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Consider a sequence of Riemannian manifolds .M n
i ;gi/ whose scalar curvatures and

entropies are bounded from below by small constants Ri ; �i ���i . The goal of this
paper is to understand notions of convergence and the structure of limits for such
spaces. As a first issue, even in the seemingly rigid case �i ! 0, we will construct
examples showing that from the Gromov–Hausdorff or intrinsic flat points of view,
such a sequence may converge wildly, in particular to metric spaces with varying
dimensions and topologies and at best a Finsler-type structure. On the other hand, we
will see that these classical notions of convergence are the incorrect ones to consider.
Indeed, even a metric space is the wrong underlying category to be working on.

Instead, we will introduce a weaker notion of convergence called dp–convergence,
which is valid for a class of rectifiable Riemannian spaces. These rectifiable spaces will
have a well-behaved topology, measure theory and analysis. This includes the existence
of gradients of functions and absolutely continuous curves, though potentially there
will be no reasonably associated distance function. Under this dp notion of closeness, a
space with almost nonnegative scalar curvature and small entropy bounds must in fact
always be close to Euclidean space, and this will constitute our �–regularity theorem.
In particular, any sequence .M n

i ;gi/ with lower scalar curvature and entropies tending
to zero must dp–converge to Euclidean space.

More generally, we have a compactness theorem saying that sequences of Riemannian
manifolds .M n

i ;gi/with small lower scalar curvature and entropy bounds Ri ; �i � ��

must dp–converge to such a rectifiable Riemannian space X . In the context of the
examples from the first paragraph, it may be that the distance functions of Mi are
degenerating, even though in a well-defined sense the analysis cannot be. Applications
for manifolds with small scalar and entropy lower bounds include an L1–Sobolev
embedding and a priori Lp scalar curvature bounds for p < 1.
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1 Introduction

It is a well-known theme that understanding the structure of a manifold .M n;g/ under
restrictions on curvature is essentially equivalent to understanding the structure of
singular limits M n

i !X . During the early days of studying manifolds with bounded
curvature operator, it was sufficient to restrict the study to manifold limits X under C k;˛–
convergence; see Cheeger [14; 15]. When the analysis of spaces with lower and bounded
Ricci curvature began, it became necessary to expand this point of view to general
metric space limits X , and to discuss convergence in the Gromov–Hausdorff sense; see
Gromov [26]. This allowed for the necessary formation of singularities in possible limit
spaces. It also became quite important at this stage to distinguish between collapsed
and noncollapsed limits, where noncollapsing of the sequence M n

i can be understood
as the existence of a uniform lower bound on the volumes of balls. A key result in
this context, and indeed the beginning point for the regularity theory, is an �–regularity
theorem. This says that if the volume of a unit ball is close to that of the Euclidean ball,
then that ball must be close both topologically and geometrically to a Euclidean ball.

In this paper we study manifolds and sequences M n
i under lower bounds on scalar

curvature. The correct replacement for noncollapsing in this context is a lower bound
on the entropy � of the manifold, or almost equivalently one could ask for bounds
on the L1–Sobolev constant, though we will see there are unnatural aspects to that
assumption. Our goal is then to prove and understand the corresponding �–regularity in
this context: a statement which should say that if the scalar and entropy lower bounds
are small, then a ball should be close to a Euclidean ball.
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dp–convergence with entropy and scalar lower bounds 229

It is already understood from the work of Sormani [48] that there is an immediate
problem when dealing with lower scalar curvature bounds, namely the notion of
Gromov–Hausdorff closeness cannot be the correct one. The examples in [48] mimic
those from minimal surface theory, and show that small volume tentacles may appear
when only a lower scalar curvature bound is assumed. One possible fix for issues
like this is the intrinsic flat distance; see Sormani and Wenger [49]. We will see in
this paper that the problem is actually much worse. We will build examples — see
Theorems 1.12–1.14 and Section 9 — which show that even under small lower bounds
on scalar curvature and entropy, the Gromov–Hausdorff and intrinsic flat limits may
be completely wild. Wild here can include jumps in topology, dimension and the
formation of Finsler or worse types of geometries. Fundamentally, the issue at hand
is that distance functions simply do not behave well under lower scalar curvature and
entropy bounds, and therefore any notion of convergence which is based on the distance
function must correspondingly fail. From the correct perspective, this should not be
surprising as the distance function is closely related to the W 1;1 behavior of functions,
and it may simply be too much to ask that this remains uniformly controlled in such a
sequence. Indeed, it is now well understood from the study of RCD spaces1 that, said
correctly, W 1;1–control on the analysis is essentially equivalent to lower bounds on
Ricci curvature, and therefore one should almost expect distance functions to break
down in the context of only scalar curvature bounds.

In order to solve this problem we will introduce in this paper a new notion of conver-
gence, dp–convergence. The effect of this will be to take the required W 1;1–control
needed for convergence of distance functions, and reduce it to a required W 1;p–control
for this weaker notion of convergence. The notion of dp–convergence is based on
associating to a manifold, or more generally a rectifiable space, a natural family of
distance functions dp . As we will see, dp understands and controls the behavior of the
Sobolev space W 1;p, with d1 D d becoming the standard distance function. Let us
begin with a definition.

Definition 1.1 (dp–distance on manifolds) Given a Riemannian manifold .M n;g/

and a real number p 2 .n;1�, we define the dp;g–distance between any x;y 2M by

(1-1) dp;g.x;y/D dp.x;y/D sup
�
jf .x/�f .y/j W

Z
M

jrf jp dvolg � 1

�
:

1See Ambrosio, Gigli and Savaré [6], Bakry and Émery [9], Lott and Villani [38] and Sturm [50].
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230 Man-Chun Lee, Aaron Naber and Robin Neumayer

Remark 1.2 The concept of the dp–distance has made an appearance in the literature
previously for distinct reasons; for instance in [20], De Cecco and Palmer used it in the
study of Lipschitz n–manifolds and showed that ı.x;y/ WD limp!1 dp.x;y/ defined
a distance function on such spaces and coincides with the geodesic distance on smooth
Riemannian manifolds.

We will discuss this more precisely in Section 2.2, but let us observe that dp does
not need an underlying metric structure in order to be defined. A rectifiable structure,
which gives the ability to differentiate functions and integrate them, will be sufficient.
In particular, the functions dp are well-defined on rectifiable Riemannian spaces .X;g/.
These are precisely defined in Definition 2.2, but roughly are topological measure
spaces with a compatible rectifiable structure and Riemannian metric on the rectifiable
charts.

For such a rectifiable space X , it may be that dp.x;y/ D 0 for p sufficiently large,
and thus dp only defines a weak distance function. This will be possible even for
limits of manifolds under small lower scalar curvature and entropy bounds R; �� ��;
see Example 9.5. We will say X is dp–complete when it defines an honest distance
function whose topology is that of X ; see Section 2.2 for a larger account of the subtle
points which arise. A consequence of our main theorems is that for p � p.n; �/, limits
will be dp–complete, and indeed dp is actually very well behaved. In particular, such
limits X will be doubling spaces up to scale 1 with respect to the dp–distances.

Now that we have the dp–distance defined and the correct category of spaces to consider
it on, namely rectifiable spaces X with a Riemannian structure, let us consider their
convergence. As is usual let us begin with the compact case.

Definition 1.3 (dp–convergence) A sequence f.Xi ;gi/g of compact rectifiable Rie-
mannian spaces, in particular a sequence of compact Riemannian manifolds, converges
to a compact rectifiable Riemannian space .X;g/ in the dp sense if

(1-2) dmGH
�
.Xi ; dp;gi

; dvolgi
/; .X; dp;g; dvolg/

�
! 0:

Here dmGH denotes the measured Gromov Hausdorff distance between metric spaces.

Remark 1.4 One could also consider the intrinsic flat distance between the spaces
.Xi ; dp;gi

; dvolgi
/ and .X; dp;g; dvolg/. The main observation in this work is the

weakening of the usual distance with p D1 to p <1. We believe that a counterpart
of Theorem 1.7 below should hold with respect to the intrinsic flat distance between
the dp spaces, making use of the key estimates of Theorem 1.11 below.
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dp–convergence with entropy and scalar lower bounds 231

Remark 1.5 Even if a sequence f.Mi ;gi/g of Riemannian manifolds has a (geodesic)
Gromov–Hausdorff limit .Y; d/, the spaces X and Y need not even be topologically
equivalent.

Remark 1.6 Let us briefly mention that pointed convergence for noncompact spaces
is defined in a similar spirit as in the Gromov–Hausdorff case, however there is a subtle
point due to the behavior of dp at large distances. See Definition 2.39 for precision.

Throughout the paper we will let Bp;g.x; r/ denote the ball of radius r with respect
to dp. That is,

(1-3) Bp;g.x; r/D fy 2M W dp.x;y/ < rg:

1.1 Main �–regularity theorem

Let us now move toward our first main result of the paper. We begin by recalling that
the Perelman W–functional, introduced in [43], is defined for a function f 2 C1.M /

and real number � > 0 by

(1-4) W.g; f; �/D
1

.4��/n=2

Z
M

˚
�.jrf j2CR/Cf � n

	
e�f dvolg:

The Perelman entropy �.g; �/, which can be viewed as the optimal constant in a
log-Sobolev inequality at scale �1=2, is given by

(1-5) �.g; �/D inf
�
W.g; f; �/ W

1

.4��/n=2

Z
M

e�f dvolgD1; e�f=22W 1;2.M /

�
:

Finally, Perelman’s �–functional is given by

�.g; �/D inff�.g; � 0/ W � 0 2 .0; �/g;

and just guarantees that we are measuring the entropy at all scales below some point.
See Section 3.3 for more background. The Perelman entropy �.g; �/ of a complete
well-behaved Riemannian manifold .M;g/ is nonpositive for all � > 0. Moreover, if
the entropy is equal to zero for some � > 0, then .M;g/ is isometric to Euclidean
space. This rigidity statement is the basis of our first main result, which is perturbative
in nature.

Theorem 1.7 (�–regularity theorem) Let .M n;g/ be a complete Riemannian mani-
fold with bounded curvature and fix � > 0 and p � nC 1. There exists a ı D ı.n; �;p/
such that if

(1-6) R� �ı and �.g; 2/� �ı;
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232 Man-Chun Lee, Aaron Naber and Robin Neumayer

then for all x 2M , we have

(1-7) dGH
�
.Bp;g.x; 1/; dp;g/; .Bp;geuc.0; 1/; dp;geuc/

�
� �;

and for any 0< r � 1,

(1-8) .1� �/jBp;geuc.0; r/j � volg.Bp;g.x0; r//� .1C �/jBp;geuc.0; r/j:

Here j � j denotes the Euclidean volume. In particular , the measure dvolg on the metric
measure space .M; dp;g; dvolg/ is a doubling measure for all scales r � 1.

Remark 1.8 The assumption of (nonuniformly) bounded curvature is simply to control
degeneration at infinity of M, a local version of these statements would drop this
condition.

Remark 1.9 (L1–Sobolev constant) We may replace the entropy lower bound in
Theorems 1.7 by a rigid bound on the L1–Sobolev constant. Namely, we may replace
the assumption �.g; 2/ � �ı in (1-6) with the assumption that for all compactly
supported f W Bg.x; 1/!R with x 2M we have

(1-9)
�Z

M

jf jn=.n�1/

�.n�1/=n

� .1C ı/cn

Z
M

jrf j;

where cn is the sharp Sobolev constant on Euclidean space. However, we avoid focusing
on this because, as we will see, metric balls are badly behaved objects, and thus any
condition which used a metric ball may be more restrictive than it appears. The �–
entropy intrinsically understands the correct dp–distance, and thus �.g; 1/ becomes a
condition on the unit dp–scale, as opposed to the d D d1 scale.

Remark 1.10 (scaling) For any Riemannian manifold .M;g/, the rescaled metric
zg D r�2g satisfies

Bp;zg.x0; �/D Bg;p.x0; �r1�n=p/; Rzg D r�2Rg; �.g; 2r2/D �.zg; 2/:

If .M;g/ is closed or is well behaved at infinity (see eg [54]), then lim�!0 �.g; �/D 0.
In particular, for any such Riemannian manifold .M;g/, the hypotheses of Theorem 1.11
hold at some scale.

The proof of Theorem 1.7 depends on the following, which guarantees the existence
of W 1;p charts on an �–regularity ball. Further, one is able to get that for large but
finite p it is possible to control the W 1;p energies of limiting functions; this connects
to the perspective discussed above of dp–convergence as a type of convergence of
Sobolev spaces.
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dp–convergence with entropy and scalar lower bounds 233

Theorem 1.11 (Lp–estimates for the metric coefficients) Let .M n;g/ be a complete
Riemannian manifold with bounded curvature. Fix � > 0, � > 1 and p 2 Œ�;1/. There
exists ı D ı.n;p; �; �/ > 0 such that if

(1-10) R� �ı and �.g; 2/� �ı;

then for any x 2 M there exist an open set � � M containing x and a smooth
diffeomorphism  W�! B.0; 1/�Rn with  .x/D 0 satisfying

(1-11) =
Z

B.0;1/

j. �1/�g�geucj
p dy � � and =

Z
�

j �geuc�gjp dvolg � �:

Furthermore , for any f 2W 1;p.B.0; 1//, we have

.1� �/k �f kLp=�.�/ � kf kLp.B.0;1// � .1C �/k �f kL�p.�/;(1-12)

.1� �/kr �f kLp=�.�/ � krf kLp.B.0;1// � .1C �/kr 
�f kL�p.�/:(1-13)

The notation =
R
� u dvolg is used to denote volg.�/�1

R
� u dvolg. In (1-11), the nota-

tion j � j indicates the tensor norm with respect to geuc and g respectively.

1.2 Examples and counterexamples

We have been explaining from the beginning what can fail as one converges with
sequences of spaces with lower scalar curvature and entropy bounds. In particular, we
have discussed how the distance function itself is almost entirely uncontrollable. Let us
now make this precise, and in the process see that the dp–convergence in Theorem 1.7
cannot be replaced with Gromov–Hausdorff convergence or intrinsic flat convergence.

Theorem 1.12 (counterexample to Gromov–Hausdorff convergence) Fix n� 4 and
� > 0. There exists a sequence of metrics .Tn;gi/ on the n–dimensional torus with
ıi! 0 such that

(1-14) Rgi
� �ıi and �.gi ; 2/� ��;

and such that .Tn;gi/ converges in the Gromov–Hausdorff topology to a point , and in
the intrinsic flat topology to the zero current as i!1. On the other hand , the sequence
.Tn;gi/ converges to a flat torus .Tn;gflat/ in the dp sense for all finite p 2 ŒnC1;1/.

The example of Theorem 1.12 is given in Example 9.9. Preserving the lower scalar
curvature in the above example is not too challenging, but showing that the entropies
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234 Man-Chun Lee, Aaron Naber and Robin Neumayer

are well behaved takes quite a bit more work. Philosophically, this example is similar
to situations studied very recently by Allen and Sormani [5], without the lower scalar
curvature and entropy requirements; see also [4].

In fact, in Section 9, we construct a variety of other compact and noncompact examples
of sequences satisfying (1-14) such that the Gromov–Hausdorff and intrinsic flat limits
are not locally Euclidean. For example, we have the following.

Theorem 1.13 Fix n� 4. There exist a sequence of metrics .Rn;gi/ satisfying

(1-15) Rgi
� �

1

i
and �.gi ; 2/� �

1

i
:

that converge in the dp–sense to flat Euclidean space for any p 2 ŒnC1;1/, but whose
pointed Gromov–Hausdorff limit is .Rn; `1/, ie the taxicab metric on Euclidean space.

The example of Theorem 1.13 is given in Example 9.6. Theorems 1.12 and 1.13
demonstrate that one cannot replace dp–closeness with Gromov–Hausdorff or intrinsic
flat closeness in Theorem 1.7. Furthermore, the following theorem shows that the p for
which we establish dp–convergence in Theorem 1.7 cannot be taken arbitrarily large
for fixed ı.

Theorem 1.14 Fix n� 4 and ı > 0. There exists a sequence .Rn;gi/ that satisfies

(1-16) Rgi
� �ı and �.gi ; 2/� �ı;

and a singular metric g1 on Rn such that .Rn;gi/ converges in dp to .Rn;g1/, as a
rectifiable Riemannian space , for all p 2 ŒnC1;p0/ for some p0D p0.ı/, but does not
dp–converge to .Rn;g1/ for p � p0.

The example of Theorem 1.14 is given in Example 9.5.

1.3 Structure of limit spaces

The next main result of the paper is the following compactness result and structure
theorem for limit spaces. We show that under almost nonnegative scalar curvature and
entropy, we indeed have a rectifiable Riemannian limit X .
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Theorem 1.15 (structure of limit spaces) Let f.Mi ;gi ;xi/g be a sequence of com-
plete pointed Riemannian manifolds with bounded curvature and let p � nC 1. Then
there exists ı D ı.n;p/ > 0 such that if

(1-17) Rgi
� �ı and �.gi ; 2/� �ı;

then there exists a pointed rectifiable Riemannian space .X;g;x/, with X topologically
but not necessarily metrically a smooth manifold , such that :

(1) After passing to a subsequence , we have dp..Mi ;gi ;xi/; .X;g;x//! 0 in the
pointed sense of Definition 2.44.

(2) The space .X;g;x/ is W 1;p–rectifiably complete and dp–rectifiably complete ,
in the sense of Definitions 2.24 and 2.35, respectively.

The first part of the above theorem just tells us that there exists a rectifiable space X to
which the Mi converge. As we have emphasized, it may be that X does not have a well-
behaved metric structure and this convergence may not be in the Gromov–Hausdorff
or intrinsic flat sense. The second condition in the above theorem touches on some
subtle points that we have avoided in the introduction, and essentially tells us that X is
a well-behaved rectifiable space which behaves the way one might feel it should in a
reasonable scenario. In particular, the gradient of a function is indeed the coordinate
gradient that one would compute in rectifiable charts, and the metric dp generates the
topology of X . Note that for q� p, this may fail for dq .

1.4 Further results under lower scalar curvature and entropy

Finally, let us conclude by discussing some applications of the results to the underlying
structure of spaces with lower scalar curvature and entropy bounds. To begin, we obtain
on such spaces an a priori Lq bound for the scalar curvature for q < 1:

Theorem 1.16 (Lq scalar curvature estimates) Let .M n;g/ be a closed Riemannian
manifold and let � > 0 and q 2 .0; 1/ be fixed. There exists ı D ı.n; q; �/ > 0 such
that if

R� �ı and �.g; 2/� �ı;(1-18)

then we have

(1-19) =
Z

M

jRjq dvolg � �:
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Motivated by the above we conjecture the following:

Conjecture 1.1 Let .M n;g/ be a closed Riemannian manifold with R; �.g; 2/��A.
Then there exists B.n;A/ > 0 such that

(1-20) =
Z

M

jRj dvolg � B:

In our last main result we prove that Riemannian manifolds satisfying a uniform lower
bound on entropy and scalar curvature satisfy a Morrey–Sobolev embedding with a
uniform constant.

Theorem 1.17 (L1–Sobolev embedding) Let .M n;g/ be a complete Riemannian
manifold with bounded curvature and let p � nC 1 and q > n. There exists a ı D
ı.n;p; q/ > 0 and Cn;q > 0 such that if

R� �ı and �.g; 2/� �ı;(1-21)

then for all f 2W 1;q.M /, we have

(1-22) kf kL1.M / � Cn;q.krf kLq.M /Ckf kLq.M //:

More locally, for all x0 2M and f 2W
1;q

0
.Bp;g.x0; 1//, we have

(1-23) kf kL1.Bp;g.x0;1// � Cn;qkrf kLq.Bp;g.x0;1//:

In terms of the dp–distance we can upgrade this to a Hölder embedding: there exists
˛ D ˛.n; q/ 2 .0; 1/ such that

(1-24) jf .x/�f .y/j � Cn;q;pdp.x;y/
˛
krf kLq.Bp;g.x0;1//

for all x;y 2 Bp;g.x0; 1/.

Remark 1.18 The examples of Section 9 demonstrate that the Hölder embedding of
(1-23) cannot hold with the geodesic distance in place of the dp–distance.

The following theorem provides a type of stability for a theorem of Schoen and Yau [45]
and Gromov and Lawson [28], which states that a metric of nonnegative scalar curvature
on a torus must be flat. Stability for this rigidity theorem statement was conjectured
by Gromov in [27], with a more concrete formulation of the conjecture given by
Sormani in [48]. Progress toward this conjecture has been made in various cases. The
first developments were due to Gromov [27], also established by Bamler [10] using
Ricci flow, and showed that if a sequence of metrics gi on a torus that converge in C 0 to
a C 2 metric g also have Rgi

��1= i , then g is the flat metric. Using (regularizing) Ricci
flow, Burkhardt-Guim [11] extended this result to limiting metrics that are only C 0,
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and also proved a generalization of the rigidity result to C 0 metrics with nonnegative
scalar curvature in a weak sense. Further progress toward this conjecture, in the form
stated by Sormani in [48], has been made in the setting of warped product metrics [3]
by Allen, Hernandez-Vazquez, Parise, Payne and Wang, graphical tori [12] by Cabrera
Pacheco, Ketterer and Perales, and metrics that are conformal to the flat metric [2] by
Allen. We note that the hypotheses in Theorem 1.19 differ from those in the conjecture
of Sormani; most notably our assumption of an entropy lower bound takes the place of
the lower bound on the minA quantity there, and here stability is with respect to the
dp–distance rather than the intrinsic flat distance.

Theorem 1.19 Fix n� 2 and p � nC 1. There exists ı D ı.n;p/ and V0 D V0.n;p/

such that the following holds. For any V � V0, let .Mi ;gi/ be a sequence of compact
Riemannian manifolds , diffeomorphic to tori , with volgi

.Mi/� V and satisfying

(1-25) �.gi ; 2/� �ı and Ri � �
1

i
:

Then .Mi ;gi/ converges in the dp sense to a flat torus with �.g; 2/� �ı.
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2 Rectifiable Riemannian spaces and convergence

2.1 Rectifiable Riemannian spaces

We introduce precisely the notion of rectifiable Riemannian spaces, which are the
objects which arise as limits in the dp sense of Riemannian manifolds with uniform
lower bounds on scalar curvature and on the entropy.

Let X be a Hausdorff topological space equipped with a Borel measure m on X . We
will refer to .X;m/ as a topological measure space. We first define the notion of

Geometry & Topology, Volume 27 (2023)
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rectifiability of a topological measure space. Since these spaces are not equipped with
metrics, the rectifiable structure is provided via an atlas of charts with bi-Lipschitz
transition maps.

Definition 2.1 (rectifiable atlas) Let .X;m/ be a topological measure space, and
consider a collection of charts f.Ua; �a/ga2I , where Ua � Rn, �a W Ua! X is one-
to-one and continuous with continuous inverse on its image, and I is a countable
index set. For each a; b 2 I let us denote Ua;b � Ua \ �

�1
a .�b.Ub// � Rn. We say

that f.Ua; �a/ga2I is a rectifiable atlas for .X;m/ if:

(1) For each a; b 2 I such that Ua;b is nonempty, every point in Ua;b has Lebesgue
density one.

(2) For each a; b 2 I such that Ua;b is nonempty, the transition map

�ba � �
�1
b ı�a W Ua;b! Ub;a

is bi-Lipschitz.

(3) We have
m

�
X n

[
a2I

�a.Ua/

�
D 0:

(4) For each Ua we have that .��1
a /�m is absolutely continuous to the Lebesgue

measure.

Given a topological measure space .X;m/ equipped with a rectifiable atlas f.Ua; �a/g,
we may define a Riemannian structure on X by defining a (possibly degenerate)
Riemannian metric in the charts Ua. Naturally, we must ask that this metric is suitably
compatible with the rectifiable atlas and the measure. We call the resulting space a
rectifiable Riemannian space.

Definition 2.2 (rectifiable Riemannian space) Let .X;m/ be a topological measure
space. We say that .X;m/ has a rectifiable Riemannian structure if there is a rectifiable
atlas f.Ua; �a/ga2I on .X;m/ together with a collection of matrix-valued functions
ga W Ua!Rn�n such that:

(1) For each x 2 Ua, ga.x/ is a positive definite symmetric matrix such that

sup
x2Ua

kgakCkg
�1
a k � Ca;

and ga is continuous on Ua.
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(2) fgaga2I satisfies the compatibility condition: for almost every x 2 Ua;b , �ba is
differentiable and ga D �

�
ba

gb at x. More precisely, we have

.ga/ij
ˇ̌
x
D
@�˛

ba

@xi

@�
ˇ

ba

@xj
.gb/˛ˇ

ˇ̌̌̌
�ba.x/

:

(3) The measure ��a m on Ua is given by

��a mD
p

det ga dx:

We say that fgaga2I is the coordinate expression of a rectifiable Riemannian metric g

on X and call .X;g/ a rectifiable Riemannian space.

Remark 2.3 For condition (1), the continuity assumption is only made for convenience.
Indeed, since Ua is not necessarily an open set in Rn, by the Lebesgue differentiation
theorem one can always remove an arbitrarily small set in Ua so that the continuity
holds under the L1 condition.

2.1.1 Examples of rectifiable Riemannian spaces One can imagine a variety of
ways in which a rectifiable Riemannian space can degenerate. We will first work our
way through some basic examples which explore this. This will give some first intuition
on what kind of structure is needed to avoid this. Future sections will explore examples
that might arise as limits, which will tell us when these degeneracies can and cannot be
avoided.

Example 2.4 Any smooth Riemannian manifold .M;g/ is a rectifiable Riemannian
space.

With regard to Example 2.4, observe that even for a smooth Riemannian manifold
.M;g/ a given rectifiable atlas may only cover M up to a set of measure zero:

Example 2.5 Let X D Rn with geuc the Euclidean metric, and let m D dx be the
Lebesgue measure. Consider the rectifiable atlas f.U1; �1/; .U2; �2/g where

U1 D f.x1; : : : ;xn/ W x1 > 0g and U2 D f.x1; : : : ;xn/ W x1 < 0g

are complementary open half-spaces and �i is the identity chart restricted to Ui for
iD1; 2. Then .Rn;geuc/ is a rectifiable Riemannian space with respect to this rectifiable
atlas.

Example 2.6 Any stratified Riemannian manifold X is a rectifiable Riemannian space.
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Example 2.7 As a concrete case of Example 2.6, let X �R2 be a countable union of
lines f`igi2N passing through the origin, and let m be defined by mj`i

DH1j`i
. Define

gj`i
DgR2 j`i

and let f.Rnf0g; �i/gi2N be the rectifiable atlas with �i WRnf0g!`inf0g

defined via the obvious isometric embedding. Then .X;g/ is a one-dimensional
rectifiable Riemannian space.

Example 2.8 Let .X n; d;m/ be a metric measure space which is also a noncollapsed
RCD.N;K/ space, that is, a metric measure space with lower bounds on the Ricci
curvature in the generalized sense. Then it follows from [40] that X is a rectifiable
Riemannian space.

Due to the flexibility, we can also allow the metric tensor to be mildly singular. Let us
consider some examples of this.

Example 2.9 (degenerate metric on Rn) Let X DRn and consider the metric defined
by g D

Pn
iD1 fi.x/

2.dxi/2, where each fi is a smooth nonnegative function on Rn

such that the set †D
Sn

iD1fx W fi.x/D 0g has Lebesgue measure zero. Further let
mD
p

det g dx be the induced measure. Consider the rectifiable atlas on the topological
measure space .Rn;m/ given by f.Ua; �a/ga2N where

Ua D

n\
iD1

fx 2Rn
W a�1

� fi � ag

and �a is the identity chart on Rn restricted to Ua. Then, with respect to this rectifiable
atlas, .Rn;g/ is a rectifiable Riemannian space.

