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We define, in Cp–equivariant homotopy theory for p > 2, a notion of �p–orientation
analogous to a C2–equivariant Real orientation. The definition hinges on a Cp–space
CP1�p

, which we prove to be homologically even, in a sense generalizing recent
C2–equivariant work on conjugation spaces.

We prove that the height p � 1 Morava E–theory is �p–oriented and that tmf.2/
is �3–oriented. We explain how a single equivariant map v�p

1
W S2� ! †1CP1�p

completely generates the homotopy of Ep�1 and tmf.2/, expressing a height-shifting
phenomenon pervasive in equivariant chromatic homotopy theory.
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1 Introduction

The complex conjugation action on CP1 gives rise to a C2–equivariant space, CP1R ,
with fixed points RP1. The subspace CP1

R is invariant and equivalent as a C2–space
to S�, the one-point compactification of the real regular representation of C2. A
C2–equivariant ring spectrum R is Real oriented if it is equipped with a map

†1CP1R !†�R
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88 Jeremy Hahn, Andrew Senger and Dylan Wilson

such that the restriction

S� D†1CP1
R!†1CP1R !†�R

is the †�–suspension of the unit map S0 ! R. Such a Real orientation induces a
homotopy ring map

MUR!R;

with domain the spectrum of Real bordism; see Araki and Murayama [2] and Hu and
Kriz [22]. These orientations have proved invaluable to the study of 2–local chromatic
homotopy theory, leading to an explosion of progress surrounding the Hill–Hopkins–
Ravenel solution of the Kervaire invariant one problem; see Beaudry, Bobkova, Hill and
Stojanoska [3], Beaudry, Hill, Shi and Zeng [4], Greenlees and Meier [8], Hahn and
Shi [9], Heard, Li and Shi [10], Hill and Meier [19], Hill, Hopkins and Ravenel [17],
Hill, Shi, Wang and Xu [20], Kitchloo, Lorman and Wilson [23], Li, Lorman and
Quigley [25], Li, Shi, Wang and Xu [26] and Meier, Shi and Zeng [28].

The above papers solve problems, at the prime p D 2, that admit clear but often
unapproachable analogs for odd primes. To give two examples, the 3 primary Kervaire
problem remains unresolved (see Hill, Hopkins and Ravenel [16]), and substantially
less precise information is known about odd primary Hopkins–Miller EO–theories
(see Bhattacharya and Chatham [5, Conjecture 1.12]).

To rectify affairs at p > 2, the starting point must be to find a Cp–equivariant space
playing the role of CP1R . This paper began as an attempt of the first two authors to
understand a space proposed by the third.

Construction 1.1 (Wilson) For any prime p, let CP1�p
denote the fiber of the Cp–

equivariant multiplication map

.CP1/�p
!CP1;

where the codomain has trivial Cp–action and the domain has Cp–action cyclically
permuting the terms. In other words, a map of spaces X !CP1�p

consists of the data:

� A p–tuple of complex line bundles .L1;L2; : : : ;Lp/ on X .

� A trivialization of the tensor product L1˝L2˝ � � �˝Lp.

The action on CP1�p
is given by

.L1;L2; : : : ;Lp/ 7! .Lp;L1; : : : ;Lp�1/:

Geometry & Topology, Volume 27 (2023)



Odd primary analogs of real orientations 89

Remark 1.2 There is an equivalence of C2–spaces CP1�2
' CP1R . In general, the

nonequivariant space underlying CP1�p
is equivalent to .CP1/�p�1. The fixed points

.CP1�p
/Cp are equivalent to the classifying space BCp, as can be seen by applying

the fixed-points functor .�/Cp to the defining fiber sequence for CP1�p
. The key point

here is that the Cp–fixed points of .CP1/�p consist of the diagonal copy of CP1,
and BCp is the fiber of the pth tensor power map CP1!CP1.

To formulate the notion of Real orientation, it is essential to understand the inclusion
of the bottom cell

S� DCP1
R!CP1R :

At an arbitrary prime, the analog of this bottom cell is described as follows.

Notation 1.3 We let S� denote the cofiber of the unique nontrivial map of pointed
Cp–spaces from .Cp/C to S0. This is the spoke sphere, and it is a wedge of p� 1

copies of S1, with action on reduced homology given by the augmentation ideal in the
group ring ZŒCp �. We denote the suspension †S� of the spoke sphere by either S1C�

or CP1
�p

, and Remark 1.6 provides a natural inclusion

S1C�
DCP1

�p
!CP1�p

:

We will often also use S1C� to denote †1S1C�, and S�1�� to denote its Spanier–
Whitehead dual.

With this bottom cell in hand, we propose the following generalization of Real orienta-
tion theory.

Definition 1.4 A �p–orientation of a Cp–equivariant ring R is a map of spectra

†1CP1�p
!†1C�R

such that the composite

S1C�
D†1CP1

�p
!†1CP1�p

!†1C�R

is the S1C�–suspension of the unit map S0!R.

Remark 1.5 Applying the geometric fixed-point functor ˆCp to a �p–orientation we
learn that the nonequivariant spectrum ˆCp R has p D 0 in its homotopy groups.

Geometry & Topology, Volume 27 (2023)
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Remark 1.6 Let Z WD HZ denote the Cp–equivariant Eilenberg–Mac Lane spec-
trum associated to the constant Mackey functor. Then there is an equivalence of
Cp–equivariant spaces

�1†1C�Z'CP1�p
:

Indeed, suspending and rotating the defining cofiber sequence .Cp/C ! S0 ! S�

gives rise to a cofiber sequence S1C�! .Cp/C˝S2! S2. Tensoring with Z and
applying �1 yields the defining fiber sequence for CP1�p

.

Under this identification, the natural inclusion CP1
�p
! CP1�p

is simply adjoint
to the †1C�–suspension of the unit map S0 ! Z. In particular, the identification
CP1�p

' �1.†1C�Z/ gives a canonical �p–orientation of Z. In contrast, Bredon
cohomology with coefficients in the Burnside Mackey functor cannot be �p–oriented,
since p is nonzero in the geometric fixed points.

In this paper we explore the interaction between �p–orientations and chromatic ho-
motopy theory in the simplest possible case: chromatic height p� 1. Specifically, we
study the following height p� 1 E1–ring spectra.

Notation 1.7 We let Ep�1 denote the height-.p�1/ Lubin–Tate theory associated
to the Honda formal group law over Fpp�1 , with Cp–action given by a choice of
order-p element in the Morava stabilizer group. At p D 3, we let tmf.2/ denote the
3–localized connective ring of topological modular forms with full level-2 structure;
see Stojanoska [38]. The ring tmf.2/ naturally admits an action by †3 Š SL2.F2/,
and we restrict along an inclusion C3 �†3 to view tmf.2/ as a C3–equivariant ring
spectrum.

The underlying homotopy groups of these spectra are given respectively by

�e
�.Ep�1/ŠW .Fpp�1/Ju1;u2; : : : ;up�2KŒu˙�; jui j D 0; juj D �2;

�e
�.tmf.2//Š Z.3/Œ�1; �2�; j�i j D 4:

We will review the Cp–actions on the homotopy groups in Section 5.

Theorem 1.8 For all primes p, there exists a �p–orientation of the Cp–equivariant
Morava E–theory Ep�1.

Theorem 1.9 The (3–localized ) C3–equivariant ring tmf.2/ of topological modular
forms with full level-2 structure admits a �3–orientation.
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Our second main result concerns the fact that, while

��Ep�1 ŠW .Fpp�1/Ju1;u2; : : : ;up�2KŒu˙�

has p� 1 distinct named generators, the conglomeration of them is generated under
the �p–orientation by a single equivariant map v�p

1
.

Construction 1.10 In Section 6, we will construct a map of Cp–equivariant spectra

v
�p

1
W S2�

!†1CP1�p
:

This map should be viewed as canonical only up to some indeterminacy, just as the
classical class v1 is only well-defined modulo p. As was pointed out to the authors
by Mike Hill, one choice of this map is given by norming a nonequivariant class in
�e

2
CP1�p

.

Construction 1.11 Suppose a Cp–equivariant ring R is �p–oriented via a map

†1CP1�p
!†1C�R;

so that we may consider the composite

S2� v
�p
1
�!†1CP1�p

!†1C�R:

Using the dualizability of S1C�, this composite is equivalent to the data of a map

S2��1��
!R:

The nonequivariant spectrum underlying S2��1�� is (noncanonically) equivalent to
a direct sum of p� 1 copies of S2p�2. In particular, by applying �e

2p�2
to the map

S2��1��!R, one obtains a map from a rank-.p�1/ free Z.p/–module to �e
2p�2

R.

Definition 1.12 Given a Cp–equivariant ring R with a �p–orientation, the span of v�p

1

will refer to the subset of �e
2p�2

R consisting of the image of the rank-.p�1/ free
Z.p/–module constructed above.

Theorem 1.13 For any �3–orientation of tmf.2/, the span of v�3

1
in �e

4
tmf.2/ is all

of �e
4

tmf.2/.

Theorem 1.14 For any �p–orientation of the height-.p�1/ Morava E–theory Ep�1,
the span of v�p

1
inside �e

2p�2
Ep�1 maps surjectively onto �e

2p�2
Ep�1=.p;m

2/.

Geometry & Topology, Volume 27 (2023)



92 Jeremy Hahn, Andrew Senger and Dylan Wilson

Remark 1.15 The map S2��1��! R associated to a �p–oriented R has an inter-
pretation that may be more familiar to readers acquainted with the Hopkins–Miller
computation of the fixed points of Ep�1. Specifically, by definition there is a cofiber
sequence

S2��2 tr
! .Cp/C˝S2��2

! S2��1��;

where tr is the transfer. It follows that the map S2��1��!R determines a traceless
element in �e

2p�2
R, and the existence of such a traceless element was a key tool in the

computations of Nave [32].

