Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

Kenji Hashimoto
Taro Sano
Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

KENJI HASHIMOTO
TARO SANO

We construct non-Kähler simply connected Calabi–Yau 3–folds with arbitrarily large $2^{nd}$ Betti numbers by smoothing normal crossing varieties with trivial dualizing sheaves.

14D15, 14J32; 32Q25

1 Introduction

In this paper, a Calabi–Yau manifold means a compact complex manifold whose canonical bundle is trivial and $H^i(X, \mathcal{O}_X) = H^0(X, \Omega^i_X) = 0$ for $0 < i < \text{dim } X$. A projective Calabi–Yau manifold is often also called a strict Calabi–Yau manifold. Our main interest is a Calabi–Yau 3–fold, that is, a Calabi–Yau manifold of dimension 3. Projective Calabi–Yau manifolds are one of the building blocks in the classification of algebraic varieties. Nevertheless, it is not known whether there are only finitely many topological types of projective Calabi–Yau 3–folds or not. The main purpose of this paper is to give infinitely many topological types of non-Kähler Calabi–Yau 3–folds.

Theorem 1.1 Let $a > 0$ be any positive integer. Then there exists a simply connected Calabi–Yau 3–fold $X(a)$ with $2^{nd}$ Betti number $b_2(X(a)) = a + 3$, topological Euler number $e(X(a)) = -256a^2 + 32a - 224$ and algebraic dimension $a(X(a)) = 1$.

As far as we know, our examples are the first examples of complex Calabi–Yau 3–folds with arbitrarily large $b_2$ in our sense. Their topological Euler number can be arbitrarily small and negative. For positive integers $a \neq a'$, we see that $X(a)$ and $X(a')$ are not bimeromorphic (Remark 3.13), thus showing bimeromorphic unboundedness of non-Kähler Calabi–Yau 3–folds. It is also remarkable that the Hodge to de Rham spectral sequence degenerates at $E_1$ on $X(a)$ and they have unobstructed deformations (Remark 3.8).
Friedman [16, Example 8.9] constructed infinitely many topological types of Calabi–Yau 3–folds with $b_2 = 0$ by deforming a Calabi–Yau 3–fold with ordinary double points based on Clemens’ construction [8] of some quintic 3–folds with infinitely many smooth rational curves. There are also infinitely many examples of Calabi–Yau 3–folds of $b_2 = 1$ but with different cubic forms on $H^2$ as flops of a fixed Calabi–Yau 3–fold; see Friedman [16, Example 7.6] and Okonek and Van de Ven [28, Example 14]. Fine and Panov [14, Section 3] constructed simply connected compact complex 3–folds with trivial canonical bundle, arbitrarily large $b_2$ and nonzero holomorphic 2–forms.

Non-Kähler Calabi–Yau manifolds are also interesting from the point of view of string theory (the Strominger equations) and complex differential geometry; see for instance Fu, Li and Yau [18], Tseng and Yau [39] and Tosatti [38].

We shall construct the examples by smoothing simple normal crossing (SNC) varieties via the log deformation theory developed by Kawamata and Namikawa [24]. Lee [26] considered log deformations of SNC varieties consisting of two irreducible components, which are called Tyurin degenerations. We also use Tyurin degenerations to construct our examples. The new point in this paper is to consider gluing automorphisms of the intersection of irreducible components of SNC varieties. Tyurin degenerations are also studied in the context of mirror symmetry; see Tyurin [40], Doran, Harder and Thompson [10] and Kanazawa [23].

1.1 Sketch of the construction

First, we prepare an SNC variety $X_0(a) = X_1 \cup X_2$, where $X_1$ is the blowup of $\mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ along some curves $f_1, \ldots, f_a, C$ and $X_2 := \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$. The curves $f_1, \ldots, f_a$ are distinct smooth fibers of an elliptic fibration $S \to \mathbb{P}^1$ on a very general $(2,2,2)$–hypersurface $S$ induced by the 1st projection. We glue $X_1$ and $X_2$ along $S$ and its strict transform to construct $X_0(a)$. Since $S$ is an anticanonical member, we have $\omega_{X_0(a)} \simeq \mathcal{O}_{X_0(a)}$. In order to make $X_0(a)$ “d–semistable”, we need to blow up $f_1, \ldots, f_a$ and some curve $C$. The point is that we glue after twisting by a certain automorphism of $S$ of infinite order. Because of this, the number of blowup centers for $X_1$ can be arbitrarily large.

Thus we obtain $X_0(a)$ which satisfies the hypothesis of Theorem 2.6 [24, Theorem 4.2] and can deform $X_0(a)$ to a Calabi–Yau 3–fold $X(a)$, which turns out to be non-Kähler. This $X(a)$ is the example in Theorem 1.1. Note that we can apply the smoothing result even when the SNC variety itself is not projective but the irreducible components are Kähler. (See Remark 2.7.)
Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

We check that $X_0(a)$ and $X(a)$ are both non-Kähler if we twist by a nontrivial automorphism of $S$; see Proposition 3.18, also Remark 3.20. We use Lemma 3.14, which states that, under some conditions, an SNC variety which is a degeneration of a projective Calabi–Yau manifold admits a big line bundle whose restriction to each irreducible component still has a nonzero section. Moreover, we show that the algebraic dimension of $X$ is 1 (Proposition 3.19). We also compute the topological Euler number of $X$ (Claim 3.7) and check that $X$ is simply connected (Proposition 3.10).

1.2 Notation

We work over the complex number field $\mathbb{C}$ throughout the paper. We call a complex analytic space $X$ a (proper) SNC variety if $X$ has only normal crossing singularities and its irreducible components are smooth (proper) varieties. We identify a proper scheme over $\mathbb{C}$ and its associated compact analytic space unless otherwise stated.

Let $X$ be a proper SNC variety and $\phi: \mathcal{X} \to \Delta^1$ a proper flat morphism of analytic spaces over a unit disk $\Delta^1$ such that $\phi^{-1}(0) \simeq X$, that is, $\phi$ is a deformation of $X$. We call $\phi$ a semistable smoothing of $X$ if $\mathcal{X}$ is smooth and its general fiber $\mathcal{X}_t := \phi^{-1}(t)$ is smooth for $t \neq 0$.

2 Preliminaries

The following result guarantees the existence of a gluing of two schemes along their isomorphic closed subschemes.

**Theorem 2.1** [1, Section 1.1], [13, Théorèmes 5.4 et 7.1], [35, Corollary 3.9] Let $Y, X_1, X_2$ be schemes and $\iota_i: Y \hookrightarrow X_i$ be closed immersions for $i = 1, 2$. Then there exists a scheme $X$ in the Cartesian diagram

$$
\begin{array}{ccc}
Y & \xrightarrow{\iota_1} & X_1 \\
\downarrow{\iota_2} & & \downarrow{\phi_1} \\
X_2 & \xleftarrow{\phi_2} & X
\end{array}
$$

such that $\phi_1$ and $\phi_2$ are closed immersions and induce isomorphisms $X_1 \setminus Y \simeq X \setminus X_2$ and $X_2 \setminus Y \simeq X \setminus X_1$. (We say that $X$ is the pushout of the morphisms $\iota_1$ and $\iota_2$.)

**Proof** We can show the proposition following [1, Section 1.1].

By this, we have the following corollary.
Corollary 2.2  Let $X_1$, $X_2$ be smooth proper varieties and $D_i \subset X_i$ be smooth divisors for $i = 1, 2$ with an isomorphism $\phi: D_1 \sim D_2$. Let $i_1: D_1 \hookrightarrow X_1$ and $i_2: D_2 \hookrightarrow X_2$ be the given closed immersions and let $Y$ be the pushout of two closed immersions $\iota_1 := i_1$ and $\iota_2 := i_2 \circ \phi$, which exists by Theorem 2.1.

Then $Y$ is a proper SNC variety with two irreducible components $Y_1$ and $Y_2$ such that $Y_i \cong X_i$ and $Y_1 \cap Y_2 \cong D_i$ for $i = 1, 2$. (We denote by $Y =: Y_1 \cup \phi Y_2$ the pushout.)

Proof  We check the properness of $Y$ by definition of properness. We also check that $Y$ is normal crossing by a local computation.