An important feature of Example 2.9 is that, while the geodesic distance gives rise
to a metric space structure .X; d/, the metric space may not even be topologically
equivalent to Rn, as seen in the following example.

Example 2.10 As a special case of Example 2.9, consider the rectifiable Riemannian
space .R2;g/ where gD dx2Cjxj2 dy2. Let dg be the distance function with respect
to g, ie dg.x;y/ D inf


R 1
0 j P
 .t/j dt , where the infimum is taken among all curves


 with 
 .0/D x and 
 .1/D y. Then we see that dg.p1;p2/D 0 for all p1;p2 2 `

where `D f.x;y/ W x D 0g. In particular, the metric space .R2; dg/ collapses ` to a
point and is not topologically equivalent to R2. We will examine the dp–distance for
this example in Section 2.2.
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In Section 9, we will construct rectifiable Riemannian metrics that are qualitatively
similar to Examples 2.9 and 2.10, which arise as limits of smooth Riemannian manifolds
with uniform lower bounds on scalar curvature and entropy.

2.1.2 W 1;p spaces on rectifiable Riemannian spaces We would like to use the
rectifiable structure of a space in order to do analysis. In order to do this, we need to
make sense of W 1;p functions in our context, which means being able to take gradients
of functions and look at their norms. Ideally, we would want to use the rectifiable
charts in order to do this in coordinates. Realistically, one has to be quite careful about
this. A function might be perfectly differentiable in every coordinate chart, but not
really be a W 1;p function as its gradient may have a distributional component, as we
see in the following example.

Example 2.11 Consider .Rn;geuc/ with the rectifiable atlas f.U1; �1/; .U2; �2/g com-
prising two open half-spaces as in Example 2.5. The function f WRn!R defined by
f .x/D 0 if x1 < 0 and f .x/D 1 if x1 � 0 clearly does not have gradient in Lp.Rn/,
since its distributional gradient is a singular measure supported on fx1 D 0g. However,
letting fa D �

�
af for aD 1; 2, we have gij@ifa@jfa � 0 for all x 2 Ua for aD 1; 2.

In order to deal with this issue, we will follow a classical approach from metric measure
spaces (see for instance [29, Sections 5–7]) to build the Sobolev space theory by
considering the behavior of functions along curves. The key is that these ideas adapt
themselves very well to this context, as in the end, even when no a priori distance
function is available, the notion of an absolutely continuous curve and the behavior of
a function along it is available and can be studied.

Let us begin by discussing the notion of an absolutely continuous curve on a rectifiable
Riemannian space. In the setting of a smooth manifold or a metric measure space,
the theory of Sobolev spaces can be built up by considering the behavior of functions
along rectifiable curves. In these settings, a rectifiable curve is defined as one with
finite length, where length is defined via approximation by polygonal curves. This
definition is independent of parametrization, and every rectifiable curve in a smooth
Riemannian manifold or a metric space admits an absolutely continuous (in fact,
Lipschitz) parametrization, namely the arc-length parametrization. In practice, it is this
absolutely continuous parametrization that is used in the Sobolev space theory.

Moving to the context of rectifiable Riemannian spaces, there are two major factors that
must be taken into account when determining the appropriate class of curves along which
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to study the behavior of functions. First, curves must be appropriately compatible
with the rectifiable atlas on the space in order to avoid the difficulty illustrated in
Example 2.11. Second, the absence of a distance function prohibits us from speaking
about the length of a polygonal curve, and thus of considering rectifiable curves in the
sense described above. Instead, we must restrict our attention to absolutely continuous
parametrizations of curves. To be more specific about these two considerations, the
definition of an absolutely continuous curve in a rectifiable Riemannian space is given
in Definition 2.12 below.

Let .X;g/ be a rectifiable Riemannian space with rectifiable atlas f.Ua; �a/ga2I , and
denote the singular part of X by X s DX n

S
a Ua. This may or may not correspond

to topological singularities of the space.

Definition 2.12 (absolutely continuous curves) Let 
 W Œ˛; ˇ�!X be a continuous
curve and define IaD


�.�a.Ua// for each a2I. We say that 
 is absolutely continuous
if the following properties hold:

(a) 
 �.X s/� Œ˛; ˇ� is a countable set.

(b) For every � > 0, there exists ı > 0 such that if f.si ; ti/g
1
iD1

is a collection of
disjoint intervals in Œ˛; ˇ� such that for each i we have si ; ti 2 Iai

for some ai 2 I
and

P1
iD1 jsi � ti j< ı, then

(2-1)
1X

iD1

j
ai
.si/� 
ai

.ti/jga.
 .si // < �:

Some further discussion is in order about Definition 2.12. As we saw in Example 2.11,
part (a) of the definition is necessary to guarantee that the behavior of an absolutely
continuous curve 
 can be entirely reflected in the charts of its rectifiable atlas, since
the rectifiable charts may only cover .X;g/ up to a set of measure zero. Together with
the assumption that 
 is continuous, part (a) ensures that there is no contribution to the
singular part of the distributional derivative of 
 on the set 
 �.X s/, and in particular
eliminates the issue illustrated in Example 2.11:

Example 2.13 In Example 2.11, the curve 
 .t/ D .t; 0; : : : ; 0/ is not an absolutely
continuous curve in the sense of Definition 2.12 because it violates condition (a).

Part (b) of Definition 2.12 is a replacement of the classical notion of a curve with finite
length, as one typically takes the supremum over lengths of polygonal approximations
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to the curve. As we noted above, in the context of rectifiable Riemannian spaces this
notion is unsuitable as one does not have a notion of a distance function with which to
measure the length. Instead, we will see that condition (b) guarantees that the curve is
absolutely continuous in each chart in a suitably uniform sense.

Note that Definition 2.12 is parametrization dependent, as it requires an absolutely
continuous parametrization. This is not restrictive, as on a smooth Riemannian manifold
with a classical atlas of charts, every rectifiable curve in the classical sense admits
a reparametrization, namely its arc-length parametrization, which is an absolutely
continuous curve in the sense of Definition 2.12.

The following lemma provides some basic consequences of the Definition 2.12 that
further clarify this notion of absolutely continuous curve and how it fits into the classical
notion on smooth spaces.

Lemma 2.14 Let 
 W Œ˛; ˇ�! X be an absolutely continuous curve in the sense of
Definition 2.12 above. Then the following properties hold.

(1) For each a 2 I, the function 
a D �
�1
a ı 
 W Ia ! Ua is differentiable for a.e.

s 2 Ia. Here we again let Ia D 

�.�a.Ua//� Œ˛; ˇ�.

(2) For all � > 0, there exists ı > 0 such that if S � Œ˛; ˇ� with jS j < ı, thenR
S j P
 jg < �.

(3) If .X;g/ is a smooth Riemannian manifold , then the length of 
 is given by
L.
 /D

R ˇ
˛ j P
 jg dt .

Remark 2.15 In Lemma 2.14(2) and (3) and in the sequel, we let j P
 jg �
p

g. P
 ; P
 /,
which is well-defined for a.e. t 2 Œ˛; ˇ� by Lemma 2.14(1) and via the rectifiable atlas
f.Ua; �a/ga2I .

Remark 2.16 Having in mind Lemma 2.14(3), we define the length of an absolutely
continuous curve 
 W Œ˛; ˇ�!X in a rectifiable Riemannian space by L.
 /D

R ˇ
˛ j P
 jg.

One can check that this notion is independent of Lipschitz reparametrizations.

Proof of Lemma 2.14 We first prove (1). Fix a2I. Because ��1
a is continuous, we see

that 
a W Ia!Ua satisfies the absolute continuity property (2-1) for endpoints si ; ti 2 Ia;
thus 
a extends to a continuous function x
a W

xIa !
xUa. Moreover, the complement

Œ˛; ˇ� n xIa of xIa is relatively open in Œ˛; ˇ� and therefore comprises a countable union
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of disjoint relatively open intervals . j̨ ; ǰ / in Œ˛; ˇ�. We may therefore extend x
a to
a continuous curve z
a W Œ˛; ˇ�!Rn by letting z
a interpolate linearly between x
a. j̨ /

and x
a. ǰ / for each j 2N.

To prove (1), we will show that the curve z
a W Œ˛; ˇ�!Rn is a uniformly continuous
curve on Rn. More specifically, we claim that for any � > 0, there exists ı0 > 0 such
that for any disjoint collection of intervals fŒsi ; ti �g

1
iD1

such that
P1

iD1 jsi � ti j < ı0,
we have

(2-2)
1X

iD1

jz
 .si/� z
 .ti/jeuc � �:

It will follow immediately from this absolute continuity of z
 that z
 is differentiable
for a.e. t 2 Œ˛; ˇ� and so in particular that 
 is differentiable for a.e. t 2 Ia, proving (1).

Fix � > 0, let ı0 > 0 be a fixed number to be determined within the proof, and consider
a disjoint collection of intervals fŒsi ; ti �g

1
iD1

in Œ˛; ˇ� such that
P1

iD1 jsi � ti j< ı0. Up
to refining the collection of intervals (which can only increase (2-2)), we may assume
for each i 2N that si ; ti either both lie in xIa or both lie in Œ˛; ˇ� n xIa D

S1
jD1Œ j̨ ; ǰ �.

So, subdividing the index set N by letting

(2-3) J0 D fi 2N W si ; ti 2 xIag and J1 D

�
i 2N W si ; ti 2

1[
jD1

Œ j̨ ; ǰ �

�
;

we will establish (2-2) by showing thatX
i2J0

jz
 .si/� z
 .ti/jeuc �
1
2
�;(2-4)

X
i2J1

jz
 .si/� z
 .ti/jeuc �
1
2
�:(2-5)

Recall that there exists Ca > 0 such that

(2-6) C�1
a ga � geuc � Caga

in Ua. So, (2-4) follows directly from this fact and (2-1), provided we take ı0 � ı1,
where ı1 > 0 is a number small enough that (2-1) holds with �=4Ca in place of �. In
order to establish (2-5), we further subdivide the index set J1 in the following way.
Since

P1
jD1 j ǰ � j̨ j � jˇ�˛j, there exists J0 such that

P1
jDJ0

j ǰ � j̨ j � ı1. Up
to further refinement of our collection of intervals, we may assume that for each i 2 J1,
both endpoints si and ti lie in

SJ0�1
jD1

Œ j̨ ; ǰ � or both endpoints lie in
S1

jDJ0
Œ j̨ ; ǰ �.
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So we let

(2-7)

J2 D

�
i 2N W si ; ti 2

J0�1[
jD1

Œ j̨ ; ǰ �

�
� J1;

J3 D

�
i 2N W si ; ti 2

1[
jDJ0

Œ j̨ ; ǰ �

�
� J1;

so that J2 [ J3 D J1. We establish (2-5) by bounding the sums over J2 and J3

separately, starting with J3. By the triangle inequality and the piecewise linear way
that z
 was defined on Œ˛; ˇ� n xIa, we see that

(2-8)
X
i2J3

jz
 .si/� z
 .ti/jeuc �

1X
jDJ0

jz
 . j̨ /� z
 . ǰ /jeuc:

Then, since j̨ ; ǰ 2
xIa, we may apply (2-6) and (2-1) to find that

(2-9)
1X

jDJ0

jz
 . j̨ /� z
 . ǰ /jeuc �
1
4
�

provided ı0 � ı1, with ı1 as above. Together, (2-8) and (2-9) show that

(2-10)
X
i2J3

jz
 .si/� z
 .ti/jeuc �
1
4
�:

Now, to bound the analogous summation over J2, notice that the linear segment of z

defined on Œ j̨ ; ǰ � is absolutely continuous for each j D 1; : : : ;J0. Since there are
finitely many such intervals, we may find ı2 > 0 such that if ı0 � ı2, then

(2-11)
X
i2J2

jz
 .si/� z
 .ti/jeuc �
1
4
�:

Finally, choose ı0 � minfı1; ı2g. Then together (2-11) and (2-10) prove (2-5). This
shows that z
 is an absolutely continuous curve on Rn and thereby establishes (1).

Before moving to the proof of (2), observe that as a consequence of (1), we may define
j P
ajga

D
p

ga. P
a; P
a/ for a.e. t 2 Ia, and we have

(2-12) lim
s!t

jz
a.t/� z
a.s/jga.t/

js� t j
D j P
a.t/jga.t/

for each such t . It is easily checked that this definition is independent of a, and thus
we may define j P
 jg for a.e. t 2 Œ˛; ˇ�.
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Now we establish (2). The main idea will be to use (2-12) to relate the integral of j P
 jg
to the absolute continuity assumption (2-1). Fix � > 0 and let ı > 0 be a fixed number,
to be specified within the proof. Fix a measurable set S � Œ˛; ˇ� with jS j< ı, and let
fSaga2I be a collection of pairwise disjoint subsets of S with Sa � Ia for each a 2 I
such that

ˇ̌
S n

S
a2I Sa

ˇ̌
D 0, z
a is differentiable for every t 2 Sa, and every point of

Sa is a density point of Ia.

In order to make use of (2-12), we must show that the limit in (2-12) is uniform on
a large subset of each Sa. More specifically, we claim that for any � > 0, there exist
r� > 0 and a measurable set S

�
a � Sa with jS�a j � .1��/jSaj such that if t 2 S

�
a , then

(2-13) j P
a.t/jga.t/� ��
jz
a.t/� z
a.s/jga.t/

jt � sj
� j P
a.t/jga.t/C �

for all s 2 Sa with jt � sj< r�. Indeed, let

(2-14) R.s; t/D

ˇ̌̌̌
jz
a.t/� z
a.s/jga.t/

jt � sj
� j P
a.t/jga.t/

ˇ̌̌̌
:

For each fixed t 2 Sa, we have lims!t R.s; t/D 0. So, if we define the sequence of
functions �k.t/D supfjR.s; t/j W s2Sa; js�t j<1=kg, we see that �k.t/!0 pointwise
as k!1. Applying Egorov’s theorem, for any �> 0, there exists a measurable set S

�
a

such that jSa n S
�
a j � �jSaj and �k.t/! 0 uniformly on S

�
a . In particular, letting

r� D 1=k for k chosen sufficiently large, we see that jR.s; t/j � � for all t 2 S
�
a . This

establishes the claim.

Next, for each a 2 I, we aim to estimate the integral of j P
 j over S
�
a . Consider a

collection of disjoint intervals fIa;i D Œsi ; ti �g
1
iD1

covering S
�
a with endpoints in Sa

such that jIa;i j< r� for each i and such that
P

i jIa;i j � .1C �/jS
�
a j. For each i , let

yti 2 S
�
a \ Ia;i be a point such that

(2-15) .1C �/j P
a.yti/jga.yti /
� supfj P
a.t/jga.t/ W t 2 S�a \ Ia;ig:

At least one of the endpoints of Ia;i has distance at least 1
2
jIa;i j from yti ; without loss

of generality suppose it is si . So, thanks to (2-13), we find that for each i ,

(2-16)
Z

S
�
a\Ia;i

j P
a.t/jga.t/ dt � .1C�/jIa;i j j P
a.yti/jga.yti /

� .1C�/jIa;i j
jz
a.yti/� z
a.si/jga.yti /

jsi�yti j
C.1C�/�jIa;i j

� 2.1C�/jz
a.yti/� z
a.si/jga.yti /
C.1C�/�jIa;i j

D 2.1C�/j
a.yti/�
a.si/jga.yti /
C.1C�/�jIa;i j:
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The final equality follows from the definition of z
 and the fact that yti ; si 2 Sa � Ia.
Consequently, summing up over a and i , we find that

(2-17)
X
a2I

Z
S
�
a

j P
 j �
X
a2I

1X
iD1

Z
S
�
a\Ia;i

j P
 j

�

X
a2I

1X
iD1

�
2.1C �/j
a.yti/� 
a.si/jC .1C �/�jIa;i j

�
� 2.1C �/�C .1C �/2�ı;

where in the final inequality we have applied (2-1), again using that yti ; si 2 Sa � Ia.

Finally, we send �! 0. The right-hand side of (2-17) tends to 2�, while, making use of
the dominated convergence theorem, we see that the left-hand side converges to

R
S j P
 j.

We therefore see that (2) holds. We omit the proof of (3) since it is standard.

Following the classical approach in metric measure spaces, we next want to use our
absolutely continuous curves to define the notion of a p–weak upper gradient of a
function. We will see that most of the Sobolev theory is built up in an identical fashion
to the metric measure space setting.

To begin, we need a notion of a collection of curves that have p–measure zero, an idea
first introduced by Ahlfors and Beurling in [1] and further developed by Fuglede in [23]
in the Euclidean and Riemannian settings. To this end, let M denote the collection
of all absolutely continuous curves on .X;g/. For 1 � p <1, we say that a family
of curves � �M has Modp.�/ D 0 if there exists a nonnegative Borel measurable
function f 2Lp.X / such that

R

 f DC1 for every 
 2 � . Here and in the sequel,

we use the notation
R

 f to mean

(2-18)
Z



f WD

Z ˇ

˛

f .
 .t//j P
 jg dt:

A property is said to hold for p–a.e absolutely continuous curve if it holds for every
curve in M n� where Modp.�/D 0. For the corresponding definition of families of
curves with Modp.�/D 0 in the metric measure space context; see [29, Definition 5.1]
and the equivalent formulation of the definition given in [29, Theorem 5.5].

It follows directly from the definition that for any nonnegative Borel measurable function
f 2Lp.X /, then

R

 f <1 for p–a.e. absolutely continuous curve. In a similar vein,

the following lemma shows that convergent sequences in Lp.X / converge along p–a.e.
absolutely continuous curve.
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Lemma 2.17 (cf Theorem 5.7 of [29]) Fix 1� p <1. Let uk WX !R[f˙1g be
a sequence of Borel measurable functions converging in Lp.X / to a Borel measurable
function u WX !R[f˙1g. Up to a subsequence ,

(2-19)
Z b

a

juk �ujj P
 jg dt ! 0

as k!1 for all 
 2M n� , where Modp.�/D 0.

Lemma 2.17 was shown in the context of metric measure spaces in [29, Theorem 5.7].
In our setting, the proof carries over without modification.

Having in hand the notions of absolutely continuous curves and families � of absolutely
continuous curves with Modp.�/D0, we are now in a position to define upper gradients
and p–weak upper gradients of functions u WX!R. The notion of weak upper gradient
was first introduced by Heinonen and Koskela in [34], and the definition we give here
is analogous to [29, Definition 6.1].

Definition 2.18 (upper gradients and p–weak upper gradients) Let u WX !R and
G W X ! Œ0;1� be Borel measurable functions. We say that G is an upper gradient
for u if

(2-20) ju.
 .a//�u.
 .b//j �

Z



G

for every absolutely continuous curve 
 W Œa; b�!X . For 1� p <1, we say that G is
a p–weak upper gradient for u if the upper gradient condition (2-20) holds for p–a.e.
absolutely continuous curve 
 W Œa; b�!X .

The following example shows that this is a natural notion of gradient.

Example 2.19 Consider Euclidean space as a rectifiable Riemannian space with the
rectifiable atlas comprising only the identity chart. For a smooth function u WRn!R,
the classical gradient jruj is an upper gradient for u.

Furthermore, we note that the potential issues highlighted by Example 2.11 are elimi-
nated with respect to this definition.

Example 2.20 Consider the rectifiable Riemannian space and the function f defined
in Example 2.11. We see clearly that G D 0 is not a p–weak upper gradient for f ,
since the upper gradient condition (2-20) fails for any curve that crosses the hyperplane
fx1 D 0g. In fact, considering the family � of absolutely continuous curves of the
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form 
 .t/D .0;x0/C te1 for t 2 .��; �/, we easily see that f has no p–weak upper
gradient in Lp.X /.

Now, let zW 1;p.X / be the collection of all Borel measurable functions u WX !R such
that u is Lp integrable and u has a p–weak upper gradient G 2Lp.X /. The Sobolev
space W 1;p.X / on a rectifiable Riemannian space is defined in the following way,
following the definition first introduced by Shanmugalingam in [46] in the context of
metric measure spaces and presented in Definition 7.1 of [29]. We note that a closely
related definition of Sobolev spaces on a metric measure space was given by Cheeger
in [16].

Definition 2.21 For any u 2 zW 1;p.X /, we define

(2-21) kukW 1;p.X / D kukLp.X /C inf
G
kGkLp.X /;

where the infimum is taken over all p–weak upper gradients G of u. We define the space
W 1;p.X /D zW 1;p.X /=�, where u� v for u; v 2 zW 1;p.X / if ku� vkW 1;p.X / D 0.

Remark 2.22 One subtlety of Definition 2.21, which is also present in the analogous
metric measure space setting, is that it is possible to modify a function u 2 zW 1;p.X /

on a set of m measure zero to obtain a function zu that is not in zW 1;p.X /. For instance,
on Euclidean space, consider the functions u� 0 in W 1;p.Rn/ and zuD �E , where
E is the set of all rational points in Rn. Then zu has no p–weak upper gradient in Lp .
This subtlety explains why some of the statements in Proposition 2.23 below require
the choice of a certain representative for an Lp function. However, if u; zu 2 zW 1;p.X /

and uD zu m–a.e., then u and zu define the same element in W 1;p.X /.

From this point, we can establish a number of basic properties of the space W 1;p.X /

showing that this space possesses many of the important features of Sobolev spaces
in smooth settings, which we collect in the following proposition. The analogous
properties are established in the metric measure space setting in [29, Section 7]. In fact,
the proofs there can be carried over almost verbatim, with only the modification being
the distinction between the use of absolutely continuous curves in our setting as opposed
to rectifiable curves in the setting of metric measure spaces. For this reason, we omit the
proofs and instead point the reader to the corresponding statements in [29, Section 7].
Properties (1)–(3) and (5) were originally proven by Shanmugalingam [46], and (4) was
established by Cheeger in [16] for p > 1 and Hajłasz [29] for p D 1.
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Proposition 2.23 (basic properties of the Sobolev space W 1;p.X /) Let .X;g/ be a
rectifiable Riemannian space and fix 1< p <1. Then the following properties hold :

(1) Closedness (cf [29, Lemma 7.8]) Suppose fuig
1
iD1

; fGig
1
iD1

are sequences
in Lp.X / such that ui and Gi converge weakly to u 2Lp.X / and G 2Lp.X /,
respectively. If Gi is a p–weak upper gradient of ui for each i 2N, then there is
a representative of u in Lp such that G is a p–weak upper gradient of u.

(2) Lower semicontinuity (cf [29, Corollary 7.10]) Let ui 2W 1;p be a bounded
sequence converging weakly in Lp.X / to u. Then there is a representative of u

such that u 2W 1;p.X / and

(2-22) kukW 1;p.X / � lim inf
i!1

kuikW 1;p.X /:

(3) Banach space (cf [29, Theorem 7.12]) The space W 1;p.X / is a Banach space.

(4) Minimal p–weak upper gradient (cf [29, Theorem 7.16]) There exists a
minimal p–weak upper gradient Gu 2Lp.X / in the sense that Gu �G m–a.e.
for every p–weak upper gradient G 2Lp.X /.

(5) Smooth spaces (cf [29, Theorem 7.13, Corollary 7.15]) Suppose .X;g/ is
a smooth Riemannian manifold , then W 1;p.X / coincides with the standard
Sobolev space of X . Moreover , the norm of gradient vector jrujg is the least
p–weak upper gradient for u 2W 1;p.X /.

Thanks to Proposition 2.23, for any u 2W 1;p.X / we may write

(2-23) kukW 1;p.X / D kukLp.X /CkGukLp.X /;

where Gu is the least p–weak upper gradient of u.

Without imposing any additional structure, the space W 1;p on a rectifiable Riemannian
space may be trivial. Moreover, as we saw in Example 2.11, the usual coordinate
expression for the norm of the gradient may not be meaningful. For this reason,
we introduce the notion of rectifiable Riemannian spaces that are W 1;p–rectifiably
complete, that is, spaces for which the space W 1;p is sufficiently large and the minimal
p–weak upper gradient coincides with the derivative in charts almost everywhere.

Definition 2.24 (W 1;p–rectifiable completeness) Fix p > n. We say that .X;g/ is
W 1;p–rectifiably complete if the following hold:

(a) W 1;p.X / is dense in Lp.X /.
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(b) For all u2W 1;p.X / and a2 I , the function uaD�
�
a u WUa!R is differentiable

a.e. and

Gu.�a.x//D jrujg �
p

g�1
a .@ua.x/; @ua.x//

for ��a m–a.e. x 2 Ua. Here, @ua denotes the Euclidean gradient of ua.

Example 2.25 A smooth Riemannian manifold is W 1;p–rectifiably complete for any
p 2 .n;1/.

Example 2.26 It is easy to check that the rectifiable Riemannian space of Example 2.7
is W 1;p–rectifiably complete for any p 2 .n;1/.

Example 2.27 For ˛ > 0, consider the rectifiable Riemannian space .R2;g˛/, where
g˛ D dx2C jxj2˛ dy2. This is a generalization of Example 2.10 and a special case
of Example 2.9. Fix p > 2. There exists ˛ D ˛.p/ 2 .0; 1=2p/ such that .R2;g˛/ is
rectifiably complete; the proof of this fact is a special case of the proof of Proposition 8.5
in Section 8.2.

Example 2.28 Thanks to Theorem 1.15, the dp–limits of sequences of smooth Rie-
mannian manifolds satisfying uniform lower bounds on scalar curvature and entropy are
W 1;p–rectifiably complete for suitably chosen p. See Section 8 for further discussion
and the proof of this fact.

2.2 The dp–distance

In view of Example 2.9, we see that the geodesic distance does not reflect the underlying
structure of a rectifiable Riemannian space. This is mainly due to the degeneracy of the
metric. More seriously, we will see in Section 9 that these types of examples can arise
as limits of manifolds with lower scalar curvature and entropy bounds. At its heart,
this occurs because the distance function requires W 1;1–control, which will be too
much to ask for. We introduce and discuss the notion of the dp–distance here, which
depends only on W 1;p–control of our space. In the context of lower scalar curvature
and entropy bounds, this will be obtainable for at least some n< p <1.

Definition 2.29 (dp–distance) Let .X;g/ be a rectifiable Riemannian space. Given
p 2 .1;1/ and x;y 2X , the dp–distance dp;g;X .x;y/ between x and y is defined as

dp;g;X .x;y/D sup
�
jf .x/�f .y/j W

Z
X

jrf jp dm� 1; f 2W
1;p

loc .X /\C 0
loc.X /

�
:
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When there is no ambiguity, we will frequently write dp or dp;g or dp;X in place
of dp;g;X . On Euclidean space, we will often use the short-hand dp;euc D dp;geuc;Rn .
The definition of dp makes sense for any p 2 .1;1/, but is only interesting for p > n.
For instance, on Euclidean space, dp.x;y/ D C1 for all x ¤ y whenever p � n.
Indeed, for p 2 .1; n/, consider any function f with f .x/¤ 0 that vanishes outside
of B

�
x; 1

2
jx � yj

�
and has krf kLp.Rn/ � 1, and consider the maximizing sequence

given by f�.z/D �1�n=pf .z=�/. For the borderline case p D n, take a maximizing
sequence of smooth functions approximating f .z/D cn log log.1C 1=jz�xj/, where
cn is chosen so that krf kLn.Rn/ D 1.

2.2.1 Examples We consider two examples of the dp–distance on some rectifiable
Riemannian spaces. To begin with, we study the behavior of the dp–distance on
Euclidean space.

