In both cases , given a Q–factorial terminalization zY.K; g/! Y.K; g/, a Q–factorial
terminalization zY.G; g/ of Y.G; g/ can be obtained as the étale quotient

.Y.H; g/� zY.K; g//=Z2g

(with the same singularities as zY.K; g/).

3.2 Reduction to SL case

There exists a product of special linear groups and a torus H such that G is the quotient
of G WDH �

Q
i SL.ni ;C/ by a finite central subgroup, call it Z0 (to distinguish from

the group Z appearing in Section 1.2, which is the quotient of Z0 by C0).

We now have the following general lemma:

Lemma 3.2 Let G0 be an algebraic (or topological ) group and � W G0 ! G1 a
surjective homomorphism with central finite (or discrete) kernel Z0. Then we have a
G1–equivariant isomorphism Hom.�;G1/ı Š Hom.�;G0/ı=Z

2g
0 .

Proof Let F be the free group on 2g generators. Then Hom.�;Z0/DHom.F;Z0/D
Z
2g
0 because the abelianizations of � and F are both Z2g . Any homomorphism

�!G0 can be lifted arbitrarily on generators xi and yi of F, so that the image of the
relation

Q
Œxi ; yi � is some element z 2 Z0. This defines a connected component Rz
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of R WD Hom.�;G0/, namely the image of the subset of Hom.F;G0/Š G
2g
0 whereQ

i Œxi ; yi � 7! z, under composition with �. Note that composition with � identifies with
the quotient map by the free action of Z2g0 on G2g0 . The connected component of the
trivial homomorphism of Hom.�;G0/ is then R1DHom.�;G0/ı=Z

2g
0 . Finally, since

Z0 is central in G0, we have that the adjoint action of G0 on Hom.�;G0/ commutes
with the action of Z2g0 . On the quotient Hom.�;G0/=Z

2g
0 , this factors to an adjoint

action of G1. Then, by construction, the adjoint actions of G1 on both sides of the
isomorphism match.

Specializing to our situation we have:

Corollary 3.3 With notation as above , Y.G; g/Š Y.G; g/=Z2g0 . The action of Z2g0
on Y.G; g/ is symplectic.

Proof Note that Hom.�;G/ is connected. By Lemma 3.2, we have established
Hom.�;G/ı Š Hom.�;G/=Z2g0 , compatibly with the adjoint actions. Therefore,
taking the adjoint quotients, we obtain the desired isomorphism. The fact that the action
of Z2g0 is symplectic follows from the construction of [26], since the adjoint action
of Z0 on the Lie algebra of G is trivial.

Remark 3.4 More generally, the proof of Lemma 3.2 above shows that, for every
connected component X � Hom.�;G0/, the quotient X=Z2g0 is a connected compo-
nent of Hom.�;G1/, which is the image of X under composition with the surjection
� W G0 ! G1. Still more generally, we can replace � by a quotient F=K of a free
group F on ` generators by any subgroup K < ŒF; F � generated by commutators. Then
every connected component of Hom.F=K;G0/ maps, under composition with �, onto
a connected component of Hom.F=K;G1/, and this map is the quotient map by the
free Z`0–action.

Remark 3.5 An alternative proof of Lemma 3.2 can be given using group cohomology:
the exact sequence 1! Z0 ! G0 ! G1 ! 1 can be viewed as an exact sequence
of nonabelian �–modules with trivial �–action. Since Z0 is abelian, the long exact
sequence for nonabelian cohomology extends to H 2.�;Z0/. Since the action is trivial,
on zeroth cohomology this includes the original exact sequence. As H 1.�;M/ D

Hom.�;M/ for M a module with trivial action, we obtain the exact sequence

1! Hom.�;Z0/! Hom.�;G0/! Hom.�;G1/!H 2.�;Z0/:
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SinceH 2.�;Z0/ is discrete, the image of Hom.�;G1/ı under the connecting morphism
Hom.�;G1/!H 1.�;Z0/ is trivial. Thus, Hom.�;G1/ı D Hom.�;G0/ı=Z

2g
0 .

3.3 Proof of Theorems 1.1 and 1.3

In Section 2, we proved these theorems for the cases Y.GLn; g/ and Y.SLn; g/. They
therefore hold for the product G D H �

Q
i Y.SLni ; g/ as follows. The product of

symplectic singularities is clearly symplectic. For the Q–factorial property, this not
obvious but proved in [13]. In the special case when g > 2, or the case g D 2 and
G has no factors of the form SL2, we can also use the argument given in Section 2 —
deducing factoriality from a quotient — verbatim to deduce the property for G.