1.1 Homological and homotopical evenness

Nonequivariantly, complex orientation theory is intimately tied to the notion of evenness.
A fundamental observation is that, since CP1 has a cell decomposition with only
even-dimensional cells, any ring R with �2��1RŠ 0 must be complex orientable.

In C2–equivariant homotopy theory, a ring R is called even if �C2

���1
RŠ �e

2��1
RŠ 0,

and it is a basic fact that any even ring is Real orientable; see for instance Hill and
Meier [19, Section 3.1].

In Cp–equivariant homotopy theory, we propose the appropriate notion of evenness to
be captured by the following definition, which we discuss in more detail in Section 3.

Definition 1.16 We say that a Cp–equivariant spectrum E is homotopically even if
the following conditions hold for all n 2 Z:

(1) �e
2n�1

E D 0.

(2) �
Cp

2n��1
E D 0.

(3) �
Cp

2n��2��E D 0.

Remark 1.17 In the presence of condition (1), condition (3) is equivalent to the
statement that the transfer is surjective in degree 2n� � 2. Conditions (1) and (3)
constrain certain slices of E, as we spell out in Remark 3.14.

Remark 1.18 A C2–spectrum E is homotopically even, according to our definition
above, if and only if it is even in the sense of [19, Section 3.1].

We prove the following theorem in Section 4.

Theorem 1.19 If a p–local Cp–ring spectrum R is homotopically even , then it is also
�p–orientable.

Geometry & Topology, Volume 27 (2023)



Odd primary analogs of real orientations 93

The key point here, as we explain in Section 4, is that CP1�p
admits a slice cell

decomposition with even slice cells. An even more fundamental fact, which turns out to
be equivalent to the slice cell decomposition, is a splitting of the homology of CP1�p

:

Definition 1.20 We say that a Cp–spectrum X is homologically even if there is a
direct sum splitting

X ˝Z.p/ '
M

k

Ak ˝Z.p/

where each Ak is equivalent, for some n 2 Z, to one of

.Cp/C˝S2n; S2n�; S2n�C1C�:

Theorem 1.21 The space CP1�p
is homologically even.

Remark 1.22 The notion of homological evenness we propose in this paper restricts,
when pD 2, to the notion studied by Hill in [13, Definition 3.2]. Notably, our definition
differs from Hill’s when p > 2.

Returning again to the group C2, work of Pitsch, Ricka and Scherer [33] relates a
version of homological evenness to the study of conjugation spaces. An interesting
example of a conjugation space, generalized by Hill and Hopkins in [15] and its in-
progress sequel, is BUR D�

1†�BPh1iR. It would be very interesting to develop a
Cp–equivariant version of conjugation space theory. Since tmf.2/ is a form of BPh1i�3

(cf Question 7), we wonder whether there is an interesting slice cell decomposition of
�1†1C�tmf.2/.

Remark 1.23 The slice cell structure on †1CP1�p
has many interesting attaching

maps. The first nontrivial attaching map is a class ˛�p

1
W S2��1! S1C�, with fixed

points the multiplication by p map on S1. This class was previously studied by the
third author [39, Section 3.2] and, independently, Mike Hill. The C2–equivariant ˛�2

1

is the familiar map � W S� ! S0.

1.2 A view to the future

The most natural next question, after those tackled in this paper, is the following.

Question 1 Let n�1, and fix a formal group � of height n.p�1/ over a perfect field k

of characteristic p. When is Ek;� , the associated Lubin–Tate theory, �p–orientable?

We have not fully answered this question even for nD 1, since we focus attention on
the Honda formal group.

Geometry & Topology, Volume 27 (2023)
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It seems likely that further progress on Question 1, at least for n� 2, must wait for work-
in-progress of Hill, Hopkins and Ravenel, who have a program by which to understand
the Cp–action on Lubin–Tate theories. As the authors understand that work in progress,
it is to be expected that the height n.p�1/ Morava E–theory has homotopy generated
by n copies of the reduced regular representation, v�p

1
; v
�p

2
; : : : ; v

�p

n . One expects to
be able to construct �p Morava K–theories, generated by a single v�p

i , and we expect
at least these Morava K–theories to be homotopically even in the sense of this paper.

Question 2 Can one construct homotopically even �p Morava K–theories?

In light of the orientation theory of Section 2, it seems useful to know if �p Morava
K–theories admit norms. Indeed, at p D 2 the Real Morava K–theories all admit the
structure of E�–algebras. Since the first �3 Morava K–theory should be TMF.2/=3,
or perhaps LK.2/TMF.2/=3, it seems pertinent to answer the following question first.

Question 3 At the prime p D 3, what structure is carried by the C3–equivariant
spectrum LK.2/TMF.2/=3? Is there an analog of the E� structure carried by KUR=2?

In another direction, one might ask about other finite subgroups of Morava stabilizer
groups:

Question 4 Is there an analog of the notion of�p–orientation related to the Q8–actions
on Lubin–Tate theories at the prime 2?

One may also go beyond finite groups and ask for notions capturing other parts of
the Morava stabilizer group, such as the central Z�p that acts on CP1 ' B2Zp after
p–completion.

To make full use of all these ideas, one would like not only an analog of CP1R , but
also an analog of at least one of MUR or BPR. Attempts to construct such analogs
have consumed the authors for many years; we consider it one of the most intriguing
problems in stable homotopy theory today.

Question 5 (Hill–Hopkins–Ravenel [16]) Does there exist a natural Cp–ring spec-
trum, BP�p

, with

� underlying nonequivariant spectrum the smash product of p�1 copies of BP,
and

� geometric fixed points ˆCp BP�p
' HFp?

At p D 2, it should be the case that BP�2
D BPR.

Geometry & Topology, Volume 27 (2023)
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To the above we may add:

Question 6 Does such a natural BP�p
orient all �p–orientable Cp–ring spectra, or at

least all those that admit norms in the sense of Section 2?

Most of our attempts to build BP�p
have proceeded via obstruction theory, while MUR

is naturally produced via geometry. It would be extremely interesting to see a geometric
definition of an object MU�p

. Alternatively, it would be very clarifying if one could
prove that a reasonable BP�p

does not exist. As some evidence in that direction, the
authors doubt any variant of BP�p

can be homotopically even.

Even if BP�p
cannot be built, or cannot be built easily, it would be excellent to know

whether it is possible to build Cp–ring spectra BPh1i�p
.

Question 7 Does there exist, for each prime p, a Cp–ring BPh1i�p
satisfying the

following properties?

� BPh1i�2
is the 2–localization of kuR, and BPh1i�3

is the 3–localization of
tmf.2/.

� The homotopy groups are given by

�e
�BPh1i�p

Š Z.p/Œ�1; �2; : : : ; �p�1�; with j�i j D 2p� 2:

The Cp–action on these generators should make �e
2p�2

BPh1i�p
into a copy of

the reduced regular representation.

� There is a Cp–ring map BPh1i�p
!Ep�1.

� BPh1i�p
is homotopically even, and in particular �p–orientable.

� The underlying spectrum .BPh1i�p
/e additively splits into a wedge of suspen-

sions of BPhp� 1i.

� We have ˆCp BPh1i�p
' Fp Œy� for a generator y of degree 2p.

It is plausible that BPh1i�p
should come in many forms, in the sense of Morava’s forms

of K–theory [30]. A natural E1 form might be obtained by studying compactifications
of the Gorbounov–Hopkins–Mahowald stack [7; 12] of curves of the form

yp�1
D x.x� 1/.x� a1/ � � � .x� ap�2/:

Studying the uncompactified stack, it is possible to construct a Cp–equivariant E1 ring
E.1/�p

which is a �p analog of uncompleted Johnson–Wilson theory. The details of
this construction will appear in forthcoming work of the second author.
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Remark 1.24 The Cp–action on CP1�p
is naturally the restriction of an action by †p .

In fact, most objects in this paper admit actions of †p, or at least of Cp�1 Ë Cp, but
these are consistently ignored. The reader is encouraged to view this as an indication
that the theory remains in flux, and welcomes further refinement.

Remark 1.25 Since work of Quillen [34], the notion of a complex orientation has
been intimately tied to the notion of a formal group law. There are hints throughout
this paper, particularly in Sections 2 and 6, that the norm and diagonal maps on CP1�p

lead to equivariant refinements of the p–series of a formal group. It may be interesting
to develop the purely algebraic theory underlying these constructions, particularly
if algebraically defined v�p

i turn out to be of relevance to higher-height Morava E–
theories.

1.3 Notation and conventions

� If X is a Cp–space, we use X e to denote the underlying nonequivariant space,
and we use X Cp to denote the fixed-point space. If X is a Cp–spectrum, we will use
either ˆeX or X e to denote the underlying spectrum, and we use ˆCp X to denote the
geometric fixed points.

� We fix a prime number p, and throughout the paper all spectra and all (nilpotent)
spaces are implicitly p–localized. In the Cp–equivariant setting, this means that we
implicitly p–localize both underlying and fixed-point spaces and spectra.

� If X is a Cp–space or spectrum, we use �e
�X to denote the homotopy groups of X e,

considered as a graded abelian group with Cp–action. If V is a Cp–representation, we
use �Cp

V
X to denote the set of homotopy classes of equivariant maps from SV to X.

� We let S� denote the cofiber of the Cp–equivariant map .Cp/C! S0, and we also
use S� to refer to the suspension Cp–spectrum of this Cp–space. We let S�� denote
the Spanier–Whitehead dual of the Cp–spectrum S�. Given a Cp–representation V and
a Cp–spectrum X, we use �Cp

VC�X and �Cp

V�� to denote the set of homotopy classes of
equivariant maps from SVC� WD SV ˝S� and SV�� WD SV ˝S�� to X.

� We denote the fiber of the Cp–equivariant multiplication map .CP1/�p!CP1

by CP1�p
.