Remark 2.3  A proper SNC variety is nonprojective in general, even if its irreducible components are projective. Let $X = X_1 \cup X_2$ be a proper SNC variety such that $X_1$ and $X_2$ are projective varieties and $D := X_1 \cap X_2$. Then $X$ is projective if and only if there are ample line bundles $L_1$ on $X_1$ and $L_2$ on $X_2$ such that $L_1|_D \sim L_2|_D$.

Definition 2.4  Let $X$ be an SNC variety and $X = \bigcup_{i=1}^N X_i$ be the decomposition into its irreducible components. Let $D := \text{Sing } X = \bigcup_{i \neq j} (X_i \cap X_j)$ be the double locus and let $I_{X_i}, I_D \subset \mathcal{O}_X$ be the ideal sheaves of $X_i$ and $D$ on $X$. Let

$$\mathcal{O}_D(X) := \left( \bigotimes_{i=1}^N I_{X_i}/I_D \right)^* \in \text{Pic } D$$

be the infinitesimal normal bundle as in [15, Definition 1.9].

We say that $X$ is $d$–semistable if $\mathcal{O}_D(X) \cong \mathcal{O}_D$.

Remark 2.5  Let $X = \bigcup_{i=1}^N X_i$ and $D$ be as in Definition 2.4. Friedman proved that, if $X$ has a semistable smoothing, then $X$ is $d$–semistable [15, Corollary 1.12].

When $N = 2$, we have $\mathcal{O}_D(X) \cong \mathcal{N}_D/X_1 \otimes \mathcal{O}_D \mathcal{N}_D/X_2$ via a suitable identification of $D \subset X_1$ and $D \subset X_2$, where $\mathcal{N}_D/X_i$ is the normal bundle of $D \subset X_i$ for $i = 1, 2$.

We use the following theorem of Kawamata and Namikawa.

Theorem 2.6  [24, Theorem 4.2], [6, Corollary 7.4]  Let $n \geq 3$ and let $X$ be an $n$–dimensional proper SNC variety such that

(i) $\omega_X \cong \mathcal{O}_X$,

(ii) $H^{n-1}(X, \mathcal{O}_X) = 0$, $H^{n-2}(X^v, \mathcal{O}_{X^v}) = 0$, where $X^v \to X$ is the normalization,

(iii) $X$ is $d$–semistable.

Then there exists a semistable smoothing $\phi: \mathcal{X} \to \Delta^1$ of $X$ over a unit disk.
Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

**Remark 2.7** In [24, Theorem 4.2], it is assumed that $X$ is Kähler. However, we check that we only need to assume that $X$ is a proper SNC variety (or each irreducible component is Kähler).

The essential tools are two spectral sequences. One is the log Hodge to de Rham spectral sequence in [24, Lemma 4.1], which follows from the construction of a cohomological mixed Hodge complex; see also [19, Theorem 3.12, Proposition 3.19]. Another spectral sequence is that in [15, Proposition 1.5(3)], which uses only the existence of a pure Hodge structure on the stratum of an SNC variety.

By using these spectral sequences, we show that log deformations of $X$ are unobstructed as in [24, Theorem 4.2]. Then, by using the existence of the Kuranishi family of $X$ and Artin’s approximation, we can construct a semistable smoothing $\phi: \mathcal{X} \to \Delta^1$ of $X$; cf [24, Corollary 2.4].

However, if $X$ is not projective, the general fiber of $\phi$ may not be an algebraic variety even when $H^2(X, \mathcal{O}_X) = 0$. Indeed, this happens in the examples in Theorem 3.4.

In [6, Corollary 7.4], the above result is shown without the assumption (ii) for a projective SNC variety. It is quite possible that we can remove the assumption when $X$ is not projective but proper; cf [11; 12].

**Remark 2.8** Let $X$ be a proper SNC variety such that $X = X_1 \cup X_2$, with dualizing sheaf $\omega_X$. If $\omega_X \simeq \mathcal{O}_X$, then $D := X_1 \cap X_2$ should satisfy $D \in |\omega_X^{-1}|$. The converse does not hold in general since $D$ may not be connected. However, if $D$ is connected and $D \in |\omega_X^{-1}|$, then we check that $\omega_X \simeq \mathcal{O}_X$.

In order to study a general fiber of a smoothing of an SNC variety, the following map of Clemens is useful.

**Theorem 2.9** [7, Theorem 6.9; 41, Theorems 5.2, 5.4] Let $\phi: \mathcal{X} \to \Delta$ be a proper flat surjective morphism from a complex manifold $\mathcal{X}$ onto a 1–dimensional open disk $\Delta$. Assume that $\phi$ is smooth over $\Delta \setminus 0$ and $\phi^{-1}(0) \subset \mathcal{X}$ is an SNC divisor. Let $\mathcal{X}_t := \phi^{-1}(t)$ and, for $k \geq 0$, let $\mathcal{X}_0[k] \subset \mathcal{X}_0$ be the locus where $k + 1$ irreducible components of $\mathcal{X}_0$ intersect.

Then we have a continuous map $c_t: \mathcal{X}_t \to \mathcal{X}_0$ for $t \neq 0$ such that we have a homeomorphism $c_t^{-1}(p) \approx (S^1)^k$ when $p \in \mathcal{X}_0[k] \setminus \mathcal{X}_0[k+1]$ and $c_t$ induces a homeomorphism $c_t^{-1}(\mathcal{X}_0 \setminus \mathcal{X}_0[1]) \approx \mathcal{X}_0 \setminus \mathcal{X}_0[1]$. (We call the map $c_t$ the Clemens contraction.)
3 Construction of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

3.1 Construction of the examples

First we explain the K3 surface which is essential in the construction of our Calabi–Yau 3–folds.

Let $P := \mathbb{P}^1 \times \mathbb{P}^1 \times \mathbb{P}^1$ and let $P_i := \mathbb{P}^1$ be the $i$th factor of $P(3)$ for $i = 1, 2, 3$. Let $\pi_i : P(3) \to P_i$ be the $i$th projection and $\mathcal{O}_{P(3)}(c_1, c_2, c_3) := \bigotimes_{i=1}^{3} \pi_i^* \mathcal{O}_{P_i}(c_i)$ a line bundle on $P(3)$ for $c_1, c_2, c_3 \in \mathbb{Z}$.

Let $S \subset P(3)$ be a very general $(2, 2, 2)$–hypersurface, that is, a very general element of the linear system $|\mathcal{O}_{P(3)}(2, 2, 2)|$. Then $S$ is a K3 surface. This surface is called a Wehler surface and studied in several articles; see eg [43; 3; 5]. We shall recall some of its properties.

For $1 \leq i < j \leq 3$, the surface $S$ has a covering involution $\iota_{ij} : S \to S$ corresponding to the double cover $p_{ij} : S \to P_i \times P_j$ induced by the projection $\pi_{ij} : P(3) \to P_i \times P_j$.

By the Noether–Lefschetz theorem (see [42, Proposition 2.27, Theorem 3.33] or [33, Theorem 1]), we see that $\text{Pic} S = \mathbb{Z}e_1 \oplus \mathbb{Z}e_2 \oplus \mathbb{Z}e_3$, where $e_i$ is the fiber class of the elliptic fibration $p_i : S \to P_i$ for $i = 1, 2, 3$. By this, we see that $S$ contains no $(-2)$–curve. Indeed, for $D = \sum_{i=1}^{3} a_i e_i \in \text{Pic} S$, we have

$$D^2 = 2 \left( \sum_{1 \leq i < j \leq 3} a_i a_j (e_i \cdot e_j) \right) = 4(a_1 a_2 + a_1 a_3 + a_2 a_3) \in 4\mathbb{Z}$$

by $e_i^2 = 0$ and $e_i \cdot e_j = 2$ for $i \neq j$. Hence the nef cone $\text{Nef} S \subset \text{Pic} S$ of $S$ can be described as the positive cone

$$\text{Nef} S = \{ D \in \text{Pic} S \mid D^2 \geq 0, \ D \cdot H \geq 0 \},$$

where $H := e_1 + e_2 + e_3$. First we need the following claim on the action of the involution $\iota_{ij}$ on $\text{Pic} S$.