By [6, Proposition 2.4], the finite symplectic quotient Y.G; g/ of Y.G; g/ also has
symplectic singularities. This result is also known for the Q–factorial property: see eg
[8, Section 2.4].

3.4 Codimension of fixed points: genus g � 2

We consider the action of Z2g0 on the open subset Y.G; g/irr of Y.G; g/ consisting of
products of irreducible representations. Since Y.G; g/ is a product of the character vari-
eties of its factors, it is irreducible by Theorem 2.1(1), Lemma 2.3 and Proposition 2.8.
Thus, if nonempty, Y.G; g/irr is dense. It is nonempty if g > 1 by Theorem 2.1(3):
given an irreducible representation in Y.GLn; g/, by rescaling generators we get an
irreducible representation in Y.SLn; g/, ie a representation of Y.GLn; g/ is irreducible
if and only if the point of its fiber of Y.GLn; g/! T in Lemma 2.3 is irreducible as
an element of Y.SLn; g/.

Note that, for g D 1, Y.G; g/irr is nonempty if and only if G is abelian, otherwise
the generic representation of Z2! SLn for n > 1 is a direct sum of one-dimensional
representations.

Proposition 3.6 The set of points in Y.G; g/irr with nontrivial stabilizer under the
action of Z2g0 has codimension at least 4.g� 1/.

In particular, for g� 2, the codimension is at least four. In the proof we find the precise
codimension; see Remark 3.7.

Proof It suffices to show that for each nontrivial � 2Z2g0 , the set of points in Y.G; g/irr
fixed by � has codimension at least 2.g� 1/. Let � W �!G with Œ�� 2 Y.G; g/irr and
assume Œ�� is fixed by � . Then � � � Š �. This implies that there exists A 2 G such
that A�1�.f /AD �.f /�.f / for all f 2 � .
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Let `� 2 be the order of � . Note that, since �`D 1, the element A` is an endomorphism
of �. By assumption this implies that A` is a scalar matrix in each factor of G. As a
result, up to rescaling A in each factor, we can assume A`D 1, and hence is semisimple
with eigenvalues `th roots of unity.

The element � acts on the tangent space of Y.G; g/irr at Œ�� and it suffices to show
that the codimension of .TŒ��Y.G; g/irr/� is at least four in TŒ��Y.G; g/irr. To compute
the action of � on TŒ��Y.G; g/irr, we twist the action so that � 2 Hom.�;G/ is a fixed
point. Namely, define z� acting by .z��/.x/D �.x/A�.x/A�1 for all � 2 Hom.�;G/.
Then z��D �.

Let g be the Lie algebra of G. Let g� denote the representation of � obtained by
the action  � x WD Ad.�.//.x/. As noted in [26], we can identify TŒ��Y.G; g/irr D
H 1.�; g�/. Let Œu�2H 1.�; g�/ be represented by the 1–cocycle u. As in [26, (1.1)], the
tangent vector Œu� defines an infinitesimal curve through � by �t .x/D exp.tu.x//�.x/.
Then

.z��t /.x/D �.x/A exp.tu.x//�.x/A�1

D �.x/A exp.tu.x//A�1A�.x/A�1

D exp.tAu.x/A�1/�.x/A�.x/A�1

D exp.tAu.x/A�1/�.x/;

where we have used the fact that �.x/ is central. Thus, the action of � on H 1.�; g�/ is
given by conjugation by A on g. We use the ingenious argument in [26, Section 1.5] to
estimate dimH 1.�; g�/

A. Since † is K.�; 1/, g� defines a local system on † of rank
dim g with Euler characteristic

2X
iD0

.�1/i dimH i .�; g�/D�2.g� 1/ dim g:

This formula follows from the fact that, as a “virtual” vector space,

2X
iD0

.�1/iH i .�; g�/D

2X
iD0

.�1/iC i ˝C g;

where C � are the terms of the (finite-dimensional) simplicial cochain complex comput-
ing the cohomology of � with coefficients in C. It follows that

2X
iD0

.�1/iH i .�; g�/
A
D

2X
iD0

.�1/iC i ˝C gA
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and hence
2X
iD0

.�1/i dimH i .�; g�/
A
D�2.g� 1/ dim gA:

As noted in [26, Section 1.4], H 0.�; g/D Endg.g�/ is the infinitesimal stabilizer of �.
The fact that V is irreducible implies that H 0.�; g/ Š z.g/, the center of g. This is
the Lie algebra of H 2g , of dimension 2g dimH. By Poincaré duality, dimH 2.�; g/D

2g dimH too. Thus,

dimH 1.�; g/A D 2.g� 1/ dim gAC dimH 0.�; g/AC dimH 2.�; g/A

� 2.g� 1/ dim gAC 4g dimH I

in fact we have equality since z.g/A D z.g/ (but we do not need this). Thus, the co-
dimension of .TŒ��Y.G; g/irr/� in .TŒ��Y.G; g/irr/� is (at least) 2.g�1/.dim g�dim gA/.
Conjugation by A is nontrivial on at least one simple summand. Such a summand
is of the form slm for some m � 2. Therefore, for the dimension estimate we may
assume gD slm. If the multiplicities of the `th roots appearing on the diagonal of A
are m1; : : : ; m`, where mDm1C � � �Cm`, then an easy induction shows that

dim slm� dim slAm Dm
2
�

X̀
iD1

m2i � 2.t � 1/;

where t is the number of mi not equal to 0. Since A is not the identity matrix, t � 2.
This implies that 2.g� 1/.dim slm� dim slAm/� 2.g� 1/, as required.

The argument of the proof above does not make use of the product decomposition
for G, only for its Lie algebra g. Hence, it is valid with G replaced by any connected
reductive group with type A quotients and Z any finite central subgroup, replacing
the irreducible locus by the locus of representations whose endomorphisms identify
with z.g/.

Remark 3.7 We can actually compute the precise codimension as follows. Let � 2Z2g0
be nontrivial. If � has a nontrivial projection to H, then it is clear that � has no fixed
points, as H is abelian. So assume that this is not the case. Let �i be the projection
of � to each factor SL.ni ;C/, and let `i � 1 be the minimum positive integer such that
�
`i
i is a scalar (ie the minimum order of a scalar multiple of �i ). Then we claim that

codimY.G;g/irr Y.G; g/
�
irr D 2.g� 1/

X
i

n2i

�
1�

1

`i

�
:
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We prove this claim below. In particular, this is at least 4.g� 1/. The codimension of
the nonfree locus under all of Z2g0 is the minimum of the above codimensions; this
recovers the statement of Proposition 3.6.

To prove the claim, note that it suffices to consider the case of a single factor SL.m;C/.
Up to scaling, as in the proof of the proposition, assume that � D A 2 SLn has order `.
Let � be a primitive `th root of unity. Conjugating by a permutation matrix, we can
assume that, for some m0; : : : ; m`�1, the first m0 diagonal entries of A are �0 D 1, the
next m1 are �1, the next m2 are �2, and so on. Now let X 2 GLn.C/ be a matrix such
that AXA�1 D �X for some � 2 C. Then �D �k for some k j`. Then X must be a
block permutation matrix with respect to the decomposition m D m0C � � � Cm`�1,
expressing the permutation i 7! iCk .mod `/. For this to be invertible, the blocks must
be square, which implies mi DmiCk for all i , with addition taken modulo `. Now, if
X1; : : : ; X2g are the generating matrices, then we claim that the powers k1; : : : ; k2g
appearing in this calculation must have gcd equal to one. Otherwise, their least common
multiple `0 would be a proper factor of `, and A`

0

would be a nonscalar automorphism
of the representation — impossible by Schur’s lemma. Thus, since mi DmiCkj for all
i and j, we get that m0 Dm1 D � � � Dmk�1. We thus conclude

dim slm� dim slAm Dm
2
� `
�
m

`

�2
Dm2

�
1�

1

`

�
:

Taking the sum of codimensions over each factor, we obtain the claim.

The above allows us to prove Proposition 1.4:

Proof of Proposition 1.4 Let us first assume that gD 1 andG is nonabelian. We claim
that the singular locus has codimension at most two; since Y.G; g/ is a symplectic
singularity, this implies immediately that the codimension is exactly two. Thanks to
Corollary 3.3, it suffices to assume that G D G. In turn this reduces to the case of
Y.SLn; 1/ for n� 2. Now the statement follows from Proposition 2.8.

Next assume that g D 2 and that G has PGL2 as a quotient. We claim again that the
singular locus has codimension at most two (and hence exactly two). As before, this
reduces to the case of Y.SL2; 2/. Then the statement follows from Lemma 2.2(1) (see
also Section 2.3).

