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We construct non-Kähler simply connected Calabi–Yau 3–folds with arbitrarily large
2nd Betti numbers by smoothing normal crossing varieties with trivial dualizing
sheaves.

14D15, 14J32; 32Q25

1 Introduction

In this paper, a Calabi–Yau manifold means a compact complex manifold whose
canonical bundle is trivial and H i.X;OX /DH 0.X; �i

X
/D 0 for 0< i < dim X . A

projective Calabi–Yau manifold is often also called a strict Calabi–Yau manifold. Our
main interest is a Calabi–Yau 3–fold, that is, a Calabi–Yau manifold of dimension 3.

Projective Calabi–Yau manifolds are one of the building blocks in the classification of
algebraic varieties. Nevertheless, it is not known whether there are only finitely many
topological types of projective Calabi–Yau 3–folds or not. The main purpose of this
paper is to give infinitely many topological types of non-Kähler Calabi–Yau 3–folds.

Theorem 1.1 Let a> 0 be any positive integer. Then there exists a simply connected
Calabi–Yau 3–fold X.a/ with 2nd Betti number b2.X.a//D aC 3, topological Euler
number e.X.a//D�256a2C 32a� 224 and algebraic dimension a.X.a//D 1.

As far as we know, our examples are the first examples of complex Calabi–Yau 3–folds
with arbitrarily large b2 in our sense. Their topological Euler number can be arbitrarily
small and negative. For positive integers a ¤ a0, we see that X.a/ and X.a0/ are
not bimeromorphic (Remark 3.13), thus showing bimeromorphic unboundedness of
non-Kähler Calabi–Yau 3–folds. It is also remarkable that the Hodge to de Rham
spectral sequence degenerates at E1 on X.a/ and they have unobstructed deformations
(Remark 3.8).

© 2023 MSP (Mathematical Sciences Publishers). Distributed under the Creative Commons Attribution
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132 Kenji Hashimoto and Taro Sano

Friedman [16, Example 8.9] constructed infinitely many topological types of Calabi–
Yau 3–folds with b2 D 0 by deforming a Calabi–Yau 3–fold with ordinary double
points based on Clemens’ construction [8] of some quintic 3–folds with infinitely many
smooth rational curves. There are also infinitely many examples of Calabi–Yau 3–folds
of b2 D 1 but with different cubic forms on H 2 as flops of a fixed Calabi–Yau 3–fold;
see Friedman [16, Example 7.6] and Okonek and Van de Ven [28, Example 14]. Fine
and Panov [14, Section 3] constructed simply connected compact complex 3–folds
with trivial canonical bundle, arbitrarily large b2 and nonzero holomorphic 2–forms.

Non-Kähler Calabi–Yau manifolds are also interesting from the point of view of string
theory (the Strominger equations) and complex differential geometry; see for instance
Fu, Li and Yau [18], Tseng and Yau [39] and Tosatti [38].

We shall construct the examples by smoothing simple normal crossing (SNC) varieties
via the log deformation theory developed by Kawamata and Namikawa [24]. Lee [26]
considered log deformations of SNC varieties consisting of two irreducible components,
which are called Tyurin degenerations. We also use Tyurin degenerations to construct
our examples. The new point in this paper is to consider gluing automorphisms of
the intersection of irreducible components of SNC varieties. Tyurin degenerations are
also studied in the context of mirror symmetry; see Tyurin [40], Doran, Harder and
Thompson [10] and Kanazawa [23].

1.1 Sketch of the construction

First, we prepare an SNC variety X0.a/ D X1 [ X2, where X1 is the blowup of
P1�P1�P1 along some curves f1; : : : ; fa;C and X2 WD P1�P1�P1. The curves
f1; : : : ; fa are distinct smooth fibers of an elliptic fibration S ! P1 on a very general
.2; 2; 2/–hypersurface S induced by the 1st projection. We glue X1 and X2 along S

and its strict transform to construct X0.a/. Since S is an anticanonical member, we
have !X0.a/ ' OX0.a/. In order to make X0.a/ “d–semistable”, we need to blow up
f1; : : : ; fa and some curve C . The point is that we glue after twisting by a certain
automorphism of S of infinite order. Because of this, the number of blowup centers
for X1 can be arbitrarily large.

Thus we obtain X0.a/ which satisfies the hypothesis of Theorem 2.6 [24, Theorem 4.2]
and can deform X0.a/ to a Calabi–Yau 3–fold X.a/, which turns out to be non-Kähler.
This X.a/ is the example in Theorem 1.1. Note that we can apply the smoothing result
even when the SNC variety itself is not projective but the irreducible components are
Kähler. (See Remark 2.7.)
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Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2 133

We check that X0.a/ and X.a/ are both non-Kähler if we twist by a nontrivial auto-
morphism of S ; see Proposition 3.18, also Remark 3.20. We use Lemma 3.14, which
states that, under some conditions, an SNC variety which is a degeneration of a
projective Calabi–Yau manifold admits a big line bundle whose restriction to each
irreducible component still has a nonzero section. Moreover, we show that the algebraic
dimension of X is 1 (Proposition 3.19). We also compute the topological Euler number
of X (Claim 3.7) and check that X is simply connected (Proposition 3.10).

1.2 Notation

We work over the complex number field C throughout the paper. We call a complex
analytic space X a (proper) SNC variety if X has only normal crossing singularities
and its irreducible components are smooth (proper) varieties. We identify a proper
scheme over C and its associated compact analytic space unless otherwise stated.