Example 2.30 (the dp–distance on Euclidean space) On Euclidean space, for p > n

we directly compute that dp.x;y/D S jx�yj1�n=p, where

(2-24) S D Sn;p D sup
�
jf .x/�f .0/j W x 2 B.0; 1/;

Z
Rn

jrf jp dx � 1

�
is a normalizing constant. Note that Sn;p! 1 as p!1. Thus,

(2-25) Bp;geuc.0;Sr1�n=p/D B.0; r/

for any r > 0. By taking the test function that is equal to jxj!�n=p
n in B.0; 1/ and

is the constant !�n=p
n on Rn n B.0; 1/, we see that S D Sn;p � !

�n=p, and thus
Bp;geuc.0; r/� B.0; !

n=.p�n/
n rp=.p�n//. In particular, if p > n then

(2-26) Bp;geuc.0; r/� B.0;Cnrp=.p�n//

for all r > 0, where Cn depends only on the dimension.

Example 2.31 (hyperbolic space) Given n � 2 and n < p <1, hyperbolic space
.Hn;ghyp/ has finite bounded diameter with respect to dp . More specifically, there is a
constant C D C.n;p/ such that dp.x;y/� C for all x;y 2Hn. Indeed, this follows
from the Morrey–Sobolev inequality on hyperbolic space established in [42] (see
also [41] for the two-dimensional case), which states that there exists C D C.n;p/ > 0

(which is, in fact, explicit and sharp) such that for any f 2W 1;p.Hn/, we have

(2-27) sup
x2Hn

jf .x/j � Ckrf kLp.Hn/:

In the definition of dp, we do not require f to be globally integrable. However, the
proof of (2-27) is based on the Polya–Szegö principle and the symmetric decreasing
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rearrangement of f , so it is easy to check that the same proof implies that, for any
R> 0 and f 2W 1;p.Bghyp.R//,

(2-28) sup
x;y2Bghyp .R/

jf .x/�f .y/j � Ckrf kLp.Bghyp .R//
;

where C is the same constant as in (2-27) and in particular is independent of R. Thus,
passing R!1, we arrive at the inequality

(2-29) sup
x;y2Hn

jf .x/�f .y/j � Ckrf kLp.Hn/:

Consequently, dp.x;y/� C for all x;y 2Hn.

On any smooth closed Riemannian manifold .M;g/, dp;g defines a distance metric
on X as long as p > n. On the other hand, dp may only define a pseudometric if the
metric is degenerate, as we see in the following example.

Example 2.32 Fix ˛ > 0 and consider the rectifiable Riemannian space .R2;g˛/,
where g˛Ddx2Cjxj2˛dy2. This is a generalization of Example 2.10 and a special case
of Example 2.9. For p such that ˛p� 1, we have dp;g˛ .x;y/D 0 for all x;y 2 f0g�R.

Remark 2.33 The definition of the dp–distance makes sense more generally for
any space equipped with a W 1;p structure. For instance, one may define the dp–
distance on a metric measure space .X; d;m/. For reasonable metric measure spaces,
for instance those which are doubling and have a Poincaré inequality, one can show
dp.x;y/! d.x;y/ as p!1 for any pair of points x;y 2X . To see this, for each
x;y 2X;p > n and � > 0 we choose fp so that fp.x/D 0,

(2-30) dp.x;y/� jfp.y/�fp.x/jC � and
Z

X

jrfpj
pdm� 1:

Then the Sobolev embedding theorem for such spaces [30] shows that ffpgp>0 is
locally uniformly Hölder continuous and is bounded in W 1;q on each bounded open
subset for any q> 0. Hence, there is a sequence pi!C1 and an f 2

T
p>0 W

1;p
loc .X /

such that fpi
converges to f weakly in W

1;q
loc .X / for all q > 0 and locally uniformly

in C 0
loc.X /. In particular, we have jrf j � 1 and

(2-31) lim sup
i!C1

dpi
.x;y/� jf .y/�f .x/jC � � d.x;y/C �;

where we have used the characterization of the geodesic distance on such spaces:
d.x;y/ D supfjf .x/� f .y/j W jrf j � 1g; see Sections 5 and 6 of [16]. Thus, we
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have lim supp!C1 dp.x;y/ � d.x;y/. For the opposite direction, if X is of finite
diameter, X is of finite measure. By taking fp.z/ D m.X /�1=pd.x; z/ for z 2 X ,
krfpkLp D 1 and hence fp is an admissible function. By letting p!C1, we have
the reverse inequality, lim supp!C1 dp.x;y/� d.x;y/. If the diameter is infinite, by
the volume-doubling properties, X is of polynomial volume growth. By modifying the
test function with a cutoff fp.z/D cp�.d.z;y/=p/ �maxfd.z;y/; 2d.x;y/g where cp

is chosen so that krfpkLp D 1 and cp! 1 as p!C1 thanks to the volume growth,
a similar argument will give us the reverse inequality as well.

The proof above can be easily extended to the measured Gromov–Hausdorff convergence
version for RCD spaces. More precisely, fix a measured Gromov–Hausdorff convergent
sequence of compact RCD.K;N / spaces with N <C1:

(2-32) .X i ; d i ;mi/! .X1; d1;m1/:

By the above argument, we may write d i
1 D d i . The same argument together with

the convergence [7; 8; 25] for p–Cheeger energies with respect to (2-32) shows
that whenever pi ! p1, xi ;yi ! x1;y1 for xi ;yi 2 Xi and x1;y1 2 X1,
we have d i

pi
.xi ;yi/ ! d1p1.x1;y1/. In fact, by using a contradiction argument,

one can in addition show that the convergence is uniform. Namely, for any � > 0

and RCD.K;N / space .X; d;m/ with diam.X / D 1 and 0 < v < m.X / < V <

C1, there is a p0.K;N; v;V / such that for all p > p0 and x;y 2 X , we have
jdp.x;y/� d.x;y/j< �.

2.2.2 Properties of the dp–distance Let us discuss some basic facts about the
dp–distance.

Remark 2.34 (scaling) Given a W 1;p–complete rectifiable Riemannian space .X;g/,
let zg D ��2g. Then for any x;y 2M, we have

(2-33) dp;zg.x;y/D �
n=p�1dp;g.x;y/:

Next, in Example 2.32, we saw an example of a degenerate metric on a rectifiable
Riemannian space for which dp only defined a pseudometric. It would therefore be
sensible to formalize knowing when this does and does not happen:

Definition 2.35 (dp–rectifiable completeness) Given a rectifiable Riemannian space
.X;g/, we say that .X;g/ is dp–rectifiably complete if dp defines a metric on X and
the topology induced by dp coincides with the topology of X .
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By Sobolev embedding, smooth compact manifolds are indeed dp–complete for p > n.
Morally speaking, that is to say that the dp metric geometry coincides with the original
geometry on compact manifolds. The following shows that two Riemannian manifolds
which are dp–isometric are in fact isometric as Riemannian manifolds.

Proposition 2.36 Fix n� 2 and p> n. Let .M;g/ and .N; h/ be compact Riemannian
n–manifolds and suppose that .M; dp;g/ and .N; dp;h/ are isometric as metric spaces.
Then .M;g/ and .N; h/ are isometric as Riemannian manifolds.

The proof relies on multiple steps of approximation and is a corollary of the proof of
Theorem 1.7; we will postpone the proof to Section 7.

Remark 2.37 From the definition of dp , we see that for all x 2X we obtain the local
Sobolev inequality

(2-34) sup
y2Bp.x;R/

jf .x/�f .y/j �Rkrf kLp.X /:

In particular, if .X;g/ is a compact rectifiable Riemannian space that is dp–rectifiably
complete, then it satisfies the Sobolev embedding W 1;p.X / ,!L1.X /.

Remark 2.38 (dp as the .W 1;p/�–norm) Fix p > n and let .X;g/ be a rectifiable
Riemannian space satisfying the Sobolev embedding W 1;p.X / ,! L1.X /. For
instance, one can consider any compact dp–rectifiably complete .X;g/ by Remark 2.37.
Then for any x 2X , the Dirac delta ıx is an element of the dual space .W 1;p.X //�,
and

(2-35) dp.x;y/� kıx � ıyk.W 1;p.X //� :

In particular, reinterpreting the usual distance function d.x;y/Dkıx�ıyk.W 1;1.X //� ,
we see that the dp–distance function has been obtained by weakening the function
space norm we use to measure the distance between the distributions ıx and ıy .

2.2.3 dp–convergence Our primary interest in the dp–distance is to give rise to
a notion of convergence which captures some Sobolev control. We begin with dp–
convergence of compact sequences.

Definition 2.39 (dp–convergence) Let .X;g/ and .Y; h/ be compact dp–complete
rectifiable Riemannian spaces. Given � > 0, we say that

(2-36) dp..X;g/; .Y; h//� �
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if there exist collections of points fxig
N
iD1
� X and fyig

N
iD1
� Y such that each

collection is �–dense with respect to dp and

(2-37) jdp;g;X .xi ;xj /� dp;h;Y .yi ;yj /j � �;

and further

(2-38) 1� � �
volg.Bp.xi ; r//

volh.Bp.yi ; r//
� 1C �

for all r 2 Œ�; 1�.

Remark 2.40 It is more standard to replace (2-38) with something like

1� � �

R
Bp.xi ;r/

1� r�1dp.xi ; z/R
Bp.yi ;r/

1� r�1dp.yi ; z/
� 1C �;(2-39)

which is strictly weaker and does not rule out the possibility that the measures are
concentrating. In our context we can work with the stronger condition, so we leave it
as in (2-38).

In other words, two compact spaces are � close in the dp sense if their dp metric spaces
are �–Gromov–Hausdorff close and the volumes of balls above scale � are close.

Remark 2.41 In (2-38), we require volumes of balls to be �–close up to scale 1. Up
to scaling, we may replace 1 with any other fixed number.

Recall that a sequence of pointed proper metric spaces .Xi ; di ;xi/ is said to converge to
a pointed proper metric space .X; d;x/ in the pointed Gromov–Hausdorff topology if
.Bdi

.xi ;R/; di/! .Bd .x;R/; d/ in the Gromov–Hausdorff topology for every R> 0.
In view of Example 2.31, we clearly cannot adopt a direct analogue of this definition
when defining pointed dp–convergence. Indeed, we have seen that the hyperbolic space
equipped with the dp metric is not a proper metric space for p > n, since sufficiently
large balls have noncompact closure. For this reason, we cannot define pointed dp–
convergence by asking for dp–convergence on dp–balls of increasingly large radius.
Instead, we make use of dp–completeness to construct an exhaustion that plays the
role of balls of large radius.

More specifically, let .X;g;x/ be a dp–complete pointed rectifiable Riemannian space.
By dp–completeness, for any y 2X there is some radius r � 1 sufficiently small that
Bp.y; 4r/ b X has compact closure. Roughly speaking, we define Cov.x;N / to be
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the set of points that are linked to x by a sequence of N precompact balls of radius at
most 1. More concretely, define Cov.x;N / be to the collection of points y such that
there is a sequence f.zi ; ri/g

N
iD1

satisfying

(1) ri � 1,

(2) x;y 2
SN

iD1 Bp.zi ; ri/,

(3) Bp.zi ; ri/\Bp.ziC1; riC1/¤∅ for all i D 1; : : : ;N � 1,

(4) Bp.zi ; 4ri/ is precompact.

Note that Cov.x;N / is an open set, and that by the triangle inequality, we always
have the containment Cov.x;N / � Bp.x; 2N /. To get an intuitive idea for how the
sets Cov.x;N / behave, if we define the analogue of Cov.x;N / with respect to the
geodesic distance instead of the dp–distance, then on any Riemannian manifold (or more
generally, on any proper length space), this set is simply a geodesic ball of radius 2N .

The main advantage of working with the sets Cov.x;N / instead of p–balls of increasing
radius is highlighted in the following two initial lemmas, which show the sense in
which fCov.x;N /gN2N provides an exhaustion of X . The first lemma shows that any
y 2X is contained in Cov.x;N / for some N 2N.

Lemma 2.42 Let .X;g;x/ be a dp–complete rectifiable Riemannian space. For
any compact connected set � � X containing x, there exists an N 2 N such that
�� Cov.x;N /.

Proof By compactness of�, we can find 1> r > 0 sufficiently small that for all z 2�,
Bp.z; 4r/b X . Then by compactness of �, we can find N such that � is covered by
fBp.zi ; r/g

N
iD1

for zi 2�. Hence Cov.x;N / contains �.

The second lemma is more subtle, and shows that Cov.x;N / has compact closure for
any N 2N.

Lemma 2.43 Let .X;g;x/ be a dp–complete rectifiable Riemannian space. For any
N 2N the set Cov.x;N / has compact closure.

Proof We argue by induction. For N D 1, let r0 � 1 be the supremum over radii r � 1

such that for some y 2X we have x 2 Bp.y; r/ and Bp.y; 4r/b X . So we may find
some y0 2 X and ry0

2
�

9
10

r0; r0

�
such that x 2 Bp.y0; ry0

/ and Bp.y0; 4ry0
/ b X .

We claim that

(2-40) Cov.x; 1/� Bp.y0; 4ry0
/;
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the latter of which has compact closure by assumption. Indeed, for any z 2 Cov.x; 1/,
we have z 2 Bp.y; r/ for some y 2X and for some r � r0 with Bp.y; 4r/b X . Then
by repeatedly applying the triangle inequality,

(2-41) z 2 Bp.y; r0/� Bp.x; 2r0/� Bp.y0; 3r0/� Bp.y0; 4ry0
/:

This establishes (2-40).

Now, suppose that we have shown that Cov.x;N / is precompact. We claim that
Cov.x;N C1/b X . It suffices to show that for all sequences in Cov.x;N C1/, there
is a subsequence that converges with respect to the underlying topology on X .

Let xi be a sequence in Cov.x;N C 1/. For each i , we can find f.zi;a; ri;a/g
NC1
aD1

such
that

(1) ri;a � 1 for all a�N C 1,

(2) x;xi 2
SNC1

aD1 Bp.zi;a; ri;a/,

(3) Bp.zi;a; ri;a/\Bp.zi;aC1; ri;aC1/¤∅ for aD 1; : : : ;N ,

(4) Bp.zi;a; 4ri;a/b X .

We may assume xi 2 Bp.zi;NC1; ri;NC1/ and x 2
SN

aD1 Bp.zi;a; ri;a/ for all i large
enough. Otherwise, xi 2 Cov.x;N /, which we already know to have compact closure
and thus xi has a convergent subsequence with respect to the underlying topology.
Let zi 2 Bp.zi;NC1; ri;NC1/\Bp.zi;N ; ri;N /� Cov.x;N /. By compactness, we can
assume zi! z1 2 Cov.x;N /, which is compactly contained in X . Therefore for all i

and k,

(2-42) dp.xi ; zk/� dp.xi ; zi/C dp.zi ; zk/� 2ri;NC1C dp.zi ; zk/:

By compactness, we may assume ri;NC1! r1 2 Œ0; 1� as i !1.

Case 1 If r1 > 0, then we can find K such that for all i �K,

(2-43) dp.zi ; zK / <
1
2
rK ;NC1 and ri;NC1 <

3
2
rK ;NC1:

Therefore for i �K, we have xi 2 Bp.zK ; 3rK ;NC1/� Bp.zK ;NC1; 4rK ;NC1/, which
is compactly contained in X .

Case 2 If r1 D 0, then

(2-44) dp.xi ; z1/� dp.xi ; zi/C dp.zi ; z1/� 2ri;NC1C dp.zi ; z1/! 0:

By dp–completeness, there is an rz1 > 0 such that Bp.z1; rz1/ b X . By (2-44),
xi 2 Bp.z1; rz1/ for i sufficiently large. This completes the proof.

Geometry & Topology, Volume 27 (2023)



dp–convergence with entropy and scalar lower bounds 259

With these two lemmas in hand, we can now define pointed dp–convergence.

Definition 2.44 Let .Xi ;gi ;xi/ and .X;g;x/ be dp–complete pointed rectifiable
Riemannian spaces. We say that

(2-45) .Xi ;gi ;xi/! .X;g;x/

in the pointed dp sense if the following holds. For all N 2N, there exists N 0 �N and
compact sets ��X and �i �Xi such that:

(1) Cov.x;N /��� Cov.x;N 0/.

(2) Covi.xi ;N /��i � Covi.xi ;N
0/ for i sufficiently large.

(3) For all � > 0, there exists an N such that for all i > N , the following holds:
There exist fxi

j g
N
jD1
��i and fyj g

N
jD1
�� such that each collection is �–dense

with respect to dp;�i
and dp;�, respectively, and for all r 2 Œ�; 1� satisfy

jdp;�i
.xi

k ;x
i
l /� dp;�.yk ;yl/j � �;(2-46)

1� � �
volg.Bp.x

i
k
; r//

volh.Bp.yk ; r//
� 1C �:(2-47)

Remark 2.45 In part (3) of Definition 2.44 above, the dp–convergence on the compact
sets �i and � corresponds to the relative dp–distances dp;gi ;�i

and dp;g;�. This is
necessary as dp is not a local object.

3 Further preliminaries

In this section, we introduce further preliminaries that will be needed in the paper.

3.1 Ricci flows

Let us cover some of the basics of the Ricci flow in this subsection. A Ricci flow
.M;g.t//t2.0;T / is a family of smooth metrics g.t/ on a smooth manifold M n satisfy-
ing the evolution equation

(3-1) @tg.t/D�2 Ricg.t/ :

If .M n;g/ is a complete Riemannian manifold with bounded curvature,

(3-2) sup
x2M

jRmgj.x/ <C1;

then Shi in [47] established the short-time existence of the Ricci flow for such a metric,
following the existence theory on closed Riemannian manifolds due to Hamilton [31]
and the trick by DeTurck [21].

Geometry & Topology, Volume 27 (2023)



260 Man-Chun Lee, Aaron Naber and Robin Neumayer

A sequence f.Mi ;gi.t/;xi/t2.0;T /g of complete pointed solutions of the Ricci flow
satisfying

(3-3) jRmg.t/j �
C

t
and inj.M;g.t//� c0t1=2

is compact in the C1 Cheeger–Gromov topology. That is, up to a subsequence,
f.Mi ;gi.t/;xi/t2.0;T /g converges smoothly to a pointed complete solution of the
Ricci flow .M1;g1.t/;x1/t2.0;T /, which also satisfies (3-3). This compactness
theorem was originally observed in Hamilton [32]; see also [19, Theorem 6.35].

Along the Ricci flow, the scalar curvature RDRg.t/.x/ evolves by

(3-4) @tRD�RC 2jRicj2:

The equation is coupled to the Ricci flow in the sense that �D�g.t/. Because it is a
supersolution of the heat equation, lower bounds on the scalar curvature are preserved
under the Ricci flow. In other words, if Rg.0/ � �ı for all x 2M, then

(3-5) Rg.t/ � �ı

for all x 2M and t 2 .0;T /. This monotonicity provides one-sided control on the
expansion of volumes under the Ricci flow, since the volume form evolves by

(3-6) @t dvolg.t/ D�Rg.t/ dvolg.t/:

As such, a flow satisfying (3-5) has dvolg.t/ � expfı.t � s/g dvolg.s/ for all s � t . So,
provided ı � 1

2
, a Taylor expansion shows that for all 0� s � t �minf1;T g,

(3-7) dvolg.t/ � f1C 2ı.t � s/g dvolg.s/:

3.2 Heat flows coupled to Ricci flow

Given a complete bounded curvature Ricci flow .M;g.t//, with t 2 Œ0;T /, we consider
the heat operator @t � � coupled to Ricci flow, along with its formal adjoint the
conjugate heat operator �@t ��CR. The Cauchy problem for the conjugate heat
equation is well-posed backward in time. The two operators are conjugate in the sense
that if u and v are smooth functions, with suitable decay at infinity if M is noncompact,
then

(3-8)
Z

M

uv dvolg.T /�
Z

M

uv dvolg.0/

D

Z T

0

Z
M

fv.@t ��/u�u.�@t ��CR/vg dvolg.t/ dt:
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For 0� s < t � T , we let K.x; t Iy; s/ denote the heat kernel with singularity at .y; s/,
ie the solution to

(3-9)

(
.@t ��x/K.x; t Iy; s/D 0 for t 2 .s; t/;

lim
t&s

K. � ; t Iy; s/D ıy :

As a function of .y; s/, K.x; t Iy; s/ is the kernel for the conjugate heat equation with
singularity at .x; t/, that is,

(3-10)

(
.@sC�y �R/K.x; t Iy; s/D 0 for s 2 .0; t/;

lim
s%t

K.x; t I � ; s/D ıx :

Suppose ' satisfies .@t C��R/' D 0 on M � Œ0;T �. Then

(3-11)
Z

M

'.x; t/ dvolg.t/.x/D
Z

M

'.x;T / dvolg.T /.x/

for all t 2 Œ0;T �. In particular, for any s 2 Œ0; t/ we haveZ
M

K.x; t Iy; s/ dvolg.s/.y/D 1:(3-12)

If (3-5) holds, then (3-7) and (3-9) imply that for s � t �minf1;T g,Z
M

K.x; t Iy; s/ dvolg.t/.x/� 1C 2ı.t � s/:(3-13)

From the evolution (3-4), we have the following representation formula for the scalar
curvature in terms of the heat kernel:

(3-14) Rg.t/.x/D

Z
M

K.x; t Iy; 0/Rg.0/.y/ dvolg.0/.y/

C 2

Z t

0

Z
M

K.x; t Iy; s/jRicg.s/.y/j
2 dvolg.s/.y/ ds:

We refer the reader to [17, Chapter 26.1] for these basic properties on kernels for
heat-type equations coupled to Ricci flow.

3.3 The W–functional and Perelman entropy

Let .M;g.t//t2.0;T � be a complete Ricci flow with bounded curvature. The W–
functional defined in (1-4) is monotone along the Ricci flow in the following sense. Set
�.t/D T � t and let

(3-15) u.x; t/D .4��/�n=2e�f .x;t/
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be a solution of the conjugate heat equation along the flow on Œ0;T �. Provided u decays
suitably at infinity (eg if u.T / is compactly supported) if M is noncompact, then

(3-16) W.g.s/; f .s/; �.s//�W.g.t/; f .t/; �.t//

for s � t . This monotonicity was shown in [43] for closed manifolds and in [13,
Theorem 7.1(i)–(ii)] for complete manifolds with bounded curvature. By taking a
compactly supported minimizing sequence for �.g.t/;T /, we see from (3-16) that the
Perelman entropy �.�/ defined in (1-5) is also monotone along the Ricci flow in the
sense that

(3-17) �.g.s/; �.s//� �.g.t/; �.t//

for s � t . Correspondingly, if .M;g.t//t2.0;2/ is a Ricci flow and if �.g.0/; 2/� �ı,
then �.g.t/; 1/� �ı for all t 2 .0; 1�.

Suppose the infimum in �.g.t/; �.t// is achieved. This is the case, for instance, if M

is closed; see [54] for necessary and sufficient conditions in the complete noncompact
case with bounded geometry. Then the entropy �.g.t/; �.t// is constant in t only if
the Ricci flow is a gradient shrinking soliton that becomes singular at time T . This
means that, if f is a function achieving the infimum in �.g.t/; �.t// and '.t/ is the
diffeomorphism generated by rf .t/, then

(3-18) g.t/D .T � t/'.t/�g.0/:

On Euclidean space .Rn;geuc/, the entropy �.geuc; �/ is equal to zero for all � > 0,
and the infimum in �.geuc; �/ is achieved by f .x/D jxj2=4� . The following lemma
asserts that Euclidean space is the only complete Riemannian manifold with bounded
curvature with �.g; �/D 0; cf [43, Section 3.1].

Lemma 3.1 Let .M;g.t//t2.0;T / be a complete Ricci flow with bounded curvature.
Then �.g.0/; �/� 0 for all � 2 .0;T /, with equality if and only if the flow is isometric
to Euclidean space. Furthermore , fix t 2 .0;T / and x 2M. Set �.s/D t � s, and let
f .y; s/ be defined by

(3-19) K.x; t Iy; s/D .4��/�n=2e�f .y;s/:

If

(3-20) W.g.s/; f .s/; �.s//D 0;

then the flow is isometric to the constant Euclidean flow.
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Proof Fix t 2 .0;T / and x 2M. Set �.s/D t�s, and let f .y; s/ be defined by (3-19).
Then lims!t W.g.s/; f .s/; �.s//D 0. Hence, by monotonicity and the definition of
�.g; x�/ as an infimum,

(3-21) �.g; t/�W.g.0/; f .0/; t/� 0:

This concludes the proof of the first claim. Furthermore, suppose that �.g.0/; t/D 0

for some t 2 .0;T /. By (3-21), f achieves the infimum in �.g.0/; t/, where again we
let f be defined by (3-19). So, g.t/ is a gradient-shrinking soliton given by (3-18). In
particular,

(3-22) jRmg.s/j D
1

t�s
jRmg.0/j:

The flow exists and has bounded curvature for s 2 .0;T /, with T > t . Thus (3-22)
implies that jRmg.0/j D 0. This (in particular, that jRicg.0/j D 0) together with (3-18)
implies that .M;g.t// is a metric cone, cf [51]. However, a flat manifold which is also
a metric cone can only be the Euclidean space. We conclude .M;g/D .Rn;geuc/.

Finally, let us recall Perelman’s no-local-collapsing theorem, which ensures that small
balls are noncollapsed along the flow if the entropy is bounded below. More specifically,
fix x 2M and t 2 .0;T /. Then for r 2 .0; t1=2/, if Rg.t/ � r�2 on Bg.t/.x; r/, then

(3-23) volg.t/.Bg.t/.x; r//� �rn;

where � depends only on n and �.g.0/; 2T /.

3.4 Uniform existence time and scale-invariant estimates

A crucial point throughout the paper is that, under the lower bounds on the entropy
assumed in our main theorems, the Ricci flow starting from .M;g/ exists for a uniform
time and enjoys small scale-invariant estimates on the curvature tensor. The following
theorem establishes this fact, and essentially follows from an epsilon regularity theorem
of Hein and Naber in [33]. For the sake of completeness, and because the assumptions
made here are slightly different than the ones there, we include the proof.

Theorem 3.2 Fix n � 2 and � > 0. There exists ı D ı.n; �/ > 0 such that the
following holds. Let .M;g/ be a complete Riemannian n–manifold with bounded
curvature satisfying

(3-24) �.g; 2/� �ı:
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Then the Ricci flow .M;g.t// with g.0/D g exists for t 2 .0; 1�. Furthermore , for all
x 2M and t 2 .0; 1�, we have the scale-invariant estimates

(3-25) jRmg.t/j �
�

t
:

Remark 3.3 Thanks to Shi’s derivative estimates, (3-25) implies that for all k 2N,
we have

(3-26) jr
k Rmj �

C.n; k; �/

t1Ck=2
:

The key point of the proof of Theorem 3.2 is the continuity property contained in the
following lemma.

Lemma 3.4 Fix n � 2 and C > 0. Let f.Mi ;gi.t/;xi/t2.�1;1�g be a sequence of
complete Ricci flows such that each time slice has bounded curvature and

(3-27) jRmj � C on M � .�1; 0�:

Suppose that

(3-28) �.gi.�1/; 2/� �ıi ;

where ıi!0. Then , up to a subsequence , f.Mi ;gi.t/;xi/t2.�1;0�g converges smoothly
to the constant Euclidean flow .Rn;geuc; 0

n/t2.�1;0�.

Proof Perelman’s no-local-collapsing (3-23) together with the curvature bounds (3-27)
provide a lower bound on the injectivity radius for each time-slice; see for instance
[44, Chapter 10, Lemma 51]. So, by Hamilton’s compactness theorem, the flows con-
verge smoothly to a smooth limiting Ricci flow .M1;g1.t/;x1/t2Œ0;1� satisfying
(3-27).