Finally, assume that g � 2 and, if g D 2, then there are no simple quotients of G
of the form PGL2. Then the singular locus of Y.G; g/ has codimension at least four
by Lemma 2.2. Its complement, the smooth locus of Y.G; g/, equals Y.G; g/irr by
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Lemma 2.4. Therefore, the singular locus of Y.G; g/ D Y.G; g/=Z2g0 is the image
under the quotient by Z2g0 of the union of the singular locus of Y.G; g/ and the nonfree
locus. Thus we can conclude by Proposition 3.6 that the singular locus has codimension
at least four.

3.5 Genus one case

We estimate the codimension of the singular locus in genus one:

Proposition 3.8 Let � 2Z20 be nontrivial. The set of points in Y.G; 1/ with nontrivial
stabilizer under the action of � has codimension at least four unless � is equal to minus
the identity in a factor of the form SL2 and the identity in other factors , in which case
this locus has codimension two.

Proof The nonfree locus of � on Y.G; 1/ is the product of such loci on each factor
Y.H; 1/ and Y.SLni ; 1/. Therefore, the codimension is the sum of these codimensions.
Note that these codimensions are all even. So, in order to not have codimension four,
� must have trivial projection to all factors but one, and there the nonfree locus must
have codimension exactly two. This reduces the question to the case of a single factor.
Note that, if H is this factor, the nonfree locus is empty, so cannot have codimension
two. We have reduced to the statement that the nonfree locus of the action of a nontrivial
element � 2Z.SLn/2 on Y.SLn; 1/ has codimension two if and only if nD 2.

To prove this, let � D .�In; �In/ 2 SL2n, for �n D �n D 1. Let T < SLn be the
maximal torus of diagonal elements. Via the isomorphism Y.SLn; 1/Š .T �T /=Sn
of Proposition 2.8, we see that the action of � is by multiplication by .�; �/. Let us
think of an element of .T � T /=Sn as a multiset of n elements .ai ; bi / 2 C� �C�,
with

Q
i ai D

Q
i bi D 1. Then .�; �/ � .ai ; bi /D .�ai ; �bi /.

For � to fix the multiset, it must be partitioned into orbits in C��C� under the action
of � . Each orbit is uniquely determined by any one of its elements, which can be
arbitrary so long as the overall product of pairs is .1; 1/. The latter condition can be
interpreted to mean that all orbits except for one are arbitrarily chosen, with the final
one having only finitely many possible choices. Therefore, the dimension of the fixed
locus is 2.m� 1/, where m is the number of orbits. Hence, the codimension of the
fixed locus is 2.n�m/. For this to be two, we need mD n� 1. However, every orbit
is nontrivial, since T �T itself has no fixed points under � . Therefore, this happens
precisely if nD 2 and mD 1.
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3.6 Proof of Theorem 3.1

In general, automorphisms of a symplectic singularity do not lift to a symplectic
resolution. However, this is the case in our situation when the automorphisms in
question come from the (symplectic) action of Z2g . More precisely, we have seen that
there are three situations where the character variety associated to an almost simple
group of type A admits a symplectic resolution:

(a) Y.SL2; 2/,

(b) Y.SLn; 1/, and

(c) Y.PGL2; 1/.

In (a), any automorphism of Y.SL2; 2/ lifts to the blowup of the singular locus, since
the latter is always fixed by the automorphism. In case (b), every automorphism of
Y.SLn; 1/ coming from Z.SLn/2 Š Z2n lifts to an automorphism of the resolution, by
the universal properties of the Hilbert–Chow morphism. This is because the action
of Z2n is induced from an action on C� �C�; see the proof of Proposition 3.8. In
both cases, since the resolution is birational the lifts are necessarily unique. Finally, in
case (c), the symplectic resolution is given by blowing up the A1 surface singularities
as in Proposition 2.9, but the group Z2g is trivial in this case.

Let Y be the variety occurring in one of (a)–(c) and f WX!Y the symplectic resolution
described above. Let � be an automorphism coming from the action of a central (ie
scalar) element of SLn (or � D I2 when the group is PGL2). Then � lifts to X with f
equivariant.

Lemma 3.9 Let C �X� be a connected component. At generic x 2 C, the restriction
f jC W C ! f .C / is an immersion.