Claim 3.1 [43, Lemma 2.1] Let $i, j, k \in \mathbb{Z}$ be integers such that $i < j$ and $\{ i, j, k \} = \{ 1, 2, 3 \}$. Then

(i) $\iota_{ij}^*(e_i) = e_i$ and $\iota_{ij}^*(e_j) = e_j$,

(ii) $\iota_{ij}^*(e_k) = 2e_i + 2e_j - e_k$. 

Geometry & Topology, Volume 27 (2023)
Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

Proof of claim

(i) This follows since $i_{ij}$ interchanges two points in a fiber $p_{ij}^{-1}(p)$ for a general $p \in \mathbb{P}_i \times \mathbb{P}_j$.

(ii) We shall show that $i_{12}^*(e_3) = 2e_1 + 2e_2 - e_3$. The others can be shown similarly.

Let $[S_0 : S_1], [T_0 : T_1], [U_0 : U_1]$ be the coordinates of $\mathbb{P}_1, \mathbb{P}_2, \mathbb{P}_3$. Note that $S$ can be described as

$$S = (U_0^2 F_1 + U_1^2 F_2 + U_0 U_1 F_3 = 0) \subset \mathbb{P}(3)$$

for some very general $(2, 2)$–polynomials $F_1, F_2, F_3 \in H^0(\mathbb{P}_1 \times \mathbb{P}_2, O(2, 2))$ on $\mathbb{P}_1 \times \mathbb{P}_2 = \mathbb{P}_1 \times \mathbb{P}_1$. Let $s := S_1/S_0$, $t := T_1/T_0$ and $u := U_1/U_0$ be the affine coordinates of $\mathbb{P}_1, \mathbb{P}_2$ and $\mathbb{P}_3$, respectively. Also, for $i = 1, 2, 3$, let $f_i \in \mathbb{C}[s, t]$ be the dehomogenization of $F_i$. Then the function field $K(S)$ of $S$ can be described as

$$K(S) \simeq \mathbb{C}(s, t)[u]/\left(u^2 + \frac{f_3}{f_2} u + \frac{f_1}{f_2}\right)$$

and $i_{12}$ induces an element $i_{12}^* \in \text{Gal}(K(S)/K(\mathbb{P}_1 \times \mathbb{P}_2))$ determined by

$$i_{12}^*(u) = -u - \frac{f_3}{f_2}.$$

By this description of $i_{12}^*$, we see that

$$i_{12}^*(e_3) \neq e_3$$

since $F_1, F_2, F_3$ are very general and $f_3/f_2$ is not constant on the fiber of $p_3 : S \to \mathbb{P}_3$.

By (1) together with

$$i_{12}^*(e_1) \cdot i_{12}^*(e_3) = i_{12}^*(e_2) \cdot i_{12}^*(e_3) = 2,$$

we check that $i_{12}^*(e_3) = 2e_1 + 2e_2 - e_3$.

Now let $\iota := i_{12} \circ i_{13}$, that is,

$$\iota : S \xrightarrow{i_{13}} S \xrightarrow{i_{12}} S.$$

Claim 3.2 The automorphism $\iota$ induces the linear automorphism $\iota^* \in \text{Aut} (\text{Pic} S)$ corresponding to a matrix

$$\begin{pmatrix} 1 & 2 & 6 \\ 0 & -1 & -2 \\ 0 & 2 & 3 \end{pmatrix}$$

that is, we have

$$\iota^*(e_1) = e_1, \quad \iota^*(e_2) = 2e_1 - e_2 + 2e_3, \quad \iota^*(e_3) = 6e_1 - 2e_2 + 3e_3.$$
Proof of claim  Since we have $\iota_{12}^*(e_1) = e_1, \iota_{13}^*(e_1) = e_1$, we obtain $\iota^*(e_1) = e_1$.

We have $\iota_{13}^*(e_2) = 2e_1 - e_2 + 2e_3$ by Claim 3.1. By this and $\iota_{12}^*(e_2) = e_2$, we obtain $\iota^*(e_2) = 2e_1 - e_2 + 2e_3$.

By a similar computation, we obtain $\iota^*(e_3) = 6e_1 - 2e_2 + 3e_3$. Indeed, we have $\iota_{12}^*(e_3) = 2e_1 + 2e_2 - e_3$ and $\iota_{13}^*(2e_1 + 2e_2 - e_3) = 2e_1 + 2(2e_1 - e_2 + 2e_3) - e_3 = 6e_1 - 2e_2 + 3e_3$. 

By this claim, for $a \in \mathbb{Z}$, the $a$th power $\iota^a \in \text{Aut} S$ of $\iota$ induces

$$
(i^a)^* = \begin{pmatrix}
1 & 4a^2 - 2a & 4a^2 + 2a \\
0 & 1 - 2a & -2a \\
0 & 2a & 1 + 2a
\end{pmatrix} \in \text{Aut}(\mathbb{Z}^3) \simeq \text{Aut}(\text{Pic} S)
$$

with respect to the basis $e_1, e_2, e_3 \in \text{Pic} S$ (by induction on $a$ or use JCF).

Remark 3.3 In [5, Section 3.4], Cantat and Oguiso study $\text{Aut}(S)$ in detail. They show that $\text{Aut}(S)$ is a free product of 3 cyclic groups of order 2 generated by the three involutions $\iota_{12}, \iota_{13}$ and $\iota_{23}$.

Now we can construct our Calabi–Yau 3–folds as follows.

**Theorem 3.4** Let $a \in \mathbb{Z}$ be a positive integer. Then there exists a Calabi–Yau 3–fold $X := X(a)$ such that $b_2(X) = a + 3$ and $e(X) = -256a^2 + 32a - 224$, where $b_2(X)$ is the 2nd Betti number of $X$ and $e(X)$ is the topological Euler number of $X$.

**Proof** We first construct an SNC variety $X_0(a)$ by gluing two smooth projective varieties $X_1$ and $X_2$ as follows. For $c_1, c_2, c_3 \in \mathbb{Z}$, let $\mathcal{O}_S(c_1, c_2, c_3) := \mathcal{O}_{P(3)}(c_1, c_2, c_3)|_S$.

**Construction of $X_1$ and $X_2$** Let $\mu' : X'_1 \to P(3)$ be the blowup of $f_1, \ldots, f_a$, where $f_1, \ldots, f_a \in |\mathcal{O}_S(1, 0, 0)|$ are disjoint smooth fibers of the elliptic fibration $p_1 : S \to \mathbb{P}^1$. Let $v : X_1 \to X'_1$ be the blowup along the strict transform of $C_a$, where $C_a \in |\mathcal{O}_S(16a^2 - a + 4, 4 - 8a, 4 + 8a)|$ is a general smooth member. Note that $\mathcal{O}_S(16a^2 - a + 4, 4 - 8a, 4 + 8a)$ is ample since we have

$$
\mathcal{O}_S(16a^2 - a + 4, 4 - 8a, 4 + 8a)^2 = 4(8(16a^2 - a + 4) + (4 - 8a)(4 + 8a)) = 4(64a^2 - 8a + 48) > 0
$$

and $S$ contains no $(-2)$–curve. Then we see that $|\mathcal{O}_S(16a^2 - a + 4, 4 - 8a, 4 + 8a)|$ is free since there is no $\mathbb{P}^1$ on $S$; see eg [34, Proposition 8.1] and [22, Chapter 2, Corollary 3.15(ii)]. Thus we have $\mu := \mu' \circ v : X_1 \to P(3)$. Let $X_2 := P(3)$.
Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$

Let $S_2 := S \subset X_2$ and $S_1 \subset X_1$ be the strict transform of $S$ and $i_j : S_j \hookrightarrow X_j$ be the inclusions for $j = 1, 2$, and let $i_a := i^a \circ \mu |_{S_1}$. By Corollary 2.2, we can construct the pushout $X_0(a)$ of two closed immersions $i_1$ and $i_2 \circ i_a$. For simplicity, we write $X_0 := X_0(a)$. Then $X_0$ is a proper SNC variety and fits in the diagram

$$
\begin{array}{ccc}
S_2 & \overset{i_2}{\longrightarrow} & X_2 \\
\downarrow i_a & & \downarrow \\
S_1 & \overset{i_1}{\longrightarrow} & X_1 \\
\end{array}
$$

The SNC variety $X_0$ satisfies the condition of Theorem 2.6 by the following claim.