For each i 2N, let fi.y; s/D fi.xi ; 1Iy; s/ be the function defined by

(3-29) Ki.xi ; 1Iy; s/D .4�.1� s//�n=2 exp
�
�fi.y; s/

4.1� s/

�
:

Here Ki is the heat kernel on .Mi ;gi ;xi/ defined in (3-9). From (3-28), we see that

(3-30) �ıi �W.gi.s/; fi.s/; 1� s/� 0:

The uniform curvature bounds (3-27) ensure that the heat kernels are uniformly Gaussian.
That is, setting � D 1� s for s 2 Œ0; 1�, we have

(3-31)
c

�n=2
exp

�
�dgi .1/.xi ;y/

2

4�

�
�Ki.xi ; 1Iy; s/�

C

�n=2
exp

�
�dgi .1/.xi ;y/

2

4�

�
:
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Since Ki.xi ; 1Iy; s/ is also a solution of the conjugate heat equation (3-8), we determine
that for s 2 .0; 1/, the sequence ffig converges smoothly on compact sets to a function
f1 W M � .0; 1/! R that satisfies the minimization constraint in the definition of
�.g.0/; �/. Thus from (3-30), we have

(3-32) W.g1.s/; f1.s/; �.s//D 0:

We conclude by applying Lemma 3.1.

Now, Theorem 3.2 follows from Lemma 3.4 by a standard contradiction argument,
which we show below. Before giving the proof, it will be convenient to introduce
the following notation. Let .M;g.t//t2.0;T / be a smooth Ricci flow such that each
time-slice is complete with bounded curvature. Given x 2M and t 2 .0;T /, we define
the regularity scale rjRmj.x; t/ to be

(3-33) rjRmj.x; t/D sup
˚
r > 0 W sup

P.x;t;r/

jRmj � r�2
	
:

Here P .x; t; r/D Bg.t/.x; r/� .t � r2; t � is a parabolic cylinder.

Proof of Theorem 3.2 In order to prove the theorem, it suffices to prove the following
claim.

Claim Fix n 2 N and � > 0. There exists ı D ı.n; �/ such that if .M;g.t//t2.0;T �

satisfying �.g.0/; 2T /� �ı, then

(3-34) rjRmj.x;T /
2
�

T

�
:

Before proving the claim, let us see how it implies the theorem. Let Tmax > 0 be the
maximal existence time for the Ricci flow with g.0/D g, and let T0 Dminf1;Tmaxg.
For any x 2M and t 2 .0;T0/, we apply the claim to find that (3-25) holds at .x; t/.
Finally, recall that if Tmax < C1, then supM jRmj ! C1 as t ! Tmax. So, we
conclude that Tmax > T0, and thus T0 D 1. This concludes the proof of the theorem.

Let us now prove the claim. Up to rescaling the flow and translating in time, it
is equivalent to showing that if .M;g.t//t2.�1;0� satisfies �.g.�1/; 2/ � �ı, then
rjRmj.x; 0/

2 � 1=�. Suppose for the sake of contradiction that the claim fails. Then
we may find a sequence of flows f.Mi ;gi.t//t2Œ�1;0�g with �.gi.�1/; 2/� �ıi for a
sequence ıi! 0, but inffrjRmj.x; 0/

2 W x 2Mig< 1=�. Let xi 2Mi be chosen so that

(3-35) rjRmj.xi ; 0/
2
� 2 inffrjRmj.x; 0/

2
W x 2Mig
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and set �2
i D

1
2
�rjRmj.xi ; 0/

2 < 1. Then the rescaled flow zgi.t/ D ��2
i gi.�

2
i t/ is

defined on Œ���2
i ; 0� and satisfies �.zgi.��

�2
i /; 2��2

i /��ıi . In particular, thanks to the
monotonicity of the Perelman entropy, (3-28) holds with zgi replacing gi . Furthermore,
with respect to the rescaled metric,

(3-36) rjRmj.xi ; 0/
2
D

2

�

and rjRmj.y; 0/
2 � 1=� for all y 2 Mi . This latter fact implies, in particular, that

jRmzgi .t/j � � for all .y; t/ 2Mi � Œ�1; 0�. Applying Lemma 3.4, we see that the flows
converge smoothly to the constant Euclidean flow. On the other hand, the regularity
scale (3-36) passes to the limit, and we reach a contradiction.

3.5 Applications of Theorem 3.2

Finally, we have two direct applications of Theorem 3.2. See also [52] for applications
of pseudolocality for a localized entropy. These applications could in fact be understood
without most of the structure of Theorem 1.15. The first is a finiteness theorem and is
closely related to the pseudolocality finiteness in [35] and the �–regularity of [33].

Theorem 3.5 (finiteness theorem) Fix n � 2. There exists ı0 D ı0.n/ > 0 such
that for any ı � ı0, and for any positive C0; �0;V, the space Mı;C0;�0;V of compact
Riemannian manifolds satisfying

R� �C0; �.g; �0/� �ı and volg.M /� V

contains finitely many diffeomorphism types.

Proof The proof is analogous to [35, Theorem 37.1], which was proved by Perelman
[43, Remark 10.5] using Perelman’s pseudolocality. In our case, we replace the use
of Perelman’s pseudolocality by Theorem 3.2 under assumptions on entropy and the
almost-monotonicity of the volume (3-7).

We also show that a compact Riemannian manifold with entropy and scalar curvature
lower bounds admits a metric of nonnegative scalar curvature.

Theorem 3.6 Fix n � 2. There exists ı0 D ı0.n/ > 0 such that for any positive �0

and V , there exists � D �.ı0; �0;V / such that if .M;g/ is a compact manifold with

(3-37) R� ��; �.g; �0/� �ı0; volg.M /� V:

Then M admits a metric of nonnegative scalar curvature.
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Proof Suppose by way of contradiction that the claim is false, so we may find
a sequence of compact Riemannian manifolds .Mi ;gi/ such that �.gi ; �0/ � �ı0,
volgi

.Mi/ � V , Rgi
� �1= i and Mi does not admit a metric of nonnegative scalar

curvature. Up to rescaling each metric, we may assume without loss of generality that
�0 D 1. Applying Theorem 3.2, we obtain a sequence of Ricci flows .Mi ;gi.t//t2.0;1�

such that the sequence .Mi ;gi.1// has uniformly bounded geometry, gi.1/–diameter
uniformly bounded above, and satisfies Rgi .1/ � �1= i . So, up to a subsequence,
.Mi ;gi.1// converges in the Cheeger–Gromov sense to a compact Riemannian manifold
.M;g/ with Rg � 0 and volg.M / � V . In particular, for i sufficiently large, Mi is
diffeomorphic to M. This contradicts the assumption that each Mi does not admit a
metric of nonnegative scalar curvature.

3.6 Basic Ricci flow estimates

In the final subsection of this preliminaries section, we give two further basic estimates
that will be needed in the paper.

First, the following lemma is a consequence of the proof of Theorem 3.2, which shows
that the g.1/ ball of radius 16 is smoothly close to the Euclidean ball of radius 16,
provided that the entropy is chosen to be sufficiently small; see also [52, Theorem 1.2].
This observation will allow us to compare the metrics g D g.0/ and geuc by way of
comparing g.0/ and g.1/, and will be used repeatedly throughout the paper.

Lemma 3.7 Given any fixed � > 0, we may choose ı > 0 and � > 0 sufficiently small
that if (3-24) and (3-25) hold , then for any x0 2 M and t 2 .0; 1�, we may find a
diffeomorphism � W Bg.t/.x0; 16t1=2/! � � Rn, with inverse  D ��1 such that
�.x0/D 0 and

(3-38) .1� �/geuc �  
�g.t/� .1C �/geuc

for all x 2�. In particular ,

(3-39) .1� �/!nrn
� volg.t/.Bg.t/.x; r//� .1C �/!nrn

for any r 2 .0; 16t1=2/.

The second fact contained in this section is the following elementary lemma using the
scale invariant estimates (3-25) to bound the evolution of the metric from one dyadic
scale to the next. We will make use of this lemma in Section 5.
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Lemma 3.8 Fix n � 2 and ˇ 2
�
0; 1

4

�
. There exists a �D �.n; ˇ/ > 0 such that the

following holds. Let .M;g.t//t2.0;1� be a Ricci flow satisfying (3-25). For any x 2M

and 0< s1 � s2 � 1, we have

(3-40)
�

s1

s2

�̌
g.s1/� g.s2/�

�
s1

s2

��ˇ
g.s1/:

Consequently, for any r > 0 we have

(3-41) Bg.s1/.x; rs
1=2
1
/� Bg.s2/.x; rs

1=2
2
/ for all s1 � s2:

Furthermore , there is a universal constant �0 such that if � � �0, then for x 2

Bg.1/.p; 2/, we have

(3-42) Bg.t/.x; 4t1=2/� Bg.1/.p; 4/ for all t �
1

25
:

Proof We first show (3-40). Fix v 2 TM and consider the function g.t/.v; v/. By the
scale-invariant bounds (3-25), we have for all t > 0 that

(3-43) �
Cn�

t
g.v; v/� @tg.v; v/D�2 Ric.v; v/�

Cn�

t
g.v; v/

for some dimensional constant Cn. This can be seen by taking normal coordinates at
each point so that Ric is diagonal while g is a identity matrix. Hence, by integrating
the function log g.v; v/, we see that for any 0< s � t � 1 we have

(3-44)
�

s

t

�Cn�
g.s/� g.t/�

�
t

s

�Cn�
g.s/:

This showed (3-40) by choosing � sufficiently small.

From (3-40) we directly deduce that for all r > 0 and s1 � s2, we have

(3-45) Bg.s1/.x; rs
1=2
1
/� Bg.s2/

�
x; rs

1=2
1

�
s2

s1

�̌ �
:

Then (3-41) follows from (3-45) because ˇ < 1
2

. To see (3-42), we take r D 4 and
s2 D 1 in (3-45) to find

(3-46) Bg.t/.x; 4t1=2/� Bg.1/.x; 4t1=2�ˇ/� Bg.1/.x; 2/;

where the second containment holds for all t � 1=25 because ˇ < 1
4

. The triangle
inequality then ensures that (3-42) holds.
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4 Integral estimates for Ricci and scalar curvature

This section has two main goals. The first is to prove an integral estimate for the Ricci
curvature under the hypotheses of Theorem 1.7: this key estimate is used in Section 5
to prove the decomposition theorem, Theorem 5.1. The second goal is to prove the
integral bounds of scalar curvature in Theorem 1.16, whose proof goes along similar
lines to that of Theorem 4.1.

Theorem 4.1 (integral Ricci estimate) Fix n� 2, � > 0 and � 2
�
0; 1

2

�
. There exists

a ı D ı.n; �; �/ > 0 such that the following holds. Suppose .M;g.t//t2.0;1� is a Ricci
flow satisfying

Rg.0/ � �ı;(4-1)

�.g.0/; 2/� �ı:(4-2)

Then for any x 2M and any t 2 .0; 1�,

(4-3)
Z t

0

�
s

t

���
=
Z

Bg.t/.x;4t1=2/

jRicg.s/j dvolg.s/ ds � �2:

This section is organized in the following way. In Section 4.1, we prove an almost-
Gaussian lower bound for the conjugate heat kernel and for a cutoff function evolving
by the conjugate heat equation. A major tool is a heat kernel estimate due to Zhang;
see Proposition 4.5 below. In Sections 4.2–4.3, we establish Theorems 4.1 and 1.16,
respectively, by integrating the evolution equation for the scalar curvature (3-4) against
suitably chosen functions to which we apply the estimates of Section 4.1.

By Theorem 3.2, the hypotheses of Theorem 4.1 imply that the scale-invariant curvature
bounds

(4-4) jRmg.t/j �
�

t

hold for all x 2M and t 2 .0; 1�, with � as small as desired by choosing ı sufficiently
small.

4.1 Heat kernel lower bounds and evolving cutoff function

In Proposition 4.2 below, we establish lower bounds on the heat kernel, and in
Proposition 4.4 we prove lower bounds for a cutoff function that evolves by the conjugate
heat equation. Both lower bounds become degenerate for small times. Nonetheless, the
degeneration occurs in a sufficiently controlled way for our application in the proofs of
Theorems 4.1 and 1.16.
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Proposition 4.2 Fix n� 2 and � > 0. There exist ı D ı.n; �/ > 0 and C D C.n/ > 0

such that the following holds. Suppose that .M;g.t//t2Œ0;1� is a complete Ricci flow
with bounded curvature satisfying (4-1), (4-2) and (4-4). Then for any 0< s < t < 1,
letting � D t � s, we have

(4-5) K.x; t Iy; s/�
�

s

t

��
C��n=2 exp

�
�4dg.t/.x;y/

2

�

�
:

Remark 4.3 The hypothesis (4-1) is not actually necessary in Proposition 4.2, but for
convenience we assume it, to allow for a simpler proof; in particular, we can directly
call upon Zhang’s heat kernel lower bound Proposition 4.5 below.

Before proving Proposition 4.2, let us state its main consequence. Fix t 2 .0; 1� and
r2 � t . Consider a smooth function ' WM � ftg !R such that

(4-6) '.y/D

�
1 in Bg.t/.x0; 8r/;

0 in M nBg.t/.x0; 16r/:

For s 2 Œ0; t/, let '.y; s/ be the solution of the conjugate heat equation with terminal
data given by '.y; t/:

(4-7)
�
.@sC��R/'.y; s/D 0 in M � Œ0; t/;

'.y; t/D '.y/:

Proposition 4.4 below shows that '.y; s/ behaves sufficiently like a cutoff function for
all s 2 .0; 1� that we can derive useful estimates.

Proposition 4.4 Fix n� 2. There exist ı D ı.n/ > 0 and C D C.n/ > 0 such that the
following holds. Suppose that .M;g.t//t2Œ0;1� is a Ricci flow satisfying (4-1), (4-2)
and (4-4) for �� 1. Then we have

(4-8) '.y; s/� C
�

s

t

��
for all .y; s/ 2 Bg.t/.x0; 4r/� .0; t/.

We now proceed to the proof of Proposition 4.2, which follows from the following
lower heat kernel bound, due to Zhang in [53].

Proposition 4.5 (Zhang) Fix n� 3 and let .M;g.t//t2Œ0;1� be a Ricci flow satisfying
(4-1) and (4-2). Then for any 0� s < t � 1, we have

(4-9) K.x; t Iy; s/�
c

�n=2
exp

�
�4

�
dg.t/.x;y/

2
�

1
p
�

Z �

0

p
s0R.y; t�s0/ ds0�2ı

�
:

Here c D c.n/ and we let � D t � s.
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Proof of Proposition 4.2 Provided we choose ı � 1, the estimate (4-9) implies that

(4-10) K.x; t Iy; s/� c��n=2 exp
�
�4dg.t/.x;y/

2

�

�
�F.y; s/;

where c is a dimensional constant and

(4-11) F.y; s/D exp
�
�

1
p
�

Z �

0

p
s0R.y; t � s0/ ds0

�
:

We claim that

(4-12) log F.s;y/� log
�

s

t

��
:

Exponentiating (4-12) will conclude the proof of the proposition. To this end, we
change variables and then bound the scalar curvature using the scale-invariant curvature
bound (4-4), finding that

(4-13) �log F.s;y/D
1

�1=2

Z �

0

p
s0R.y; t � s0/ ds0

�
�

�1=2

Z �

0

p
s0.t � s0/�1 ds0

� �

Z �

0

.t � s0/�1 ds0 D �

Z t

s

��1 d�D � log t

s
:

Negating this expression establishes (4-12) and thus concludes the proof.

We now prove Proposition 4.4.

Proof of Proposition 4.4 Expressing the solution with respect to the conjugate heat
kernel, we have

(4-14) '.y; s/D

Z
M

'.x/K.x; t Iy; s/ dvolg.t/.x/:

Fix any y 2 Bg.t/.p; 4r/. Having chosen r2 � t , we note that Bg.t/.y; t
1=2/ �

Bg.t/.p; 8r/, and in particular '.x; t/D 1 in this set. Using this observation, followed
by Proposition 4.2, we find that

(4-15)
�

s

t

���
'.y; s/�

�
s

t

��� Z
Bg.t/.y;t1=2/

K.x; t Iy; s/ dvolg.t/.x/

�

Z
Bg.t/.y;t1=2/

C

�n=2
exp

�
�4dg.t/.x;y/

2

�

�
dvolg.t/.x/:
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Since � D t � s � t , we see from Lemma 3.7 that the right-hand side is bounded below
by a universal constant, namely, by

(4-16)
Z

B.0;�1=2/

��n=2 exp
�
�4jxj2

�

�
dx D

Z
B.0;1/

expf�4jxj2g dx;

so long as �� �0. This completes the proof.

4.2 Proof of Theorem 4.1

Before proving Theorem 4.1, let us make the following observation.

Lemma 4.6 Fix n� 2, ı > 0 and �> 0. Let .M;g.t//t2Œ0;1� be a Ricci flow satisfying
(4-1) and (4-4). For any t 2 .0; 1�, let ' W M � ftg ! R be a nonnegative smooth
function , and if M is noncompact then assume ' has compact support. Let '.y; s/ be
the evolution of ' by the conjugate heat equation for s 2 .0; t/. Then

(4-17) 2

Z t

0

Z
M

jRicg.s/.y/j
2'.y; s/ dvolg.s/.y/ ds�

�
�

t
Cı
�Z

M

'.y; t/ dvolg.t/.y/:

Proof We multiply '.y; s/ by the evolution equation for the scalar curvature (3-4)
and integrate in space and time to obtain the following. After an integration by parts,
we find that

(4-18) 2

Z t

0

Z
M

jRicg.s/.y/j
2'.y; s/ dvolg.s/.y/ ds

D

Z t

0

Z
M

.@s ��/Rg.s/.y/'.y; s/ dvolg.s/.y/ ds

D

Z t

0

Z
M

Rg.s/.y/ .@sC��Rg.s//'.y; s/ dvolg.s/.y/ ds

C

Z
M

Rg.t/'.y; t/ dvolg.t/.y/�
Z

M

Rg.0/'.y; 0/ volg.0/.y/

D

Z
M

Rg.t/'.y; t/ dvolg.t/.y/�
Z

M

Rg.0/'.y; 0/ volg.0/.y/:

This integration by parts is justified because, for each fixed time-slice, ' and jr'j
decay exponentially with respect to dg.t/.x; � /; see [17, Chapter 26.1]. We wish to
bound the right-hand side of the last equation on (4-18) from above. By the maximum
principle the function '.y; s/ is nonnegative for all y; s. Hence, making use first of the

Geometry & Topology, Volume 27 (2023)



dp–convergence with entropy and scalar lower bounds 273

lower bound on scalar curvature (4-1) and then of the conservation of the L1–norm
under the conjugate heat equation (3-11), we have

(4-19) �

Z
M

R'volg.0/ � ı
Z

M

'volg.0/ D ı
Z

M

'volg.t/:

Pairing this with (4-18) and applying the scale-invariant curvature estimates (4-4) to
bound the scalar curvature in the t–time slice, we find that

(4-20) 2

Z t

0

Z
M

jRicg.s/.y/j
2'.y; s/ dvolg.s/.y/ ds

�

Z
M

.Rg.t/.y/C ı/'.y; t/ dvolg.t/.y/

�

�
�

t
C ı

�Z
M

'.y; t/ dvolg.t/.y/:

This concludes the proof of the lemma.

Finally, we prove Theorem 4.1.

Proof of Theorem 4.1 Up to rescaling the flow, we may assume that t D 1. Together
Lemma 4.6 and Proposition 4.4 (with r D t1=2 D 1) imply that

(4-21)
Z 1

0

s�
Z

Bg.1/.x;4/

jRicg.s/j
2 dvolg.s/ ds � C.�C ı/ volg.1/.Bg.1/.x; 16//

� C.�C ı/;

where the second inequality comes from (3-39). Further, by (3-7) and (3-39), we have

(4-22) inf
0<s<1

volg.s/.Bg.1/.x; 4r//� .1� 2ı/ volg.1/.Bg.1/.x; 4r//� c:

Hence,

(4-23)
Z 1

0

s� =
Z

Bg.1/.x;4/

jRicg.s/j
2 dvolg.s/ ds � C.�C ı/:

Now, fix � > 0 sufficiently small that �� 1
2
� � . In this way, if we set �0 WD � C

1
2
�,

we ensure that

(4-24) 1� 2�0 �
1
2
� �:
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Choose ı sufficiently small that (4-4) holds for this choice of �. Then by Hölder’s
inequality, for any ��M we have

(4-25)
Z 1

0

s�� =
Z
�

jRicg.s/j dvolg.s/ ds

�

�Z 1

0

s�2�0 ds

�1=2�Z 1

0

s� =
Z
�

jRicj2 dvolg.s/ ds

�1=2

D .1� 2�0/
�1=2

�Z 1

0

s� =
Z
�

jRicj2 dvolg.s/ ds

�1=2

:

The constant .1� 2�0/
�1=2 is bounded above by

�
1
2
� �

��1=2 thanks to (4-24). By
choosing � and ı such that C.�C ı/1=2 � �2, together with (4-25) and (4-23) this
concludes the proof.

4.3 Integral bounds for the scalar curvature

We now prove Theorem 1.16, which we restate below as Theorem 4.7 below. The proof
is similar to that of Theorem 4.1.

Theorem 4.7 (Lq scalar curvature estimates) Fix n� 2, q 2 .0; 1/ and � > 0. There
exists a ı D ı.n; q; �/ > 0 such that the following holds. Let .M;g/ be a closed
Riemannian n–manifold such that

(4-26) R� �ı and �.g; 2/� �ı:

Then we have

(4-27) =
Z

M

jRjq dvolg � �:

Proof of Theorem 1.16 Let RC and R� denote the positive and negative parts of R,
respectively. Since =

R
Rq
� dvolg � ıq , we choose ıq �

1
2
� and it suffices to show that

=
R

R
q
C dvolg � 1

2
�. By Theorem 3.2, for any fixed � > 0, we may choose ı small

enough that the Ricci flow .M;g.t// with g.0/ D 0 exists for t 2 .0; 1� and enjoys
the scale-invariant curvature bounds (4-4) for all x 2M and t 2 .0; 1�. Consider the
nonnegative function

(4-28) f .x; t/DRg.t/.x/C 2ı:
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Note that f �RC, so it suffices to show that =
R

M f q dvolg.0/ � 1
2
�. For any q 2 .0; 1�,

we see that f q is a supersolution of the heat equation coupled to Ricci flow. Indeed,
noting that q.q� 1/ < 1 and recalling (3-4), we compute that

(4-29) .@t��/f
q
D qf q�1.@t��/f �q.q�1/f q�2

jrf j2� qf q�1.@t��/R� 0:

So, applying (3-8) with uD f q and v D 1, we find

(4-30)
Z

M

f q dvolg.0/ D
Z

M

f q dvolg.1/�
Z 1

0

Z
M

f.@t��/f
q
�Rf q

g dvolg.t/ dt

�

Z
M

f q dvolg.1/C
Z 1

0

Z
M

Rf q dvolg.t/ dt:

We bound each of the terms on the right-hand side of (4-30) separately. For the first
term, using the scale-invariant curvature bounds (4-4) and (3-7), we see that

(4-31)
Z

M

f q dvolg.1/ � .�C 2ı/qvolg.1/.M /� 2.�C 2ı/qvolg.0/.M /:

As for the second term on the right-hand side of (4-30), we note that

Rf q
� f qC1

� 2qC1.jRjqC1
C .2ı/qC1/:

So, again making use of (3-7), we find

(4-32)
Z 1

0

Z
M

Rf q dvolg.t/ dt � Cıqvolg.0/.M /CC

Z 1

0

Z
M

jRjqC1 dvolg.t/ dt;

where C is a constant depending on q. We bound the second term on the right-hand side
of (4-32) using the same argument as in the proof of Theorem 4.1. More specifically,
let ' WM � .0; 1/!R be the solution to the conjugate heat equation with terminal data
'.x; 1/D 1 on M � f1g. By (the proof of) Proposition 4.4, we see that '.y; s/� cs�

for all y 2M and s 2 .0; 1�, where c D c.n/. Thus, applying Lemma 4.6 to this choice
of ', we find that

(4-33)
Z 1

0

t�
Z

M

jRj2 dvolg.t/ dt � C

Z 1

0

Z
M

jRj2'.y; t/ dvolg.t/ dt

� C.�C ı/ volg.1/.M /

� C.�C ı/ volg.0/.M /:

We choose ı sufficiently small that �<.1�q/=.1Cq/, and set �D�.1Cq/=.1�q/<1.
Hölder’s inequality with p D 2=.1C q/ and p0 D 2=.1 � q/, together with (4-33),
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allows us to deduce that

(4-34)
Z 1

0

Z
M

jRjqC1 dvolg.t/ dt

�

�
2 volg.0/.M /

Z 1

0

s�� ds

�.1�q/=2�Z 1

0

s�
Z

M

jRj2 dvolg.s/ ds

�.1Cq/=2

� C.q/.�C ı/.1Cq/=2volg.0/.M /:

Pairing this estimate with (4-30), (4-31) and (4-32), we find that

(4-35) =
Z

M

f q dvolg.0/ � C.ıC�/qCCıq
CC.�C ı/.1Cq/=2;

where C depends on q and n. Choose ı sufficiently small that the right-hand side of
(4-35) is bounded above by 1

2
�. Recalling that f �RC, this concludes the proof.

5 Decomposition theorem

The main goal of this section is to establish the decomposition theorem, Theorem 5.1
below. The end purpose of this decomposition is to allow us to gain W 1;p–control on
our initial manifold for large but finite p <1. Thus, Theorem 5.1 will be an essential
tool used to prove Theorem 1.11. The integral estimate for Ricci curvature established
in Theorem 4.1 is the key estimate in the proof.

Before stating the decomposition theorem precisely, let us give an informal description
of its contents. Given a complete Ricci flow satisfying �ı lower bounds on the scalar
curvature and the entropy, each ball Bg.1/.x0; 2/ can be decomposed as a countable
union of “good sets” Gk and a “bad set” A. The bad set has measure zero and on the
k th good set, the metrics g.0/ and g.1/ are equivalent up to an error of size .1C �/k .
Furthermore, the volumes of the Gk decay geometrically, and the complement of the
first k good sets satisfies a geometrically decaying content bound.

In fact, if we restrict the time to compare g.0/ and g.t/ for t small, then we can obtain
the same kind of decomposition with smaller error.

Theorem 5.1 (decomposition theorem) For each � > 0 there exists a ı D ı.n; �/ > 0

such that the following holds. Let .M;g.t//t2.0;1� be a complete Ricci flow with
bounded curvature satisfying

Rg.0/ � �ı;(5-1)

�.g.0/; 2/� �ı:(5-2)
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Fix x02M and ���. There exists a ytDyt.n; �/2 .0; 1� such that every ball Bg.1/.x0; 2/

can be decomposed into good sets Gk and a bad set A as

(5-3) Bg.1/.x0; 2/D

1[
kD1

Gk
[A;

where the sets have the following properties:

(1) volg.0/.A/D 0.

(2) For all x 2 Gk and for all s; t 2 .0; yt �, the metrics satisfy

(5-4) .1� �/.1� �/k�1g.s/� g.t/� .1� �/.1C �/k�1g.s/:

(3) For each k � 2, we have volg.0/.Gk/� .1C �/k��k�2.

(4) For each k 2N, let Ak DBg.1/.x0; 2/n
Sk
`D1 G` be the complement of the first

k good sets. There is a countable collection Ck and a mapping y 7! ty for y 2 Ck

such that

(5-5) Ak
�

[
y2Ck

Bg.ty/.y; 12t1=2
y /;

with
P

y2Ck t
n=2
y � ��k�1.

When �D �, then we may take yt D 1.

Remark 5.2 The effect of � > 0 in the above theorem is that, for small t , one can
force the bad sets comparing g.0/ to g.t/ to have decreasingly small volume. In this
way one gets that g.t/ is converging to g.0/ in various norms.