Let X be a proper SNC variety and � W X ! �1 a proper flat morphism of analytic
spaces over a unit disk �1 such that ��1.0/'X , that is, � is a deformation of X . We
call � a semistable smoothing of X if X is smooth and its general fiber Xt WD �

�1.t/

is smooth for t ¤ 0.

2 Preliminaries

The following result guarantees the existence of a gluing of two schemes along their
isomorphic closed subschemes.

Theorem 2.1 [1, Section 1.1], [13, Théorèmes 5.4 et 7.1], [35, Corollary 3.9] Let
Y;X1;X2 be schemes and �i W Y ,!Xi be closed immersions for i D 1; 2. Then there
exists a scheme X in the Cartesian diagram

Y � _

�2
��

� � �1
// X1� _

�1

��

X2
� � �2

// X

such that �1 and �2 are closed immersions and induce isomorphisms X1 nY 'X nX2

and X2 nY 'X nX1. (We say that X is the pushout of the morphisms �1 and �2.)

Proof We can show the proposition following [1, Section 1.1].

By this, we have the following corollary.
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134 Kenji Hashimoto and Taro Sano

Corollary 2.2 Let X1;X2 be smooth proper varieties and Di �Xi be smooth divisors
for i D 1; 2 with an isomorphism � WD1

'
�!D2. Let i1 WD1 ,!X1 and i2 WD2 ,!X2

be the given closed immersions and let Y be the pushout of two closed immersions
�1 WD i1 and �2 WD i2 ı�, which exists by Theorem 2.1.

Then Y is a proper SNC variety with two irreducible components Y1 and Y2 such that
Yi 'Xi and Y1\Y2 'Di for i D 1; 2. (We denote by Y DW Y1[

� Y2 the pushout.)

Proof We check the properness of Y by definition of properness. We also check that
Y is normal crossing by a local computation.

Remark 2.3 A proper SNC variety is nonprojective in general, even if its irreducible
components are projective. Let X DX1[X2 be a proper SNC variety such that X1

and X2 are projective varieties and D WDX1\X2. Then X is projective if and only if
there are ample line bundles L1 on X1 and L2 on X2 such that L1jD ' L2jD .

Definition 2.4 Let X be an SNC variety and X D
SN

iD1 Xi be the decomposition into
its irreducible components. Let D WD Sing X D

S
i¤j .Xi \Xj / be the double locus

and let IXi
; ID �OX be the ideal sheaves of Xi and D on X . Let

OD.X / WD

� NO
iD1

IXi
=IXi

ID

��
2 Pic D

be the infinitesimal normal bundle as in [15, Definition 1.9].

We say that X is d–semistable if OD.X /'OD .

Remark 2.5 Let X D
SN

iD1 Xi and D be as in Definition 2.4. Friedman proved that,
if X has a semistable smoothing, then X is d–semistable [15, Corollary 1.12].

When N D 2, we have OD.X /'ND=X1
˝OD

ND=X2
via a suitable identification of

D �X1 and D �X2, where ND=Xi
is the normal bundle of D �Xi for i D 1; 2.

We use the following theorem of Kawamata and Namikawa.

Theorem 2.6 [24, Theorem 4.2], [6, Corollary 7.4] Let n � 3 and let X be an
n–dimensional proper SNC variety such that

(i) !X 'OX ,

(ii) H n�1.X;OX /D 0, H n�2.X � ;OX � /D 0, where X �!X is the normalization ,

(iii) X is d–semistable.

Then there exists a semistable smoothing � W X !�1 of X over a unit disk.
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Remark 2.7 In [24, Theorem 4.2], it is assumed that X is Kähler. However, we
check that we only need to assume that X is a proper SNC variety (or each irreducible
component is Kähler).

The essential tools are two spectral sequences. One is the log Hodge to de Rham spectral
sequence in [24, Lemma 4.1], which follows from the construction of a cohomological
mixed Hodge complex; see also [19, Theorem 3.12, Proposition 3.19]. Another spectral
sequence is that in [15, Proposition 1.5(3)], which uses only the existence of a pure
Hodge structure on the stratum of an SNC variety.

By using these spectral sequences, we show that log deformations of X are unobstructed
as in [24, Theorem 4.2]. Then, by using the existence of the Kuranishi family of X

and Artin’s approximation, we can construct a semistable smoothing � W X !�1 of X ;
cf [24, Corollary 2.4].

However, if X is not projective, the general fiber of � may not be an algebraic variety
even when H 2.X;OX /D 0. Indeed, this happens in the examples in Theorem 3.4.

In [6, Corollary 7.4], the above result is shown without the assumption (ii) for a
projective SNC variety. It is quite possible that we can remove the assumption when
X is not projective but proper; cf [11; 12].

Remark 2.8 Let X be a proper SNC variety such that X DX1[X2, with dualizing
sheaf !X . If !X 'OX , then D WDX1\X2 should satisfy D 2 j!�1

Xi
j. The converse

does not hold in general since D may not be connected. However, if D is connected
and D 2 j!�1

Xi
j, then we check that !X 'OX .

In order to study a general fiber of a smoothing of an SNC variety, the following map
of Clemens is useful.

Theorem 2.9 [7, Theorem 6.9; 41, Theorems 5.2, 5.4] Let � W X !� be a proper
flat surjective morphism from a complex manifold X onto a 1–dimensional open
disk �. Assume that � is smooth over � n 0 and ��1.0/� X is an SNC divisor. Let
Xt WD ��1.t/ and , for k � 0, let X Œk�

0
� X0 be the locus where k C 1 irreducible

components of X0 intersect.