� If R is a classical commutative ring, we use x�R to denote the RŒCp �–module given
by the augmentation ideal ker.RŒCp �! R/. This is a rank-.p�1/ R–module with
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generators permuted by the reduced regular representation of Cp . We similarly use 1R

to denote the RŒCp �–module that is isomorphic to R with trivial action. We sometimes
use �R to denote RŒCp � itself, and write free to denote a sum of copies of �R.
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and interest in the work. We would especially like to thank Mike Hill for suggesting
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2 Orientation theory

Nonequivariantly, one may study complex orientations of any unital spectrum R.
However, if R is further equipped with a homotopy commutative multiplication, then
the theory takes on extra significance: in this case, a complex orientation of R provides
an isomorphism R�.CP1/ŠR�ŒŒx��.

In this section, we work out the analogous theory for �p–orientations. In particular, we
find that the theory of �p–orientations takes on special significance for Cp homotopy
ring spectra R that are equipped with a norm N

Cp

e R! R refining the underlying
multiplication. Recall the following definition from the introduction:

Definition 2.1 A �p–orientation of a unital Cp–spectrum R is a map

†1CP1�p
!†1C�R

such that the composite

S1C�
!†1CP1�p

!†1C�R

is equivalent to †1C� of the unit.

For any Cp representation sphere SV, it is traditional to denote by S0ŒSV � the free
E1–ring spectrum

S0ŒSV �D S0
˚SV

˚S2V
˚S3V

˚ � � � :

Geometry & Topology, Volume 27 (2023)
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Below, we extend this construction to take input not only representation spheres SV,
but spoke spheres as well.

Definition 2.2 For integers n, let

S0ŒS2n��1��� WD NCp
e .S0ŒS2np�2�/˝S0ŒS2n��2� S

0;

where we consider NCp
e S0ŒS2np�2� as an S0ŒS2n��2�–bimodule via the E1–map in-

duced by the composite

S2n��2
! .Cp/C˝S2np�2

! NCp
e S0ŒS2np�2�:

In this composite, the first map is adjoint to the identity on S2np�2 and the second
map is the canonical inclusion. Note that S0ŒS2n��1��� is a unital left module over
NCp

e S0ŒS2np�2�.

Furthermore, given a Cp–equivariant spectrum R, we set

RŒS2n��1��� WDR˝S0ŒS2n��1���:

Construction 2.3 Suppose that R is a homotopy ring in Cp–spectra, further equipped
with a genuine norm map

NCp
e R!R

which is unital and restricts on underlying spectra to the composite

.ˆeR/˝p id˝
˝���˝
p�1

����������! .ˆeR/˝p m
�!ˆeR;

where 
 2 Cp is the generator and m is the p–fold multiplication map.

If R is �p–oriented by a map

S�1��
!R

CP1�pC

then we may produce a map

RŒS�1���!R
CP1�pC

as follows. First, the composite

S�2 e
!ˆe.CpC ^S�2/!ˆe.S�1��/!ˆe.R

CP1�pC/;

where the map e is the inclusion of the factor of S�2 corresponding to the identity
in Cp, extends to a map

S0ŒS�2�!ˆe.R
CP1�pC/
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since the target is a homotopy ring. Norming up, and combining the norm on R with
the diagonal map CP1�p

!Map.Cp;CP1�p
/, we get a map

NCp

e .S0ŒS�2�/! NCp

e .R
CP1�pC/!R

CP1�pC :

Finally, the extension of CpC^S�2!R
CP1�pC over S�1�� provides a nullhomotopy

of the composite
S�2
! .Cp/C˝S�2

!R
CP1�pC ;

producing a map
S0ŒS�1���!R

CP1�pC :

We finish by extending scalars to R, using the assumption that R is a homotopy ring.

Construction 2.4 If R is �p–oriented then so too is the Postnikov truncation R�n.
The construction above is natural, and so we may form a map

RŒŒS�1���� WD lim
 ��

R�nŒS
�1���! lim

 ��
.R�n/

CP1�pC 'R
CP1�pC :

Theorem 2.5 Suppose R is a �p–oriented homotopy Cp ring , further equipped with a
unital homotopy N

Cp

e R–module structure such that the unit

N
Cp

e R!R

respects the underlying multiplication in the sense of Construction 2.3. Then , with
notation as above , the map

RŒŒS�1����!R
CP1�pC

is an equivalence.

Proof By construction, it suffices to prove that the map

R�nŒS
�1���! .R�n/

CP1�pC

is an equivalence for each n � 0. This is clear on underlying spectra. On geometric
fixed points we can factor this map as

.ˆCp R�n/ŒS
�1�! .ˆCp R�n/

BCpC !ˆCp ..R�n/
CP1�pC/;

being careful to interpret the source as a module (this is not a map of rings). Specifically,
the above composite is one of unital ˆCp N Cp

e S0ŒS�2� ' S0ŒS�2�–modules and,
separately, one of ˆCp R�n–modules.
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The second map is an equivalence by Lemma 2.6 below, so we need only prove that
the first map is an equivalence. Since p D 0 in ˆCp R, the Atiyah–Hirzebruch spectral
sequence computing ��.ˆCp R�n/

BCpC has E2–page given by

��.ˆ
Cp R�n/˝Fp

ƒFp
.x/˝Fp

Fp Œy�:

The class x is realized by applying geometric fixed points to the �p–orientation. The
powers of y are obtained from the unit of the unital S0ŒS�2�–module structure. Using
the ˆCp R�n–module structure, this implies that the spectral sequence degenerates and
moreover that the first map is an equivalence.

Lemma 2.6 If R is bounded above , and X is a Cp–space of finite type , then the map

.ˆCp R/X
Cp
C !ˆCp .RXC/

is an equivalence.

Proof Write X D colim Xn, where the Xn are skeleta for a Cp–CW–structure on X

with each Xn finite. Then the fiber of

ˆCp .RXC/!ˆCp .RXnC/

becomes increasingly coconnective, and hence the map

ˆCp .RXC/! lim
 ��

ˆCp .RXnC/

is an equivalence. We are thus reduced to the case X D Xn finite, where the result
follows since ˆCp .�/ is exact.

Remark 2.7 In practice, the conditions of Theorem 2.5 are often easy to check. For
example, any Cp–commutative ring R in the homotopy category of Cp–spectra will be
equipped with a unital homotopy N

Cp
e R–module structure respecting the multiplication

in the sense of Construction 2.3; see [14]. We choose to write Theorem 2.5 in generality
because, even nonequivariantly, one occasionally studies orientations of rings that are
not homotopy commutative (like Morava K–theory at the prime 2).

Since Z is �p–oriented by Remark 1.6 and truncated, we have the following corollary
of Theorem 2.5.

Corollary 2.8 There is a natural equivalence

ZŒS�1���' ZCP1�pC :
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3 Evenness

In this section, we will introduce a notion of evenness in Cp–equivariant homotopy
theory. This is a generalization of the notion of evenness in nonequivariant homotopy
theory. Evenness comes in two forms: homological evenness and homotopical evenness.
Homological evenness is a Cp–equivariant version of the condition that a spectrum
have homology concentrated in even degrees, and homotopical evenness corresponds
to the condition that a spectrum have homotopy concentrated in even degrees.

The main results in this section are Proposition 3.9, which shows that, under certain
conditions, a bounded below homologically even spectrum admits a cell decomposition
into even slice spheres (defined below), and Proposition 3.17, which shows that there
are no obstructions to mapping a bounded below homologically even spectrum to a
homotopically even spectrum.

3.1 Homological evenness

We begin our discussion of evenness with the definition of an even slice sphere.

Definition 3.1 We say that a Cp–equivariant spectrum is an even slice sphere if it is
equivalent to one of

.Cp/C˝S2n; S2n�; S2n�C1C� for some n 2 Z:

A dual even slice sphere is the dual of an even slice sphere. The dimension of a (dual)
even slice sphere is the dimension of its underlying spectrum.

Remark 3.2 The phrase slice sphere is taken from [40, Definition 2.3], where a
G–equivariant slice sphere is defined to be a compact G–equivariant spectrum, each
of whose geometric fixed-point spectra is a finite direct sum of spheres of a given
dimension.

It is easy to check that the (dual) even slice spheres of Definition 3.1 are slice spheres
in this sense.

Remark 3.3 In the case p D 2, the even slice spheres are precisely those of the form

.C2/C˝S2n or Sn� for some n 2 Z:
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Definition 3.4 We say that a Cp–equivariant spectrum X is homologically even if
there is an equivalence of Z.p/–modules

X ˝Z.p/ '
M

n

Sn˝Z.p/;

where Sn is a direct sum of even slice spheres of dimension 2n.

Remark 3.5 When p D 2, this recovers the notion of homological purity given in
[13, Definition 3.2]. However, when p is odd, our definition of homological evenness
differs from Hill’s definition of homological purity. The most important difference is
that we allow the spoke spheres S2n�C1C� to appear in our definition. This is necessary
for CP1�p

to be homologically even.

As in the nonequivariant case, homological evenness for a bounded below spectrum is
equivalent to the existence of an even cell structure. To prove this, we need to recall
the following definition from [40; 21].

Definition 3.6 A Cp–equivariant spectrum X is said to be regular slice n–connective if

(1) X e is n–connective, and

(2) ˆCp X is dn=pe–connective.

Furthermore, we say that X is bounded below if it is regular slice n–connective for
some integer n.

Lemma 3.7 Let X be a bounded below Cp–spectrum with the property that ˆCp X is
of finite type. Then X is regular slice n–connective if and only if X ˝Z.p/ is regular
slice n–connective.

Proof For the underlying spectrum, this follows from the fact that Z.p/ detects
connectivity of bounded below p–local spectra. For the geometric fixed points, we
use the fact that ˆCp Z.p/D Fp Œy� with jyj D 2 detects connectivity of bounded below
p–local spectra which are of finite type, since a finitely generated Z.p/–module is
trivial if and only if it is trivial after tensoring with Fp.