**Claim 3.5**  
(i) $X_0$ is $d$–semistable.

(ii) $\omega_{X_0} \simeq \mathcal{O}_{X_0}$.

(iii) $H^1(X_0, \mathcal{O}_{X_0}) = 0$ and $H^2(X_0^v, \mathcal{O}_{X_0^v}) = 0$, where $X_0^v \to X_0$ is the normalization.

**Proof of claim**  
(i) In order to check the $d$–semistability, we shall show that

$$
\mathcal{O}_{S_1}(X_0) := \mathcal{N}_{S_1/X_1} \otimes (i_a)^* \mathcal{N}_{S_2/X_2} \simeq \mathcal{O}_{S_1}.
$$

Let $\mu_1 := \mu |_{S_1} : S_1 \xrightarrow{\sim} S$ and $\mathcal{O}_{S_1}(c_1, c_2, c_3) := \mu_1^* \mathcal{O}_S(c_1, c_2, c_3)$ for $c_1, c_2, c_3 \in \mathbb{Z}$. Since we have

$$
\mathcal{N}_{S_1/X_1} \simeq \mathcal{O}_{S_1}(2, 2, 2) \otimes \mathcal{O}_{S_1}\left( -\left( \sum_{i=1}^{a} f_i + C_a \right) \right),
$$

$$(i_a)^* \mathcal{N}_{S_2/X_2} \simeq (i_a)^* \mathcal{O}_S(2, 2, 2),$$

we obtain

$$
\mathcal{O}_{S_1}(X_0) \simeq \mathcal{O}_{S_1}(2, 2, 2) \otimes \mathcal{O}_{S_1}\left( -\left( \sum_{i=1}^{a} f_i + C_a \right) \right) \otimes (i_a)^* \mathcal{O}_S(2, 2, 2)
$$

$$
\simeq \mathcal{O}_{S_1}(16a^2 + 4, 4 - 8a, 4 + 8a) \otimes \mathcal{O}_{S_1}\left( -\left( \sum_{i=1}^{a} f_i + C_a \right) \right) \simeq \mathcal{O}_{S_1},
$$

thus we obtain (i).

(ii) By $S_i \in |\omega_{X_i}^{-1}|$ for $i = 1, 2$ and Remark 2.8, we see that $\omega_{X_0} \simeq \mathcal{O}_{X_0}$; compare with [15, Remark 2.11].
(iii) The exact sequence
\[ 0 \to \mathcal{O}_{X_0} \to \mathcal{O}_{X_1} \oplus \mathcal{O}_{X_2} \to \mathcal{O}_{X_{12}} \to 0 \]
implies \( H^1(X_0, \mathcal{O}_{X_0}) = 0 \), where \( X_{12} := X_1 \cap X_2 \simeq S_i \) for \( i = 1, 2 \). We have \( H^2(X_{12}'', \mathcal{O}_{X_1''}) = 0 \) since \( X_1 \) and \( X_2 \) are rational.

By the above and Theorem 2.6, there exists a semistable smoothing \( \phi_a : X(a) \to \Delta^1_\epsilon \) of \( X_0 \) over an open disk of a sufficiently small radius \( \epsilon > 0 \). Let \( X(a) \) be a fiber of \( \phi_a \) over \( t \neq 0 \). Note that we do not specify \( t \) and all such fibers are diffeomorphic. Let \( \mathcal{X}' := \mathcal{X}(a) \) and \( \mathcal{X} := \mathcal{X}(a) \) for simplicity.

Then we have \( \omega_X \simeq \mathcal{O}_X \) since we have \( H^1(X_0, \mathcal{O}_{X_0}) = 0, H^1(X, \mathcal{O}_X) = 0 \) and, by the diagram
\[
\begin{array}{ccc}
H^1(\mathcal{X}, \mathcal{O}_\mathcal{X}^*) & \longrightarrow & H^2(\mathcal{X}, \mathbb{Z}) \\
\downarrow i_0^* & & \downarrow \simeq \\
H^1(X_0, \mathcal{O}_{X_0}^*) & \longrightarrow & H^2(X_0, \mathbb{Z})
\end{array}
\]
we see that \( i_0^* \) is injective, where \( i_0 : X_0 \hookrightarrow \mathcal{X} \) is the inclusion.

We also check that \( H^i(X, \mathcal{O}_X) = 0 \) for \( i = 1, 2 \) by the upper semicontinuity theorem since \( \epsilon \) is small. We have the following claim on the Betti numbers \( b_i(X) \) of \( X \) for \( i = 1, 2 \).

**Claim 3.6**

(i) We have \( H^1(X, \mathbb{Z}) = 0 \), thus \( b_1(X) = 0 \).

(ii) \( b_2(X) = a + 3 \).

**Proof of claim**

(i) By the exponential exact sequence, we have an exact sequence
\[ H^0(X, \mathcal{O}_X) \to H^0(X, \mathcal{O}_X^*) \to H^1(X, \mathbb{Z}) \to H^1(X, \mathcal{O}_X). \]
This implies (i).

(ii) Note that \( b_2(X_0) = \text{rk Pic} \ X_0 \) since we can calculate that \( H^i(X_0, \mathcal{O}_{X_0}) = 0 \) for \( i = 1, 2 \) as in Claim 3.5(iii). Moreover, we see that \( \text{rk Pic} \ X_0 = a + 4 \) by the exact sequence
\[ 0 \to H^1(X_0, \mathcal{O}_{X_0}^*) \to H^1(X_1, \mathcal{O}_{X_1}^*) \oplus H^1(X_2, \mathcal{O}_{X_2}^*) \to H^1(X_{12}, \mathcal{O}_{X_{12}}^*) \to 0, \]
where the surjectivity follows from the explicit description. In order to compute \( b_2(X) \), we use the Clemens contraction \( c_t : X \to X_0 \), which satisfies \( c_t^{-1}(p) \approx S^1 \) for \( p \in X_{12} \).
and $c_t^{-1}(p) = \{pt\}$ for $p \notin X_{12}$ as in Theorem 2.9. We see that $R^1(c_t)_* \mathbb{Z}_X \simeq \mathbb{Z}_{X_{12}}$ since $X_{12}$ is simply connected, and that $R^2(c_t)_* \mathbb{Z} = 0$. By this and the Leray spectral sequence

$$H^i(X_0, R^j(c_t)_* \mathbb{Z}) \Rightarrow H^{i+j}(X, \mathbb{Z}),$$

we see that $b_2(X) = b_2(X_0) - 1 = a + 3$. Indeed, we have

$$H^0(X_0, R^2(c_t)_* \mathbb{Z}) = 0,$$

$$H^1(X_0, R^1(c_t)_* \mathbb{Z}) = H^1(X_{12}, \mathbb{Z}) = 0,$$

$$H^2(X_0, (c_t)_* \mathbb{Z}) \simeq H^2(X_0, \mathbb{Z}),$$

and we see that the connecting homomorphism

$$\mathbb{Z} \simeq H^0(X_0, R^1(c_t)_* \mathbb{Z}) \to H^2(X_0, (c_t)_* \mathbb{Z}) \simeq H^2(X_0, \mathbb{Z})$$

is nonzero by $H^1(X, \mathbb{Z}) = 0$, and its cokernel is $H^2(X, \mathbb{Z})$. 

We compute the topological Euler number $e(X)$ as follows.

**Claim 3.7** We have $e(X) = -256a^2 + 32a - 224$.

**Proof of claim** We shall use the product formula of topological Euler numbers on an oriented fiber bundle (see [37, page 481, Theorem 1]) and also an additivity formula for the Euler number on a complex algebraic variety (see [20, page 95, Exercise]). Note that we have $e(f_i) = 0$ for $i = 1, \ldots, a$,

$$e(C_a) = 2 - 2g(C_a) = -(C_a^2) = -256a^2 + 32a - 192,$$

and an exceptional divisor of a blowup along a curve is a $\mathbb{P}^1$–bundle. Thus we see that $e(X_1) = e(P(3)) - 256a^2 + 32a - 192 = -256a^2 + 32a - 184$ by the above two formulas. By this and the exact sequence

$$0 \to \mathbb{Z}_{X_0} \to \mathbb{Z}_{X_1} \oplus \mathbb{Z}_{X_2} \to \mathbb{Z}_{X_{12}} \to 0,$$

we see that

$$e(X_0) = e(X_1) + e(X_2) - e(X_{12}) = (-256a^2 + 32a - 184) + 8 - 24$$

$$= -256a^2 + 32a - 200.$$

Since $c_t^{-1}(X_{12}) \to X_{12}$ is an $S^1$–bundle over a K3 surface, we check that

$$e(X) = e(X_0) - e(X_{12}) = -256a^2 + 32a - 200 - 24 = -256a^2 + 32a - 224$$

by the Leray spectral sequence as in Claim 3.6(ii). Indeed, $H^i(X_0, R^i(c_t)_* \mathbb{Z}) = 0$ except when $j = 0, 1$. 