Throughout this section we use the notation

(5-6) B t .x/ WD Bg.t/.x; 4t1=2/

to denote the scale-invariant balls of radius 4 and we let

(5-7) B WD B1.x0/:

In this notation, Theorem 4.1 states that for any � 2
�
0; 1

2

�
and � > 0, we may find

ı D ı.n; �; �/ > 0 such that, under the hypotheses of Theorem 5.1, we have

(5-8)
Z t

0

�
s

t

���
=
Z

Bt .x/

jRicg.s/j dvolg.s/ ds � �2:
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5.1 Preliminary results

As in the previous sections we have by Theorem 3.2 that for any �> 0, we may choose ı
sufficiently small in Theorem 5.1 that

(5-9) jRmg.t/j �
�

t

holds for all x 2M and t 2 .0; 1�. The norm of the Ricci curvature jRicg.t/j evolves
along the Ricci flow by

(5-10) .@t ��/jRicg.t/j � cnjRmg.t/jjRicg.t/jI

see [18, Lemma 6.38]. For a Ricci flow satisfying (5-9), the evolution (5-10) becomes

(5-11)
�
@t ���

cn�

t

�
jRicg.t/j � 0:

That is to say, when t is uniformly bounded away from zero, the norm of the Ricci cur-
vature evolves as a subsolution of a heat-type equation with smooth bounded potential.
Note that (5-9) provides uniform lower bounds for the Ricci tensor when t is bounded
away from zero, a necessary ingredient for establishing parabolic regularity estimates.
So, after rescaling the metric, a standard Moser iteration argument (along with a trick of
Li and Schoen [36] to pass from the L2–norm to the L1–norm) leads to the following
pointwise estimates for the norm of the Ricci curvature; see [17, Theorem 25.2] for a
proof.

Proposition 5.3 Fix n � 2. There exist constants C D C.n/ and �0.n/ such that if
.M;g.t//t2.0;1� is a Ricci flow satisfying (5-9) with �� �0.n/, then for any t 2 .0; 1�

we have

(5-12) jRicg.s/.y/j � C =
Z t

t=4

=
Z

Bt .x/

jRicg.s/j dvols.y/ ds

for all .y; s/ 2 Bg.t/.x; 3t1=2/�
�

1
2
t; t
�
.

In the proof of Theorem 5.1, we will need the following Vitali-type lemma. The
difference from a usual Vitali cover is that the balls are not taken with respect to a fixed
metric, but rather the covering comprises geodesic balls with respect to different time
slices g.t/ along a Ricci flow. At various points in the proof, we will call upon the
elementary containments of balls established in Lemma 3.8.
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Lemma 5.4 (Vitali-type lemma) Given n � 2, there exists a �0.n/ such that the
following holds. Let .M;g.t//t2.0;1� be a Ricci flow satisfying (5-9) with �� �0.n/.
For any x0 2M and t0 2 .0; 1�, consider a set A � Bg.t0/.x0; 2t

1=2
0
/ and a mapping

y 7! ty 2
�
0; 1

200
t0
�

defined for all y 2 A. There exists a countable collection C � A
such that

(1) the balls B ty
.y/ are pairwise disjoint for all y 2 C,

(2) the collection fBg.36ty/.x; 12t
1=2
y /gy2C is a covering of A,

(3) for each y 2 C, B36ty
.y/� B t0

.x0/ and B ty
.y/� B t0

.x0/.

Definition 5.5 We call a pair .C;y 7! ty/ satisfying (1)–(3) a covering pair of A in
B t0

.x0/.

Proof of Lemma 5.4 Up to rescaling the flow, we may assume that t0 D 1. The
inductive construction of the cover is similar to a standard Vitali covering argument.
For each k 2N, let

(5-13) Fk D fB ty
.y/ W y 2A; ty 2 .2�k�1; 2�k �g:

Set H0 D F0 and let G0 be a maximal disjoint subcollection of H0. Now, suppose we
have defined G0; : : :Gk�1. Then let

(5-14) Hk D fB 2 Fk W B \B0 D∅ for all B0 2G0[ � � � [Gk�1g;

and take Gk to be a maximal disjoint subcollection of Hk . Note that Gk contains
finitely many balls. We define the countable set C �A by

(5-15) C D
1[

kD1

fy 2A W B ty
.y/ 2Gkg:

Let us verify that the three properties claimed in the lemma are valid. Lemma 5.4(1)
holds by construction, and both parts of Lemma 5.4(3) follow directly from (3-42) in
Lemma 3.8 thanks to the assumption that ty �

1
200

.

To establish Lemma 5.4(2), fix any x 2A and choose k 2N so that tx 2 .2
�k�1; 2�k �.

Then either B tx
.x/ 2 Hk or not. In the first case, since Gk is a maximal set, we

know that B tx
.x/ intersects some B ty

.y/ 2Gk (where possibly x D y). In this case
1
2
ty � tx � 2ty . So, if we take z 2 B tx

.x/\B ty
.y/, the triangle inequality and (3-40)

imply that

(5-16) dg.ty/.x;y/� dg.ty/.y; z/C dg.ty/.x; z/� 4t1=2
y C 4�C1t1=2

x � 10t1=2
y :
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The final inequality holds provided we have taken � sufficiently small. In the second
case, when B tx

.x/ 62Hk , we see that B tx
.x/ must intersect some B ty

.y/ 2H` with
`2f1; : : : ; k�1g. Then, since tx� ty , we find by (3-41) that B tx

.x/�Bg.ty/.x; 5t
1=2
y /.

In particular, Bg.ty/.x; 5t
1=2
y / and B ty

.y/ intersect nontrivially, and thus by the triangle
inequality x 2 Bg.ty/.y; 10t

1=2
y /.

So, in both the first and second cases, we have x 2 Bg.ty/.y; 10t
1=2
y / for some y 2 C.

In order to complete the proof of (2), we apply (3-40) to find that

(5-17) Bg.ty/.y; 10t1=2
y /� Bg.36ty/.y; 2.36ty/

1=2/;

where the final containment holds provided we choose � small enough. This completes
the proof of the lemma.

5.2 Good and bad sets on an arbitrary ball

Throughout this section, we fix �2 .0; 1/ and � 2
�
0; 1

2

�
and assume that .M;g.t//t2Œ0;1�

is a Ricci flow satisfying (5-1) and (5-2) with ı chosen according to Theorem 4.1.

For a ball B, we define the stopping time t.x/ for each x 2 Bg.1/.x0; 2/ by

(5-18) t.x/D

inf
�

t 0� 1
200
W =
Z t

t=4

=
Z

Bt .x/

jRicg.s/j dvolg.s/ ds� t�=2�1� for all t 2
�
t 0; 1

200

��
:

Observe that, provided we take � < 200�2, applying (5-8) with t D 200�1 ensures that

=
Z 1=200

1=800

=
Z

B1=200.x/

jRicg.t/j dvolg.t/ dt � 200�=2�1�;(5-19)

so the stopping condition holds at t 0 D 1
200

.

For a ball B t0
.x0/ with t0 < 1, we define the stopping time t.x/ by

(5-20) t.x/D t0 zt.x/

for each x 2Bg.t0/.x0; 2t
1=2
0
/, where zt.x/ is the stopping time defined in (5-18) applied

to the rescaled flow zg.t/D t�1
0

g.t0 t/.

The good and bad sets on B t0
.x0/, respectively, are defined by

(5-21)
G.B t0

.x0//D fx 2 Bg.t0/.x0; 2t
1=2
0
/ W t.x/D 0g;

A.B t0
.x0//D fx 2 Bg.t0/.x0; 2t

1=2
0
/ W t.x/ > 0g:
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In the following proposition, we establish estimates on the good and bad sets that
will be iteratively applied to establish Theorem 5.1. When convenient, we adopt the
shorthand tx D t.x/.

Proposition 5.6 Fix n� 2, � 2 .0; 1/ and � 2
�
0; 1

2

�
. There exists a ı D ı.n; �; �/ > 0

such that the following holds. Let .M;g.t//t2Œ0;1� be a Ricci flow satisfying (5-1)
and (5-2). Fix B t0

.x0/.

(1) For any x 2 G.B t0
.x0// and for any s; s0 2 Œ0; t0�, the metrics g.s/ and g.s0/ at x

satisfy

(5-22) .1� �/g.s/� g.s0/� .1C �/g.s/:

(2) Suppose x 2 A.B t0
.x0// and fix s0 2 Œtx; t0�. Then for all s; s0 2 Œs0; t0� and

y 2 Bg.s0/.x; 2s
1=2
0
/, the metrics g.s/ and g.s0/ at y satisfy

(5-23) .1� �/g.s/� g.s0/� .1C �/g.s/:

(3) There is a countable collection C D C.B t0
.x0//�A.B t0

.x0// such that .C; ty/
is a covering pair for A.B t0

.x0// in the sense of Definition 5.5, where ty D t.y/

is the stopping time , and

(5-24)
X
y2C

t .n��/=2y � � t
.n��/=2
0

:

Proof Up to rescaling the flow, we may assume without loss of generality that t0 D 1.
We choose ı sufficiently small that (5-8) holds.

Observe that (1) follows immediately from (2), since the estimate (5-22) is a particular
case of (5-23) with s0 D 0. Let us prove (2). Thanks to (3-40), it suffices to establish
(5-23) for s; s0 2

�
s0;

1
200

�
. Together the pointwise estimates of Proposition 5.3 and the

definition of the stopping time imply that

(5-25) jRicg.t/j � C�t�=2�1 on Bg.t/.x; 3t1=2/� ftg

for all t 2
�
s0;

1
200

�
. So, calling upon (3-41), we find that

(5-26) jRicg.t/j � C�t�=2�1 on Bg.s0/.x; 2s
1=2
0
/�

�
s0;

1
200

�
:

Now, for any y 2 Bg.s0/.x; s
1=2
0
/, we integrate (5-26) from s to s0 precisely as in the

proof of Lemma 3.8 to find

(5-27) .1�C�/g.s/� g.s0/� .1CC�/g.s0/;

where C D C.n/. Up to further decreasing ı so that (5-27) holds with �0 D �=C in
place of �, this establishes (5-23) and hence (1) and (2).
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We now prove (3). We apply the Vitali-type Lemma 5.4, taking AD A.B/ with the
mapping y 7! ty given by the stopping time ty D t.y/. Lemma 5.4 ensures the existence
of a covering pair .C; ty/ for A.B/ in B with C �A.B/. We prove the content bound
(5-24) in the following way. For any y 2 C, the definition of the stopping time ty

guarantees that

(5-28)
Z ty

ty=4

=
Z

Bty
.y/

jRicg.s/j dvolg.s/ ds D �t�=2y :

By rearranging terms in (5-28) and calling upon the volume lower bound in (3-39), we
find that

(5-29) t .n��/=2y �
C t��y

�

Z ty

ty=4

Z
Bty

.y/

jRicg.s/j dvolg.s/ ds

�
C

�

Z ty

ty=4

s��
Z

Bty
.y/

jRicg.s/j dvolg.s/ ds:

Now, by Lemma 5.4(1) and (3), respectively, the balls fB ty
.y/gy2C are pairwise disjoint

and contained in B. So, we sum (5-29) over all y 2 C and apply (5-8) to discover that

(5-30)
X
y2C

t .n��/=2y �
C

�

Z 1

0

s��
Z

B

jRicg.s/j dvolg.s/ ds � C�:

Again, up to further decreasing ı so that (5-30) holds for �0 D �=C , this concludes the
proof of (3) and thus the proposition.

5.3 The kth good and bad sets and the proof of Theorem 5.1 with �D �

In this section, we apply Proposition 5.6 inductively in order to define k th good and
bad sets and establish Theorem 5.1 in the case when �D �, and thus yt D 1. Separating
the proofs when � < � and �D � is convenient as it allows us to apply Corollary 5.7
below to establish estimates needed for the case � < �.

Proof of Theorem 5.1 when �D � Let ı be chosen according to Proposition 5.6.

Step 1 We inductively define sets Gk � zAk�1, zAk � zAk�1 and Ck � zAk for each
k 2N satisfying the following properties:

(1) For all x 2 Gk and s; s0 2 Œ0; 1�, we have

(5-31) .1� �/kg.s0/� g.s/� .1C �/kg.s0/:
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(2) For each x 2 Ck we have a mapping y 7! ty 2 .0; 200�k/ such that .Ck ; ty/ is a
covering pair for zAk in B as in Definition 5.5, and such that

(5-32)
X

y2Ck

tn=2
y � �k :

(3) Furthermore, if y 2 Ck, then

(5-33) .1� �/kg.s0/� g.s/� .1C �/kg.s0/

for all x 2 Bg.ty/.y; 2t
1=2
y / and for all s; s0 2 Œty ; 1�.

In the claim above and in its proof, we suppress in the notation the dependence of ty

on k for y 2 Ck . Let zA0 D B, and for k D 1, we set

(5-34) G1
D G.B/ and zA1

DA.B/;

as defined in (5-21). Let .C1; ty/ be the covering pair provided by Proposition 5.6.
Then properties (1)–(3) above for k D 1 follow directly from Proposition 5.6.

Now, suppose that we have defined the sets Gk � zAk�1, zAk � zAk�1 and Ck � zAk

satisfying properties (1)–(3). We define GkC1 by

(5-35) GkC1
D zAk

\

[
y2Ck

G.B ty
.y//:

If x 2 GkC1, then x 2 G.B ty
.y// for some y 2 Ck . So, Proposition 5.6(1) applied to

G.B ty
.y// implies that for all s; s0 2 Œ0; ty �, we have

(5-36) .1� �/g.s0/� g.s/� .1C �/g.s0/

at x. The inductive hypothesis ensures that (5-33) holds at x. Together, (5-36) and
(5-33) imply that

.1� �/kg.s0/� g.s/� .1C �/kg.s0/(5-37)

for all s; s0 2 Œ0; 1�. Therefore, (5-31) holds with kC 1 replacing k for each x 2 GkC1.

Similarly, define

zAkC1
D zAk

\

[
y2Ck

A.B ty
.y//:(5-38)

For each y 2 Ck , Proposition 5.6(3) ensures the existence of a covering pair .Cy ; z 7! tz/

for A.B ty
.y// in B ty

.y/ with tz 2
�
0; 1

200
ty
�
� .0; 200�.kC1//. We set

(5-39) CkC1
D

[
y2Ck

Cy :
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Together Proposition 5.6(3) and the inductive hypothesis (2) ensure that .CkC1; z 7! tz/

is a covering pair for zAkC1 in B. Further, Proposition 5.6(3) and (5-32) show that

(5-40)
X

z2CkC1

tn=2
z � �kC1;

so (5-32) holds for CkC1 with kC 1 replacing k. Thus property (2) holds for kC 1.
Finally, Proposition 5.6(2) along with (5-33) ensures that

(5-41) .1� �/kC1g.s0/� g.s/� .1C �/kC1g.s0/

for all x 2 Bg.tz /.z; 2t
1=2
z / and for all s; s0 2 Œtz; 1�. Thus property (3) holds for kC 1.

This concludes the proof of the claim.

Step 2 We now finish the proof of Theorem 5.1. Theorem 5.1(2) follows directly from
(5-31) and the definition of the sets Gk . Noting that

(5-42) Ak
WD Bg.1/.x0; 2/ n

k[
`D1

G` � zAk ;

Theorem 5.1(4) follows from property (2) above. Next, as Gk � zAk�1 by construction,
we have

(5-43) volg.1/.Gk/� volg.1/. zAk�1/�
X

y2Ck�1

volg.1/.Bg.36ty/.y; 2.36ty/
1=2/:

We apply (3-7) followed by (3-39) to find that

(5-44) volg.1/.Bg.36ty/.x; 2.36ty/
1=2/�.1C2ı/ volg.36ty/.Bg.36ty/.x; 2.36ty/

1=2/

�C tn=2
y ;

where C is a dimensional constant. Thus, by (5-43), (5-44) and (5-32), we see that

(5-45) volg.1/.Gk/� C
X

y2Ck�1

t1=2
y � C�k�1:

Pairing this estimate with Theorem 5.1(2), this establishes Theorem 5.1(3). Finally,
observe that the same argument shows that volg.200�k/. zAk/ � C�k : So, defining
AD

T1
kD1
zAk ; we see that

(5-46) volg.0/.A/D lim
k!1

volg.200�k/.A/� lim
k!1

volg.200�k/. zAk/D 0:

This proves Theorem 5.1(1) and thus concludes the proof of the theorem.

An immediate consequence of Theorem 5.1 with yt D 1 is the following comparison of
volumes of balls.
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Corollary 5.7 Fix n � 2 and � > 0. There exists a ı D ı.n; �/ > 0 such that the
following holds. Let .M;g.t//t2.0;1� be a Ricci flow satisfying (5-1) and (5-2). Fix
x0 2M and t0 2 .0; 1�. For all s; t 2 .0; t0�, we have

(5-47) 1� � �
volg.t/.Bg.t0/.x0; 2t

1=2
0
//

volg.s/.Bg.t0/.x0; 2t
1=2
0
//
� 1C �:

Proof Up to parabolic rescaling, we may assume that t0D1. Thanks to (3-7), it suffices
to show that volg.0/.Bg.1/.x0; 2//� .1C �/ volg.1/.Bg.1/.x0; 2// provided ı is taken
to be sufficiently small depending on �. Let ı also be taken sufficiently small according
to Theorem 5.1. Applying Theorem 5.1 with �D � and thus yt D 1, we find that

(5-48) volg.0/.Bg.1/.x0; 2//D

1X
kD1

volg.0/.Gk/� volg.0/.Gk/C

1X
kD2

.1C�/k�k�1

� .1C�/ volg.1/.x0; 2/CC� � .1CC�/ volg.1/.x0; 2/:

The final inequality follows from Lemma 3.7. By further decreasing ı, we may replace �
by �=C to complete the proof.

5.4 Improved Ricci estimate and good and bad sets on the initial ball

When � < �, we will need to apply a refined form of Proposition 5.6. To this end, we
first show that an improved integral estimate for the Ricci curvature holds outside a set
of small content. As usual, we use the notation B t .x/D Bg.t/.x; 4t1=2/ as defined
in (5-6).

Lemma 5.8 (improved Ricci integral estimate) Fix n � 2, � > 0 and � 2
�
0; 1

2

�
.

There exists a ı D ı.n; �; �/ > 0 such that the following holds. Let .M;g.t//t2Œ0;1� be
a Ricci flow satisfying (5-1) and (5-2). Then for any x0 2M and � � �, there exist
yt Dyt.n; �; �; �/2 .0; 1� and an exceptional set E�Bg.1/.x0; 2/ such that the following
properties hold.

(1) For all x 2 Bg.1/.x0; 2/ nE, we have the improved integral Ricci curvature
estimate

(5-49)
Z yt

0

�
s

yt

���=2
=
Z

Byt .x/

jRicg.s/.y/j dvolg.s/.y/ ds � �2:

(2) There is a finite set fy`gN`D1
� Bg.1/.x0; 2/ such that

(5-50) E �

N[
`D1

Bg.yt/.y`; 2yt
1=2/ with N � �yt�n=2:
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Proof Fix any � 2
�
0; 1

2

�
. Let ı D ı.n; �; �/ be chosen sufficiently small that we may

apply Theorem 4.1 with t D �D 1 and Lemmas 3.8 and 3.7 with � to be determined in
the course of the proof. Throughout the proof, we use the shorthand B DBg.1/.x0; 2/.

Step 1 We first claim that

(5-51)
Z

B

Z t

0

�
s

t

���=2
=
Z

Bt .x/

jRicg.s/.y/j dvolg.s/.y/ ds dvolg.0/.x/� 2t�

for any t � yt , provided yt is taken small enough.

Step 1a Recall from Corollary 5.7 and Lemma 3.7 that

(5-52) volg.s/.Bg.1/.x0; 4//� .1C �/ volg.1/.Bg.1/.x0; 4//� .1C �/4
n!n:

This together with Theorem 4.1 (taking t D � D 1) implies that for any t � 1 we have

(5-53)
Z t

0

s��=2
Z

B1.x0/

jRicg.s/.y/j dvolg.s/.y/

� t�=2
Z t

0

s��
Z

B1.x0/

jRicg.s/.y/j dvolg.s/.y/� .1C �/4
n!nt�=2:

Step 1b A basic maximal function argument shows that

(5-54)
Z

B

=
Z

Bt .x/

jRicg.s/j dvolg.s/.y/ dvolg.0/.x/

� .1C 2�/

Z
Bg.1/.x;4/

jRicg.s/.y/j dvolg.t/.y/:

To see this, take yt small enough such that 4yt1=2 � 1. By the proof of Corollary 5.7 and
Lemma 3.7, we have

(5-55) .1� �/!n.4t/n=2 � volg.s/.B t .x//� .1C �/!n.4t/n=2

for any s 2 Œ0; t �. Furthermore, by Lemma 3.8, for any x 2B, we have B t .x/�B1.x0/.
With these observations in hand, we see that for fixed s 2 .0; t/,

(5-56)
Z

B

=
Z

Bt .x/

jRicg.s/j dvolg.s/.y/ dvolg.0/.x/

�
1C �

!ntn=2

Z
B

Z
B1.x0/

�Bt .x/
.y/jRicg.s/.y/j dvolg.s/.y/ dvolg.0/.x/

�
1C �

!ntn=2

Z
Bg.1/.x;2/

�Z
B

�Bt .y/
.x/ dvolg.0/.x/

�
jRicg.s/j.y/ dvolg.s/.y/

� .1C 2�/

Z
Bg.1/.x;2/

jRicg.s/.y/j dvolg.t/.y/:
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Here �Bt .x/
is the indicator function of B t .x/. This establishes (5-54).

Step 1c Multiplying (5-54) by s��=2 and integrating with respect to s and then
combining the subsequent estimate with (5-53), we establish that

(5-57)
Z t

0

s��=2 =
Z

B.t�/

jRicg.s/.y/j dvolg.s/.y/ ds � t�=2

holds for t � yt . Multiplying both sides of (5-57) by t�=2, we obtain (5-51).

Step 2 Now, let

(5-58) E D

�
x 2 B W

Z yt
0

�
s

yt

���=2
=
Z

Bt .x/

jRicg.s/.y/j dvolg.s/.y/ ds � yt�=2
�
:

By definition, (5-49) holds on B nE; it remains to show the content bound (5-50). Let

(5-59) Bg.yt/.E; yt
1=2/D

[
x2E

Bg.yt/.x; yt
1=2/:

We see that every x 2 Bg.yt/.E; t
1=2/ satisfies

(5-60)
Z yt

0

�
s

yt

���=2
=
Z

Bg.yt/.x;8yt
1=2/

jRicg.s/.y/j dvolg.s/.y/ ds � cnyt
�=2:

Thus, by applying Chebyshev’s inequality to (5-51), we find that

(5-61) volg.0/.Bg.yt/.E; yt
1=2//� Cnyt

�=2:

Take fy`gN`D1
to be a maximal 1

4
yt1=2–dense subset of E with respect to g.yt/. We

conclude that (5-50) holds by taking yt sufficiently small depending on �.

We now proceed as in Section 5.2 to decompose a ball B t satisfying the improved
Ricci integral estimate (5-49). For a ball B, we define the refined stopping time t.x/

for each x 2 Bg.1/.x0; 2/ by

(5-62) t.x/D

inf
�

t 0� 1
200
W =
Z t

t=4

=
Z

Bt .x/

jRicg.s/jdvolg.s/ds� t�=4�1yt�=4 for all t2
�
t 0; 1

200

��
:

As in Section 5.2, provided we take t0 < 200�2, if a ball B satisfies (5-49), then

(5-63) =
Z 1

200

1=800

=
Z

B1=200.x/

jRicg.t/j dvolg.t/ dt � 200�=4�1yt�=4;

so the stopping condition holds at t 0 D 1
200

.
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For a ball B t .x0/ with t < 1, we define the stopping time t.x/ by

(5-64) t.x/D t zt.x/

for each x 2Bg.t/.x0; 2t1=2/, where zt.x/ is the stopping time defined in (5-62) applied
to the rescaled flow zg.s/ D t�1g.t s/. The refined good and bad sets on B t .x0/,
respectively, are defined by

(5-65)
yG.B t .x0//D fx 2 Bg.t/.x0; 2t1=2/ W t.x/D 0g;

yA.B t .x0//D fx 2 Bg.t/.x0; 2t1=2/ W t.x/ > 0g:

In the following proposition, we establish estimates on the good and bad sets. This
is exactly Proposition 5.6 with t

�=4
0

in place of � and 1
2
� in place of � ; the proof is

identical and thus omitted. Again, when convenient, we adopt the shorthand tx D t.x/.

Proposition 5.9 Fix n� 2, � 2
�
0; 1

2

�
, � > 0, yt 2 .0; 1� and x0 2M. Suppose that the

improved Ricci estimate (5-49) holds on Byt .x0/. Then the following properties hold :

(1) For any x 2 G.Byt .x0// and for any s; s0 2 Œ0; yt �, the metrics g.s/ and g.s0/ at x

satisfy

(5-66) .1� �/g.s/� g.s0/� .1C �/g.s/:

(2) Suppose we have x 2 A.Byt .x0//, and fix s0 2 Œtx; yt �. Then for all s; s0 2 Œs0; yt �

and y 2 Bg.s0/.x; 2s
1=2
0
/, the metrics g.s/ and g.s0/ at y satisfy

(5-67) .1� �/g.s/� g.s0/� .1C �/g.s/:

(3) There is a countable collection C D C.Byt .x0//�A.Byt .x0// such that .C; ty/ is
a covering pair for A.Byt .x0// in the sense of Definition 5.5, where ty D t.y/ is
the stopping time and

(5-68)
X
y2C

t .n=2��=4/y � ytn=2:

In particular ,

(5-69)
X
y2C

tn=2
y � �ytn=2:

Now we prove Theorem 5.1 in the case when �<�. The proof by induction is completely
analogous to the proof when �D �, with the only modification coming from the first
step of the iteration.
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Proof of Theorem 5.1 when � < � Let ı be chosen according to Lemma 5.8. We
inductively define sets Gk � zAk�1, zAk � zAk�1 and Ck � zAk for each k 2N satisfying
the following properties:

(1) For all x 2 Gk , we have

.1� �/.1� �/k�1g.s0/� g.s/� .1C �/.1C �/k�1g.s0/(5-70)

for all s; s0 2 Œ0; yt �.

(2) For each x 2 Ck we have a mapping y 7! ty 2 .0; 200�k/ such that .Ck ; ty/ is a
covering pair for zAk in B as in Definition 5.5 and such that

(5-71)
X

y2Ck

tn=2
y � ytn=2��k�2:

(3) Furthermore, if y 2 Ck , then

(5-72) .1� �/.1� �/k�1g.s0/� g.s/� .1C �/.1C �/k�1g.s0/

for all x 2 Bg.ty/.y; 2t
1=2
y / and for all s; s0 2 Œty ; yt �.

As before, we suppress in the notation the dependence of ty on k for y 2 Ck . The proof
of the inductive step is identical to that in the case when yt D 1, so we need only to
establish the base case. Let zA0 D B.