Lemma 3.8 Let W denote an even slice sphere of dimension n, and suppose that X is
regular slice n–connective. Then we have ŒW; †X �D 0.
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Proof If W is of dimension n, then its underlying spectrum W e is a direct sum
of n–spheres and ˆCp W is a dn=pe–sphere. It therefore follows that W is a regu-
lar slice n–sphere in the sense of [40, Section 2.1], so the conclusion follows from
[40, Proposition 2.22].

Proposition 3.9 Let X be a bounded below , homologically even Cp–equivariant
spectrum with the property that ˆCp X is of finite type , so that there exists a splitting

X ˝Z.p/ '
M
k�n

Sk ˝Z.p/;

where Sk is a direct sum of 2k–dimensional even slice spheres. Then X admits a
filtration fXkgk�n such that Xk=Xk�1 ' Sk for each k � n.

Proof By assumption, we are given a splitting

X ˝Z.p/ '
M
k�n

Sk ˝Z.p/;

where Sk is a direct sum of 2k–dimensional even slice spheres. By induction on n, it
will suffice to show that the dashed lifting exists in the diagram

X

Sn

M
k�n

Sk ˝Z.p/ 'X ˝Z.p/

since the cofiber of any such lift is a bounded below homologically even Cp–spectrum
with ˆCp X of finite type and whose Z.p/–homology is

L
k�nC1 Sk ˝Z.p/.

Note that Lemma 3.7 implies that X is regular slice 2n–connected. Let F be the fiber of
the Hurewicz map S0! Z.p/. Then F is easily seen to be regular slice 0–connective,
so that F ˝X is regular slice 2n–connective. This implies that ŒSn; †F ˝X �D 0 by
Lemma 3.8. The result now follows from the cofiber sequence

X ! Z.p/˝X !†F ˝X:

Remark 3.10 It will follow from Example 3.16 and Proposition 3.18 that the following
converse of Proposition 3.9 holds: if X is bounded below and admits an even slice cell
structure, then X is homologically even.
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3.2 Homotopical evenness

We now introduce the homotopical version of evenness.

Definition 3.11 We say that a Cp–equivariant spectrum E is homotopically even if,
for all n 2 Z,

(1) �e
2n�1

E D 0,

(2) �Cp
2n��1

E D 0,

(3) �Cp
2n��2��E D 0.

Remark 3.12 All of the examples of homotopically even Cp–spectra that we will
encounter will also satisfy, for all n 2 Z,

(4) �Cp
2n�C�E D 0.

We will say that a homotopically even Cp–spectrum satisfies condition (4) if this holds.

In fact, the examples which we study satisfy even stronger evenness properties. We
have chosen the weakest possible set of properties for which our theorems hold.

Remark 3.13 If we assume condition (1), then we may rewrite conditions (3) and (4) as:

(30) The transfer maps �e
2np�2

E! �Cp
2n��2

E are surjective for all n 2 Z.

(40) The restriction maps �Cp
2n�

E! �e
2np

E are injective for all n 2 Z.

This follows directly from the cofiber sequences defining S�� and S�:

S��
! S0 tr

�! .Cp/C˝S0; .Cp/C˝S0 res
�! S0

! S�:

Remark 3.14 Conditions (1)–(4) have some implications for the slice tower of any
homotopically even E, which can be read off from [21]; cf [40, Theorem 3.5]. First,
conditions (1) and (2) together imply that slices in degrees 2np�1 are trivial. Secondly,
condition (4) implies that the .2np/th slice is the zero-slice determined by the Mackey
functor �2n�. However, when p > 2, the implication of (3) for slices is obscure, and
many slices are unconstrained.

Remark 3.15 If p D 2, Definition 3.11 reduces to the requirement that, for all n 2 Z,

(1) �e
2n�1

E D 0, and

(2) �C2
n��1

E D 0.

A C2–equivariant spectrum is therefore homotopically even if and only if it is even in the
sense of [19, Definition 3.1]. Moreover, condition (4) is redundant in the C2–equivariant
setting.
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Example 3.16 The Eilenberg–Mac Lane spectra Fp and Z.p/ are examples of homo-
topically even Cp–spectra which satisfy condition (4). To verify this, we refer to the
reader to the appendix of third author’s thesis [39, Section A], where one may find a
computation of the spoke graded homotopy groups of Fp and Z.p/.

At the prime p D 2, there are many examples of homotopically even C2–spectra in the
literature, such as MUR;BPR;BPhniR;E.n/R, K.n/R and En, where En is equipped
with the Goerss–Hopkins C2–action [19; 9].

The main result of Section 5 is that the Cp–spectra Ep�1 and the C3–spectrum tmf.2/
are homotopically even and satisfy condition (4).

When trying to map a bounded below homologically even Cp–spectrum into a homo-
topically even Cp–spectrum, there are no obstructions:

Proposition 3.17 Let E be a homotopically even Cp–spectrum , and suppose that X

is a Cp–spectrum equipped with a bounded below filtration fXkgk�n such that each
Sk WDXk=Xk�1 is a direct sum of 2k–dimensional even slice spheres.

Then , for any k � n, every Cp–equivariant map Xk!E extends to an equivariant map
X !E.

Proof It suffices to prove by induction that any map Xk ! E extends to a map
XkC1!E. Using the cofiber sequence

†�1SkC1!Xk !XkC1;

we just need to know that any map from the desuspension of an even slice sphere
into E is nullhomotopic. This follows precisely from the definition of homotopical
evenness.

If E further satisfies condition (4), we have the stronger result:

Proposition 3.18 Let E be a homotopically even Cp–ring spectrum which satisfies
condition (4), and suppose that X is a Cp–spectrum equipped with a bounded below
filtration fXkgk�n such that each Sk WDXk=Xk�1 is a direct sum of 2k–dimensional
even slice spheres.

Then there is a splitting of the induced filtration on X ˝E by E–modules:

X ˝E '
M
k�n

Sk ˝E:
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Proof We need to show that the filtration fXkgk�n splits upon smashing with E.
Working by induction, we see that it suffices to show that all maps

Sk !†Sm˝E;

where k > m, are automatically null. Enumerating through all of the possible even
slice spheres that can appear in Sk and Sm, and making use of the (noncanonical)
equivalence

S�
˝S��

' S0
˚

M
p�2

..Cp/C˝S0/;

we find that this follows precisely from the hypothesis that E is homotopically even
and satisfies condition (4).

4 The homological evenness of CP1�p

The main goal of this section is to prove the following theorem.

Theorem 4.1 The Cp–spectrum †1CP1�p
is homologically even.

Noting that ˆCp†1CP1�p
D†1BCp is of finite type, we may apply Proposition 3.9

and so deduce the following corollary.

Corollary 4.2 There is a filtration f†1CPn
�p
gn�0 of †1CP1�p

with subquotients

†1CPn
�p
=†1CPn�1

�p
'

8<:
S2m�˚

L
..Cp/C˝S2n/ if nDmp;

S2m�C1C�˚
L
..Cp/C˝S2n/ if nDmpC 1;L

..Cp/C˝S2n/ otherwise:

Warning 4.3 We believe that there is a filtration fCPn
�p
gn�0 of the space CP1�p

that
recovers f†1CPn

�p
gn�0 upon applying †1, but we do not prove this here. As such,

our name †1CPn
�p

must be regarded as an abuse of notation: we do not prove that
†1CPn

�p
is †1 of a Cp–space CPn

�p
. In light of the Dold–Thom theorem, it seems

likely that the space CPn
�p

could be defined as the nth symmetric power of S1C�.

Remark 4.4 The identification of the particular even slice spheres appearing in this
decomposition is determined by the cohomology of CP1�p

as a Cp–representation, and
in particular from the combination of Corollary 2.8, Lemma 4.9 and Proposition 4.10.
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As an application, we obtain the following analog of the fact that any ring spectrum
with homotopy groups concentrated in even degrees admits a complex orientation.

Corollary 4.5 Let E be a homotopically even Cp–ring spectrum. Then E is �p–
orientable.

Proof We wish to show that the .1C�/–suspension of the unit map factors as

S1C�
!†1CP1�p

!†1C�E:

This is an immediate consequence of Corollary 4.2 and Proposition 3.17.

We devote the remainder of the section to the proof of Theorem 4.1. By Corollary 2.8,
there is an equivalence

ZŒS�1���' ZCP1�pC :

This is of finite type, so to prove Theorem 4.1 it will suffice to prove the following
theorem and dualize.

Theorem 4.6 As a Cp–equivariant spectrum , S0ŒS2n��1��� is a direct sum of dual
even slice spheres for all n 2 Z.

To prove this, we will construct a map from a wedge of dual even slice spheres which
is an equivalence on underlying spectra and geometric fixed points.

Construction 4.7 The composition

S2n��2
! .Cp/C˝S2np�2

! NCp
e S0ŒS2np�2�! S0ŒS2n��1���

is canonically null, and hence induces a map

zx W S2n��1��
! S0ŒS2n��1���:

On the other hand, letting

x W S2np�2
! S0ŒS2np�2�

denote the canonical inclusion, there is the norm map

Nm.x/ W S .2np�2/�
! NCp

e S0ŒS2np�2�! S0ŒS2n��1���:

Since S0ŒS2n��1��� is a module over NCp
e S0ŒS2np�2�, this implies the existence of

maps
Nm.x/k � zx" W Sk.2np�2/�C".2n��1��/

! S0ŒS2n��1���

for k 2N and " 2 f0; 1g.
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We first show that the sum of these maps induces an equivalence on geometric fixed
points.

Proposition 4.8 Let

‰ W
M
k�0;
"2f0;1g

Sk.2np�2/�C".2n��1��/
! S0ŒS2n��1���

denote the direct sum of the maps Nm.x/k � zx". Then ˆCp .‰/ is an equivalence.