Then we have a continuous map ct W Xt ! X0 for t ¤ 0 such that we have a homeo-
morphism c�1

t .p/� .S1/k when p 2 X Œk�
0
nX ŒkC1�

0
and ct induces a homeomorphism

c�1
t .X0 nX Œ1�0

/
�
�! X0 nX Œ1�0

. (We call the map ct the Clemens contraction.)
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136 Kenji Hashimoto and Taro Sano

3 Construction of non-Kähler Calabi–Yau 3–folds with
arbitrarily large b2

3.1 Construction of the examples

First we explain the K3 surface which is essential in the construction of our Calabi–Yau
3–folds.

Let
P .3/ WD P1

�P1
�P1

and let Pi WD P1 be the i th factor of P .3/ for i D 1; 2; 3. Let �i W P .3/! Pi be the
i th projection and OP.3/.c1; c2; c3/ WD

N3
iD1 �

�
i OPi

.ci/ a line bundle on P .3/ for
c1; c2; c3 2 Z.

Let S � P .3/ be a very general .2; 2; 2/–hypersurface, that is, a very general element
of the linear system jOP.3/.2; 2; 2/j. Then S is a K3 surface. This surface is called a
Wehler surface and studied in several articles; see eg [43; 3; 5]. We shall recall some
of its properties.

For 1� i < j � 3, the surface S has a covering involution �ij W S ! S corresponding
to the double cover pij W S ! Pi �Pj induced by the projection �ij W P .3/! Pi �Pj .
By the Noether–Lefschetz theorem (see [42, Proposition 2.27, Theorem 3.33] or
[33, Theorem 1]), we see that Pic S D Ze1˚Ze2˚Ze3, where ei is the fiber class
of the elliptic fibration pi W S ! Pi for i D 1; 2; 3. By this, we see that S contains no
.�2/–curve. Indeed, for D D

P3
iD1 aiei 2 Pic S , we have

D2
D 2

� X
1�i<j�3

aiaj .ei � ej /

�
D 4.a1a2C a1a3C a2a3/ 2 4Z

by e2
i D 0 and ei � ej D 2 for i ¤ j . Hence the nef cone Nef S � Pic S of S can be

described as the positive cone

Nef S D fD 2 Pic S jD2
� 0;D �H � 0g;

where H WD e1 C e2 C e3. First we need the following claim on the action of the
involution �ij on Pic S .

Claim 3.1 [43, Lemma 2.1] Let i; j ; k 2Z be integers such that i <j and fi; j ; kgD
f1; 2; 3g. Then

(i) ��ij .ei/D ei and ��ij .ej /D ej ,

(ii) ��ij .ek/D 2ei C 2ej � ek .
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Proof of claim (i) This follows since �ij interchanges two points in a fiber p�1
ij .p/

for a general p 2 Pi �Pj .

(ii) We shall show that ��
12
.e3/D 2e1C 2e2� e3. The others can be shown similarly.

Let ŒS0 W S1�; ŒT0 W T1�; ŒU0 W U1� be the coordinates of P1;P2;P3. Note that S can be
described as

S D .U 2
0 F1CU 2

1 F2CU0U1F3 D 0/� P .3/

for some very general .2; 2/–polynomials F1;F2;F3 2 H 0.P1 � P2;O.2; 2// on
P1 �P2 D P1 �P1. Let s WD S1=S0, t WD T1=T0 and u WD U1=U0 be the affine
coordinates of P1, P2 and P3, respectively. Also, for i D 1; 2; 3, let fi 2CŒs; t � be the
dehomogenization of Fi . Then the function field K.S/ of S can be described as

K.S/'C.s; t/Œu�=

�
u2
C
f3

f2

uC
f1

f2

�
and �12 induces an element �]

12
2 Gal.K.S/=K.P1 �P2// determined by

�
]
12
.u/D�u�

f3

f2

:

By this description of �]
12

, we see that

(1) ��12.e3/¤ e3

since F1;F2;F3 are very general and f3=f2 is not constant on the fiber of p3 WS!P3.
By (1) together with

��12.e1/ � �
�
12.e3/D �

�
12.e2/ � �

�
12.e3/D 2; and ��12.e3/

2
D 0;

we check that ��
12
.e3/D 2e1C 2e2� e3.

Now let � WD �12 ı �13, that is,

� W S
�13
�! S

�12
�! S:

Claim 3.2 The automorphism � induces the linear automorphism �� 2 Aut.Pic S/

corresponding to a matrix 0@1 2 6

0 �1 �2

0 2 3

1AI
that is , we have

��.e1/D e1; ��.e2/D 2e1� e2C 2e3; ��.e3/D 6e1� 2e2C 3e3:

Geometry & Topology, Volume 27 (2023)



138 Kenji Hashimoto and Taro Sano

Proof of claim Since we have ��
12
.e1/D e1; �

�
13
.e1/D e1, we obtain ��.e1/D e1.

We have ��
13
.e2/D 2e1� e2C 2e3 by Claim 3.1. By this and ��

12
.e2/D e2, we obtain

��.e2/D 2e1� e2C 2e3.

By a similar computation, we obtain ��.e3/ D 6e1 � 2e2 C 3e3. Indeed, we have
��
12
.e3/D 2e1C 2e2� e3 and ��

13
.2e1C 2e2� e3/D 2e1C 2.2e1� e2C 2e3/� e3 D

6e1� 2e2C 3e3.

By this claim, for a 2 Z, the ath power �a 2 Aut S of � induces

.�a/� D

0@1 4a2� 2a 4a2C 2a

0 1� 2a �2a

0 2a 1C 2a

1A 2 Aut.Z3/' Aut.Pic S/

with respect to the basis e1; e2; e3 2 Pic S (by induction on a or use JCF).