Let E be chosen according to Lemma 5.8; by Lemma 5.8(2) we see that

(5-73) E �

N[
`D1

Byt .x`/; with N � �yt�n=2:

Next, consider a maximal 1
4
yt1=2–dense set fxig

N 0

iD1
in B nE with respect to g.yt/. In

this way,

(5-74) B nE �

N 0[
iD1

Bg.yt/.xi ; yt
1=2/;

and thanks to Corollary 5.7, we have that

(5-75) N 0 � Cnyt
�n=2:

Since (5-49) holds for each i D 1; : : : ;N 0, we apply Proposition 5.9 to decompose
Bg.yt/.xi ; 4yt

1=2/ for each i D 1; : : : ;N 0. Now, we set

(5-76) G1
D

N 0[
iD1

yG.Byt.xi /
/ and zA1

DE [

N 0[
`D1

yA.Byt.x`//

Geometry & Topology, Volume 27 (2023)



290 Man-Chun Lee, Aaron Naber and Robin Neumayer

as defined in (5-65). For each x` for `D 1; : : : ;N , we define tx` D yt
1=2, and set

(5-77) C1
D

N[
`D1

fx`g[

N 0[
`D1

yC.Byt.x`//:

Then properties (1)–(3) follow directly from Proposition 5.6 along with (5-73) and
(5-75), since

(5-78)
X
C1

tn=2
y DN ytn=2

C �N 0ytn=2
� Cn�:

We have thus inductively defined the sets Gk , zAk and Ck . The remainder of the proof
is identical to the proof in the case when �D �, shown in the previous subsection. This
completes the proof of Theorem 5.1.

6 LP bounds for the metric coefficients

In this section, we prove Theorem 1.11, which we restate below as Theorem 6.1 for
the convenience of the reader.

Theorem 6.1 (Theorem 1.11 restated) Fix n� 2, P 2 Œ1;1/ and � > 0. There exists
ıD ı.n;P; �/ > 0 such that the following holds. Let .M;g/ be a complete Riemannian
n–manifold with bounded curvature satisfying

(6-1) R� �ı and �.g; 2/� �ı:

Then for any x0 2 M, there is an open set � � M containing x0 and a smooth
diffeomorphism  W�! B.0; 1/�Rn with  .x0/D 0 satisfying

(6-2) =
Z

B.0;1/

j. �1/�g�geucj
P dy � � and =

Z
�

j �geuc�gjP dvolg � �:

Furthermore , for any � > 1 and q0 2 Œ�;1/ we may choose ı additionally small
depending on q0 and � such that for any f 2W 1;q.B.0; 1// with q 2 Œ�; q0�, we have

.1� �/k �f kLq=�.�/ � kf kLq.B.0;1// � .1C �/k �f kL�q.�/;(6-3)

.1� �/kr �f kLq=�.�/ � krf kLq.B.0;1// � .1C �/kr 
�f kL�q.�/:(6-4)

Remark 6.2 The estimates in (6-2) are equivalent to

(6-5) =
Z
�

kd kP1 dvolg � 1C � and =
Z

B.0;1/

kd �1
k

P
1 dy � 1C �:
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Here, given a map u W .M;g/! .N; h/, the notation kduk1.x/ indicates the operator
norm of the linear map dux W .TxM;g/! .Tu.x/M; h/. Given B W TM �TM !R a
bilinear form, we let kBk1 D supkB.v; � /k1=kvkg.

Remark 6.3 It will be apparent in the proof that, given any number R� 1, by choosing
ı > 0 additionally small depending on R, we may obtain the conclusion of Theorem 6.1
with B.0;R/ replacing B.0; 1/.

Proof Let us begin with some initial observations. Without loss of generality we
may assume that � � �.n;P /, where �.n;P / will be determined in the proof. By
Theorem 3.2, the Ricci flow g.t/ with g.0/D g exists for t 2 Œ0; 1� and jRmg.t/j � �=t

for all x 2M and t 2 .0; 1�. Here � may be taken as small as needed by choosing ı
sufficiently small. We let

(6-6) �D Bg.1/.x0; 1/:

By Lemma 3.7, we obtain a smooth diffeomorphism  WBg.1/.x0; 2/!U �Rn, with
inverse � D  �1 such that  .x0/D 0,  .�/D B.0; 1/ and

(6-7)
�
1� 1

2
�
�
geuc � �

�g.1/�
�
1C 1

2
�
�
geuc

for all x 2 U . This holds as long as � (and hence ı/ has been chosen to be sufficiently
small depending on � and n.

Now, let

(6-8) Bg.1/.x0; 2/D

1[
kD1

Gk
[A

be the decomposition provided by the decomposition theorem, Theorem 5.1, with �D �.
From (6-7) and Theorem 5.1(2), for every x 2 ��Gk we have

(6-9) .1� �/kC1geuc � �
�g � .1C �/kC1geuc:

Therefore, we have

(6-10) j��g�geucjgeuc � .1C �/
kC1
� 1� �.kC 1/.1C �/k

for all x 2 ��Gk , and likewise

(6-11) jg� �geucjg � �.kC 1/.1C �/k
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for all x 2 Gk . Furthermore, volg.A/D voleuc.�
�A/D 0 and for all k � 2, we have

volg.Gk/� .1C �/k�k�1;(6-12)

voleuc.�
�Gk/� .1C �/k�k�1:(6-13)

We begin by proving the first estimate in (6-2). Set

(6-14) �.r/D voleuc.fy 2 B.0; 1/ W j��g�geucjgeuc � rg/

and rk D �.kC 1/.1C �/k . Note that �.0/� !n, while (6-10) and (6-13) ensure that

(6-15) �.rk/� voleuc

�
B.0; 1/ n

k[
`D1

��G`
�

�

1X
`DkC1

voleuc.�
�G`/

�

1X
`DkC1

.1C �/`�`�1
� C�k ;

where C is a universal constant. We apply the layer cake formula to find that

(6-16)
Z

B.0;1/

j��g�geucj
P dy D P

Z 1
0

rP�1�.r/ dr

� �.0/P

Z r0

0

rP�1 drCP

1X
kD0

�.rk/

Z rkC1

rk

rP�1 dr

� ��.0/C

1X
kD0

�.rk/r
P
kC1

� �!nCC�P
1X

kD0

�k.kC2/P .1C�/P.kC1/
� C�!n

for some C D C.n;P / provided that � is small enough, depending on P . Further
decreasing ı, we may replace � by �=C . Dividing through by !n, we establish the first
estimate in (6-2). The second estimate is entirely analogous, with the only additional
point to note being that volg.�/� .1C �/!n thanks to (6-10) and (6-12).

We now show (6-3). Let � D �.�; �; q/ be chosen later in the proof and let ıD ı.n; �/
be sufficiently small to apply the decomposition theorem, Theorem 5.1, with � in place
of �. Fix any f 2W 1;q.B.0; 1//. From (6-10) and voleuc.�

�A/D 0, we find that
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(6-17) kf k
q

Lq.B.0;1//
�

1X
kD1

Z
��Gk\B.0;1/

jf jq dx

�

1X
kD1

.1C �/nk=2C1

Z
Gk\�

j �f jq dvolg:

Next, for each k, we apply Hölder’s inequality with � and �0 D �=.� � 1/ and apply
(6-12) to find that

(6-18) kf kq
Lq.B.0;1//

�

1X
kD1

.1C �/nk=2C1volg.Gk/1=�
0

�Z
Gk

j �f j�q dvolg

�1=�

� k �f k
q

L�q.�/

1X
kD1

.1C �/.nC1=�0/k�k=�0 :

Now, by choosing � D �.�; �/ sufficiently small, the sum on the right-hand side is
bounded above by 1C �, and thus by .1C �/q for any q � 1; after taking the .1=q/th

power of both sides, we have shown that

(6-19) kf kLq.B.0;1// � .1C �/k 
�f kL�q.�/:

The proof of the other inequality in (6-3) is completely analogous.

The proof of (6-4) is similar. From (6-10), we have

(6-20)
Z

B.0;1/

jreucf j
q
euc dx

�

1X
kD1

Z
��Gk\B.0;1/

jreucf j
q
euc dx

�

1X
kD1

.1C �/.qCn=2/kC1

Z
Gk

jrg 
�f jq dvolg

�

�Z
�

jrg 
�f j�q dvolg

�1=� 1X
kD1

.1C �/.qCn=2/kC1volg.Gk/1=�
0

�

�Z
�

jrg 
�f j�q dvolg

�1=� 1X
kD1

.1C �/.qCn/k�k=�0

� .1C �/krg 
�f k

q

L�q.�/
;

where again the final inequality holds provided that � is sufficiently small depending
on q0, � and �. The other inequality in (6-4) is analogous. This completes the proof.
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As a consequence of the proof of Theorem 6.1, we obtain the following estimate for
the Ricci flow. In short, it tells us that, at in least in LP , the metrics g.t/ converge as
t ! 0.

Corollary 6.4 Fix n � 2, P 2 Œ1;1/ and � > 0. There exists a ı D ı.n;P; �/ > 0

such that the following holds. Let .M;g/ be a complete Riemannian n–manifold with
bounded curvature satisfying

(6-21) R� �ı and �.g; 2/� �ı:

For all � 2 .0; �/, there exists yt� Dyt�.n;P; �; �/ such that for any x0 2M, s; t 2 Œ0; yt��,

(6-22) =
Z

Bg.1/.x0;1/

jg.s/�g.t/jPg.t�/ dvolg.t�/ � �:

Moreover , for any � > 1, we may choose ı additionally depending on � such that for
all s; t 2 Œ0; yt��,

(6-23) =
Z

Bg.1/.x0;1/

jg.s/�g.t/j
P=�

g.1/
dvolg.1/ � �:

Remark 6.5 Upgrading this LP coefficient convergence to dp–convergence is morally,
though not explicitly stated, in Section 8. This is in fact significantly harder, as one
needs to understand how the analysis on g.s/ varies, not just the metric coefficients.

Proof The proof of (6-22) is identical to the proof of (6-2), but now we apply the
decomposition theorem, Theorem 5.1, with � in place of �. Then the proof of (6-23)
follows precisely by repeating the proof of (6-4).

7 Epsilon regularity

In this section, we prove the epsilon regularity theorem, Theorem 1.7, and the uniform
L1–Sobolev embedding, Theorem 1.17. The main tool is Theorem 6.1, established in
the previous section.

7.1 Preliminary lemmas

Let us first establish two preliminary lemmas that will be needed in the proof of
Theorem 1.7. The first lemma allows us to localize the dp–distance in Euclidean space.
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We use the notation dq;B.0;R/ to denote dq;geuc;B.0;R/, that is,

(7-1) dq;B.0;R/.x;y/D sup
�
jf .x/�f .y/j W

Z
B.0;R/

jrf jq dx � 1

�
:

Our first lemma tells us that on Euclidean space we may localize the dp–distance.

Lemma 7.1 For all � > 0 and p � nC 1 there exists RDR.n; �;p/ such that for all
q � p� 1

2
and for all x 2 Bq;geuc.0; 1/, we have

(7-2) jdq;B.0;R/.x; 0/� dq;geuc.x; 0/j � �:

Proof One inequality in (7-2) follows immediately from the definition: for any
x 2 B.0;R/, we have

(7-3) dq;geuc.x; 0/� dq;B.0;R/.x; 0/:

Next, we show that for any x such that dq;B.0;R/.x; 0/� 1C �, we have

(7-4) dq;B.0;R/.x; 0/� dq;geuc.x; 0/C �:

Note that this immediately implies that (7-4) holds for any x 2 Bq;geuc.0; 1/ and thus
together with (7-3) will complete the proof. Let f be a function such that

(7-5)
Z

B.0;R/

jrf jq dx � 1; f .0/D 0 and dq;B.0;R/.x; 0/ < f .x/C �:

We will modify f to produce an admissible test function for dp;geuc.x; 0/. Without
loss of generality, we may replace f with minfjf j; 2g, which also satisfies (7-5). Now,
consider a cutoff function  such that 0�  � 1 and

(7-6)  D

�
1 in B.0; 2/;

0 in Rn nB.0;R/
and jr j � CR�1

for a dimensional constant C . By choosing R sufficiently large depending on n, � and p,
we have kr kLq.Rn/ �CRn=q�1 �

1
2
� for any q �p� 1

2
. So, letting yf D .1��/f  ,

we have

(7-7) yf .0/D 0; yf .x/� .1� 2�/dq;B.0;R/.x; 0/

and

(7-8) kr yf kLq.Rn/ � .1� �/k rf kLq.Rn/C .1� �/kf r kLq.Rn/

� .1� �/krf kLq.B.0;R//C 2.1� �/kr kLq.Rn/

� 1� �C � D 1:
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In particular, yf is an admissible test function for dq;geuc.x; 0/ and so

(7-9) dq;geuc.x; 0/� .1� 2�/dq;B.0;R/.x; 0/:

After replacing � with 1
2
�, this completes the proof of (7-4) and thus of the lemma.

Remark 7.2 In the course of proving of Lemma 7.1, we have established the following
statement under the same hypotheses. For any x 2Rn such that dq;B.0;R/.x; 0/ � 2,
we may find a function yf 2W

1;q
0
.B.0;R// such that krf kLq.Rn/ � 1, yf .0/D 0 and

yf .x/� .1� 2�/dq;B.0;R/.x; 0/.

The next lemma shows the continuity of the dp;U –distance with respect to the Euclidean
distance, and will be used in the proof of Lemma 7.4 below.

Lemma 7.3 Fix p > n, let U �Rn be a bounded open set with smooth boundary and
V b U be precompact. For any sequences fxig; fyig � V with xi ;yi! x1;y1 2 xV ,
we have dp;U .xi ;yi/! dp;U .x1;y1/.

Proof Fix � > 0 and let f 2W 1;p.U / be a continuous function such that f .y1/D 0,
f .x1/� dp;U .x1;y1/� � and

R
U jrf j

p dx � 1. Taking f as a test function in the
definition of dp;U .xi ;yi/ for each i , we find that

(7-10) lim inf
i!1

dp;U .xi ;yi/� lim
i!1

jf .xi/�f .yi/j D jf .x1/�f .y1/j

� dp;U .x1;y1/� �:

Letting �! 0, we see that lim infi!1 dp;U .xi ;yi/� dp;U .x1;y1/.

On the other hand, fix � > 0 and for each i let fi 2W 1;p.U / be such that fi.yi/D 0,
fi.xi/ � dp;U .xi ;yi/� � and

R
U jrfi j

p dx � 1. Up to a subsequence, fi * f1 in
W 1;p.U / with

R
U jrf1j

p dx � 1, and by the Morrey–Sobolev inequality, ffig is
locally uniformly Hölder continuous and so, up to a further subsequence, fi ! f1

locally uniformly. In particular, f1 is continuous and we use the triangle inequality to
see that fi.xi/! f1.x1/ and fi.yi/! f1.x1/ as i!1. So, f1 is an admissible
test function in the definition of dp;U .x1;y1/ and

(7-11) dp;U .x1;y1/� jf1.x1/�f1.y1/j D lim
i!1

jfi.xi/�fi.yi/j

� lim
i!1

dp;U .xi ;yi/� �:

Letting � ! 0, we see that limi!1 dp;U .xi ;yi/ � dp;U .x1;y1/ along this subse-
quence. So, we see that limi!1 dp;U .xi ;yi/Ddp;U .x1;y1/ along this subsequence;
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since any subsequence has a further subsequence to which the argument can be applied,
we see that the convergence holds for the full sequence. This concludes the proof.

The next lemma also deals with the dp–distance on Euclidean space, and establishes
uniform continuity of dq;U with respect to q. Again, the notation dq;U is used here to
denote dq;geuc;U for a set U �Rn.

Lemma 7.4 Fix p > n and let U �Rn be a bounded open set with smooth boundary.
Then dq;U .x;y/ converges to dp;U .x;y/ uniformly on a precompact set V with V b U

as q! p.

Proof We first consider the case q! p�. By definition, for q < p, we have

(7-12) dp;U .x;y/� jU j
1=q�1=pdq;U .x;y/:

In particular, for any �>0 we have dp;U .x;y/� .1C�/dq;U .x;y/ for q<p sufficiently
close to p. Suppose by way of contradiction that there are �0 > 0, xi ;yi 2 V and
pi! p� such that for all i � 1,

(7-13) dp;U .xi ;yi/C 2�0 � dpi ;U .xi ;yi/:

For each i , let fi 2W 1;p.U /\C 0
loc.U / be such that fi.yi/D 0,

R
U jrfi j

pi � 1 and

(7-14) dpi ;U .xi ;yi/ < jfi.xi/�fi.yi/jC �0:

After passing to a subsequence, xi ;yi! x1;y1 2 xV by compactness. By Lemma 7.3,
dp;U .xi ;yi/! dp;U .x1;y1/ as i !1. For any fixed q < p, for i sufficiently large
we may apply Hölder’s inequality to find

(7-15)
Z

U

jrfi j
q dx � jU j1�q=pi :

In particular, we see that krfikLq.U / is bounded uniformly in i . Moreover, by the
Morrey–Sobolev inequality, ffig is uniformly Hölder continuous. We therefore see that
fi *f1 in W 1;q.U / with

R
U jrf1j

q dx � 1 for all q < p, and fi! f1 uniformly.
Letting q tend to p, we see that

R
U jrf1j

p � 1, and so f1 is an admissible test
function for dp;U .x1;y1/. Thus, passing to the limit and using (7-13) and (7-14), we
reach a contradiction, since

(7-16) dp;U .x1;y1/C �0 � lim
i!C1

jfi.xi/�fi.yi/j D jf1.x1/�f1.y1/j

� dp;U .x1;y1/:
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Now we consider the case when q! pC. Again by (7-12), we see that for any � > 0,
we have dp;U .x;y/� .1� �/dq;U .x;y/ for q > p sufficiently close to p. Suppose by
way of contradiction that there exist pi > p, �0 > 0, pi! pC and xi ;yi 2 V such that
for all i ,

(7-17) dpi ;U .xi ;yi/C �0 < dp;U .xi ;yi/:

We may assume xi ;yi ! x1;y1 2 xV . Let � be a small constant to be determined
later. By smooth approximation, let f 2 C 1.U / be such that

R
U jrf j

p � 1C��0 and

(7-18) dp;U .x1;y1/� jf .x1/�f .y1/jC ��0:

We let ƒD sup xU jrf j. For i sufficiently large, we have

(7-19)
�Z

U

jrf jpi dx

�1=pi

�ƒ.pi�p/=pi

�Z
U

jrf jp
�1=pi

� .1C ��0/:

So f=.1C ��0/ is an admissible test function for dpi ;U .xi ;yi/. We thus see that

(7-20) jf .xi/�f .yi/j � .1C ��0/dpi ;U .xi ;yi/:

So, by (7-17), (7-18) and (7-20), respectively, we find

(7-21) lim sup
i!1

dpi ;U .xi ;yi/C �0 � dp;U .x1;y1/

� lim
i!1

jf .xi/�f .yi/jC ��0

� .1C ��0/ lim inf
i!1

dpi ;U .xi ;yi/C ��0:

We reach a contradiction by choosing � small enough.

7.2 Proof of Theorem 1.7

In this section, we prove Theorem 1.7, which we restate below as Theorem 7.5 for the
convenience of the reader.

Theorem 7.5 (Theorem 1.7 restated) Fix n � 2. For any � > 0 and p � nC 1,
there exists a ı D ı.n; �;p/ such that the following holds. Let .M n;g/ be a complete
Riemannian manifold with bounded curvature satisfying

(7-22) R� �ı and �.g; 2/� �ı:

Then for all x 2M,

(7-23) dGH
�
.Bp;g.x; 1/; dp;g/; .Bp;geuc.0; 1/; dp;geuc/

�
< �:
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Moreover ,

(7-24) .1� �/jBp;geuc.0; r/j � volg.Bp;g.x0; r//� .1C �/jBp;geuc.0; r/j

for all 0< r < 1, where j � j denotes the Euclidean volume. In particular , the measure
dvolg on the metric measure space .M; dp;g; dvolg/ is a doubling measure for all
scales r � 1.

Proof of Theorem 7.5 Let �0 > 0 be a fixed number, to be specified later in the proof.
To begin, notice that we may choose RDR

�
n; 1

2
p; �0

�
� 2 according to Lemma 7.1,

and � D �.n;p; �0;R/ > 1 sufficiently close to 1 according to Lemma 7.4 so that for
any z;y 2 Bp;geuc.0; 2/, we have

(7-25)
jdp=�;B.0;R/.z;y/� dp;geuc.z;y/j< �

0;

jd�p;B.0;R/.z;y/� dp;geuc.z;y/j< �
0:

Up to possibly increasing R depending on p and n, we have Bp;geuc.0; 2/� B
�
0; 1

2
R
�

by (2-26).

Now, choose ı D ı.n;p; �0; �;R/ D ı.n;p; �0/ sufficiently small that we may apply
Theorem 6.1 with � D �0 and with R as above (see Remark 6.3), obtaining a diffeo-
morphism  W�0! B.0;R/ satisfying the properties of Theorem 6.1. We claim that
for any z;y 2 Bp;geuc.0; 2/ we have

(7-26) jdp;g. 
�1.z/;  �1.y//� dp;geuc.z;y/j< �;

so, in particular, the diffeomorphism  �1 is an �–Gromov–Hausdorff approximation
between .Bp;geuc.0; 2/; dp;euc/ and .�; dp;g/, where �D  �1.Bp;geuc.0; 2//�M.

Fix z;y 2 Bp;geuc.0; 2/ and set y0D 
�1.y/, z0D 

�1.z/ 2� for brevity of notation.
Thanks to (7-25), in order to prove (7-26) it suffices to show that

dp;g.z0;y0/� .1C 3�0/ d�p;B.0;R/.z;y/;(7-27)

dp;g.z0;y0/� .1� 3�0/dp=�;B.0;R/.z;y/:(7-28)

We begin by showing (7-27). Let f 2W 1;p.M /\C 0.M / be a function such thatR
M jrf j

p dvolg � 1 and

(7-29) dp;g.z0;y0/� .1C �
0/jf .z0/�f .y0/j:

Thanks to Theorem 6.1, we find that

(7-30) kr �f kL�p.B.0;R// � .1C �
0/krf kLp.�/

� .1C �0/krf kLp.M / � 1C �0:
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So h D  �f=.1C �0/ is an admissible test function for d�p;B.0;R/.y; z/, and thus
d�p;B.0;R/.y; z/� jh.z/� h.y/j. Furthermore,

(7-31) jh.z/� h.y/j � .1C �0/�1
jf .z0/�f .y0/j � .1C �

0/�2dp;g.z0;y0/:

This establishes (7-27).

The proof of (7-28) is similar. Fix a function h 2 W 1;p=�.B.0;R//\C 0.B.0;R//

such that
R

B.0;R/ jrhjp=� dx � 1 and

(7-32) dp=�;B.0;R/.z0;y0/ < .1C �
0/jh.z0/� h.y0/j:

By Remark 7.2, we may assume h to be vanishing outside B.0;R/ and hence f D �h
can be extended to a function on M. By Theorem 6.1, we have

(7-33) krf kLp.M / � .1C �
0/krhkLp=�.B.0;R// � 1C �0:

Hence, f=.1C �0/ is an admissible test function for dp;g.y; z/, and so

(7-34) .1C �0/dp;g.y; z/� jf .y/�f .z/j D jh.y0/� h.z0/j:

This establishes (7-28), and hence (7-26). From (7-26), it follows immediately that

(7-35)  �1.Bp;geuc.0; 1� 8�0//� Bp;g.x; 1/�  
�1.Bp;geuc.0; 1C 8�0//;

and hence (7-23) holds taking �0 D 1
8
�. Finally, (7-24) is now an immediate conse-

quence of (7-35), Theorem 5.1 and a rescaling argument. This completes the proof of
Theorem 7.5.

Using the same approximation strategy as in obtaining (7-26), we now give the proof
of the dp version of the Myers–Steenrod theorem, namely Proposition 2.36.

Proof of Proposition 2.36 Since the manifolds are dp–complete this immediately tells
us that we have a homeomorphism � WM!N such that dp;g.x;y/Ddp;h.�.x/; �.y//

for all x;y 2M. By the Myers–Steenrod theorem, it suffices to show that dg and dh

are locally isometric. We first show that dp;g is locally a function of dg.

Claim 1 For any x 2M, we have

(7-36) lim
y!x

dp;g.x;y/

dg.x;y/1�n=p
D S;

where S is the Euclidean dp–distance from the origin to a point on the standard unit
sphere; see (2-24).
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Proof of Claim 1 Suppose that, on the contrary, we can find a sequence fyig �M

with di D dg.x;yi/! 0 and �0 > 0 such that

(7-37)
ˇ̌̌̌
dp;g.x;yi/

d
1�n=p
i

�S

ˇ̌̌̌
� �0 > 0:

Consider the rescaled metric gi D d�2
i g so that dgi

.x;yi/ D 1 for all i 2 N and
dp;gi

.x;yi/ D d
n=p�1
i dp;g.x;yi/. Clearly, we have .M;gi ;x/ ! .Rn;geuc; 0/ in

the C1–Cheeger–Gromov sense. By the smooth convergence, the argument used in
obtaining (7-26) shows that dp;gi

.x;yi/! S , which contradicts (7-37).

In particular, from the claim and the dp–isometry, we conclude that for any x 2M,

(7-38) lim
y!x

dh.�.x/; �.y//

dg.x;y/
D 1:

By repeating the argument on ��1, we conclude that � and ��1 are both 1–Lipschitz.
In particular, this implies that � is a isometry with respect to geodesic distance. Now,
the classical Myers–Steenrod theorem implies that � is differentiable at x and satisfies
.��h/.x/D g.x/ for all x 2M. This completes the proof.

7.3 Proof of Theorem 1.17

Now we prove the L1–Sobolev inequality on manifolds with small entropy and R�.
We restate Theorem 1.17 below as Theorem 7.6.

Theorem 7.6 (L1–Sobolev embedding) Fix p; q0 � n C 1. Then there exists
a ı D ı.n;p; q0/ > 0 such that the following holds. Let .M n;g/ be a complete
Riemannian manifold with bounded curvature satisfying

(7-39) R� �ı and �.g; 2/� �ı:

Then for all x0 2M and q 2 .n; q0/, there exists a Cn;q D C.n; q/ > 0 such that for all
f 2W

1;q
0
.Bp;g.x0; 1//, we have

(7-40) kf kL1.Bp;g.x0;1// � Cn;qkrf kLq.Bp;g.x0;1//:

For all f 2W 1;q.Bp;g.x0; 1// and x;y 2 Bp;g.x0; 1/, we have

(7-41) jf .x/�f .y/j � Cn;qkrf kLq.Bp;g.x0;1//:
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For all f 2W 1;q.M /, we have

(7-42) kf kL1.M / � Cn;q.krf kLq.M /Ckf kLq.M //:

In terms of the dp–distance we can upgrade (7-41) to a Hölder embedding: there exists
an ˛ D ˛.n; q/ 2 .0; 1/ such that

(7-43) jf .x/�f .y/j � Cn;q;pdp.x;y/
˛
krf kLq.Bp;g.x0;1//

for all x;y 2 Bp;g.x0; 1/.

Proof of Theorem 7.6 Fix any �� 1
4

, and fix ıD ı.n;p; �/ according to Theorem 7.5.
As in the proof of Theorem 7.5, we obtain a diffeomorphism  W Bp;g.x0; 5C �/! z�,
where Bp;euc.0; 5/� z�� Bp;euc.0; 5C 2�/, satisfying the properties of Theorem 6.1.
Recall from (2-26) that there exists an RDR.n/ such that Bp;euc.0; 6/� B.0;R/ for
all p � nC 1.

Let f 2W
1;q

0
.Bp;g.x0; 1// and extend f by zero to be defined in all of z�. Let hD �f

and then naturally extend h by zero to be defined on B.0;R/. By (6-4) of Theorem 6.1
and Remark 6.3, for any q 2 .�n; q0/ we have

(7-44) krhkLq=�.B.0;R// � .1C �/krf kLq.Bp;g.x0;1//:

So, applying the Morrey–Sobolev embedding on B.0;R/ followed by (7-44), we have

(7-45) kf kL1.Bp;g.x0;1// D khkL1.B.0;R// �
zCn;qkrhkLq=�.B.0;R//

� Cn;qkrf kLq.Bp;g.x0;1//:

This completes the proof of (7-40).