By these claims, we obtain $X$ as described in the statement of Theorem 3.4.
3.2 Some properties of $X(a)$

First, our examples have the following Hodge-theoretic property.

**Remark 3.8** The Hodge to de Rham spectral sequence degenerates at $E_1$ on our Calabi–Yau 3–fold $X := X(a)$; see [29, Corollary 11.24]. By this and [2, Theorem 3.3], we check that:

**Proposition 3.9** $X$ has unobstructed deformations.

We also check that $\dim_{\mathbb{C}} H^i(X, \Omega^j_X) = \dim_{\mathbb{C}} H^j(X, \Omega^i_X)$ for any $i, j \in \mathbb{Z}$ as follows.

We calculate $H^0(X, \Omega^1_X) = 0$ by $H^1(X, \mathbb{C}) = 0$ (Claim 3.6(i)) and the $E_1$–degeneration. We also have $H^0(X, \Omega^2_X) = 0$ since we obtain $H^1(X, \mathcal{O}_X^*) \simeq H^2(X, \mathbb{Z})$ by considering the exponential exact sequence as in Claim 3.6. Thus, for $i = 1, 2$, since we have $H^i(X, \mathcal{O}_X) = 0$, we have the Hodge symmetry on $H^i(X, \mathbb{C})$.

On the direct summands of $H^3(X, \mathbb{C})$, we have

$$H^j(X, \Omega^{3-j}_X) \simeq H^{3-j}(X, \Omega^j_X)$$

by the Serre duality and $\omega_X \simeq \mathcal{O}_X$. By these, we have the required equality on $H^3(X, \mathbb{C})$. Thus we cannot judge the nonprojectivity of $X$ from the Hodge numbers.

It might be possible to show the $\bar{\partial}\bar{\partial}$–lemma on $X$ as in [17].

It may be interesting to study the fundamental group $\pi_1(X)$, the second Chern class $c_2(X)$, etc. For the fundamental group, we have the following.

**Proposition 3.10** $X = X(a)$ is simply connected.

**Proof** Let $V_i \subset X_i$ be a tubular neighborhood of $X_{12}$ for $i = 1, 2$, which can be regarded as a $\Delta^1$–bundle over $X_{12}$. Let $U_1 := X_1 \cup V_2$ and $U_2 := X_2 \cup V_1$. We check that $\pi_1(X_0) = \{1\}$ by applying van Kampen’s theorem to the open covering $X_0 = U_1 \cup U_2$.

Note that $\tilde{X}_{12} := c_i^{-1}(X_{12}) \to X_{12}$ is an $S^1$–fibration and, from the homotopy exact sequence, we see that $\pi_1(\tilde{X}_{12})$ is a cyclic group generated by the $S^1$–fiber class. Let $\tilde{X}_i := c_i^{-1}(X_i)$ for $i = 1, 2$ and consider a neighborhood $\tilde{V}_i := c_i^{-1}(V_i) \subset \tilde{X}_i$ of $\tilde{X}_{12}$ for $i = 1, 2$. Let $\tilde{U}_1 := \tilde{X}_1 \cup \tilde{V}_2$, $\tilde{U}_2 := \tilde{X}_2 \cup \tilde{V}_1$ and $\tilde{U}_{12} := \tilde{U}_1 \cap \tilde{U}_2$. We can regard $\tilde{V}_1 \cup \tilde{V}_2$ as an annulus bundle over $X_{12}$. By this, we see that $\tilde{U}_i$ is homotopic to $X_i \setminus X_{12}$ for $i = 1, 2$. The following claim is important.
Claim 3.11 Let $X'_i := X_i \setminus X_{12}$ for $i = 1, 2$. Then we have $\pi_1(X'_1) = \{1\}$ and $\pi_1(X'_2) \simeq \mathbb{Z}/2\mathbb{Z}$.

**Proof of claim** We check that $\pi_1(X'_i)$ is abelian by Nori’s result [27, Corollary 2.10], as follows. By [36, page 311, Proposition], we see that $\pi_1(X'_2) \simeq \pi_1(L^*)$, where $L$ is the total space of $O_{X_2}(X_{12})$ and $L^* \subset L$ is the complement of the zero section. Hence the homotopy exact sequence can be written as

$$\pi_1(C^*) \to \pi_1(X'_2) \to \pi_1(X_2) \to 1,$$

and this implies that $\pi_1(X'_2)$ is abelian by $\pi_1(C^*) \simeq \mathbb{Z}$ and $\pi_1(X_2) = \{1\}$.

Thus we compute $\pi_1(X'_2) \cong H_1(X'_2, \mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z}$ by the Gysin long exact sequence

$$\cdots \to H_2(X_2, \mathbb{Z}) \to H_0(X_{12}, \mathbb{Z}) \to H_1(X'_2, \mathbb{Z}) \to H_1(X_2, \mathbb{Z}) \to \cdots$$

as in [9, page 46, (2.13)].

Let $E'_j := E_j \setminus X_{12}$ for $j = 1, \ldots, a$ and $F' := F \setminus X_{12}$ be the open subsets of $\mu$–exceptional divisors for the blowup $\mu : X_1 \to X_2$. Note that

$$(X'_1) \setminus (E'_2 \cup \cdots \cup E'_a \cup F') \simeq X'_2$$

since $X_1 \to X_2 = P(3)$ is the blowup along $f_1, \ldots, f_a$ and the strict transform of $C_a$. Note also that $E'_j$ and $F'$ are $\mathbb{C}$–bundle over the blowup centers $f_1, \ldots, f_a$ and $C_a$, respectively. Given these, we compute that $\pi_1(X'_1) = \{1\}$ by van Kampen’s theorem, as follows. Let $W'_j \subset X'_1$ be a tubular neighborhood of $E'_j$ for $j = 1, \ldots, a$.

We compute that

$$\pi_1(X'_1 \setminus (E'_2 \cup \cdots \cup E'_a \cup F')) \simeq \pi_1(X'_2) * \pi_1(W'_1 \setminus E'_1) \pi_1(W'_1) = \{1\}$$

as follows: $W'_1$ and $W'_1 \setminus E'_1$ can be regarded as a $\Delta^1$–bundle and a $(\Delta^1)^*$–bundle over $E'_1$, where $(\Delta^1)^* := \Delta^1 \setminus \{0\}$. We check that $\pi_1(W'_1 \setminus E'_1) \to \pi_1(W'_1)$ is surjective and its kernel $K \cong \mathbb{Z}$ maps surjectively to $\pi_1(X'_2)$ by $\mu_* : \pi_1(W'_1 \setminus E'_1) \to \pi_1(X'_2)$. The latter surjectivity follows from a commutative diagram

$$\begin{array}{ccc}
H_0(X_{12}, \mathbb{Z}) & \xrightarrow{\partial} & H_1(X'_2, \mathbb{Z}) \\
\uparrow & & \uparrow \\
H_0(E'_1, \mathbb{Z}) & \xrightarrow{\partial} & H_1(W'_1 \setminus E'_1, \mathbb{Z})
\end{array}$$

as in [9, page 46, (2.13)], since a generator of $H_0(E'_1, \mathbb{Z})$ is sent to that of $H_1(X'_2, \mathbb{Z})$. Hence we see that $X'_1 \setminus (E'_2 \cup \cdots \cup E'_a \cup F')$ is simply connected.