Proof We have an identification

ˆCp S0ŒS2n��1���'S0ŒS2np�2�˝S0ŒS2n�2�S
0
'S0ŒS2np�2�˝.S0

˝S0ŒS2n�2�S
0/:

Under this identification, the map

ˆCp .Nm.x// W S2np�2
!ˆCp S0ŒS2n��1���

corresponds to the inclusion of S2np�2 into the left factor.

There are equivalences

S0
˝S0ŒS2n�2� S

0
'†1C Bar.�; �†S2n�2;�/'†1C S2n�1

and hence an isomorphism

He
�.S

0
˝S0ŒS2n�2� S

0
IZ/ŠƒZ.x2n�1/:

Furthermore, the map

ˆCp .zx/ W S2n�1
!ˆCp S0ŒS2n��1���

sends the fundamental class of S2n�1 to x2n�1.

It follows that ˆCp .‰/ induces an isomorphism on homology, so is an equivalence.

Our next task is to extend ‰ to a map that also induces an equivalence on underlying
spectra. We will see that this can be accomplished by taking the direct sum with maps
from induced even spheres, which are easy to produce. The main input is a computation
of the homology of the underlying spectrum of S0ŒS2n��1��� as a Cp–representation.

Lemma 4.9 There is a Cp–equivariant isomorphism

He
�.S

0ŒS2n��1���IZ/Š Sym�Z.x�/;

where x� lies in degree 2np� 2.
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Proof There are equivariant isomorphisms

He
�.S

0ŒS2n��2�IZ/Š Sym�Z.x/;

He
�.N

Cp
e S0ŒS2np�2�IZ/Š Sym�Z.�/;

where x and � both lie in degree 2np�2. As S0ŒS2n��1��� is a unital NCp
e S0ŒS2np�2�–

module, we obtain a map

Sym�Z.�/! He
�.S

0ŒS2n��1���IZ/

of Sym�Z.�/–modules. Since x goes to zero in He
�.S

0ŒS2n��1���IZ/, it follows that
this factors through a map

Sym�Z.x�/Š Sym�Z.�/˝Sym�Z.x/
Z! He

�.S
0ŒS2n��1���IZ/:

Examining the Künneth spectral sequence, this map must be an isomorphism.

The following theorem in pure algebra determines the structure of the mod p reduction
Sym�Fp

.x�/ as a Cp–representation.

Proposition 4.10 [1, Propositions III.3.4–III.3.6] Let x� denote the reduced regular
representation of Cp over Fp, and let e1; : : : ep 2 x� denote generators which are cycli-
cally permuted by Cp and satisfy e1C� � �CepD 0. We set NmD e1 � � � ep 2 Symp

Fp
.x�/.

Then the symmetric powers of x� decompose as

Symk
Fp
.x�/Š

8<:
1fNm`g˚ free if k D ` �p;

x�fNm`e1; : : : ;Nm`epg˚ free if k D ` �pC 1;

free otherwise.

Proof of Theorem 4.6 Let ‰ be as in Proposition 4.8. By Lemma 4.9 and Proposition
4.10, the mod p homology ofˆe.S0ŒS2n��1���/ splits as im.He

�.‰//˚free. Moreover,
‰ is an equivalence on geometric fixed points by Proposition 4.8.

It therefore suffices to show that, given any summand of He
2k
.S0ŒS2n��1���IFp/

isomorphic to �, there is a map .Cp/C˝S2k ! S0ŒS2n��1��� whose image is that
summand. Taking the direct sum of ‰ with an appropriate collection of such maps,
we obtain an Fp–homology equivalence. Since both sides have finitely generated free
Z–homology, this must in fact be a p–local equivalence, as desired.

To prove the remaining claim, it suffices to show that the mod p Hurewicz map

�e
�.S

0ŒS2n��1���/! He
�.S

0ŒS2n��1���IFp/
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is surjective in every degree. This follows from the square

�e
�.N

Cp
e S0ŒS2np�2�/ He

�.N
Cp
e S0ŒS2np�2�IFp/

�e
�.S

0ŒS2n��1���/ He
�.S

0ŒS2n��1���IFp/

where the top horizontal arrow is a surjection because NCp
e S0ŒS2np�2� is a nonequiv-

ariant direct sum of spheres, and the right vertical arrow is a surjection by the proof of
Lemma 4.9.

5 Examples of homotopical evenness

In this section, we introduce our principal examples of homotopically even Cp–ring
spectra. By Corollary 4.5, they are also �p–orientable.

Our first examples are the Morava E–theories Ep�1 associated to the height p � 1

Honda formal group. As we will recall in Section 5.1, Ep�1 admits an essentially
unique Cp–action by E1–automorphisms. We use this action to view Ep�1 as a Borel
Cp–equivariant E1–ring.

Our second example is the connective E1–ring tmf.2/ of topological modular forms
with full level 2 structure. The group GL2.Z=2Z/Š†3 acts on tmf.2/ via modification
of the level 2 structure, and we view tmf.2/ as a C3–equivariant E1–ring via the
inclusion C3 �†3. We will discuss this example in Section 5.2.

The main result of this section is the homotopical evenness of the above Cp–ring
spectra.

Theorem 5.1 The Borel Cp–equivariant height p�1 Morava E–theories Ep�1 as-
sociated to the Honda formal group over Fpp�1 are homotopically even and satisfy
condition (4).

Theorem 5.2 The C3–ring spectrum tmf.2/ of connective topological modular forms
with full level 2 structure is homotopically even and satisfies condition (4).

Applying Corollary 4.5, we obtain the following corollary.

Corollary 5.3 The Cp–ring spectra Ep�1 and tmf.2/ are �p–orientable.
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5.1 Height p�1 Morava E–theory

To a pair .k;G/, where k is a perfect field of characteristic p > 0 and G is a formal
group G over k of finite height h, we may functorially associate an E1–ring E.k;G/,
the Lubin–Tate spectrum or Morava E–theory spectrum of .k;G/; see [6; 27]. There
is a noncanonical isomorphism

��E.k;G/ŠW .k/Ju1; : : : ;uh�1KŒu˙1�;

where jui j D 0 and juj D �2.

Given a prime p and finite height h, a formal group particularly well-studied in
homotopy theory is the Honda formal group. The Honda formal group GHonda

h is
defined over Fp, so the Frobenius isogeny may be viewed as a endomorphism

F WGHonda
h !GHonda

h :

The Honda formal group is uniquely determined by the condition that Fh D p in
End.GHonda

h /.

The endomorphism ring of the base change of GHonda
h to Fph is the maximal order Oh

in the division algebra Dh of Hasse invariant 1=h and center Qp . By the functoriality
of the Lubin–Tate theory construction, the automorphism group Sh DO�

h
of GHonda

h

over Fph acts on E.Fph ;GHonda
h /. To keep our notation from becoming too burdensome,

we set
Ep�1 WDE.Fpp�1 ;GHonda

p�1 /:

There is a subgroup Cp � Sp�1, which is unique up to conjugation. Indeed, such
subgroups correspond to embeddings Qp.�p/�Dp�1. Since Qp.�p/ is of degree p�1

over Qp, it follows from a general fact about division algebras over local fields that
such a subfield exists and is unique up to conjugation; see [36, application on page 138].
Using any such Cp , we may view Ep�1 as a Borel Cp–equivariant E1–ring spectrum.

Homotopical evenness of Ep�1 will follow from the computation of the homotopy
fixed-point spectral sequence for E

hCp

p�1
, which was first carried out by Hopkins and

Miller and has been written down in [32] and again reviewed in [11]. We recall this
computation below. The homotopy fixed-point spectral sequence takes the form

Hs.Cp; �tEp�1/) �t�sE
hCp

p�1
;

so the first step is to compute the action of Cp on ��Ep�1.

This action may be determined as follows. Abusing notation, let v1 2 �2p�2Ep�1

denote a lift of the canonically defined element v1 2 �2p�2Ep�1=p. The element v1
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is fixed modulo p by the Sp�1 and in particular the Cp–action on Ep�1, so if we
fix a generator 
 2 Cp we find that the element v1 � 
v1 is divisible by p. Set
v D .v1� 
v1/=p. Then the two key properties of v are:

(1) vC 
vC � � �C 
p�1v D 0.

(2) v is a unit in ��Ep�1. As a consequence, Nm.v/D v � 
v � � � 
p�1v is a unit in
��Ep�1 which is fixed by the Cp–action [32, page 498].

The existence of an element v satisfying the above two conditions completely determines
the action of Cp on ��Ep�1, as follows. First, let zw 2 ��2Ep�1 denote any unit, and
set w D v �Nm. zw/ 2 ��2Ep�1. Then w continues to satisfy (1) and (2) above and
determines a map of Cp–representations

x�W .F
pp�1 /! ��2Ep�1:

This determines a Cp–equivariant map

Sym�W .F
pp�1 /

.x�/ŒNm.w/�1�! ��Ep�1;

which identifies ��Ep�1 with the graded completion of Sym�W .Fpp�1 /.x�/ŒNm.w/�1�

at the graded ideal generated by the kernel of the essentially unique nonzero map of
W .Fpp�1/ŒCp �–modules x�W .F

pp�1 /! 1Fpp�1 .

Remark 5.4 In Section 7, we will see that the element v is intimately related to the
�p–orientability of Ep�1. For later use, we note that it follows from the above analysis
that the map x�F

pp�1
! �2p�2Ep�1=.p;m

2/ induced by v is an isomorphism.

Remark 5.5 As pointed out by the referee, the element v 2 �2p�2Ep�1 may also
be described in terms of BP–theory. The class t1 2 BP2p�2BP determines a function
t1 W Sp�1!E2p�2, and it follows from the formula �R.v1/D v1Cpt1 in BP�BP that
t1.


�1/D .v1� 
v1/=p D v. From this perspective, the crucial fact that v is a unit in
��Ep�1 follows from the calculations in [35, pages 438–439].