Remark 3.3 In [5, Section 3.4], Cantat and Oguiso study Aut.S/ in detail. They
show that Aut.S/ is a free product of 3 cyclic groups of order 2 generated by the three
involutions �12, �13 and �23.

Now we can construct our Calabi–Yau 3–folds as follows.

Theorem 3.4 Let a 2 Z be a positive integer. Then there exists a Calabi–Yau 3–fold
X WDX.a/ such that b2.X /D aC 3 and e.X /D�256a2C 32a� 224, where b2.X /

is the 2nd Betti number of X and e.X / is the topological Euler number of X .

Proof We first construct an SNC variety X0.a/ by gluing two smooth projective vari-
eties X1 and X2 as follows. For c1; c2; c32Z, let OS .c1; c2; c3/ WDOP.3/.c1; c2; c3/jS .

Construction of X1 and X2 Let �0 W X 0
1
! P .3/ be the blowup of f1; : : : ; fa,

where f1; : : : ; fa 2 jOS .1; 0; 0/j are disjoint smooth fibers of the elliptic fibration
p1 W S ! P1. Let � WX1!X 0

1
be the blowup along the strict transform of Ca, where

Ca 2 jOS .16a2 � aC 4; 4 � 8a; 4C 8a/j is a general smooth member. Note that
OS .16a2� aC 4; 4� 8a; 4C 8a/ is ample since we have

OS .16a2
� aC 4; 4� 8a; 4C 8a/2 D 4.8.16a2

� aC 4/C .4� 8a/.4C 8a//

D 4.64a2
� 8aC 48/ > 0

and S contains no .�2/–curve. Then we see that jOS .16a2� aC 4; 4� 8a; 4C 8a/j

is free since there is no P1 on S ; see eg [34, Proposition 8.1] and [22, Chapter 2,
Corollary 3.15(ii)]. Thus we have � WD �0 ı � WX1! P .3/. Let X2 WD P .3/.
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Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2 139

Let S2 WD S �X2 and S1 �X1 be the strict transform of S and ij W Sj ,!Xj be the
inclusions for j D 1; 2, and let �a WD �a ı�jS1

. By Corollary 2.2, we can construct
the pushout X0.a/ of two closed immersions i1 and i2 ı �a. For simplicity, we write
X0 WDX0.a/. Then X0 is a proper SNC variety and fits in the diagram

S1

�a~~

� � i1
// X1

��

S2� _

i2

��

X2
// X0

The SNC variety X0 satisfies the condition of Theorem 2.6 by the following claim.

Claim 3.5 (i) X0 is d–semistable.

(ii) !X0
'OX0

.

(iii) H 1.X0;OX0
/D 0 and H 2.X �

0
;OX �

0
/D 0, where X �

0
!X0 is the normalization.

Proof of claim (i) In order to check the d–semistability, we shall show that

OS1
.X0/ WDNS1=X1

˝ .�a/
�NS2=X2

'OS1
:

Let �1 WD �jS1
W S1

'
�! S and OS1

.c1; c2; c3/ WD �
�
1
OS .c1; c2; c3/ for c1; c2; c3 2 Z.

Since we have

NS1=X1
'OS1

.2; 2; 2/˝OS1

�
�

� aX
iD1

fi CCa

��
;

.�a/
�NS2=X2

' .�a/
�OS .2; 2; 2/;

we obtain

OS1
.X0/'OS1

.2; 2; 2/˝OS1

�
�

� aX
iD1

fi CCa

��
˝ .�a/

�OS .2; 2; 2/

'OS1
.16a2

C 4; 4� 8a; 4C 8a/˝OS1

�
�

� aX
iD1

fi CCa

��
'OS1

;

thus we obtain (i).

(ii) By Si 2 j!
�1
Xi
j for i D 1; 2 and Remark 2.8, we see that !X0

' OX0
; compare

with [15, Remark 2.11].
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(iii) The exact sequence

0!OX0
!OX1

˚OX2
!OX12

! 0

implies H 1.X0;OX0
/ D 0, where X12 WD X1 \ X2 ' Si for i D 1; 2. We have

H 2.X �
0
;OX �

0
/D 0 since X1 and X2 are rational.

By the above and Theorem 2.6, there exists a semistable smoothing �a W X .a/!�1
� of

X0 over an open disk of a sufficiently small radius � > 0. Let X.a/ be a fiber of �a

over t ¤ 0. Note that we do not specify t and all such fibers are diffeomorphic. Let
X WD X .a/ and X WDX.a/ for simplicity.

Then we have !X ' OX since we have H 1.X0;OX0
/D 0, H 1.X ;OX /D 0 and, by

the diagram
H 1.X ;O�X / //

i�
0

��

H 2.X ;Z/

'

��

H 1.X0;O�X0
/ // H 2.X0;Z/

we see that i�
0

is injective, where i0 WX0 ,! X is the inclusion.

We also check that H i.X;OX /D 0 for i D 1; 2 by the upper semicontinuity theorem
since � is small. We have the following claim on the Betti numbers bi.X / of X for
i D 1; 2.

Claim 3.6 (i) We have H 1.X;Z/D 0, thus b1.X /D 0.

(ii) b2.X /D aC 3.

Proof of claim (i) By the exponential exact sequence, we have an exact sequence

H 0.X;OX /!H 0.X;O�X /!H 1.X;Z/!H 1.X;OX /:

This implies (i).