Since f .X� /� Y � , we obtain the following immediate consequence:

Corollary 3.10 dimX� � dimY � :

Proof of Lemma 3.9 Let y D f .x/. We induct on the codimension of the symplectic
leaf through y 2 Y. Over the open leaf (codimension zero), f is an isomorphism, so
the statement is clear. We proceed to the inductive step. Note that our base variety,
Y WD Y.SLn; g/ (for g D 1 or .n; g/ D .2; 2/), has finitely many symplectic leaves.
This is a general fact about symplectic varieties [30, Theorem 2.3], but in our case can
also be seen explicitly (see the end of Section 2.2). Thus, Y � intersects only finitely
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many symplectic leaves. Now suppose inductively that y 2 Y � lies in a symplectic
leaf L of codimension 2k > 0. Since X� is smooth symplectic, its codimension is
locally constant. By genericity of x, we can assume that nearby points in C do not map
to a symplectic leaf in Y of smaller codimension. Hence, nearby points also map to L.
That is, a neighborhood of x in C maps entirely to L. Now, f jf �1.L/ W f

�1.L/! L

is a fibration, thanks to the infinitesimal automorphisms of f W X ! Y given by
Hamiltonian vector fields. Moreover, the fibers of f are all isotropic (this is actually
true for an arbitrary projective symplectic resolution thanks to [25, Proposition 1.2.2],
based on [49]). Since C \ f �1.L/ is a symplectic manifold, as is its image — a
component of L� — we conclude that its fibers are in fact zero-dimensional. Thus,
f is an immersion at x, as desired.

Remark 3.11 The proof shows that f is an immersion everywhere on C \f �1.L/,
so one can replace “generic x” in the statement of the lemma with “for x 2 C whose
image in Y has maximal rank under the Poisson structure”.

We can construct a Q–factorial terminalization zY.K0; g/ (resp. zY.K1; 1/) of Y.K0; g/
(resp. of Y.K1; 1/), by taking the symplectic resolutions described above for the factors
of type (a)–(c), and leaving other factors fixed. We have shown that the action of C 2gj
on Y.Kj ; g/ lifts (uniquely) to the Q–factorial terminalization zY.Kj ; g/.

We must check that zY.Kj ; g/=C
2g
j is a Q–factorial terminalization of Y.Kj ; g/=C

2g
j D

Y.K; g/. By Corollary 3.10, the codimension of the singular locus of zY.Kj ; g/=C
2g
j is

the minimum of the codimension of the nonfree locus in Y.Kj ; g/ and the codimension
of the singular locus of the partial resolution zY.Kj ; g/ (which is at least four). It follows
from our codimension estimates, Propositions 3.6 and 3.8, that this codimension is
at least four (the final situation described in Proposition 3.8 does not occur precisely
because of the definition of K1). Hence, the partial resolution zY.Kj ; g/=C

2g
j has

terminal singularities by [41]. By construction and Theorem 1.3, it is a finite quotient
of a Q–factorial variety, and hence Q–factorial; see eg [8, Section 2.4].

The final statement is clear, since a quotient by a free action of a finite group preserves
the properties of being Q–factorial and of being terminal. This completes the proof of
Theorem 3.1.

3.7 Proof of Theorem 1.10

This proof is based on showing that the character variety is formally locally conical.
(Note that, thanks to [4], we could replace “formal” by “étale” if desired.)
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First, the fact that (a) and (b) of Theorem 1.10 are equivalent follows immediately
from the final statement of Theorem 3.1. Moreover, if we are in one of the cases in (c)
then it is a consequence of Theorem 1.9 that Y.G; g/ admits a (projective) symplectic
resolution. Therefore, it remains to show that if .K; g/ is not listed in (c) then Y.K; g/

does not admit a projective symplectic resolution.

Definition 3.12 Let a symplectic cone mean a conical symplectic singularity, where
the symplectic structure has positive weight under dilations (where the functions on the
cone, by definition, have nonnegative weight). We say that a variety is formally locally
symplectically conical at a point if the formal neighborhood of a point is isomorphic to
a formal neighborhood of a symplectic cone.

It has been conjectured by Kaledin [31, Conjecture 1.8] that every symplectic singularity
is formally locally symplectically conical. Therefore, Proposition 3.14 below can be
interpreted as saying that Kaledin’s conjecture holds for all character varieties of type A
and their relative minimal models.

Recall that GDH�
Q
i SLni andZ0�G a finite central subgroup such thatGDG=Z0.

Let � 2 Hom.�;G/ be a semisimple representation. The stabilizer G� is reductive.