Using the above determination of the Cp–action on ��Ep�1, as well as Proposition 4.10,
one may obtain with some work the following description of Hs.Cp; �tEp�1/.

Proposition 5.6 (Hopkins–Miller; cf [11, Proposition 2.6]) There is an exact se-
quence

(5-1) ��Ep�1
tr
�! H�.Cp; ��Ep�1/! Fpp�1 Œ˛; ˇ; ı˙1�=.˛2/! 0;

where j˛j D .1; 2p� 2/, jˇj D .2; 2p2� 2p/ and jıj D .0; 2p/.
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Finally, we must recall the differentials in the homotopy fixed-point spectral sequence.
We let :D denote equality up to multiplication by an element of W .Fpp�1/�. Then, as
explained in [11, Section 2.4], the spectral sequence is determined multiplicatively by
the differentials

d2.p�1/C1.ı/
:
D ˛ˇp�1ı1�.p�1/2 ;

d2.p�1/2C1.ı
.p�1/3˛/

:
D ˇ.p�1/2C1;

along with the fact that all differentials vanish on the image of the transfer map.

In particular, on the E1–page of the homotopy fixed-point spectral sequence there are
no elements in positive filtration in total degrees 0, �1 or �2. Indeed, there are no
elements at all in the .�1/–stem.

We now have enough information to establish the homotopical evenness of Ep�1.

Proof of Theorem 5.1 Let u 2 �e
2
Ep�1 denote the periodicity element. Then Nm.u/

in �Cp

2�
Ep�1 is also invertible, so the RO.Cp/–graded equivariant homotopy of Ep�1

is 2�–periodic.

Therefore, using Remark 3.13, we see that it suffices to show that:

(1) �e
�1

Ep�1 D 0.

(2) ��1E
hCp

p�1
D 0.

(3) The transfer map �e
�2

Ep�1! ��2E
hCp

p�1
is a surjection.

(4) The restriction map �0E
hCp

p�1
! �e

0
Ep�1 is an injection.

Condition (1) is immediate from the fact that Ep�1 is even periodic. Condition (2) is
a direct consequence of the above computation of the homotopy fixed-point spectral
sequence. Condition (3) follows from the following two facts:

� The short exact sequence (5-1) implies that H0.Cp; ��2Ep�1/ is spanned by the
image of the transfer.

� On the E1–page of the homotopy fixed-point spectral sequence, there are no
positive filtration elements in stem �2.

Condition (4) follows from the fact that on the E1–page of the homotopy fixed-point
spectral sequence, there are no positive filtration elements in the zero stem.
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5.2 The spectrum tmf.2/ as a form of BPh1i�3

Recall from [38] or [18] the spectrum tmf.2/ of connective topological modular forms
with full level 2 structure.1 In this section we will consider tmf.2/ as implicitly 3–
localized. It is a genuine †3–equivariant E1–ring spectrum with †3–fixed points
tmf.2/†3 D tmf, the (3–localized) spectrum of connective topological modular forms.
We view tmf.2/ as a C3–spectrum via restriction along an inclusion C3 �†3.

This spectrum has been well-studied by Stojanoska [38]. In particular, Stojanoska
computes �e

�tmf.2/ D Z.3/Œ�1; �2�, where j�i j D 4 and a generator 
 of C3 acts by
�1 7! �2 � �1 and �2 7! ��1. It follows that �1 and �2 span a copy of x�, so that
��tmf.2/Š Sym�Z.3/.x�/. The corresponding family of elliptic curves is cut out by the
explicit equation

y2
D x.x��1/.x��2/:

For later use, we note down some facts about the associated formal group law.

Proposition 5.7 The 3–series of the formal group law associated to tmf.2/ is given by
the formula

Œ3�.x/D3xC8.�1C�2/x
3
C24.�2

1�2�1�2C�
2
2/x

5
C72.�3

1��
2
1�2��1�

2
2C�

3
2/x

7

C 8.27�4
1� 76�3

1�2C 98�2
1�

2
2� 76�1�

3
2C 27�4

2/x
9
CO.x10/:

It follows that we have the formulas

v1 ���1��2 mod 3 and v2 � �
4
1 � �

4
2 mod .3; v1/:

Proof This is an elementary computation using the method of [37, Section IV.1].

Remark 5.8 Let v D��1��2, so that v � v1 mod p. Then we have


v� v D ..�1��2/C�1/C�1C�2 D 3�1;

so that
1
3
.
 v� v/D �1:

This element generates ��tmf.2/ as a Z.3/–algebra with C3–action. In Section 7, we
will relate this element to the �3–orientation of tmf.2/.

1The spectrum tmf.2/ is obtained from the spectrum Tmf.2/ discussed in the references by taking the
†3–equivariant connective cover.
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In the third author’s thesis, the slices of tmf.2/ have been computed as follows;
cf [17, Section 4].

Proposition 5.9 [39, Corollary 3.2.1.10] Given a Cp–equivariant spectrum X , let
Pn

n X denote the nth slice of X . The slices of tmf.2/ are of the formM
n

Pn
n tmf.2/' Z.3/ŒS

2��1���:

We now turn to the proof of Theorem 5.2. Given the computation of the slices of tmf.2/
in Proposition 5.9, this will follow from Theorem 4.6 and the following proposition.

Proposition 5.10 Suppose that X is a Cp–spectrum whose slices are of the form
Pn

n X ' Sn˝Z.p/, where Sn is a direct sum of dual even slice n–spheres. Then X is
homotopically even and satisfies condition (4).

Using the slice spectral sequence, the proof of Proposition 5.10 reduces to the following
lemma:

Lemma 5.11 Let S denote a dual even slice sphere. Then S ˝Z.p/ is homotopically
even and satisfies condition (4).

Proof If S ' S2n˝ .Cp/C, then this follows from the fact that �2n�1Z.p/ D 0 for
all n 2 Z.

If S ' S2n�, then this follows from the fact that Z.p/ is homotopically even, since the
definition of homotopically even is invariant under 2�–suspension.

If S ' S2n��1��, then condition (1) of Definition 3.11 is clearly satisfied, and condi-
tions (2)–(4) follow from the following statements for all n 2 Z, which may be read
off from [39, Section A.2]:

� �
Cp

2n�C�Z.p/ D 0,

� �
Cp

2n��1
Z.p/ D 0,

� �
Cp

2n�C1C�
Z.p/ D 0.

In the proofs of (3) and (4) we have implicitly used the existence of equivalences

S�
˝S��

' S0
˚

M
p�2

.Cp/C˝S0;

S�
˝S�

' S�˚
M
p�2

.Cp/C˝S2:
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6 The class v�p

1
and a formula for its span

In this section, given a �p–oriented Cp–ring spectrum R, we will define a class

v
�p

1
2 �

Cp

2�
.†1C�R/Š �

Cp

2��1��R:

When p D 2, our construction agrees with the class vR
1
2 �

C2
� R in the homotopy of

a Real oriented C2–ring spectrum. Just as v1 is well-defined modulo p, we will see
that v�p

1
is well-defined modulo the transfer. We will also give a formula for the image

of v�p

1
in the underlying homotopy of R in terms of the classical element v1 and the

Cp–action.

To define v�p

1
, we first construct a class v�p

1
2 �

Cp

2�
†1CP1�p

, and then we take
its image along the �p–orientation †1CP1�p

! †1C�R. To begin, we recall an
analogous construction of the classical element v1.

6.1 The nonequivariant v1 as a pth power

We recall some classical, nonequivariant theory that we will generalize to the equivariant
setting in the next section.

Notation 6.1 We let ˇ W S2'†1CP1
!†1CP1 denote a generator of the stable

homotopy group �2.†
1CP1/.

Since CP1 '�1†2Z is an infinite loop space, its suspension spectrum †1CP1

is a nonunital ring spectrum. This allows us to make sense of the following definition.

Definition 6.2 We define the class v1 2 �2p†
1CP1 to be ˇp , the pth power of the

degree 2 generator.

There are at least two justifications for naming this class v1, which might more com-
monly be defined as the coefficient of xp in the p–series of a complex-oriented ring.
The relationship is expressed in the following proposition.

Proposition 6.3 Let R denote a (nonequivariant) homotopy ring spectrum equipped
with a complex orientation

†�2†1CP1!R;

which can be viewed as a class x 2R2.CP1/. Then the composite

S2p�2 v1
�!†�2†1CP1!R

records , up to addition of a multiple of p, the coefficient of xp in the p–series Œp�F .x/.
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Proof Consider the p–fold multiplication map of infinite loop spaces

.CP1/�p m
�!CP1 :

Applying R� to the above, we obtain a map

R�JxK!R�Jx1;x2; : : : ;xpK:

By the definition of the formal group law �CF � associated to the complex orientation,
the class x 2R2.CP1/ is sent to the formal sum

f .x1;x2; : : : ;xp/D x1CF x2CF � � � CF xp:

The commutativity of the formal group law ensures that this power series is invariant
under cyclic permutation of the xi .

The composite

S2p�2
!†�2.†1CP1/˝p

!†�2†1CP1!R

that we must compute can be read off as the coefficient of the product x1x2 � � �xp

in the power series f .x1;x2; : : : ;xp/. We may of course consider other degree p

monomials in the xi , such as x
p
1

. The coefficient in f .x1;x2; : : : ;xp/ of any such
degree p monomial will be an element of �2p�2R. Summing these coefficients over all
the possible degree p monomials, we obtain the coefficient of xp in the single-variable
power series Œp�F .x/D f .x;x; : : : ;x/.

Our claim is that this sum differs from the coefficient of x1x2 � � �xp by a multiple
of p. The reason is that x1x2 � � �xp is the unique monomial invariant under the cyclic
permutation of the xi . For example, the coefficients of x

p
1
;x

p
2
; : : : and x

p
n will all

be equal, so their sum is a multiple of p.