(ii) Note that b2.X0/D rk Pic X0 since we can calculate that H i.X0;OX0
/D 0 for

i D 1; 2 as in Claim 3.5(iii). Moreover, we see that rk Pic X0 D aC 4 by the exact
sequence

0!H 1.X0;O�X0
/!H 1.X1;O�X1

/˚H 1.X2;O�X2
/!H 1.X12;O�X12

/! 0;

where the surjectivity follows from the explicit description. In order to compute b2.X /,
we use the Clemens contraction ct WX !X0, which satisfies c�1

t .p/�S1 for p 2X12
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Examples of non-Kähler Calabi–Yau 3–folds with arbitrarily large b2 141

and c�1
t .p/D fptg for p 62 X12 as in Theorem 2.9. We see that R1.ct /�ZX ' ZX12

since X12 is simply connected, and that R2.ct /�ZD 0. By this and the Leray spectral
sequence

H i.X0;R
j .ct /�Z/)H iCj .X;Z/;

we see that b2.X /D b2.X0/� 1D aC 3. Indeed, we have

H 0.X0;R
2.ct /�Z/D 0;

H 1.X0;R
1.ct /�Z/DH 1.X12;Z/D 0;

H 2.X0; .ct /�Z/'H 2.X0;Z/;

and we see that the connecting homomorphism

Z'H 0.X0;R
1.ct /�Z/!H 2.X0; .ct /�Z/'H 2.X0;Z/

is nonzero by H 1.X;Z/D 0, and its cokernel is H 2.X;Z/.

We compute the topological Euler number e.X / as follows.

Claim 3.7 We have e.X /D�256a2C 32a� 224.

Proof of claim We shall use the product formula of topological Euler numbers on an
oriented fiber bundle (see [37, page 481, Theorem 1]) and also an additivity formula for
the Euler number on a complex algebraic variety (see [20, page 95, Exercise]). Note
that we have e.fi/D 0 for i D 1; : : : ; a,

e.Ca/D 2� 2g.Ca/D�.C
2
a /D�256a2

C 32a� 192;

and an exceptional divisor of a blowup along a curve is a P1–bundle. Thus we see
that e.X1/D e.P .3//� 256a2C 32a� 192D�256a2C 32a� 184 by the above two
formulas. By this and the exact sequence

0! ZX0
! ZX1

˚ZX2
! ZX12

! 0;

we see that
e.X0/D e.X1/C e.X2/� e.X12/D .�256a2

C 32a� 184/C 8� 24

D�256a2
C 32a� 200:

Since c�1
t .X12/!X12 is an S1–bundle over a K3 surface, we check that

e.X /D e.X0/� e.X12/D�256a2
C 32a� 200� 24D�256a2

C 32a� 224

by the Leray spectral sequence as in Claim 3.6(ii). Indeed, H i.X0;R
j .ct /�Z/ D 0

except when j D 0; 1.

By these claims, we obtain X as described in the statement of Theorem 3.4.

Geometry & Topology, Volume 27 (2023)



142 Kenji Hashimoto and Taro Sano

3.2 Some properties of X.a/

First, our examples have the following Hodge-theoretic property.

Remark 3.8 The Hodge to de Rham spectral sequence degenerates at E1 on our Calabi–
Yau 3–fold X WD X.a/; see [29, Corollary 11.24]. By this and [2, Theorem 3.3], we
check that:

Proposition 3.9 X has unobstructed deformations.

We also check that dimC H i.X; �
j
X
/D dimC H j .X; �i

X
/ for any i; j 2Z as follows.

We calculate H 0.X; �1
X
/D0 by H 1.X;C/D0 (Claim 3.6(i)) and the E1–degeneration.

We also have H 0.X; �2
X
/D0 since we obtain H 1.X;O�

X
/'H 2.X;Z/ by considering

the exponential exact sequence as in Claim 3.6. Thus, for i D 1; 2, since we have
H i.X;OX /D 0, we have the Hodge symmetry on H i.X;C/.

On the direct summands of H 3.X;C/, we have

H j .X; �
3�j
X

/'H 3�j .X; �
j
X
/

by the Serre duality and !X ' OX . By these, we have the required equality on
H 3.X;C/. Thus we cannot judge the nonprojectivity of X from the Hodge numbers.

It might be possible to show the @x@–lemma on X as in [17].

It may be interesting to study the fundamental group �1.X /, the second Chern class
c2.X /, etc. For the fundamental group, we have the following.

Proposition 3.10 X DX.a/ is simply connected.

Proof Let Vi � Xi be a tubular neighborhood of X12 for i D 1; 2, which can be
regarded as a �1–bundle over X12. Let U1 WD X1 [ V2 and U2 WD X2 [ V1. We
check that �1.X0/ D f1g by applying van Kampen’s theorem to the open covering
X0 D U1[U2.

Note that zX12 WD c�1
t .X12/!X12 is an S1–fibration and, from the homotopy exact

sequence, we see that �1. zX12/ is a cyclic group generated by the S1–fiber class. Let
zXi WD c�1

t .Xi/ for i D 1; 2 and consider a neighborhood zVi WD c�1
t .Vi/� zXi of zX12

for i D 1; 2. Let zU1 WD
zX1[

zV2, zU2 WD
zX2[

zV1 and zU12 WD
zU1\

zU2. We can regard
zV1[
zV2 as an annulus bundle over X12. By this, we see that zUi is homotopic to XinX12

for i D 1; 2. The following claim is important.
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Claim 3.11 Let X 0i WD Xi n X12 for i D 1; 2. Then we have �1.X
0
1
/ D f1g and

�1.X
0
2
/' Z=2Z.