Lemma 3.13 There exists a homogeneous formal cone yY0 such that :

(i) G� acts on yY0 preserving the dilation filtration and yY0==G� is a formal symplectic
cone.

(ii) There is a G–equivariant isomorphism

(7) bHom.�;G/G�� Š yY0 �G� G

of homogeneous cones inducing an isomorphism of symplectic cones

yY.G; g/Œ�� Š bHom.�;G/G��==G Š . yY0 �G� G/==G Š yY0==G�:

Proof We begin by noting, as in the proof of Theorem 2.5, that the character variety
Y.GLn; g/ is the moduli space of representations of the group algebra CŒ�� of the
fundamental group � of a genus g surface. Therefore, by [12, Theorems 6.3 and 6.6;
34, Corollary 5.21], the formal neighborhood of Œ�� 2 Y.GLn; g/ is isomorphic as a
Poisson variety to the formal neighborhood of 0 in a Nakajima quiver variety M0.˛; 0/,
since the group algebra CŒ�� is a two-dimensional Calabi–Yau algebra. Moreover, the
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statement of the lemma, but with G D GLn, is implied by [34, Theorem 5.16] applied
to our particular situation. Diagram (5) implies that

bHom.�;GLn/GLn�� D
bHom.�;SLn/GLn��0 y�

1.C2g/x;

where .�0; x/ 2Hom.�;SLn/�T is a point such that Z2gn � .�0; x/D �. Restricting to
the formal subscheme bHom.�;SLn/GLn��0 �fxg in bHom.�;GLn/GLn�� shows that the
statement of the lemma also holds for G D SLn.

Finally, for GDH�
Q
i SLni , the character variety Y.G;g/ equalsH 2g�

Q
i Y.SLni ;g/

and hence the statement of lemma follows by taking the product over all SLni .

Proposition 3.14 Both Y.G; g/ and its minimal model zY.G; g/ are formally locally
symplectically conical at every point.

Proof Let x 2Y.G; g/DY.G; g/=Z2g0 . We wish to describe the formal neighborhood
yY.G; g/x of x in Y.G; g/. We would like to apply Theorem A.3 for the action of Z2g0
on Y.G; g/, but we can’t immediately do so since it isn’t a priori clear that the stabilizer
at the point Œ�� preserves the filtration generated by dilations.

Choose � 2 Hom.�;G/, as in Lemma 3.13, with Z2g0 � Œ��D x. Let S D Stab
Z
2g
0

Œ��

denote the stabilizer of the point Œ��. Since Z2g0 is a finite group, whose action on
Hom.�;G/ commutes with the conjugation action of G, we have

yY.G; g/x Š .yY.G; g/Œ��/==S Š .bHom.�;G/G��==G/==S Š bHom.�;G/G��==.G�S/;

where the second identification is Lemma 3.13(ii).

The group G �S automatically preserves the adic filtration on bHom.�;G/G�� since
G � � is stable under G �S. Therefore, under the isomorphism (7), the group G �S

acts on yY0 �G� G preserving the adic filtration. Identify yY0 with a closed subscheme
of yY0�G� G in the obvious way and let S0 denote the stabilizer of .0; 1/ in yY0�G� G.
Under the identification, S0 acts on yY0 preserving the adic filtration. Since the cone yY0
is homogeneous, the adic filtration equals the dilation filtration. Thus, S0 acts on yY0
preserving the dilation filtration. Theorem A.3(a) implies that this action is conjugate
to a homogeneous action. Moreover, as noted in Remark A.4, we may assume it also
preserves the Poisson structure. Therefore, as in Theorem A.3(b), we deduce that
yY0==S0 is a symplectic cone.

Finally, since

bHom.�;G/G��==.G�S/Š . yY0 �G� G/==.G�S/Š yY0==S0;

we deduce that yY.G; g/x is a symplectic cone.
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Next we consider zY.G; g/. Note first that an étale quotient induces isomorphisms
on formal local rings, so we may assume by the final statement of Theorem 3.1 that
G DH �K. In fact, we may assume G DK is semisimple. For clarity, we will treat
the cases g D 1 and g > 1 separately. In the case g D 1, we write K D K1=C1 as
in Theorem 3.1(i). Then zY.K; 1/D zY.K1; 1/=C 21 with zY.K1; 1/ a smooth symplectic
variety. It follows from Theorem A.3(b) that zY.K; 1/ is formally locally symplectically
conical at every point; see Remark A.4 for the symplectic part.