Remark 6.4 The integral homology H�.CP1IZ.p// is a divided power ring on the
Hurewicz image of ˇ. In particular, the Hurewicz image of v1 D ˇ

p is a multiple
of p times a generator of H2p.CP1IZ.p//.

Consider the ring spectrum M U together with its canonical complex orientation

†�2†1CP1!M U:

The integral homology H�.M U IZ/ is the symmetric algebra on the image, un-
der this map, of zH�.CP1IZ/. In particular, the Hurewicz image of v1 in the
group H2p.†

�2†1CP1IZ.p// is sent to p times an indecomposable generator
of H2p�2.M U IZ.p//. By [29], this provides another justification for the name v1.
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Remark 6.5 One might wonder whether higher vi , with i > 1, can be defined in
��.†

1CP1/. A classical argument with topological K–theory [31] shows that
the Hurewicz image of ��.†1CP1/ inside of H�.†

1CP1IZ.p// is generated
as a Z.p/–module by powers of ˇ. For i larger than 1, the power ˇpi

is not simply
p times a generator of H2pi .CP1IZ.p//, so it is impossible to lift the corresponding
indecomposable generators of ��.M U / to ��.†�2†1CP1/. However, it may be
possible to lift multiples of such generators.

Finally, we record the following proposition for later use.

Proposition 6.6 Let A denote a (nonequivariant) homotopy ring spectrum equipped
with a map

f W†1CP1!†2A

that induces the zero homomorphism on �2 (in particular , f is not a complex orienta-
tion). Then the image of v1 in �2p�2A is a multiple of p.

Proof Let C˛1 denote the cofiber of ˛1 W S
2p�3! S0.

We recall first that, p–locally, the spectrum

†1CPp

admits a splitting as †2C˛1˚
Lp�2

kD2
S2k . Indeed, since ˛1 is the lowest positive-

degree element in the p–local stable stems, most of the attaching maps in the standard
cell structure for CPp are automatically p–locally trivial. The only possibly nontrivial
attaching map is between the .2p/th cell and the bottom cell, and this attaching map is
detected by the P1–action on H�.CP1IFp/.

By cellular approximation, v1 W S
2p!†1CP1 must factor through †1CPp , and

again the lack of elements in the p–local stable stems ensures a further factorization
of v1 through †2C˛1. Thus, to determine the image of v1 in �2p.†

2A/, it suffices to
consider the composite

zf W†2C˛1!†1CPp
!†1CP1!†2A:

There is by definition a cofiber sequence S2! †2C˛1! S2p. By the assumption
that f is trivial on �2, zf must factor as a composite

†2C˛1! S2p
!†2A:

We now finish by noting that the composite v1 W S
2p ! †2C˛1 ! S2p must be a

multiple of p, because otherwise C˛1 would split as S2p˚S2.
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Remark 6.7 The argument used in the proof of Proposition 6.6 suggests yet another
interpretation of Proposition 6.3, as pointed out by the referee. Proposition 6.3 is true
because �2p�2C˛1 is generated by v1 in the Adams–Novikov spectral sequence.

6.2 The equivariant v�p

1
as a norm

As we defined the nonequivariant v1 2 �2p†
1CP1 to be the pth power of a degree 2

class, we similarly define an equivariant v�p

1
2 �

Cp

2�
†1CP1�p

to be the norm of a
degree 2 class. We thank Mike Hill for suggesting this conceptual way of construct-
ing v�p

1
. To see that †1CP1�p

is equipped with norms, we will make use of the
following proposition.

Proposition 6.8 There is an equivalence of Cp–equivariant spaces

�1†1C�Z'CP1�p
;

where Z denotes the Cp–equivariant Eilenberg–Mac Lane spectrum associated to the
constant Mackey functor.

Proof This is Remark 1.6.

Construction 6.9 The above proposition equips the space CP1�p
with a natural norm,

meaning a map
N

Cp

e ..CP1�p
/e/!CP1�p

:

Indeed, any Cp–equivariant infinite loop space �1Y , like �1S1C�Z, is equipped
with a norm

N
Cp

e .�1Y /e!�1Y:

This norm is �1 applied to the Cp–spectrum map

.Cp/C˝Y ! Y

that is induced from the identity on Y e.

Convention 6.10 For the remainder of this section we fix a (noncanonical) equivalence

.CP1�p
/e ' .CP1/�p�1:

The natural map of Cp–spaces

S1C�
DCP1

�p
!CP1�p
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then induces an (again, noncanonical) equivalence

.S1C�/e '
W

p�1 S2;

giving p� 1 classes

ˇ1; ˇ2; : : : ; p̌�1 2 �
e
2.CP1�p

/:

Choosing our noncanonical equivalence appropriately, we may take the Cp–action on
�e

2
.CP1�p

IZ.p// to be given by the rules

(1) 
 .ˇi/D ˇiC1 if 1� i � p� 2, and

(2) 
 . p̌�1/D�ˇ1�ˇ2� � � � � p̌�1.

Definition 6.11 We let

v
�p

1
W S2�

!†1CP1�p

denote the norm of ˇ1. Explicitly, norming the nonequivariant ˇ1 map yields a map

S2�
'N

Cp

e S2
!N

Cp

e .ˆe.†1CP1�p
//;

and we may compose this with the norm map of Construction 6.9 to make the class

v
�p

1
2 �

Cp

2�
.†1CP1�p

/:

Remark 6.12 Of course, the choice of the class ˇ1 above is not canonical. We
view this as a mild indeterminacy in the definition of v�p

1
, related to the fact that the

classical v1 should only be well-defined modulo p. As we will see later, many formulas
we write for v�p

1
will similarly be well-defined only modulo transfers.

6.3 A formula for v�p

1
in terms of v1

Our next aim will be to give an explicit formula for the image of v�p

1
in the underlying

homotopy of a �p–oriented cohomology theory. Our formula is stated as Theorem 6.21.
To begin its derivation, our first order of business is to give a different formula for v�p

1

modulo transfers.

Proposition 6.13 In �e
2p
.†1CP1�p

/, the class pv
�p

1
and the class Tr.ˇp

1
/ differ

by p times a transferred class. In particular , Tr.ˇp
1
/ is divisible by p, and the class

Tr.ˇp
1
/=p is the restriction of a class in �Cp

2�
†1CP1�p

.
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Proof Identifying �e
2
.†1CP1�p

/ with x�Z.p/ and using the nonunital E1–ring struc-
ture on †1CP1�p

, we obtain a map

Symp
Z.p/

.x�Z.p//! �e
2p.†

1CP1�p
/;

under which the norm class Nm maps to the image of v�p

1
. The conclusion of the

proposition then follows from Lemma 6.14 below.

Lemma 6.14 Let x�Z.p/ denote the reduced regular representation of Cp over Z.p/,
and let e1; : : : ; ep 2 x�Z.p/ denote generators which are cyclically permuted by Cp and
satisfy e1C � � �C ep D 0. We set NmD e1 � � � ep 2 Symp

Z.p/
.x�Z.p//.

Then Tr.ep
1
/ is divisible by p, and Nm and Tr.ep

1
/=p differ by a transferred class in

Symp
Z.p/

.x�Z.p//.

Proof To see that Tr.ep
1
/ is divisible by p, we expand it out in terms of the basis

e1; : : : ; ep�1 of x�Z.p/ , as

Tr.ep
1
/D e

p
1
C � � �C e

p
p�1
C .�e1� e2� � � � � ep�1/

p:

It is clear from linearity of the Frobenius modulo p that Tr.ep
1
/ is divisible by p. Our

next goal is to show that Nm�Tr.ep
1
/=p is a transferred class. It is clearly fixed by

the Cp–action, so we wish to show that its image in

.Symp
Z.p/

.x�Z.p///
Cp

Tr.Symp
Z.p/

.x�Z.p///

is zero. Since p times any fixed point of Cp is the transfer of an element, there is an
isomorphism

.Symp
Z.p/

.x�Z.p///
Cp

Tr.Symp
Z.p/

.x�Z.p///
Š

.Symp
Fp
.x�Fp

//Cp

Tr.Symp
Fp
.x�Fp

//
:

By Proposition 4.10, there is an isomorphism of Cp–representations

Symp
Fp
.x�Fp

/Š 1Fp
fNmg˚ free;

so that any choice of Cp–equivariant map Symp
Fp
.x�Fp

/! 1Fp
which is nonzero on Nm

restricts to an isomorphism

.Symp
Fp
.x�Fp

//Cp

Tr.Symp
Fp
.x�Fp

//
Š 1Fp

:
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A choice of such a map may be made as follows. First, let f W x�Fp
! 1Fp

denote the
equivariant map sending each ei to 1. This induces a map

Symp
Fp
.f / W Symp

Fp
.x�Fp

/! Symp
Fp
.1Fp

/Š 1Fp

which sends Nm to 1. We now need to show that the image of Tr.ep
1
/=p under

Symp
Fp
.f / is also equal to 1. Writing

Tr.ep
1
/

p
D

e
p
1
C � � �C e

p
p�1
C .�e1� e2� � � � � ep�1/

p

p
;

we find that its image under Symp
Fp
.f / is equal to

p� 1� .p� 1/p

p
D

p� 1� .�1CO.p2//

p
� 1 mod p;

as desired.

Proposition 6.13 can be read as the statement that Tr.ˇp
1
/=p is a formula for the class

v
�p

1
2 �Cp

2�
†1CP1�p

, if one is only interested in v�p

1
modulo transfers. We often find

this formula for v�p

1
to be more useful in computational contexts.

Convention 6.15 For the remainder of this section, we fix a Cp–ring R together with
a �p–orientation

†1CP1�p
!†1C�R:

Definition 6.16 The �p–orientation of R gives rise to a map

.†1CP1�p
/e! .†1C�R/e;

which under our fixed identification of .CP1�p
/e is given by a map

†1.CP1/�p�1
!