Proof of claim We check that �1.X
0
2
/ is abelian by Nori’s result [27, Corollary 2.10],

as follows. By [36, page 311, Proposition], we see that �1.X
0
2
/' �1.L

�/, where L is
the total space of OX2

.X12/ and L� �L is the complement of the zero section. Hence
the homotopy exact sequence can be written as

�1.C
�/! �1.X

0
2/! �1.X2/! 1;

and this implies that �1.X
0
2
/ is abelian by �1.C

�/' Z and �1.X2/D f1g.

Thus we compute �1.X
0
2
/'H1.X

0
2
;Z/' Z=2Z by the Gysin long exact sequence

� � � !H2.X2;Z/!H0.X12;Z/!H1.X
0
2;Z/!H1.X2;Z/! � � �

as in [9, page 46, (2.13)].

Let E0j WD Ej n X12 for j D 1; : : : ; a and F 0 WD F n X12 be the open subsets of
�–exceptional divisors for the blowup � WX1!X2. Note that

.X 01/ n .E
0
2[ � � � [E0a[F 0/'X 02

since X1!X2 D P .3/ is the blowup along f1; : : : ; fa and the strict transform of Ca.
Note also that E0j and F 0 are C–bundle over the blowup centers f1; : : : ; fa and Ca,
respectively. Given these, we compute that �1.X

0
1
/D f1g by van Kampen’s theorem,

as follows. Let W 0j �X 0
1

be a tubular neighborhood of E0j for j D 1; : : : ; a.

We compute that

�1.X
0
1 n .E

0
2[ � � � [E0a[F 0//' �1.X

0
2/��1.W

0
1
nE0

1
/ �1.W

0
1/D f1g

as follows: W 0
1

and W 0
1
nE0

1
can be regarded as a �1–bundle and a .�1/�–bundle

over E0
1
, where .�1/� WD�1nf0g. We check that �1.W

0
1
nE0

1
/!�1.W

0
1
/ is surjective

and its kernel K ' Z maps surjectively to �1.X
0
2
/ by �� W �1.W

0
1
nE0

1
/! �1.X

0
2
/.

The latter surjectivity follows from a commutative diagram

H0.X12;Z/ // H1.X
0
2
;Z/ // 0

H0.E
0
1
;Z/ //

OO

H1.W
0

1
nE0

1
;Z/

OO

as in [9, page 46, (2.13)], since a generator of H0.E
0
1
;Z/ is sent to that of H1.X

0
2
;Z/.

Hence we see that X 0
1
n .E0

2
[ � � � [E0a[F 0/ is simply connected.

Similarly, we check that the fundamental group does not change if we add divisors
E0

2
; : : : ;E0a;F

0 �X 0
1
. In particular, we have �1.X

0
1
/D f1g.
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By Claim 3.11 and the isomorphism

�1.X /' �1. zU1/��1. zU12/
�1. zU2/' �1.X

0
1/��1. zX12/

�1.X
0
2/;

we obtain �1.X /D f1g, since we have the following claim:

Claim 3.12 The map �1. zU12/! �1. zU2/ is surjective.

Proof of claim Since we have zU2 D
zU12[ . zX2 n

zX12/, we have

�1. zU2/' �1. zU12/��1. zV2n zX12/
�1. zX2 n

zX12/:

Since zX2 n
zX12'X2 nX12DX 0

2
and zV2 n

zX12' V2 nX12DW V
0

2
, it is enough to show

the surjectivity of
.�V 0

2
/� W �1.V

0
2/! �1.X

0
2/:

V 0
2

is a .�1/�–bundle over X12 and �1.V
0

2
/ is a cyclic group, thus �1.X

0
2
/ and �1.V

0
2
/

are abelian. Hence the surjectivity of .�V 0
2
/� follows from the commutative diagram

H2.V2;Z/ //

��

H0.X12;Z/ //

��

H1.V2 nX12;Z/ //

��

0

H2.X2;Z/ // H0.X12;Z/ // H1.X2 nX12;Z/ // 0

with exact rows as in [9, page 46, (2.13)].

This completes the proof of Proposition 3.10.

An anonymous referee pointed out the following bimeromorphic unboundedness of
our examples.

Remark 3.13 This is based on the referee’s comment. Let a¤ a0 be positive integers.
Then X.a/ and X.a0/ are not bimeromorphic, which we prove as follows.

Suppose that they are bimeromorphic and let � WX.a/Ü X.a0/ be a bimeromorphic
map. Let � W zX ! X.a/ be a resolution of the indeterminacy of � which induces
a bimeromorphic morphism � W zX ! X.a0/. We see that � is an isomorphism in
codimension one since !X .a/ and !X .a0/ are trivial. Then we have the pushforward
homomorphism �� WD��ı�

� WPic X.a/!Pic X.a0/. We see that �� is an isomorphism
since � is an isomorphism in codimension one. Hence rk Pic X.a/D rk Pic X.a0/, and
this is a contradiction.
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Hence our examples show the bimeromorphic unboundedness of non-Kähler Calabi–
Yau 3–folds. We are not sure whether the examples of Clemens and Friedman are
bimeromorphically unbounded or not. (We do not know whether a bimeromorphic map
preserves the Betti number of non-Kähler Calabi–Yau 3–folds.)

3.3 On the nonprojectivity of X

In this section, we check the nonprojectivity of the SNC variety X0 and the Calabi–Yau
3–fold X , which are constructed in Theorem 3.4.

Hironaka [21] constructed a degeneration of a projective manifold to a proper manifold
which is nonprojective. Thus we cannot judge nonprojectivity of a general fiber from
nonprojectivity of a central fiber. We use the following lemma to see the nonprojectivity
of a general fiber of the smoothing.