Similarly, if g � 2 then we write K DK0=C0 as in Theorem 3.1(ii). Then zY.K; g/D
zY.K0; g/=C

2g
1 and zY.K0; g/ is a product of varieties (one for each simple factor ofK0),

where each factor is either a smooth symplectic variety or has the form Y.SLn; g/. It
follows from the first part of the proof of the proposition that every point in zY.K; g/
is formally locally symplectically conical; again, see Remark A.4 for the symplectic
part.

Lemma 3.15 (i) Let g D 1 and suppose that the minimal model of Theorem 3.1 is
not smooth. Then the local cone at every point of that model is Q–factorial and
terminal.

(ii) Let g � 2 and suppose that x 2 zY.G; g/ is a point having a preimage in
zY.G; g/ whose projection to each factor zY.SLn; g/ is either a smooth point
or , for .g; n/¤ 2, a point in the minimal stratum C.1;n/ of Y.SLn; g/. Then the
local cone at x is Q–factorial and terminal.

Proof Note that the terminal properties are immediate thanks to [41], since the
codimension of the singular locus of a local cone must be at least that in the ambient
space. So we only have to show that these local cones are Q–factorial. In the case
of (i), this is a finite quotient of a smooth variety, so this is standard; for instance, see
[8, Section 2.4]. For part (ii), we have to handle a finite quotient of zY.G; g/, which is
a product of smooth varieties and of factors Y.SLn; g/. The proof of Theorem 1.3 in
Section 2.5 shows that the formal neighborhood of the trivial local system in Y.SLn; g/
is locally factorial for g � 2 and .n; g/¤ .2; 2/; the same then also follows for every
point of the minimal stratum. Thus, our local cone is a finite quotient of a product of
locally factorial cones. Thanks to [13], the product is locally factorial and, since we
take a finite quotient, again by [8, Section 2.4], the result is Q–factorial.

Lemma 3.15 implies that, in the situation of Theorem 1.10 where part (c) is not satisfied,
there exists a point x of zY.G; g/whose formal neighborhood does not admit a projective
symplectic resolution: this follows by [9, Lemma 6.16] (replacing the variety there
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by an arbitrary symplectic cone) since the closed point of this formal neighborhood
is singular yet Q–factorial terminal. Let y denote the image of x in Y.G; g/. By
Proposition 3.14, the formal neighborhood of y is a conic symplectic singularity.
Therefore, we deduce from [7, Theorem 2.2] (based on [42]) that Y.G; g/ does not
admit a (projective) symplectic resolution. This completes the proof of Theorem 1.10.

Appendix Reductive group actions on local cones

In this appendix, we prove a generalized version of the following folklore result (see
eg [28]). We work over the complex numbers, but one could replace this with any
algebraically closed field of characteristic zero (and perhaps the algebraic closure
requirement is unnecessary).

Theorem A.1 Let X be a smooth scheme over C and G a reductive group acting
on X with fixed point x 2 X. Then the action of G can be linearized in a formal
neighborhood of x.

Note that a linearization here means that, for some choice of formal coordinates
yOX;x ŠCŒŒx1; : : : ; xn��, the action of G is via a linear representation G! GLn.

To generalize this, note that a linearization is the same thing as a homogeneous action
of G on the polynomial ring CŒx1; : : : ; xn� whose induced action on the completion
CŒŒx1; : : : ; xn�� coincides with the original one, up to isomorphism. We generalize this
to cones:

Definition A.2 A cone is an affine variety X D SpecA whose coordinate ring A is
nonnegatively graded and connected (A0 DC and A<0 D 0). It is called homogeneous
if A is generated in a single positive degree m> 0 (without loss of generality mD 1).

In general, if X is a cone then it is often called quasihomogeneous.

Example 1 The type An Du Val singularity is fxyC zn D 0g � C3. This is quasi-
homogeneous for the grading jxj D jyj D n and jzj D 2, and hence a cone. It is
homogeneous if and only if nD 2.

Given a cone X D SpecA, there is a canonical action of the multiplicative group by
dilations. On a homogeneous function f 2 An it is given by � ? f WD ��nf for
� 2C�. Conversely, we can recover the grading on O.X/D A from this action. We
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say therefore that the grading, and the resulting filtration O.X/�n WD
L
i�nO.X/i ,

are the ones induced by dilations on X.