To prove (7-41) consider any function f 2 W 1;q.Bp;g.x0; 1// and let h D  �f be
the function defined on z�0 D  .Bp;g.x0; 1//. By the Morrey–Sobolev inequality on
Euclidean space, for all x;y 2 Bp;g.x0; 1/ we have

(7-46) jf .x/�f .y/j D jh. .x//� h. .y//j � Cn;qkrhk
Lq=�.z�0/

� Cn;qkrf kLq.Bp;g.x0;1//:

In fact, we may apply the Hölder Morrey–Sobolev embedding on z�0 in (7-46) above
to see that

(7-47) jf .x/�f .y/j D jh. .x//� h. .y//j

� Cn;qj .x/� .y/j
1�n�=q

krhk
Lq=�.z�0/

� Cn;qj .x/� .y/j
1�n�=q

krf kLq.Bp;g.x0;1//:
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Hence it suffices to show that j .x/� .y/j � Cdp;g.x;y/ for some C.n;p/ > 0

for x;y 2 Bp;g.x0; 1/. Since z�� Bp;euc.5/, and by the proof of Theorem 7.5, we get
that  .x/;  .y/ 2 Bp;euc.2/D B.0; .2S�1/p=.p�n//, where S D S.n;p/ is given by
(2-25). Consider the test function '.z/Dminfj .x/� .z/j; 2.2S�1/p=.p�n/g, which
is compactly supported on z�. By (6-4) of Theorem 6.1 and Remark 6.3, we see that
C' is an admissible function for dp;g.x;y/ for some C.n;p/ > 0. The claim follows.

To prove (7-42), let f 2 W 1;q.M /. Fix x0 2M and let  be the diffeomorphism
obtained above such that  .x0/D 0. Let hD  �f be the pushforward of f , which
is defined on z�. Let ' be a cutoff function such that ' � 1 on Bp;euc

�
0; 1

2

�
, ' van-

ishes outside Bp;euc.0; 1/ and j@'j � Cn; recall (2-25). Then by the Morrey–Sobolev
inequality on Euclidean space followed by Theorem 6.1, we have

(7-48) jf .x0/j � kh'kL1.Bp;euc.0;1//

� Cn;qkr.h'/kLq=�.Bp;euc.0;1//

� Cn;q.krhkLq=�.Bp;euc.0;1//
CkhkLq=�.Bp;euc.0;1//

/

� Cn;q.krf kLq.M /Ckf kLq.M //:

Since x0 is arbitrarily chosen, this completes the proof.

8 Global convergence theorem

In this section we prove Theorem 1.15, which we restate below as Theorem 8.1.

Theorem 8.1 (Theorem 1.15, restated) For p � nC 1, there exists a ı D ı.n;p/ > 0

such that if f.Mi ;gi ;xi/g is a sequence of complete pointed Riemannian manifolds
with bounded curvature such that

(8-1) Rgi
� �ı and �.gi ; 2/� �ı;

then there exists a pointed rectifiable Riemannian space .M1;g1;x1/, with M1

topologically a smooth manifold , such that the following holds:

(1) After passing to a subsequence , we have dp..Mi ;gi ;xi/; .M1;g1;x1//! 0

in the sense of Definition 2.39.

(2) The space .X1;g1;x1/ is W 1;p–rectifiably complete and dp–rectifiably com-
plete in the sense of Definitions 2.24 and 2.35, respectively.
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This section is organized in the following way. In Section 8.1, we construct the
rectifiable Riemannian space that will ultimately be shown to be the pointed dp limit
in Theorem 8.1. Then, in Section 8.2, we show that this limit is W 1;p–rectifiably
complete. In Section 8.3, we establish the pointed dp convergence of the sequence, and
finally in Section 8.4 we put these pieces together to conclude the proof of Theorem 8.1.

8.1 Constructing the limit space

We first obtain the rectifiable Riemannian space .M1;g1;x1/ that will ultimately be
the pointed dp limit, and establish the integral convergence of the metric tensors to this
limit. For notational convenience, all convergence means subsequence convergence.

Proposition 8.2 Fix P � nC 1. There exists ı D ı.n;P / > 0 such that the following
holds. Suppose f.M n

i ;gi ;xi/g is a sequence of complete pointed Riemannian manifolds
with bounded curvature satisfying

(8-2) Rgi
� �ı and �.gi ; 2/� �ı:

Then there exists a pointed rectifiable Riemannian space .M1;g1;x1/, with M1

topologically a smooth manifold , such that up to a subsequence , the following holds.
For any compact subset �b M1, we can find subsets �i b Mi and diffeomorphisms
 i;� W�!�i such that  i;�.x1/D xi and

(8-3) k �i;�gi �gkLq.�/! 0

for any q 2 Œ1;P �.

Proof We proceed in several steps. The first three steps involve constructing the
pointed rectifiable Riemannian space .M1;g1;x1/ that will later be shown to be the
dp limit of .Mi ;gi ;xi/, while in the fourth step we establish the convergence of the
metric tensors (8-3).

Step 1 (constructing the smooth pointed topological manifold .M1;x1/) Fix �>0

to be specified later in the proof. By Theorem 3.2 and Perelman’s no-local-collapsing
theorem (3-23), if ı D ı.n; �/ is taken sufficiently small, then there is a sequence of
complete Ricci flow solutions f.Mi ;gi.t//gt2Œ0;1� such that gi.0/D gi and

(8-4)
�
jRm.gi.t//j � �t�1;

inj.gi.t//� cn

p
t :
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By Hamilton’s compactness theorem [32], after passing to a subsequence, we get that
.Mi ;gi.t/;xi/! .M1;g1.t/;x1/ in the pointed C1–Cheeger–Gromov sense so
that g1.t/ is a solution to the Ricci flow on M1 � .0; 1� also satisfying (8-4).

Step 2 (constructing the rectifiable Riemannian metric g1 and measure m1) We
now construct a rectifiable Riemannian metric as an LP limit of g1.t/ as t tends to zero.

From the previous step, for any precompact set �b M1 containing x0, we can find
a sequence of maps  i;� W � ! Mi , each a diffeomorphism onto its image, such
that  i;�.x1/ D xi and  �i gi.t/ ! g1.t/ smoothly on any compact subsets of
M1 � .0; 1�. For notational convenience, we will use gi and gi.t/ to denote  �

i;�
gi

and  �
i;�

gi.t/, respectively. By way of a covering argument, it suffices to consider the
case �D Bg1.1/.x1; 1/.

Fix any � > 0. By (6-23) of Corollary 6.4 (taking �D 1
10

, � D 2 and 2P in place of P ),
we may find t� D t�.n;P; �/ 2 .0; 1/ such that for all s; t 2 .0; t�/, we have

(8-5)
Z
�

jgi.s/�gi.t/j
P
gi .1/

dvolgi .1/ � �:

So, passing to the smooth limit as i !1, we find that

(8-6)
Z
�

jg1.s/�g1.t/j
P
g1.1/

dvolg1.1/ � �

for all s; t 2 .0; t�/. Then we see that g1.t/ is a Cauchy sequence and hence
g1 D limt!0C g1.t/ exists in LP .�;g1.1//. Next, by letting �j b M1 be an
exhaustion of M1, we define g1 on the whole M1. With g1 in hand, we define
the measure m1 on M1 by setting m1 to be the “induced measure” of g1. More
precisely, consider the function f .x/D .det g1=det g1.1//

1=2 on M1. Thanks to the
LP

loc–convergence of g1.t/ to g1 as t ! 0, f is coordinate-free and is in LP
loc.M1/

for P > 1. Now we define m1D f dvolg1.1/, which is a well-defined Radon measure
on M1. This completes the construction.

Step 3 (verifying that .M1;g1;x1/ is a rectifiable Riemannian space) Now we
claim that .M1;g1;x1/ is a rectifiable Riemannian space. To construct a recti-
fiable atlas for .M1;g1;x1/, let fxj g � M1 be a collection of points such that˚
Bg1.1/

�
xj ;

1
2

�	
covers M1 and

˚
Bg1.1/

�
xj ;

1
4

�	
are pairwise disjoint. By taking

� > 0 sufficiently small in Step 1, we may apply Lemma 3.7 and (8-5) to obtain charts
�j W Uj ! Bg1.1/.xj ; 2/, where Uj �Rn is such that

(8-7)
Z

Uj

j��j g1�geucj
P
geuc

dx � C:
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Let Ua;j D fx 2 Uj W j�
�
j g1 � geucjgeuc � ag and let �a;i W Ua;j !M1 be defined

by �j jUa;j
. We easily check from (8-7) that f.Ua;j ; �a;j /ga;i2N is a rectifiable atlas

for .M1;x1;m1/ and that g1 is a rectifiable Riemannian metric with respect to this
rectifiable atlas, by the construction of g1 and m1.

Step 4 (convergence) Finally, the LP –convergence (8-3) of gi! g1 follows from
the LP –convergence in (8-5) and a diagonal subsequence argument. This completes
the proof of the proposition.

Remark 8.3 From the proofs of Proposition 8.2 and Theorem 6.1, we may immediately
deduce the following properties of the limit space .M1;g1;x1/ constructed in
Proposition 8.2. Given any x 2M1, we may apply Lemma 3.7 to obtain a diffeo-
morphism � W B.0; 2/!�0 �M1 such that �.0/D x and � WD �.B.0; 1// satisfies
Bg1.1/.x; 1� �/��� Bg1.1/.x; 1� �/. In a slight abuse of notation, we identify
��g and ��gk with g and gk , respectively. We have the following estimates:

(8-8)

Z
B

jg1�gk j
P
euc! 0;

Z
B

jg�1
1 �g�1

k j
P
euc! 0;Z

B

jg1g�1
k � IdjPeuc! 0;

Z
B

jgkg�1
� IdjPeuc! 0:

Here the measure of integration can be taken to be dx, dvolg or dvolgk
. Furthermore,

for any fixed p�nC1 and for �2D .pCn/=2n>1, we may choose ı in Proposition 8.2
additionally depending on p and � so that

(8-9) .1� �/kf kLp=�.B.0;1/;geuc/
� kf kLp.B.0;1/;g1/ � .1C �/kf kL�p.B.0;1/;geuc/:

Similarly, we may replace geuc with gk above.

8.2 W 1;p–rectifiable completeness of the limit space

In this section, we prove that the limiting rectifiable Riemannian space .M1;g1;x1/
obtained in Proposition 8.2 is W 1;p–rectifiably complete as in Definition 2.24. Given
1 < p < 1 fixed, we let W 1;p.M1;g1/ denote the Sobolev space as defined in
Section 2.1.2. For any function u 2W 1;p.M1;g1/, we let GM1;g1;u denote the
least p–weak upper gradient of u, whose existence is guaranteed by Proposition 2.23.
We will show that the function ua D �

�
a u is differentiable a.e. in Ua, and thus we may

let jrg1ujWX !R be the function defined in charts by

(8-10) jrg1uj.�a.x//D
�
g

ij
1@iua.x/@j ua.x/

�1=2
for a.e. x 2 Ua.
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Proposition 8.4 Fix p � nC 1. By choosing P D P .p; n/ sufficiently large and thus
ı D ı.n;p/ sufficiently small in Proposition 8.2, the limiting rectifiable Riemannian
space .M1;g1;x1/ constructed in Proposition 8.2 is W 1;p–rectifiably complete in
the sense of Definition 2.24. That is:

(a) W 1;p.M1;g1/ is dense in Lp.M1;g1/.

(b) For any u 2W 1;p.M1;g1/, the function ua D �
�
a u is weakly differentiable

in Ua, and thus the function jrg1uj in (8-10) is defined for m–a.e. x 2M1.
Moreover , the least weak upper gradient satisfies GM1;g1;u D jrg1uj for
m–a.e. x 2M1.

More precisely, in Proposition 8.4(b), we mean the following when we say that ua is
weakly differentiable in Ua (recall that Ua may not be an open set). From Proposition 8.2
and Step 4 of its proof, in which we construct the rectifiable atlas for .M1;g1/, we
see that we have a classical atlas of charts fy�j g for the smooth manifold M1, and
these charts agree with the charts f�ag of the rectifiable atlas where they are both
defined. The function y��j u, defined on an open ball in Euclidean space and agreeing
with ua D �

�
a u on the intersection of their domains, has weak partial derivatives in Lp

in the sense of Sobolev spaces, defined for instance in [22, Chapter 4].

We will first establish a localized version of Proposition 8.4(b) in Section 8.2.1 be-
low (Proposition 8.5). Using this proposition, we will then prove Proposition 8.4 in
Section 8.2.2.

8.2.1 The local estimate In this section, we will prove the following local version
of Proposition 8.4(b). In order to alleviate notation, we let g D g1. Fix x 2M1

and let � W B.0; 2/!�0 with �.0/D x be as in Remark 8.3. As in Remark 8.3, we
slightly abuse notation by identifying ��g and ��gk with g and gk , respectively. We
set BDB.0; 1/ and denote by W 1;p.B;g/ the W 1;p space as defined in Section 2.1.2
with respect to the metric g on the space B. We let GB;g;u denote the least p–weak
upper gradient of u in W 1;p.B;g/ and j P
 jg D g. P
 ; P
 /1=2. We will use the analogous
notation for gk and geuc.

Proposition 8.5 Fix p � nC 1. By choosing P D P .n;p/ sufficiently large and thus
ı D ı.n;p/ sufficiently small in Proposition 8.2, any u 2W 1;p.B;g/ is differentiable
m–a.e. and we have GB;g;u D jrguj for m–a.e. x 2 B.
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In preparation for the proof of Proposition 8.5, we first prove some preliminary lemmas.
Let Mg and Meuc denote the collection of all absolutely continuous curves with respect
to g and geuc, respectively, in B. Note that Meuc is also the collection of gk absolutely
continuous curves in B for every k.

Lemma 8.6 Fix P as in Proposition 8.2. For any 1� p � 1
2
P , we have

Modg;p.Mg nMeuc/D 0 and Modgeuc;p.Meuc nMg/D 0:

Proof Consider the family � �Mg of curves 
 W Œa; b�! B.0; 1/ such thatZ b

a

jg�1.
 /j1=2euc j P
 jg dt DC1:

Because jg�1j
1=2
euc 2LP=2.B;g/ by (8-8), it follows from the definition of Modp that

Modg;P=2.�/D 0. Notice that Mg nMeuc � � . Indeed, for any 
 2Mg nMeuc, we
apply the Cauchy–Schwarz inequality to find thatZ b

a

jg�1.
 /j1=2euc j P
 jg dt �

Z b

a

j P
 .t/jeuc dt DC1;

and so 
 2 � . It follows that Modg;p.Mg nMeuc/ D 0. The other claim is proven
analogously.

In view of Lemma 8.6, we will henceforth let MDMg \Meuc and will restrict our
attention to curves in M.

Lemma 8.7 Fix p � nC 1 and let �2 D .pC n/=2n> 1. By choosing P D P .n;p/

sufficiently large and thus ıD ı.n;p/ sufficiently small in equation (9-3), for any family
of curves � �M with Modg;p.�/D 0 we have Modgk ;p=�.�/DModgeuc;p=�.�/D 0.

Proof Let � �M be a family of curves with Modg;p.�/D 0. By definition, there
exists an F � 0 such that F 2 Lp.B;g/ and

R b
a F.
 /j P
 jg dt D C1 for all g 2 � .

For each k, consider the function Fk D F jgkg�1j
1=2
euc . By Remark 8.3, we have

Fk 2Lp=�.B;gk/ provided P is chosen sufficiently large depending on p and n. ThenZ b

a

Fk.
 /j P
 jgk
dt �

Z b

a

F.
 /j P
 jg dt DC1;

and so Modgk ;p=�.�/D 0. The same proof holds for geuc letting FeucDF jg�1j
1=2
euc .
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Lemma 8.8 Fix p � nC 1 and let �2 D .pC n/=2n> 1. By choosing P D P .n;p/

sufficiently large and thus ı D ı.n;p/ sufficiently small in equation (9-3), we have
W 1;�p.B;geuc/�W 1;p.B;g/�W 1;p=�.B;geuc/.

Proof We prove the second inclusion; the proof of the first inclusion is analogous. Fix
u 2W 1;p.B;g/, so by definition we have

(8-11) ju.
 .a//�u.
 .b//j �

Z b

a

GB;g;u.
 /j P
 jg dt �

Z b

a

GB;g;u.
 /jgj
1=2
euc j P
 jgeuc dt

for all 
 2Mn� , where � �M is a family of curves such that Modg;p.�/D 0. Letting
H DGB;g;ujgj

1=2
euc , we directly see that H satisfies the weak upper gradient condition

for u with respect to geuc. Moreover, by Lemma 8.6, we see that Modgeuc;p=�.�/D 0.
This implies that H is a p=�–weak upper gradient for u with respect to geuc. Moreover,
we deduce from Remark 8.3 that H 2Lp=�.B;geuc/, and so u 2W 1;p=�.B;geuc/.

In Lemma 8.8, we have used the Newtonian space definition of W 1;p=�.B;geuc/. It is
known (see [29, Theorem 7.13]) that this space agrees with the typical definitions of
Sobolev spaces on Euclidean space.

Lemma 8.9 Fix 1� q � p <1. Let u 2W 1;p.B;g/ and let G be a q–weak upper
gradient of u. Then G is a p–weak upper gradient of u.

Proof As usual, let GB;g;u denote the least p–weak upper gradient of u. We will
show that G � GB;g;u for m–a.e. x 2 B, which implies directly that G is a p–weak
upper gradient. To this end, we employ a trick from [29, Lemma 6.3]. Since G is
a q–weak upper gradient for u, we know that the weak upper gradient condition is
satisfied for G for all 
 2M n� , where Modg;q.�/D 0. By definition, there exists
a function F 2 Lq.B;g/ such that

R b
a F.
 /j P
 jg dt DC1 for all g 2 � . Therefore,

the function Gk D GCF=k is an upper gradient of u, and in particular, a p–weak
upper gradient for u. Therefore, Gk �GB;g;u for m–a.e. x 2B. Now, since F is finite
m–a.e., we have Gk !G and thus G �GB;g;u for m–a.e. x 2 B.

We are now ready to prove Proposition 8.5.

Proof of Proposition 8.5 We consider two cases: first, the case when u is a smooth
function in B, and then the general case when u 2 W 1;p.B;g/. In each case, we
proceed in two steps: first showing that jrguj is a p–weak upper gradient of u with
respect to g, and then showing that it is the least p–weak upper gradient of u with
respect to g.
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Case 1 u 2 C1.B;geuc/.

Step 1 jrguj is a p–weak upper gradient for u with respect to g.

The main estimate toward showing Step 1 is the following. Up to passing to a sub-
sequence, we have

(8-12)
Z b

a

jrgk
uj.
 /j P
 jgk

dt !

Z b

a

jrguj.
 /j P
 jg dt

for every curve 
 W Œa; b� ! B in M n � , where � is a family of curves such that
Modg;p.�/D 0. Once we establish this fact, it will easily follow that jrguj is a
p–weak upper gradient for u with respect to g. Indeed, since gk is a smooth metric
for each k, we know that jrgk

uj is the least upper gradient for u with respect to gk .
So, for any 
 2M n� , we have

ju.
 .a//�u.
 .b//j �

Z b

a

jrgk
uj.
 /j P
 jgk

dt !

Z b

a

jrguj.
 /j P
 jg dt(8-13)

as k!1. Since Modg;p.�/D 0, it follows that jrguj is a p–weak upper gradient
for u with respect to g.

We employ Lemma 2.17 in order to prove (8-12). More specifically, for any curve

 2M, we haveˇ̌̌̌Z b

a

jrgk
uj.
 /j P
 jgk

dt �

Z b

a

jrguj.
 /j P
 jg dt

ˇ̌̌̌
� IC II;

where

(8-14)
ID

ˇ̌̌̌Z b

a

.jrgk
uj � jrguj/.
 /j P
 jgk

dt

ˇ̌̌̌
;

IID
ˇ̌̌̌Z b

a

jrguj.
 /.j P
 jgk
� j P
 jg/ dt

ˇ̌̌̌
:

We claim that terms I and II tend to zero as k ! 1 for all 
 2 M n � , where
Modg;p.�/D 0. Indeed, consider the sequence of functions

Fk D
ˇ̌
jrgk

uj � jrguj
ˇ̌
jgk g�1

j
1=2
euc ;

and notice that I�
R b

a Fk.
 /j P
 jg dt . Thanks to (8-8), we see that Fk! 0 in Lp.B;g/,
provided P is large enough depending on p. Then Lemma 2.17 implies that, after
passing to a subsequence, I! 0 for all 
 2Mn�I, where �I �M is a family of curves
with Modg;p.�I/D 0.
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We argue in a similar fashion for term II. Consider the sequences

zFk D jrguj.jgkg�1
j
1=2
euc � 1/ and yFk D jrguj.1� jgg�1

k j
�1=2
euc /:

Since jrguj � 0, we haveZ b

a

jrguj.
 /.j P
 jgk
� j P
 jg/ dt �

Z b

a

zFk.
 /j P
 jg dt;Z b

a

jrguj.
 /.j P
 jg � j P
 jgk
/ dt �

Z b

a

yFk.
 /j P
 jg dt:

Furthermore, thanks to (8-8), we see that zFk ; yFk ! 0 in Lp.B;g/ provided that P is
chosen sufficiently large depending on p. So, by Lemma 2.17, we see that, after passing
to a further subsequence, we have II! 0 for all 
 2M n�II where Modg;p.�II/D 0.
Letting � D �I[�II, we conclude that (8-12) holds. This completes Step 1.

Step 2 jrguj is the least p–weak upper gradient of u with respect to W 1;p.B;g/.

Let H 2Lp.B;g/ be any p–weak upper gradient of u with respect to g. By definition,
we have

(8-15) ju.
 .a//�u.
 .b//j �

Z b

a

H.
 /j P
 jg dt �

Z b

a

H jgg�1
k j

1=2
euc j P
 jgk

dt

for all 
 2Mn� , where � is a family of curves such that Modg;p.�/D 0. In particular,
letting Hk DH jg g�1

k
j
1=2
euc , we see immediately that Hk satisfies the upper gradient

condition for every 
 2Mn� . By Lemma 8.6, we see that Modgk ;p=�.�/D 0, and thus
Hk is a p=�–weak upper gradient for u with respect to gk . Moreover, it follows from
Remark 8.3 that Hk 2 Lp=�.B;g/\Lp=�.B;gk/ and that Hk !H in Lp=�.B;g/.
In particular, Hk !H for m–a.e. x 2 B.

Similarly, since u 2 C1.B;geuc/, we deduce from (8-8) that jrgk
uj ! jrguj in

Lp.B;g/, and therefore m–a.e. Since jrgk
uj is the least q–weak upper gradient for u

with respect to gk for any q, we have that jrgk
uj � Hk m–a.e. Passing k !1, it

follows that jrguj �H , and so jrguj is the least p–weak upper gradient for u with
respect to g.

Case 2 u 2W 1;p.B;g/.

Step 1 jrguj is a p–weak upper gradient of u in W 1;p.B;g/.

By Lemma 8.8, we know that u 2W 1;p=�.B;geuc/, and thus we may find a sequence
ui 2C1.B;geuc/ such that ui! u in W 1;p=�.B;geuc/. So, using Remark 8.3, we see
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that jrgui j ! jrguj in Lq.B;g/ for q D p=�2. Therefore, applying Lemma 2.17
once again, after passing to a subsequence, we have

(8-16)
Z b

a

jrgui j.
 /j P
 jg dt !

Z b

a

jrguj.
 /j P
 jg dt

as i!1 for all 
 2Mn�0, where Modg;q.�0/D0. Moreover, applying Case 1 to each
smooth function ui , we know that jrgui j is a q–weak upper gradient for ui and thus

(8-17) jui.
 .a//�ui.
 .b//j �

Z b

a

jrgui j.
 /j P
 jg dt

for all 
 2M n �i , where �i is a family of curves such that Modg;q.�i/ D 0. Now,
since p=� > n, we have that ui ! u uniformly by the Morrey–Sobolev inequality
on Euclidean space. So, letting � D �0 [

S
�i , we see that Modg;q.�/ D 0, and

letting i !1 in (8-17), we find that ju.
 .a//� u.
 .b//j �
R b

a jrguj.
 /j P
 jg dt for
all 
 2M n� . This proves that jrguj is a q–weak upper gradient of u with respect
to g. Applying Lemma 8.9, we see that jrguj is also a p–weak upper gradient with
respect to g, completing Step 1.

Step 2 jrguj is the least p–weak upper gradient of u in W 1;p.B;g/.

Let vi�ui�u2W 1;p.B;g/. As noted in the previous step, vi!0 in W 1;p=�.B;geuc/,
so in particular jrgvi j ! 0 m–a.e. Moreover, applying the previous step, jrgvi j is a
p–weak upper gradient of vi in W 1;p.B;g/.

Now, consider any p–weak upper gradient H 2Lp.B;g/ for u with respect to g and
let Hi DH Cjrgvi j, which converges pointwise m–a.e. to H . Applying the triangle
inequality, we see that Hi is a p–weak upper gradient for ui . Moreover, from Case 1, we
know that jrgui j is the least p–weak upper gradient for ui with respect to g, and hence

(8-18) Hi � jrgui j

for m–a.e. x 2 B.0; 1/. Since jrgui j ! jrguj in Lq.B;geuc/, after passing to further
subsequences, the sequence also converges pointwise a.e, and thus m–a.e. Thus sending
i !1 in (8-18), we see that jrguj is the least p–weak upper gradient for u with
respect to g. This concludes the proof of Step 2 and thus of the proposition.

8.2.2 Proof of Proposition 8.4 We are now ready to prove Proposition 8.4.

We first prove part (b). Fix u 2 W 1;p.M1;g1/. By Proposition 8.5, we know
that the pullback of u is weakly differentiable in charts and that jrg1uj is defined
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for a.e. x 2M1. To show that jrg1 j D GM1;g1;u, we proceed in two steps: first
showing that jrg1uj is a p–weak upper gradient of u, and then showing that it is the
least p–weak upper gradient.

We claim that jrg1uj is a p–weak upper gradient of u with respect to W 1;p.M1;g1/.
To this end, let fxj g �M1 be a collection of points such that

˚
Bg1.1/

�
xj ;

1
2

�	
covers

M1 and the Bg1.1/

�
xj ;

1
4

�
are pairwise disjoint. For each j , let �j WB.0; 2/!�j �

Bg1.1/

�
xj ;

1
2

�
be as in Remark 8.3.

Consider any absolutely continuous curve 
 W Œa; b�!M1. The continuous image
under 
 of the compact set Œa; b� is compact, and thus the image of 
 in M1 intersects
finitely many of the �j . Take a finite partition a D a0 < a1 < � � � < aN D b of the
interval Œa; b� such that the image of Œai ; aiC1� is contained entirely in �j for one j .
Then, applying the triangle inequality and Proposition 8.5, we see that

(8-19) ju.
 .a//�u.
 .b//j �

NX
iD1

ju.
 .ai�1//�u.
 .ai//j

�

NX
iD1

Z ai

ai�1

jrg1ujj P
 jg1 dt D

Z b

a

jrg1ujj P
 jg1 dt:

It follows that jrg1uj is a p–weak upper gradient for u with respect to W 1;p.M1;g1/.

Now we show that jrg1uj is the least p–weak upper gradient of u with respect to
W 1;p.M1;g1/, thus proving (b). Notice that, for each j , the restriction of GM1;g1;u

to �j is a p–weak upper gradient for u with respect to W 1;p.�j ;g1/. So, since we
know from Proposition 8.5 that jrg1uj is the least p–weak upper gradient of u with
respect to W 1;p.�j ;g1/, it follows that jrg1uj � GM1;g1;u for m–a.e. x 2 �j .
Since the collection f�j g covers M1, we thus see that jrg1uj�GM1;g1;u for m–a.e.
x 2M1. This completes the proof of (b).