Lemma 3.14 Let � W X !�1 be a semistable smoothing of a proper SNC variety X0

with !X0
' OX0

such that some fiber Xt of � over t ¤ 0 is a projective Calabi–Yau
n–fold. Assume that X0 has only two projective irreducible components X1 and X2,
and that X12 WD X1 \X2 is a simply connected Calabi–Yau .n�1/–fold. (Note that
X0 may not be projective.)

Then there exists a big line bundle L0 on X0 such that h0.Xi ;L0jXi
/ > 0 for i D 1; 2.

Proof We first need the following.

Claim 3.15 The restriction homomorphism  WH 2.X ;Z/!H 2.Xt ;Z/ is surjective
for t ¤ 0.

Proof of claim By the Clemens contraction ct W Xt ! X0 as in Theorem 2.9, we may
regard  as

c�t WH
2.X0;Z/!H 2.Xt ;Z/:

This is surjective since we have

H 1.X0;R
1.ct /�Z/D 0 and H 0.X0;R

2.ct /�Z/D 0:

Indeed, we have R2.ct /�ZD 0 since X0 has no triple point, and since X12 is simply
connected we see that R1.ct /�Z'ZX12

. Thus we can use the Leray spectral sequence
as in Claim 3.6.
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Since we have hi.X ;OX /D 0 and hi.Xt ;OXt
/D 0 for i D 1; 2, we have

PicX 'H 2.X ;Z/ and PicXt 'H 2.Xt ;Z/

by the exponential exact sequence. Let Lt be a very ample line bundle on Xt . By the
above and Claim 3.15, there exists a line bundle L on X such that LjXt

' Lt . We can
lift sections of Lt to L as follows.

Claim 3.16 The restriction H 0.X ;L/!H 0.Xt ;Lt / is surjective.

Proof of claim Since we have an exact sequence

(2) H 0.X ;L/!H 0.Xt ;Lt /!H 1.X ;L˝OX .�Xt //
ˆ
!H 1.X ;L/!H 1.Xt ;Lt /;

it is enough to show that ˆ is injective. We see that ˆ is surjective by H 1.Xt ;Lt /D 0.
We also see that H 1.X ;L/ is finite-dimensional. Indeed, H 1.�1; ��L/ D 0 and
H 0.�1;R1��L/ is finite-dimensional since R1��L is coherent and supported on the
origin. By these and OX .�Xt /'OX , we see that ˆ is an isomorphism, and therefore
injective.

By Claim 3.16, we can choose sections s0; : : : ; sM 2H 0.X ;L/ which lift a basis of
H 0.Xt ;Lt /. Let Z.sj /� X be the divisor defined by sj for j D 0; : : : ;M . Let

mi WD min
jD0;:::;M

fmultXi
.Z.sj //g for i D 1; 2;

L0 WD L˝OX .�m1X1�m2X2/:

Then we obtain sections s0
0
; : : : ; s0

M
2H 0.X ;L0/ induced by s0; : : : ; sM whose base

locus does not contain X1 and X2. Hence there exists s0 2H 0.X ;L0/ which does not
vanish identically on each Xi .

Now let L0 WD L0jX0
. Then we have nonzero sections s0jXi

2 H 0.Xi ;L0jXi
/ for

i D 1; 2. We also see that L0 is big since we have L0jXt
' Lt , and we check that

H 0.X ;L0˝m/!H 0.Xt ;L˝m
t / is surjective for m> 0, as in Claim 3.16. Thus L0 has

the required property.

Remark 3.17 There is a conjecture which states that any smooth degeneration of a
projective manifold is Moishezon; see [30, Conjecture 1.1] and also [31; 32]. We can
also ask whether a semistable degeneration of a projective manifold admits a big line
bundle as in Lemma 3.14.

We can conclude that X0 and X are both nonprojective by the following result.
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Proposition 3.18 Let X0 WDX0.a/ and X WDX.a/ be the SNC variety and the Calabi–
Yau 3–fold constructed in Theorem 3.4 for a> 0. Let L0 2 Pic X0 be a line bundle such
that h0.Xi ;Li/ > 0 for i D 1; 2, where Li WDL0jXi

. Also let Ej �X1 for j D 1; : : : ; a

be the exceptional divisor over the elliptic curve fj .

Then we have

L1 ' �
�OP.3/.a1; 0; 0/�

aX
jD1

bj Ej and L2 'OP.3/

�
a1�

aX
jD1

bj ; 0; 0

�
for some a1 � 0 and bj 2 Z. In particular , X0 does not admit a line bundle as in
Lemma 3.14, thus X0 and X are not projective.

Proof Recall that � W X1 ! P .3/ is the blowup of f1; : : : ; fa;Ca and X2 D P .3/,
where f1; : : : fa 2 jOS .1; 0; 0/j and Ca 2 jOS .16a2 � aC 4; 4 � 8a; 4C 8a/j. Let
F �X1 be the �–exceptional divisor over Ca. Then we can write

L1 D �
�OP.3/.a1; a2; a3/˝OX1

�
�

aX
jD1

bj Ej � cF

�
for some integers a1; a2; a3; b1; : : : ; ba; c. We can also write

L2 DOP.3/.a
0
1; a
0
2; a
0
3/

for some integers a0
1
, a0

2
, a0

3
. We see that ai ; a

0
i � 0 for all i since L1 and L2 are

effective.