M
p�1

†2R:

By mapping in the first of the p� 1 copies of CP1, and then projecting to the first of
the p� 1 copies of R, we obtain the underlying complex orientation of R.

Warning 6.17 While it is convenient to give formulas in terms of the underlying
complex orientation of Definition 6.16, we stress once again that this is noncanonical,
depending on Convention 6.10. There is no canonical classical complex orientation
associated to a �p–oriented Cp–ring.
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Notation 6.18 Using Definition 6.2, the underlying complex orientation of R gives
rise to a class v1 D ˇ

p
1
2 �e

2p�2
R.

Notation 6.19 Recall our fixed noncanonical identification .S1C�/e '
L

p�1 S2. Let
yi 2 �

e
2
S1C� correspond to the i th copy of S2, so that we have

(1) 
 .yi/D yiC1 if 1� i � p� 2, and

(2) 
 .yp�1/D�y1� � � � �yp�1.

Then a generic class

r 2 �e
2p.†

1C�R/Š �e
2S1C�

˝�e
2p�2R

may be written as

r D y1˝ r1Cy2˝ r2C � � �Cyp�1˝ rp�1;

where ri 2 �
e
2p�2

R.

The key relationship between the equivariant v�p

1
and nonequivariant v1 is expressed

in the following lemma.

Lemma 6.20 The class v1 D ˇ
p
1
2 �e

2p
†1CP1�p

maps to y1˝ v1 plus a multiple
of p in �e

2p
.†1C�R/.

Proof The class ˇp
1

maps to y1˝r1Cy2˝r2C� � �Cyp�1˝rp�1 for some collection
of elements r1; r2; : : : ; rp�1 2 �

e
2p�2

R.

By Definition 6.2, r1 D v1, so it suffices to show that each of r2; : : : ; rp�1 is divisible
by p. These statements in turn each follow by application of Proposition 6.6.

At last, we are ready to state the main result of this section.

Theorem 6.21 Suppose that the underlying homotopy groups �e
�R are torsion-free.

Then the class v�p

1
2 �e

2p
.†1C�R/ is given , modulo transfers , by the class

y1˝
v1� 


p�1v1

p
Cy2˝


v1� v1

p
C � � �Cyp�1˝


p�2v1� 

p�3v1

p
:

Proof By Proposition 6.13, it is equivalent to show that the above formula determines
Tr.ˇp

1
/=p 2 �e

2p
.†1C�R/ modulo transfers. But this may be computed directly from

Lemma 6.20.
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Remark 6.22 Consider the class

y1˝
v1� 


p�1v1

p
Cy2˝


v1� v1

p
C � � �Cyp�1˝


p�2v1� 

p�3v1

p

of Theorem 6.21. If in this formula we replace v1 by v0
1
D v1Cpx for an arbitrary

class x 2 �e
2p�2

R, the resulting expression differs from the original by

y1˝ .x� 

p�1x/Cy2˝ .
x�x/C � � �Cyp�1˝ .


p�2x� 
p�3x/:

This is exactly the transfer, in �e
2p
.†1C�R/, of y1˝ x. Therefore, altering v1 by a

multiple of p does not change the class v�p

1
modulo transfers.

7 The span of v�p

1
in height p� 1 theories

In this section, we use the formula of Theorem 6.21 to compute the span of v�p

1
in

the height p � 1 theories Ep�1 and tmf.2/, which we verified were �p–orientable
in Section 5. Our main result, stated in Theorems 7.3 and 7.4, proves that the span
of v�p

1
generates the homotopy of these theories in a suitable sense. This demonstrates

a height-shifting phenomenon in equivariant homotopy theory: though these theories
are height p� 1 classically, the fact that their homotopy is generated by v�p

1
indicates

that they should be regarded as height 1 objects in Cp–equivariant homotopy theory.

Notation 7.1 Let R denote a Cp–ring spectrum, equipped with a �p–orientation

†1CP1�p
!†1C�R:

Precomposition with v�p

1
then yields a map

S2�
!†1C�R;

which by the dualizability of S1C� is equivalent to a map of Cp–spectra

S2��1��
!R:

Engaging in a slight abuse of notation, we will throughout this section denote this
map by

v
�p

1
W S2��1��

!R:

Definition 7.2 Given a �p–oriented Cp–ring R, applying �e
2p�2

gives a homo-
morphism of Z.p/ŒCp �–modules

�e
2p�2v

�p

1
W �e

2p�2S2��1��
! �e

2p�2R:
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The main theorems of this section are as follows.

Theorem 7.3 Suppose that

†1CP1�p
!†1C�tmf.2/

is any �3–orientation of tmf.2/. Then the map �e
4
v
�p

1
W �e

4
S2��1��! �e

4
tmf.2/ is an

isomorphism of Z.3/–modules , and thus also of Z.3/ŒC3�–modules.

Theorem 7.4 Suppose that

†1CP1�p
!†1C�Ep�1

is any �p–orientation of Ep�1. Then the image of �e
2p�2

v
�p

1
in �e

2p�2
Ep�1 maps

surjectively onto the degree 2p�2 component of ��.Ep�1/=.p;m
2/.

Remark 7.5 The map �e
4
S2��1��! �e

4
tmf.2/ of Theorem 7.3 is a map of rank 2

free Z.3/–modules. Thus, it is an isomorphism if and only if its mod 3 reduction is,
which is a map of rank 2 vector spaces over F3.

Similarly, the degree 2p�2 component ��.Ep�1/=.p;m
2/ is a rank p�1 vector space

over Fp, generated by up�1;u1up�1;u2up�1; : : : ;up�2up�1. The map

�e
2p�2S2��1��

! �2p�2.Ep�1=.p;m
2//

of Theorem 7.4 factors through the mod p reduction of its domain, after which it
becomes a map of rank p�1 vector spaces over Fp.

Both Theorems 7.3 and 7.4 thus reduce to a question of whether maps of rank p�1 vector
spaces over Fp are isomorphisms. These maps are furthermore equivariant, or maps of
Fp ŒCp �–modules, with the actions of Cp given by reduced regular representations. We
will therefore find Lemma 7.7 below particularly useful. First, we recall some basic
facts from representation theory.

Recollection 7.6 Given two Fp ŒCp �–modules V and W, the space HomFp
.V;W /

inherits the structure of a Cp–module via conjugation , where 
 2Cp sends F W V !W

to 
 ıF ı 
�1. Then there is an identification

HomFp
.V;W /Cp D HomFpŒCp�.V;W /;

so that the transfer determines a linear map

Tr W HomFp
.V;W /! HomFpŒCp�.V;W /:
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Lemma 7.7 Let x� denote the Fp ŒCp �–module corresponding to the reduced regular
representation of Cp. Then a homomorphism

� 2 HomFpŒCp�.x�; x�/

is an isomorphism if and only if �CTr. / is for any transferred homomorphism Tr. /.
More precisely , HomFpŒCp�.x�; x�/ is a local Fp ŒCp �–algebra , with maximal ideal the
ideal of transferred homomorphisms.

Proof Note that x� is a uniserial Fp ŒCp �–module, ie its submodules are totally ordered
by inclusion. Since the endomorphism ring of a uniserial module over a Noetherian
ring is local [24, Proposition 20.20], the ring HomFpŒCp�.x�; x�/ is local.

There is an identification x�Cp D 1, so we obtain a ring homomorphism

HomFpŒCp�.x�; x�/! HomFpŒCp�.x�
Cp ; x�Cp /D HomFpŒCp�.1; 1/D Fp:

Since this homomorphism is clearly surjective, we learn that its kernel must be equal
to the maximal ideal of HomFpŒCp�.x�; x�/.

On the other hand, for any x 2 x�Cp and  2 HomFp
.x�; x�/, we have

Tr. /.x/D
p�1X
iD0


 i .
�ix/D

p�1X
iD0


 i .x/D Tr. .x//D 0;

where the last equality follows from the fact that the transfer is zero on x�. It follows
that Tr. / lies in the maximal ideal of HomFpŒCp�.x�; x�/.

Finally, the equivalence

HomFp
.x�; x�/Š 1fidx�g˚ free

shows that the maximal ideal is equal to the image of Tr for dimension reasons.

Proof of Theorem 7.3 Recall that �e
4

tmf.2/ is a free Z.3/–module with basis �1

and �2. In light of Remark 7.5, it suffices to analyze the image of v�3

1
in its mod 3

reduction, which is a free F3–module generated by the reductions of �1 and �2. By
combining Lemma 7.7 with Theorem 6.21, it suffices to show that a basis for this rank 2

F3–module is given by the mod 3 reduction of classes

1
3
.v1� 


2v1/;
1
3
.
 v1� v1/ 2 �

e
4 tmf.2/:

Here, v1 2 �
e
4

tmf.2/ refers to the class of Notation 6.18, which depends on the chosen
�3–orientation. By combining Remark 6.22 and Proposition 5.7, we may as well
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set v1 to be ��1 � �2. Using the formulas of [38, Lemma 7.3] (cf Remark 5.8), we
calculate

1
3
.v1� 


2v1/���2 mod 3 and 1
3
.
 v1� v1/� �1 mod 3:

These clearly generate all of �e
4

tmf.2/ modulo 3, as desired.

Proof of Theorem 7.4 By arguments analogous to those in the previous proof, it
suffices to check that

v1� 

p�1v1

p
;

 v1� v1

p
; : : : ;


p�2v1� 

p�3v1

p
2 �e

2p�2Ep�1

reduce to generators of the degree 2p�2 component of ��.Ep�1/=.p;m
2/. By

Remark 6.22, we may assume that .
 v1 � v1/=p in �e
2p�2

Ep�1 is the element v
defined in Section 5.1. Under this assumption, the p�1 classes of interest become v
and its translates under the Cp–action on �e

2p�2
Ep�1. As noted in Remark 5.4, these

span �e
2p�2

Ep�1=.p;m
2/.
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