Example 2 Let X be any scheme and x 2X. Equip the local ring OX;x with the mX;x–
adic filtration (for mX;x the maximal ideal). The tangent cone CX;x D Spec grOX;x is
then homogeneous. In general, X is a homogeneous cone based at x if and only if it is
isomorphic to CX;x .

For a general cone X, the local ring OX;x , and its completion, are equipped with two in
general distinct filtrations: the mX;x–adic filtration, and the one coming from dilations
on X (ie the descending filtration generated by homogeneous global function on X ).

Example 3 Let X be a scheme and x 2X. If G is any reductive group acting on X
fixing x, then the categorical quotient CX;x==G D Spec grOGX;x is also a cone (but
in general not homogeneous). In general, CX;x==G and X==G need not be formally
isomorphic at the image Nx of x. If they are, then X==G is formally locally a cone at Nx.

In view of these examples, Theorem A.1 can be restated as the following: if X is
smooth at x, then there is an isomorphism of formal neighborhoods of x of the two
pairs .X;G/ and .CX;x; G/. Thus, X==G is formally locally a cone at Nx.

Our main result gives a generalization of this to the case where X need not be smooth
and x need not be a fixed point:

Theorem A.3 Let G be a reductive group acting on a scheme X and let x 2X be a
point such that the formal neighborhood yXx is a cone , ie isomorphic to yYy for Y a cone
with cone point y 2 Y. Assume moreover that either

(i) Y is homogeneous (ie Y Š CX;x); or

(ii) the induced action of the stabilizerGx on yYy preserves the filtration coming from
dilations.

Then the following hold :

(a) If Gx is reductive , then the action of Gx on yYy is conjugate to a homogeneous
(ie dilation-equivariant) action;

(b) If X is an affine variety and the orbit G � x is closed , then X==G is formally
locally a cone at Nx.
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Note that, by Matsushima’s criterion, the hypotheses of (b) imply those of (a). Also,
note that hypothesis (i) implies hypothesis (ii), since in this case the filtration coming
from dilations is the mX;x–adic filtration. It is clear that this hypothesis is satisfied in
the situation of Theorem A.1, so that it is a special case of Theorem A.3.

Proof of Theorem A.3 As observed, it is enough to assume condition (ii). We first
prove (a). Let H be the group of all automorphisms of yYy (ie of yOY;y) preserving
the filtration coming from dilations (this is just the entire automorphism group in the
homogeneous case). Let H0 <H be the subgroup of homogeneous automorphisms
of Y (ie automorphisms commuting with dilations). We have a splitting of the inclusion,
�0 W H ! H0, given by taking the associated graded automorphism. Let U be the
kernel. Observe that U is pro-unipotent. We have a semidirect product decomposition
H DH0 ËU.

Now, the action ofGx can be expressed as a homomorphism � WGx!H0ËU. Statement
(a) amounts to saying that this is conjugate to the homomorphism �0D�0ı� WGx!H0.
Letting � 0 WH0ËU !U be the (set-theoretic) projection to the second factor, � defines
a one-cocycle �0 D � 0 ı � W G ! U, with respect to the action given by �0. Then
(a) is equivalent to the statement that �0 is a coboundary. Since Gx is reductive,
H 1.Gx;C/D 0 as there are no nontrivial homomorphisms from a reductive group to a
connected unipotent one. Since U is pro-unipotent, the long exact sequences on group
cohomology imply also that H 1.Gx; U /D 0. This proves (a).

For part (b), we apply Luna’s slice theorem. The construction of the formal slice toG �x
at x 2X can be constructed in the formal neighborhood yXx so as to be homogeneous
with respect to dilations (by finding a section of the Zariski tangent space mX;x=m

2
X;x

in yOX;x which is equivariant for dilations and the action of Gx , and similarly for a
complement to the Zariski tangent space of G � x; see [38, Section III]). The formal
neighborhood of X==G at Nx is isomorphic to the quotient of this formal slice by Gx ,
so the result follows from (a).

Remark A.4 If X is a Poisson scheme and G preserves the Poisson structure then the
formal cone yYy of Theorem A.3 inherits a Poisson structure from X. By restricting the
groupH in the proof of the theorem to automorphisms preserving the Poisson structure,
we see that the action of Gx on yYy is conjugate to a homogeneous action preserving
the Poisson structure. In this case, Theorem A.3(b) says that X==G is formally locally
a Poisson cone at Nx.

Geometry & Topology, Volume 27 (2023)
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