Note that X0 is the union of X1 and X2 glued along anticanonical members Si 2 j�KXi
j

via an isomorphism
�a WD �

a
ı�jS1

W S1! S2:

Then we have
L1jS1

' .�a/
�L2jS2

and both sides can be written as

L1jS1
'OS1

�
a1�

aX
jD1

bj � c.16a2
� aC 4/; a2� c.4� 8a/; a3� c.4C 8a/

�
;

.�a/
�L2jS2

'OS1

�
a01C a02.4a2

� 2a/C a03.4a2
C 2a/;

a02.1� 2a/C a03.�2a/; a02.2a/C a03.1C 2a/
�
:

By comparing the 2nd and 3rd coordinates, we obtain

a2C c.8a� 4/D a02.1� 2a/C a03.�2a/;

a3� c.8aC 4/D a02.2a/C a03.1C 2a/:
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These imply that

c.8a� 4/D�a2C a02.�2aC 1/C a03.�2a/;(3)

c.8aC 4/D a3C a02.�2a/C a03.�2a� 1/:(4)

Now suppose that one of a2; a3; a
0
2
; a0

3
is positive. By equation (3), we obtain c � 0;

c D 0 is possible only when a2 D a0
2
D a0

3
D 0. Then we have a3 > 0, and this

contradicts (4). Hence we obtain c < 0. Moreover, by (3) and (4) we obtain

0> 4c D c.8aC 4/�
2a

2a� 1
c.8a� 4/D a3C

2a

2a� 1
a2C

1

2a� 1
a03 � 0:

This is a contradiction, and we see that a2 D a3 D a0
2
D a0

3
D 0. This implies that

c D 0 and that L1 and L2 are of the form stated.

We compute the algebraic dimension of the very general fiber X as follows.

Proposition 3.19 Let X D X.a/D Xt be a smooth fiber of a semistable smoothing
X .a/!�1 over t 2�1 n f0g, as in Theorem 3.4. Let a.X / be its algebraic dimension.

(i) X admits a surjective morphism  W X ! P1 whose general fibers are K3
surfaces.

(ii) X is not projective.

(iii) We have a.X /D 1 for a very general t 2�1.

Proof (i) Let H1 WD �
�O.1; 0; 0/ on X1 and H2 WDO.1; 0; 0/ on X2. These glue to

give a line bundle H0 2 Pic X0, which induces a morphism X0! P1. We calculate
that H 1.X0;H0/D 0.

Since we have H 2.X ;Z/'H 2.X0;Z/, there exists H 2 PicX such that HjX0
'H0.

We check that H 1.X ;H/D0 by H 1.X0;H0/D0 and the upper-semicontinuity theorem.
Thus we see that H 0.X ;H/!H 0.Xt ;Ht / is surjective for t 2�1 sufficiently close
to 0. Hence the line bundle Ht also induces a surjective morphism  t WX WD Xt ! P1.

We check that the general fiber X� of  t at � 2 P1 is a K3 surface as follows. For
i D 0; 1; 2, let Xi;� be the general fiber of the morphism Xi ! P1 induced by Hi .
We see that X1;� is isomorphic to a blowup of P1�P1 at 16 points, and X2;�'P1�P1.
Thus we compute that H 1.X0;�;O/D 0, and this implies that H 1.X�;O/D 0 by the
upper-semicontinuity. Hence, X� is a K3 surface.
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(ii) Suppose that some Xt is a projective Calabi–Yau 3–fold. By Lemma 3.14, there
exists a big line bundle L0 on X0 such that h0.L0jXi

/ > 0 for i D 1; 2. However, this
does not exist on X0.a/ by Proposition 3.18. This is a contradiction, and Xt is not
projective.

(iii) For M 2 PicX , the dimension h0.Xt ;Mt / for Mt WDMjXt
is constant for

very general t 2 �1 and h0.Xt ;Mt / � h0.X0;M0/. This follows from the upper
semicontinuity theorem and the fact that Pic X0 is countable.

Suppose that a.X / � 2. Then X admits an effective line bundle L with Kodaira
dimension �.L/� 2. Since the restriction homomorphism H 2.X ;Z/!H 2.Xt ;Z/ is
surjective, there exists L2PicX such that Lt WDLjXt

'L. Then we see that �.Lt 0/� 2

for very general t 0 2�1. Hence we obtain �.L0/� 2 and ��L¤ 0. Thus we see that
H 0.X ;L/DH 0.�1; ��L/¤ 0, since ��L is coherent. Now, for i D 1; 2, let

mi WDminfordXi
.s/ j s 2H 0.X ;L/ n f0gg

and L0 WDL˝OX .�m1X1�m2X2/. Then L0 admits a nonzero section which does not
vanish entirely on both X1 and X2. Thus we see that L0

0
WD L0jX0

satisfies the property
as in Proposition 3.18, and �.L0

0
/ � 1. This is a contradiction, since L0

0
should also

satisfy �.L0
0
/� 2.

Hence we obtain a.X /� 1. By this and (i), we obtain a.X /D 1.

Remark 3.20 Let us also check that X D Xt is not of class C for a very general t ,
that is, X is not bimeromorphic to a Kähler manifold. Suppose that X is of class C
and has a proper bimeromorphic map zX !X from a Kähler manifold zX . Since we
also have H 2. zX ;C/'H 1. zX ; �1

zX
/ by H 2. zX ;O zX /D 0DH 0. zX ; �2

zX
/, we see that

zX is projective by the Kodaira embedding theorem. Thus X is Moishezon and this
contradicts Proposition 3.19.

We do not know whether a Calabi–Yau 3–fold of algebraic dimension � 2 appears
as some fiber of the smoothing. Note that the Moishezon (or class C) property is not
stable under deformation [4; 25].
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