Similarly, we check that the fundamental group does not change if we add divisors $E'_2, \ldots, E'_a, F' \subset X'_1$. In particular, we have $\pi_1(X'_1) = \{1\}$. \qed

*Geometry & Topology, Volume 27 (2023)*
By Claim 3.11 and the isomorphism
\[ \pi_1(X) \simeq \pi_1(\tilde{U}_1) \ast \pi_1(U_{12}) \pi_1(\tilde{U}_2) \simeq \pi_1(X'_1) \ast \pi_1(V_{12}) \pi_1(X'_2), \]
we obtain \( \pi_1(X) = \{1\} \), since we have the following claim:

**Claim 3.12** The map \( \pi_1(\tilde{U}_{12}) \to \pi_1(\tilde{U}_2) \) is surjective.

**Proof of claim** Since we have \( \tilde{U}_2 = \tilde{U}_{12} \cup (X_2 \setminus \tilde{X}_{12}) \), we have
\[ \pi_1(\tilde{U}_2) \simeq \pi_1(\tilde{U}_{12}) \ast \pi_1(V_{2 \setminus \tilde{X}_{12}}) \pi_1(\tilde{X}_2 \setminus \tilde{X}_{12}). \]
Since \( \tilde{X}_2 \setminus \tilde{X}_{12} \simeq X_2 \setminus X_{12} = X'_2 \) and \( \tilde{V}_2 \setminus \tilde{X}_{12} \simeq V_2 \setminus X_{12} =: V'_2 \), it is enough to show the surjectivity of
\[ (\iota_{V'_2})_* : \pi_1(V'_2) \to \pi_1(X'_2). \]
\( V'_2 \) is a \((\Delta^1)^*\)–bundle over \( X_{12} \) and \( \pi_1(V'_2) \) is a cyclic group, thus \( \pi_1(X'_2) \) and \( \pi_1(V'_2) \) are abelian. Hence the surjectivity of \( (\iota_{V'_2})_* \) follows from the commutative diagram
\[
\begin{array}{c}
H_2(V_2, \mathbb{Z}) \longrightarrow H_0(X_{12}, \mathbb{Z}) \longrightarrow H_1(V_2 \setminus X_{12}, \mathbb{Z}) \longrightarrow 0 \\
\downarrow \quad \downarrow \quad \downarrow \\
H_2(X_2, \mathbb{Z}) \longrightarrow H_0(X_{12}, \mathbb{Z}) \longrightarrow H_1(X_2 \setminus X_{12}, \mathbb{Z}) \longrightarrow 0
\end{array}
\]
with exact rows as in [9, page 46, (2.13)].

This completes the proof of Proposition 3.10.

An anonymous referee pointed out the following bimeromorphic unboundedness of our examples.

**Remark 3.13** This is based on the referee’s comment. Let \( a \neq a' \) be positive integers. Then \( X(a) \) and \( X(a') \) are not bimeromorphic, which we prove as follows.

Suppose that they are bimeromorphic and let \( \phi : X(a) \to X(a') \) be a bimeromorphic map. Let \( \nu : \tilde{X} \to X(a) \) be a resolution of the indeterminacy of \( \phi \) which induces a bimeromorphic morphism \( \mu : \tilde{X} \to X(a') \). We see that \( \phi \) is an isomorphism in codimension one since \( \omega_{X(a)} \) and \( \omega_{X(a')} \) are trivial. Then we have the pushforward homomorphism \( \phi_* := \nu_* \circ \mu^* : \text{Pic } X(a) \to \text{Pic } X(a') \). We see that \( \phi_* \) is an isomorphism since \( \phi \) is an isomorphism in codimension one. Hence \( \text{rk Pic } X(a) = \text{rk Pic } X(a') \), and this is a contradiction.
Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$.

Hence our examples show the bimeromorphic unboundedness of non-Kähler Calabi–Yau 3–folds. We are not sure whether the examples of Clemens and Friedman are bimeromorphically unbounded or not. (We do not know whether a bimeromorphic map preserves the Betti number of non-Kähler Calabi–Yau 3–folds.)

### 3.3 On the nonprojectivity of $X$

In this section, we check the nonprojectivity of the SNC variety $X_0$ and the Calabi–Yau 3–fold $X$, which are constructed in Theorem 3.4.

Hironaka [21] constructed a degeneration of a projective manifold to a proper manifold which is nonprojective. Thus we cannot judge nonprojectivity of a general fiber from nonprojectivity of a central fiber. We use the following lemma to see the nonprojectivity of a general fiber of the smoothing.

**Lemma 3.14** Let $\phi: X \to \Delta^1$ be a semistable smoothing of a proper SNC variety $X_0$ with $\omega_{X_0} \simeq O_{X_0}$ such that some fiber $X_t$ of $\phi$ over $t \neq 0$ is a projective Calabi–Yau $n$–fold. Assume that $X_0$ has only two projective irreducible components $X_1$ and $X_2$, and that $X_{12} := X_1 \cap X_2$ is a simply connected Calabi–Yau $(n-1)$–fold. (Note that $X_0$ may not be projective.)

Then there exists a big line bundle $L_0$ on $X_0$ such that $h^0(X_i, L_0|_{X_i}) > 0$ for $i = 1, 2$.

**Proof** We first need the following.

**Claim 3.15** The restriction homomorphism $\gamma: H^2(X, \mathbb{Z}) \to H^2(X_t, \mathbb{Z})$ is surjective for $t \neq 0$.

**Proof of claim** By the Clemens contraction $c_t: X_t \to X_0$ as in Theorem 2.9, we may regard $\gamma$ as

$$c_t^*: H^2(X_0, \mathbb{Z}) \to H^2(X_t, \mathbb{Z}).$$

This is surjective since we have

$$H^1(X_0, R^1(c_t)_*\mathbb{Z}) = 0 \quad \text{and} \quad H^0(X_0, R^2(c_t)_*\mathbb{Z}) = 0.$$

Indeed, we have $R^2(c_t)_*\mathbb{Z} = 0$ since $X_0$ has no triple point, and since $X_{12}$ is simply connected we see that $R^1(c_t)_*\mathbb{Z} \simeq \mathbb{Z}_{X_{12}}$. Thus we can use the Leray spectral sequence as in Claim 3.6.

\[\square\]
Since we have $h^i(\mathcal{X}, \mathcal{O}_\mathcal{X}) = 0$ and $h^i(\mathcal{X}_t, \mathcal{O}_{\mathcal{X}_t}) = 0$ for $i = 1, 2$, we have

$$\text{Pic } \mathcal{X} \simeq H^2(\mathcal{X}, \mathbb{Z}) \quad \text{and} \quad \text{Pic } \mathcal{X}_t \simeq H^2(\mathcal{X}_t, \mathbb{Z})$$

by the exponential exact sequence. Let $\mathcal{L}_t$ be a very ample line bundle on $\mathcal{X}_t$. By the above and Claim 3.15, there exists a line bundle $\mathcal{L}$ on $\mathcal{X}$ such that $\mathcal{L}|_{\mathcal{X}_t} \simeq \mathcal{L}_t$. We can lift sections of $\mathcal{L}_t$ to $\mathcal{L}$ as follows.

**Claim 3.16** *The restriction $H^0(\mathcal{X}, \mathcal{L}) \to H^0(\mathcal{X}_t, \mathcal{L}_t)$ is surjective.*

**Proof of claim** Since we have an exact sequence

$$0 \to H^0(\mathcal{X}, \mathcal{L}) \to H^0(\mathcal{X}_t, \mathcal{L}_t) \to H^1(\mathcal{X}, \mathcal{L} \otimes \mathcal{O}_\mathcal{X}(\mathcal{D})) \to H^1(\mathcal{X}, \mathcal{L}) \to H^1(\mathcal{X}_t, \mathcal{L}_t),$$

it is enough to show that $\Phi$ is injective. We see that $\Phi$ is surjective by $H^1(\mathcal{X}_t, \mathcal{L}_t) = 0$. We also see that $H^1(\mathcal{X}, \mathcal{L})$ is finite-dimensional. Indeed, $H^1(\mathcal{D}, \phi_*\mathcal{L}) = 0$ and $H^0(\mathcal{D}, R^1\phi_*\mathcal{L})$ is finite-dimensional since $R^1\phi_*\mathcal{L}$ is coherent and supported on the origin. By these and $\mathcal{O}_\mathcal{X}(-\mathcal{X}_t) \simeq \mathcal{O}_\mathcal{X}$, we see that $\Phi$ is an isomorphism, and therefore injective. \hfill \Box

By Claim 3.16, we can choose sections $s_0, \ldots, s_M \in H^0(\mathcal{X}, \mathcal{L})$ which lift a basis of $H^0(\mathcal{X}_t, \mathcal{L}_t)$. Let $Z(s_j) \subset \mathcal{X}$ be the divisor defined by $s_j$ for $j = 0, \ldots, M$. Let

$$m_i := \min_{j=0,\ldots,M} \{\text{mult}_{\mathcal{X}_i}(Z(s_j))\} \quad \text{for } i = 1, 2,$$

$$\mathcal{L}' := \mathcal{L} \otimes \mathcal{O}_\mathcal{X}(-m_1X_1 - m_2X_2).$$

Then we obtain sections $s'_0, \ldots, s'_M \in H^0(\mathcal{X}, \mathcal{L}')$ induced by $s_0, \ldots, s_M$ whose base locus does not contain $X_1$ and $X_2$. Hence there exists $s' \in H^0(\mathcal{X}, \mathcal{L}')$ which does not vanish identically on each $\mathcal{X}_i$.

Now let $\mathcal{L}_0 := \mathcal{L}'|_{\mathcal{X}_0}$. Then we have nonzero sections $s'|_{\mathcal{X}_i} \in H^0(\mathcal{X}_i, \mathcal{L}_0|_{\mathcal{X}_i})$ for $i = 1, 2$. We also see that $\mathcal{L}_0$ is big since we have $\mathcal{L}'|_{\mathcal{X}_i} \simeq \mathcal{L}_t$, and we check that $H^0(\mathcal{X}, \mathcal{L}^\otimes m) \to H^0(\mathcal{X}_i, \mathcal{L}_i^\otimes m)$ is surjective for $m > 0$, as in Claim 3.16. Thus $\mathcal{L}_0$ has the required property. \hfill \Box

**Remark 3.17** There is a conjecture which states that any smooth degeneration of a projective manifold is Moishezon; see [30, Conjecture 1.1] and also [31; 32]. We can also ask whether a semistable degeneration of a projective manifold admits a big line bundle as in Lemma 3.14.

We can conclude that $X_0$ and $X$ are both nonprojective by the following result.
Proposition 3.18  Let \( X_0 := X_0(a) \) and \( X := X(a) \) be the SNC variety and the Calabi–Yau 3–fold constructed in Theorem 3.4 for \( a > 0 \). Let \( L_0 \in \text{Pic} \ X_0 \) be a line bundle such that \( h^0(X_i, L_i) > 0 \) for \( i = 1, 2 \), where \( L_i := L_0 | X_i \). Also let \( E_j \subset X_1 \) for \( j = 1, \ldots, a \) be the exceptional divisor over the elliptic curve \( f_j \).

Then we have

\[
\mathcal{L}_1 \simeq \mu^* \mathcal{O}_{P(3)}(a_1, 0, 0) - \sum_{j=1}^{a} b_j E_j \quad \text{and} \quad \mathcal{L}_2 \simeq \mathcal{O}_{P(3)} \left( a_1 - \sum_{j=1}^{a} b_j, 0, 0 \right)
\]

for some \( a_1 \geq 0 \) and \( b_j \in \mathbb{Z} \). In particular, \( X_0 \) does not admit a line bundle as in Lemma 3.14, thus \( X_0 \) and \( X \) are not projective.

Proof  Recall that \( \mu: X_1 \to P(3) \) is the blowup of \( f_1, \ldots, f_a, C_a \) and \( X_2 = P(3) \), where \( f_1, \ldots f_a \in |\mathcal{O}_S(1, 0, 0)| \) and \( C_a \in |\mathcal{O}_S(16a^2 - a + 4, 4 - 8a, 4 + 8a)| \). Let \( F \subset X_1 \) be the \( \mu \)-exceptional divisor over \( C_a \). Then we can write

\[
\mathcal{L}_1 = \mu^* \mathcal{O}_{P(3)}(a_1, a_2, a_3) \otimes \mathcal{O}_{X_1} \left( - \sum_{j=1}^{a} b_j E_j - cF \right)
\]

for some integers \( a_1, a_2, a_3, b_1, \ldots, b_a, c \). We can also write

\[
\mathcal{L}_2 = \mathcal{O}_{P(3)}(a_1', a_2', a_3')
\]

for some integers \( a_1', a_2', a_3' \). We see that \( a_i, a_i' \geq 0 \) for all \( i \) since \( \mathcal{L}_1 \) and \( \mathcal{L}_2 \) are effective.

Note that \( X_0 \) is the union of \( X_1 \) and \( X_2 \) glued along anticanonical members \( S_i \in | - K_{X_1} | \) via an isomorphism

\[
\iota_a := \iota^a \circ \mu |_{S_1} : S_1 \to S_2.
\]

Then we have

\[
\mathcal{L}_1 |_{S_1} \simeq (\iota_a)^* \mathcal{L}_2 |_{S_2}
\]

and both sides can be written as

\[
\mathcal{L}_1 |_{S_1} \simeq \mathcal{O}_{S_1} \left( a_1 - \sum_{j=1}^{a} b_j - c(16a^2 - a + 4), a_2 - c(4 - 8a), a_3 - c(4 + 8a) \right),
\]

\[
(\iota_a)^* \mathcal{L}_2 |_{S_2} \simeq \mathcal{O}_{S_1} (a_1' + a_2'(4a^2 - 2a) + a_3'(4a^2 + 2a),
\]

\[
a_2'(1 - 2a) + a_3'(-2a), a_2'(2a) + a_3'(1 + 2a)).
\]

By comparing the 2\textsuperscript{nd} and 3\textsuperscript{rd} coordinates, we obtain

\[
a_2 + c(8a - 4) = a_2'(1 - 2a) + a_3'(-2a),
\]

\[
a_3 - c(8a + 4) = a_2'(2a) + a_3'(1 + 2a).
\]
These imply that
\begin{align*}
(3) \quad c(8a - 4) &= -a_2 + a_2'(-2a + 1) + a_3'(-2a), \\
(4) \quad c(8a + 4) &= a_3 + a_2'(-2a) + a_3'(-2a - 1).
\end{align*}

Now suppose that one of \(a_2, a_3, a_2', a_3'\) is positive. By equation (3), we obtain \(c \leq 0\); \(c = 0\) is possible only when \(a_2 = a_2' = a_3' = 0\). Then we have \(a_3 > 0\), and this contradicts (4). Hence we obtain \(c < 0\). Moreover, by (3) and (4) we obtain
\[0 > 4c = c(8a + 4) - \frac{2a}{2a - 1}c(8a - 4) = a_3 + \frac{2a}{2a - 1}a_2 + \frac{1}{2a - 1}a_3' \geq 0.\]
This is a contradiction, and we see that \(a_2 = a_3 = a_2' = a_3' = 0\). This implies that \(c = 0\) and that \(L_1\) and \(L_2\) are of the form stated. \(\square\)

We compute the algebraic dimension of the very general fiber \(X\) as follows.

**Proposition 3.19** Let \(X = X(a) = X_t\) be a smooth fiber of a semistable smoothing \(\mathcal{X}(a) \to \Delta^1\) over \(t \in \Delta^1 \setminus \{0\}\), as in Theorem 3.4. Let \(a(X)\) be its algebraic dimension.

(i) \(X\) admits a surjective morphism \(\psi: X \to \mathbb{P}^1\) whose general fibers are K3 surfaces.

(ii) \(X\) is not projective.

(iii) We have \(a(X) = 1\) for a very general \(t \in \Delta^1\).

**Proof** (i) Let \(\mathcal{H}_1 := \mu^*\mathcal{O}(1, 0, 0)\) on \(X_1\) and \(\mathcal{H}_2 := \mathcal{O}(1, 0, 0)\) on \(X_2\). These glue to give a line bundle \(\mathcal{H}_0 \in \text{Pic} X_0\), which induces a morphism \(X_0 \to \mathbb{P}^1\). We calculate that \(H^1(X_0, \mathcal{H}_0) = 0\).

Since we have \(H^2(\mathcal{X}, \mathbb{Z}) \cong H^2(X_0, \mathbb{Z})\), there exists \(\mathcal{H} \in \text{Pic} \mathcal{X}\) such that \(\mathcal{H}|_{X_0} \cong \mathcal{H}_0\). We check that \(H^1(\mathcal{X}, \mathcal{H}) = 0\) by \(H^1(X_0, \mathcal{H}_0) = 0\) and the upper-semicontinuity theorem. Thus we see that \(H^0(\mathcal{X}, \mathcal{H}) \to H^0(\mathcal{X}_t, \mathcal{H}_t)\) is surjective for \(t \in \Delta^1\) sufficiently close to 0. Hence the line bundle \(\mathcal{H}_t\) also induces a surjective morphism \(\psi_t: X := X_t \to \mathbb{P}^1\).

We check that the general fiber \(X_\lambda\) of \(\psi_t\) at \(\lambda \in \mathbb{P}^1\) is a K3 surface as follows. For \(i = 0, 1, 2\), let \(X_{i, \lambda}\) be the general fiber of the morphism \(X_i \to \mathbb{P}^1\) induced by \(\mathcal{H}_i\). We see that \(X_{1, \lambda}\) is isomorphic to a blowup of \(\mathbb{P}^1 \times \mathbb{P}^1\) at 16 points, and \(X_{2, \lambda} \cong \mathbb{P}^1 \times \mathbb{P}^1\). Thus we compute that \(H^1(X_{0, \lambda}, \mathcal{O}) = 0\), and this implies that \(H^1(X_\lambda, \mathcal{O}) = 0\) by the upper-semicontinuity. Hence, \(X_\lambda\) is a K3 surface.
(ii) Suppose that some $\mathcal{X}_t$ is a projective Calabi–Yau 3–fold. By Lemma 3.14, there exists a big line bundle $\mathcal{L}_0$ on $\mathcal{X}_0$ such that $h^0(\mathcal{L}_0|_{\mathcal{X}_t}) > 0$ for $i = 1, 2$. However, this does not exist on $X_0(a)$ by Proposition 3.18. This is a contradiction, and $\mathcal{X}_t$ is not projective.

(iii) For $\mathcal{M} \in \text{Pic} \mathcal{X}$, the dimension $h^0(\mathcal{X}_t, \mathcal{M}_t)$ for $\mathcal{M}_t := \mathcal{M}|_{\mathcal{X}_t}$ is constant for very general $t \in \Delta^1$ and $h^0(\mathcal{X}_t, \mathcal{M}_t) \leq h^0(\mathcal{X}_0, \mathcal{M}_0)$. This follows from the upper semicontinuity theorem and the fact that Pic $X_0$ is countable.

Suppose that $a(X) \geq 2$. Then $X$ admits an effective line bundle $L$ with Kodaira dimension $\kappa(L) \geq 2$. Since the restriction homomorphism $H^2(\mathcal{X}, \mathbb{Z}) \rightarrow H^2(\mathcal{X}_t, \mathbb{Z})$ is surjective, there exists $\mathcal{L} \in \text{Pic} \mathcal{X}$ such that $\mathcal{L}_t := \mathcal{L}|_{\mathcal{X}_t} \simeq L$. Then we see that $\kappa(\mathcal{L}_t) \geq 2$ for very general $t' \in \Delta^1$. Hence we obtain $\kappa(\mathcal{L}_0) \geq 2$ and $\phi_* \mathcal{L} \neq 0$. Thus we see that $H^0(\mathcal{X}, \mathcal{L}) = H^0(\Delta^1, \phi_* \mathcal{L}) \neq 0$, since $\phi_* \mathcal{L}$ is coherent. Now, for $i = 1, 2$, let

$$m_i := \min\{\text{ord}_{\mathcal{X}_t}(s) \mid s \in H^0(\mathcal{X}, \mathcal{L}) \setminus \{0\}\}$$

and $\mathcal{L}' := \mathcal{L} \otimes \mathcal{O}_X(-m_1 X_1 - m_2 X_2)$. Then $\mathcal{L}'$ admits a nonzero section which does not vanish entirely on both $X_1$ and $X_2$. Thus we see that $\mathcal{L}_0' := \mathcal{L}'|_{X_0}$ satisfies the property as in Proposition 3.18, and $\kappa(\mathcal{L}_0') \leq 1$. This is a contradiction, since $\mathcal{L}_0'$ should also satisfy $\kappa(\mathcal{L}_0') \geq 2$.

Hence we obtain $a(X) \leq 1$. By this and (i), we obtain $a(X) = 1$. \hfill \Box

**Remark 3.20** Let us also check that $X = \mathcal{X}_t$ is not of class $\mathcal{C}$ for a very general $t$, that is, $X$ is not bimeromorphic to a Kähler manifold. Suppose that $X$ is of class $\mathcal{C}$ and has a proper bimeromorphic map $\tilde{X} \rightarrow X$ from a Kähler manifold $\tilde{X}$. Since we also have $H^2(\tilde{X}, \mathbb{C}) \simeq H^1(\tilde{X}, \Omega^1_{\tilde{X}})$ by $H^2(\tilde{X}, \mathcal{O}_{\tilde{X}}) = 0 = H^0(\tilde{X}, \Omega^2_{\tilde{X}})$, we see that $\tilde{X}$ is projective by the Kodaira embedding theorem. Thus $X$ is Moishezon and this contradicts Proposition 3.19.

We do not know whether a Calabi–Yau 3–fold of algebraic dimension $\geq 2$ appears as some fiber of the smoothing. Note that the Moishezon (or class $\mathcal{C}$) property is not stable under deformation [4; 25].

**Acknowledgements** We would like to thank Professor Yoshinori Namikawa for several useful comments. We would also like to thank Professors Frédéric Campana, Yuji Odaka, Keiji Oguiso, Dmitri Panov, Ken-ichi Yoshikawa and the anonymous referees for valuable comments. This work was partially supported by JSPS KAKENHI grant numbers JP16K17573, JP17H06127 and JP17K14156.
References


Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$


*Geometry & Topology, Volume 27 (2023)*


---

Graduate School of Mathematical Sciences, The University of Tokyo
Tokyo, Japan

Department of Mathematics, Graduate School of Science, Kobe University
Kobe, Japan

hashi@ms.u-tokyo.ac.jp, tarosano@math.kobe-u.ac.jp

Proposed: Lothar Göttscbe  Received: 10 November 2020
Seconded: Mark Gross, Paul Seidel  Revised: 31 May 2021
<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Isometry groups with radical, and aspherical Riemannian manifolds with large symmetry, I</td>
<td>1</td>
</tr>
<tr>
<td>Oliver Baues and Yoshinobu Kamishima</td>
<td></td>
</tr>
<tr>
<td>Symplectic resolutions of character varieties</td>
<td>51</td>
</tr>
<tr>
<td>Gwyn Bellamy and Travis Schedler</td>
<td></td>
</tr>
<tr>
<td>Odd primary analogs of real orientations</td>
<td>87</td>
</tr>
<tr>
<td>Jeremy Hahn, Andrew Senger and Dylan Wilson</td>
<td></td>
</tr>
<tr>
<td>Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large $b_2$</td>
<td>131</td>
</tr>
<tr>
<td>Kenji Hashimoto and Taro Sano</td>
<td></td>
</tr>
<tr>
<td>Rotational symmetry of ancient solutions to the Ricci flow in higher dimensions</td>
<td>153</td>
</tr>
<tr>
<td>Simon Brendle and Keaton Naff</td>
<td></td>
</tr>
<tr>
<td>$d_p$–convergence and $\epsilon$–regularity theorems for entropy and scalar curvature lower bounds</td>
<td>227</td>
</tr>
<tr>
<td>Man-Chun Lee, Aaron Naber and Robin Neumayer</td>
<td></td>
</tr>
<tr>
<td>Algebraic Spivak’s theorem and applications</td>
<td>351</td>
</tr>
<tr>
<td>Toni Annala</td>
<td></td>
</tr>
<tr>
<td>Collapsing Calabi–Yau fibrations and uniform diameter bounds</td>
<td>397</td>
</tr>
<tr>
<td>Yang Li</td>
<td></td>
</tr>
</tbody>
</table>