Finally, we prove (a). Fix any v 2 Lp.M1;g1/ and � > 0. We wish to show that
there exists u 2 W 1;p.M1;g1/ such that kv � ukLp.M1;g1/ � �. It is apparent
that bounded and compactly supported functions are dense in Lp.M1;g1/, and
thus we may assume without loss of generality that v is bounded and compactly
supported. Let fxj g

N
jD1
� M1 be a finite collection such that the support of v is

contained in
SN

jD1�j , where the �j are defined as in the previous step. Let f j g

be a partition of unity subordinate to f�j g
N
jD1

such that ��j  j is a smooth function
in B.0; 1/. Since u is bounded, for each j we have ��j u 2L�p.B.0; 1/;geuc/. So we
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may find a smooth function zvj such that k��j u� zvjkL�p.B;geuc/ � �=2N . Thus, by
Remark 8.3, we have ku� vjkLp.�j ;g1/ D k�

�
j u� zvjkLp.B;g/ � �=N . Here we let

vj D ��zvj . Let v D
PN

jD1 jvj . Thanks to Lemma 8.8 and part (b) above, we see that
v 2W 1;p.M1;g1/. Finally,

(8-20) ku� vkLp.M1;g1/ �

NX
jD1

ku� vjkLp.�j ;g1/ � �:

This completes the proof of (a) and thus of the proposition.

8.3 Convergence in dp

In this section, we establish the following proposition, which is Theorem 8.1(1).

Proposition 8.10 Fix p � nC 1. We may choose P D P .n;p/ sufficiently large
and thus ı D ı.n;p/ sufficiently small in Proposition 8.2 such that if .Mi ;gi ;xi/ and
.M1;g1;x1/ are as in Proposition 8.2, then , after passing to a subsequence ,

(8-21) dp..Mi ;gi ;xi/; .M1;g1;x1//! 0:

In order to prove Proposition 8.10, we will first show the following local version.

Proposition 8.11 Fix p � nC 1. We may choose P D P .n;p/ sufficiently large
and thus ı D ı.n;p/ sufficiently small in Proposition 8.2 so that if .Mi ;gi ;xi/ and
.M1;g1;x1/ are as in Proposition 8.2, the following holds. For any compact set
�b M1, after passing to a subsequence , we can find �i b Mi such that

(8-22) dp

�
.�i ;gi/; .�;g1/

�
! 0

as i !C1, in the sense of Definition 2.39.

Before proving the propositions, we establish two lemmas that will be needed in the
proofs. First, we show that the supremum in the definition of dp;g;�.x;y/ is achieved.

Lemma 8.12 For p � nC 1, there exists ı.n;p/ > 0 such that the following holds.
Let .M n;g/ be a complete Riemannian manifold with bounded curvature such that

Rg � �ı and �.g; 2/� �ı:

Then for any bounded subset�bM and x;y 2�, there exists a function f 2W 1;p.�/

such that dp;g;�.x;y/D jf .x/�f .y/j and
R
� jrf j

p dvolg D 1.
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Proof Consider a maximizing sequence fi 2 W 1;p.�/ with
R
� jrfi j

p dvolg � 1,
fi.x/D 0 and fi.y/! dp;g;�.x;y/. Choosing ıD ı.n;p/ according to Theorem 7.6,
we may apply Theorem 7.6 to see that jfi j �C DC.n;p;g; �/ on�. In particular, the
sequence fi is uniformly bounded in W 1;p.�/. Hence, after passing to a subsequence,
fi converges weakly in W 1;p.�/ to a function f 2W 1;p.�/with

R
� jrf j

p dvolg�1.
Moreover, by applying Theorem 7.6 to rescalings of the metric, we see that each fi is
continuous with a modulus of continuity that is uniform in i . So, by the Arzelà–Ascoli
theorem, fi converges uniformly to f . In particular, f .x/D0 and f .y/Ddp;g;�.x;y/.
Finally, note that

R
� jrf j

p dvolg D 1, otherwise a multiple �f for � > 1 would be an
admissible test function for dp;g;�.x;y/. This completes the proof.

Next, we use Gehring’s lemma and the doubling property of the dp metrics to show
that a function f 2W 1;p.�/ achieving the supremum in dp;g;�.x;y/ enjoys higher
integrability properties.

Lemma 8.13 Fix p � nC 1. There exist constants ı.n;p/ > 0, �.n;p/ > 1 and
C0.n;p/ > 0 such that the following holds. Let .M;g/ be a complete Riemannian
manifold with bounded curvature and

Rg � �ı and �.g; 2/� �ı:

Fix �b M and x;y 2�, and let f 2W 1;p.�/ be a function achieving the supremum
in dp;g;�.x;y/. Then for all Bp;g.z; 4r/�� such that r < 1

10
minfdp;g.x;y/; 1g, we

have

(8-23)
�
=
Z
Bp;g.z;r/

jrf jp� dvolg

�1=p�

� C0

�
=
Z
Bp;g.z;4r/

jrf jp dvolg

�1=p

:

Proof Let x;y2�bM and f 2W 1;p.�/ be a function such that
R
� jrf j

p dvolgD1

and dp;g;�.x;y/ D jf .x/� f .y/j. We may assume without loss of generality that
f .x/D 0. Fix r < 1

10
minfdp;g.x;y/; 1g and z 2M such that Bp;g.z; 4r/��.

Step 1 Fix any q 2 .n;p/. We claim that there exists Cn;p;q > 0 such that

(8-24)
�
=
Z

Bp;g.z;r/

jrf jp dvolg

�1=p

� Cn;p;q

�
=
Z

Bp;g.z;4r/

jrf jq dvolg

�1=q

:

To see this, notice that by the definition of dp;g;�, the function f satisfies

(8-25)
Z
�

jrf jp dvolg

D inf
�Z

�

jrhjp dvolg W h 2W 1;p.�/; jh.x/� h.y/j D dp;g;�.x;y/

�
:
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So, computing the Euler–Lagrange equation associated to (8-25), we see that for any
h 2W 1;p.�/ satisfying h.x/D h.y/, we have

(8-26)
Z
�

jrf jp�2
hrf;rhi dvolg D 0:

We first consider the case when x 2 Bp;g.z; 2r/ and y 62 Bp;g.z; 2r/. Let � be a cutoff
function on M such that � � 1 on Bp;g.z; r/ and vanishes outside Bp;g.z; 2r/. We
will make the construction more precise below. Since f .x/D 0, the function hD f �p

satisfies h.x/D h.y/D 0. Therefore, choosing hD f �p as a test function in (8-26)
and applying Young’s inequality, we find that

(8-27)
Z
�

jrf jp�p dvolg

� p

Z
�

jrf jp�1�p�1
jr�jf dvolg

� �

Z
�

jrf jp�p dvolgC
p� 1

�
kf k

p

L1.Bp;g.z;2r//

Z
�

jr�jp dvolg:

Consequently, absorbing the first term on the right-hand side of (8-27) and using the
volume estimate (7-24), we find that

(8-28)
�
=
Z
Bp;g.z;r/

jrf jp dvolg

�1=p

� Ckf kL1.Bp;g.z;2r//

�
=
Z
Bp;g.z;2r/

jr�jp dvolg

�1=p

;

where C D C.n;p/. By applying the Sobolev inequality of Theorem 7.6 and the
volume estimate (7-24) to the rescaled metric zg D �2g, where 4r�1�n=p D 1 so that
Bp;zg.z; 1/D Bp;g.z; 4r/, we find that

(8-29) kf kL1.Bp;g.z;2r// � Cn;p;qrp=.p�n/

�
=
Z
Bp;g.z;4r/

jrf jq dvolg

�1=q

:

On the other hand, let us now construct a good cutoff function �. Begin by constructing
a cutoff function ˆ on Euclidean space such that ˆD 1 on Bp;euc

�
0; 2

3

�
, ˆ vanishes

outside Bp;euc
�
0; 4

5

�
and j@ˆj10p �Cn;pˆ

10p�1. Let � be its pullback along the diffeo-
morphism obtained from zg. A similar argument as in Theorem 7.6 using Theorem 5.1
shows that

(8-30)
�
=
Z
Bp;g.z;2r/

jr�jp dvolg

�1=p

� Cn;pr�p=.p�n/:

By combining (8-28)–(8-30), we conclude that (8-24) holds in this case.
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Next, consider the case when y 2 Bp;g.z; 2r/, and so x 62 Bp;g.z; 2r/. Applying the
same argument to the function zf D dp;g;�.x;y/� f , we deduce the same inequality
(8-24) because jrf j D jr zf j. Finally, if x;y 62 Bp;g.z; 2r/, we consider zf D f � xf ,
where xf 2R so that

R
Bp;g.z;2r/

zf dvolg D 0. Hence, we still have (8-29) and thus the
proof above can be carried over without any change. We thus have (8-24) in this case
as well.

Step 2 Since .M; dp;g; dvolg/ is a metric measure space and the measure dvolg is
a doubling measure with respect to dp;g for scales r � 1, by choosing q D 1

2
.nCp/

we may apply the form of Gehring’s lemma in [39, Theorem 3.1] to see that there are
a zp > p and a C0 > 1 depending only on n and p such that for all Bp;g.z; 4r/ � �

where r < 1
10

minfdp;g.x;y/; 1g, we have

(8-31)
�
=
Z
Bp;g.z;r/

jrf j zp dvol
�1= zp

� C0

�
=
Z
Bp;g.z;4r/

jrf jp dvol
�1=p

:

Note that the reverse Hölder inequality assumption on [39, Theorem 3.1] is stated
on balls of the same radius. It is clear from the proof that (8-24) suffices; see also
the classical Gehring lemma [24] on Euclidean space. Letting � D zp=p completes
the proof.

Remark 8.14 Assume that P DP .n;p/ is taken sufficiently large and thus ıD ı.n;p/
is taken sufficiently small in Proposition 8.2, so that we may apply Proposition 8.4 to
the limit space .M1;g1;x1/ constructed in Proposition 8.2. Since .M1;g1;x1/
is W 1;p–rectifiably complete, we see from the proof of Proposition 8.2 that the
�–regularity theorem, Theorem 7.5, and Sobolev inequalities of Theorem 7.6 pass
to the limit .M1;g1;x1/. In particular, the proofs and conclusions of Lemmas 8.12
and 8.13 also hold for .M1;g1;x1/.

We are now ready to prove Proposition 8.11.

Proof of Proposition 8.11 Assume that P DP .n;p/ in Proposition 8.2 is taken large
enough to apply Proposition 8.4 and thus Remark 8.14. Fix � b M1 and choose
x�¨�¨ z�b M1. From the Cheeger–Gromov convergence established as in Step 1
of the proof of Proposition 8.2, we may assume that the gi are all defined on z� via the
diffeomorphisms  i W

z�! z�i �Mi .

Step 1 We claim that dp;gi ;�.x;y/! dp;g1;�.x;y/ for every x;y 2�.
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Fix x;y 2 �. By Lemma 8.12 and Remark 8.14, we may find f 2 W 1;p. z�;g1/

such that d
p;g1;z�

.x;y/D jf .x/�f .y/j and
R
z�
jrg1f jp dvolg1 D 1. Furthermore,

applying Lemma 8.13 (see Remark 8.14) to a covering of z� by g1 p–balls, we find that

(8-32)
�Z

�

jr
g1f j�p dvolg1

�1=�p

� C1;

where C1 depends on n, p, �, z� and dp;g1.x;y/, and where � D �.n;p/ > 1 is the
constant obtained in Lemma 8.13. Here we have used the fact that the topologies induced
by dg1.1/ and dp;g1 are equivalent. This can be seen by taking a multiple of dg1.1/

as a test function for dp;g1 together with (8-7) and the Morrey–Sobolev inequality.

Fix � >0. We aim to show that f=.1C�/ is an admissible test function for dp;gi ;�.x;y/

for i sufficiently large. By Proposition 8.2 and the W 1;p–rectifiable completeness of the
limit space, we see that jrgif jpD .1CE1;i/jr

g1f jp and dvolgi
D .1CE2;i/ dvolg1 ,

where E1;i ; E2;i W � ! R are errors such that E1;i ; E2;i ! 0 in Lq.�;g1/ for any
q � P=.nCp/. Therefore, provided we choose P D P .n;p/ large enough that the
Hölder conjugate �0 of � is less than P=2.nC p/, we use Hölder’s inequality and
(8-32) to see that

(8-33)
�Z

�

jr
gif jp dvolgi

�1=p

D

�Z
�

jr
g1f jp.1C E1;i C E2;i C E1;iE2;i/ dvolg1

�1=p

� 1C

�Z
�

jr
g1f jp.E1;i C E2;i C E1;iE2;i/ dvolg1

�1=p

� 1Ckrg1f kL�p.�/kE1;i C E2;i C E1;iE2;ikL�0 .�/

� 1C �;

where the final inequality holds for i sufficiently large and makes use of (8-32). There-
fore, f=.1C �/ is an admissible test function for dp;gi ;�.x;y/ and consequently

(8-34) d
p;g1;z�

.x;y/� .1C �/dp;gi ;�.x;y/

for i sufficiently large. Letting i !C1 and then �! 0, we find that

(8-35) d
p;g1;z�

.x;y/� lim inf
i!C1

dp;gi ;�.x;y/:

Then an argument analogous to the proof of Lemma 7.4 shows that dp;g;� is continuous
with respect to the domain and hence we may let z� tend to � to conclude that

(8-36) dp;g1;�.x;y/� lim inf
i!C1

dp;gi ;�.x;y/:
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We now apply the analogous argument to x;y 2 x� with the roles of g1 and gi swapped,
making use of the crucial fact that the upper bound in Lemma 8.13 and thus (8-32) are
uniform in i . We find that for any � > 0, dp;gi ;�.x;y/ � .1C �/dp;g1;x�

.x;y/ for i

sufficiently large and hence

(8-37) lim sup
i!C1

dp;gi ;�.x;y/� dp;g1;�.x;y/:

This completes the proof of Step 1.

Step 2 We claim that

(8-38) dGH..�; dp;gi ;�/; .�; dp;g1;�//! 0

and that the volumes of p–balls converge, thereby establishing the proposition. In-
deed, fix any � > 0. Letting gi.t/ and g1.t/ be the Ricci flows as in the proof of
Proposition 8.2. From the smooth convergence of gi.1/ to g1.1/, we see that there
exists an N 2N such that � can be covered by fBgi .1/.zj ; �/g

N
jD1

for i sufficiently
large. For each i and z; w 2 �, let f 2 W 1;p.�/ be a maximizer of dp;gi ;�.z; w/,
whose existence is guaranteed by Lemma 8.12. Since gi.1/ has uniformly bounded
geometry, we apply the Morrey–Sobolev inequality and estimate (1-13) of Theorem 6.1
to f to see that

(8-39) dp;gi ;�.z; w/� C0.n;p; �/dgi .1/.z; w/
1�n=p

for all z; w 2� and i sufficiently large.

In particular,� can be covered by fBi;�.zj ;C0�
1�n=p/gN

jD1
, where Bi;� is the ball with

respect to dp;gi ;� and N is independent of i !C1. Together with the convergence
dp;gi ;�.zj ; zk/! dp;g1;�.zj ; zk/ for each pair of zj ; zk , this proves the Gromov–
Hausdorff convergence. The volume convergence in Definition 2.39 follows from
this Gromov–Hausdorff convergence together with the LP –convergence of the metric
coefficients on Proposition 8.2. This completes the proof of the proposition.

Finally, we use Proposition 8.11 to establish Proposition 8.10.

Proof of Proposition 8.10 Let P .n;p/ and thus ı.n;p/ be as in Proposition 8.11.
Note that the largest radii less than or equal to 1 such that Bp;g1.y; 4r/ b M1 for
y 2M1, and Bp;gi

.y; 4r/b Mi for y 2Mi , respectively, are both equal to 1 thanks
to the �–regularity theorem (Theorem 1.7) and Remark 8.14. Moreover, again by
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Theorem 1.7 and Remark 8.14 and (2-25), there exists an r <R depending on n and p

such that for any y 2M1 and yi 2Mi , we have

(8-40)
Bg1.1/.y; r/� Bp;g1.y; 1/� Bg1.1/.y;R/;

Bgi .1/.yi ; r/� Bp;gi
.yi ; 1/� Bgi .1/.yi ;R/;

where g1.t/ and gi.t/ are the Ricci flows as in the proof of Proposition 8.2. Hence,
from the second containments in (8-40), we see that for any N 2N,

(8-41)
Covg1.x1;N /� Bg1.1/.x1; 2NR/;

Covgi
.xi ;N /� Bgi .1/.xi ; 2NR/:

So, for any N 2N, choose ��M1 to be a compact set such that

(8-42) Bg1.1/.x1; 2NRC 1/��� Bg1.1/.x1; 2NRC 2/:

By the Cheeger–Gromov convergence used in Proposition 8.2 to obtain the map
 W�!Mi and the set �i WD  .�/�Mi , we see that

(8-43) Bgi .1/.xi ; 2NR/��i � Bgi .1/.xi ; 2NRC 3/

for i sufficiently large. Therefore, combining (8-41), (8-42) and (8-43), we find that

(8-44) Covg1.x1;N /�� and Covgi
.xi ;N /��i :

Now, recall that the metrics g1.1/ and gi.1/ satisfy a uniform curvature bound.
Therefore, by volume comparison, there exists an N 0 2 N depending only on N , n

and p such that

(8-45)

Bg1.1/.x1; 2NRC 2/�

N 0[
aD1

Bg1.1/.ya; r/;

Bgi .1/.xi ; 2NRC 3/�

N 0[
aD1

Bgi .1/.ya;i ; r/

for some fyag
N 0

aD1
�M1 and fya;ig

N 0

aD1
�Mi , where r and R are as in (8-40) and

depend only on n and p. So, applying the first containment of (8-40) to each ball above,
we find that

(8-46)
Bg1.1/.x1; 2NRC 2/� Covg1.x1;N

0/;

Bgi .1/.xi ; 2NRC 3/� Covgi
.xi ;N

0/:

Together with (8-42) and (8-43), this shows that

(8-47) �� Covg1.x1;N
0/ and �i � Covgi

.xi ;N
0/:

Now, having obtained the appropriate sets � and �i for each N 2N, we may apply
Proposition 8.11 to complete the proof.
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8.4 Proof of Theorem 8.1

We finally prove Theorem 8.1.

Fix p � nC 1. Choose P D P .n;p/ sufficiently large according to Propositions 8.5
and 8.10. Now let ı D ı.n;P /D ı.n;p/ sufficiently small to apply Proposition 8.2.

By Proposition 8.2, we obtain the space .M1;g1;x1/, and applying Proposition 8.10
implies the pointed dp–convergence of Theorem 1.15(1). Proposition 8.5 yields the
first claim in (2), that is, that the limit space .M1;g1;x1/ is W 1;p–rectifiably
complete. Finally, we show that .M1;g1;x1/ is dp–rectifiably complete, that is,
that the topology generated by dp;g1 agrees with the topology of M1. Indeed, this
follows from the observation that Propositions 8.2 and 8.5 imply that the topology
generated by dp;M1;g1 agrees with the topology generated by dp;M1;g1.1/, which
in turn agrees with the topology of a smooth manifold M1.

Remark 8.15 Let .M1;g1;x1/ be the limit rectifiable Riemannian space obtained
in Theorem 8.1. We have shown that for any suitable compact set ��M1, we have
convergence along the sequence of the relative dp–distances on Mi to dp;g1;�. It is
worth noting that, for any x;y 2M1 and for any exhaustion f�ag of M1 by compact
sets, we have

(8-48) lim
a!1

dp;g1;�a
.x;y/D dp;g1;M .x;y/:

To see this, we first see directly from the definition that the relative dp–distance is
monotone decreasing with respect to set inclusion, so the limit on the left-hand side
of (8-48) exists and

(8-49) lim
a!1

dp;g1;�a
.x;y/� dp;g1;M .x;y/:

On the other hand, for each a 2N consider a function fa 2W 1;p.�a/ achieving the
supremum in dp;g1;�a

.x;y/; recall Lemma 8.12 and Remark 8.14. Then there exists
an f 2 W 1;p.M1/ such that on every compact set � �M1, fa ! f weakly in
W 1;p.�/ and uniformly. Thus,

R
M1
jrf jp dvolg � 1 and so f is an admissible test

function for dp;g1;M .x;y/. Moreover,

(8-50) jf .x/�f .y/j D lim
a!1

jfa.x/�fa.y/j D lim
a!1

dp;g1;�a
.x;y/:

We therefore establish the opposite inequality in (8-48) and conclude.
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8.5 Proof of Theorem 1.19

We now prove Theorem 1.19, which provides a form of stability for rigidity of the flat
metric as the only metric on a torus with nonnegative scalar curvature.

Fix ı D ı.n;p/ according to Theorem 1.15. Any compact Riemannian manifold with
�.g; 2/� �ı has volume bounded below by a constant C D C.ı/, so choose V0 > C

so that the hypotheses of the theorem are not vacuous.

Consider a sequence of tori .Mi ;gi/ with

�.gi ; 2/� �ı; volgi
.Mi/� V0 and Rgi

� �
1

i
:

By Theorem 1.15, up to a subsequence, .Mi ;gi/ converges in the dp sense to a
rectifiable Riemannian space .M1;g1/, which is constructed in Proposition 8.2.
Moreover, M1 is diffeomorphic to a torus.

By the proof of Proposition 8.2, the Ricci flows .Mi ;gi.t//t2Œ0;1� exist and, at each
time slice have uniformly bounded geometry,

volgi .t/.Mi/� 2V0 and Rgi .t/ � �
1

i
:

By Hamilton compactness [32], after passing to a subsequence, we have convergence
.Mi ;gi.t//! .M1;g1.t// in the pointed C1–Cheeger–Gromov sense so that g1.t/

is a solution to the Ricci flow on M1� .0; 1� with Rg1.t/ � 0 for all t 2 .0; 1�. So, by
Schoen and Yau [45] and Gromov and Lawson [28], we see that g1.t/ is a flat metric
on the torus for each t . Since .M1;g1.t//t2.0;1� is a Ricci flow, it follows that each
g1.t/ is the same flat metric.

Furthermore, from the proof of Proposition 8.2, we know that the metric coefficients of
g1.t/ converge in Lp to g1, the limiting rectifiable Riemannian metric. It follows
that g1 is the flat metric on M1.

9 Examples

In this section, we will construct various examples of sequences of complete Riemannian
manifolds .Mi ;gi/ with bounded curvature that satisfy the almost nonnegative entropy
and scalar curvature assumptions of our main theorems. In each example, the dp limits
of our spaces will be either Euclidean space or a flat torus, and these limits do not
agree with their Gromov–Hausdorff and intrinsic flat limits.
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9.1 The basic building block: a two-parameter family of metrics

We begin by constructing a two-parameter family of metrics on RnC1 for n� 3, which
serves as the basic building block for constructing all of our examples. Let h denote
the standard metric on Sn�1. We define the two-parameter family of metrics gı;� on
M DRC �Sn�1 �R by

(9-1) gı;� D dr2
Cf 2

ı;�.r/hC'
2
ı;�.r/ dx2:

The warping factor f will be used to identify RC � Sn�1 topologically with Rn;
however, geometrically this will be done in a way to add a large amount of positive
curvature to the space. The warping factor ' will be constructed so that it will slowly
degenerate as r ! 0. If this degeneration is sufficiently slow we will see that we can
preserve the positive scalar curvature, and, much more challenging, the lower entropy
as well. If '.0/D 0, then this would imply that the line f0ng�R has a fully degenerate
metric g along it, in particular dg..0

n; s/; .0n; t//D 0 for any two points along the line
f0ng�R. The parameters �; ı > 0 are built so that we may approach such a degenerate
limit smoothly and in different ways, depending on our end goal.

The functions fı;� and 'ı;� are now precisely defined in the following way.

Definition of 'ı;� For � > 0, let �� WRC!RC be a smooth function such that

(9-2) ��.r/D

8̂̂̂̂
<̂̂
ˆ̂̂̂:

� for r � 1
2
�;

 1 for 1
2
� � r � 2�;

r for 2� � r � 1
2
;

 2 for 1
2
� r � 2;

1 for r � 2;

where  i.r/ are smooth nondecreasing functions with  00
2
� 0,

j 
.k/
1
j � 8��kC1 and j 

.k/
2
j � 4k for k D 1; 2:(9-3)

We then let 'ı;� WRC!RC be defined by

(9-4) 'ı;�.r/D ��.r/
ı:

Observe that 'ı;� satisfies the properties

(9-5)
ˇ̌̌̌
'0
ı;�
.r/

'ı;�.r/

ˇ̌̌̌
�

50ı

r
;

ˇ̌̌̌
'00
ı;�
.r/

'ı;�.r/

ˇ̌̌̌
�

50ı

r2
;

ˇ̌̌̌
'
.k/

ı;�
.r/

'ı;�.r/

ˇ̌̌̌
�

Ckı

rk
:
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Remark 9.1 As we have defined the two-parameter family of metrics, when �D 0 the
corresponding metric gı;� vanishes at r D 0. In fact, we can modify the construction so
that gı;�jrD0 agrees with any prescribed singular metric l.x/ dx2 along r D 0. More
precisely, given fixed ı; � > 0 and a smooth function l WR! Œ0;C1/, we could replace
'ı;� by the function 'ı;�.r;x/ D Œ1� ��.r/ı �l.x/C ��.r/ı so that 'ı;�.r0;x0/! 1

when r0 > 0 and 'ı;�.0;x0/! l.x0/ pointwise as ı! 0.

Definition of fı;� Let � WRC!RC be a smooth nonincreasing cutoff function such
that �.x/� 1 on

�
0; 1

2

�
, vanishes on Œ1;1/ and satisfies j�0j2Cj�00j � 100.

Define zfı;� to be the solution of the ODE

(9-6)

(
zf 0
ı;�
D

h
1� 104nı

�
1� �

�
r

100�

��i
;

zfı;�.0/D 0:

In this way, the corresponding metric dr2Cf 2
ı;�

h coincides with the Euclidean metric
on Rn for r sufficiently small. Finally, we define

(9-7) fı;�.r/D �
�1
4

r
�
zfı;�.r/C

�
1� �

�1
4

r
��

r;

so that fı;� is equal to the solution to the ODE for r � 2, the function r for r � 4, and
interpolates smoothly in between.

Crucially, this two-parameter family of metrics satisfies a lower bound on entropy and
scalar curvature that is uniform for all � and ı sufficiently small. Geometrically, what
is happening is that the warping factor is changing so slowly that even though the
actual metric geometry may be behaving very poorly, in some weaker sense (dp sense!
though we will not directly appeal to this) the geometry looks very Euclidean at all
points and scales. This sense of closeness to Euclidean space will be good enough to
force the small lower entropy bound on the example.

Theorem 9.2 Fix n� 3, � > 0 and L> 0. There exist �0 > 0 and ı0 > 0, depending
on n, � and L, such that the following holds. For all � � �0 and ı � ı0, the metric gı;�

defined in (9-1) satisfies

Rgı;� � ��;(9-8)

�.gı;�;L/� ��:(9-9)

The scalar curvature lower bound and entropy lower bound of Theorem 9.2 will be
established in Sections 9.3 and 9.4, respectively.
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Remark 9.3 The metrics gı;� are defined on an .nC1/–dimensional space, so fixing
n� 3 means that our examples are of dimension 4 or higher.

Let us again discuss the examples geometrically, this time with more of a focus on
how each parameter behaves in the construction. One can think of the metric gı;�

defined in (9-1) in the following way. The portion dr2C f 2
ı;�
.r/h of the metric gı;�

agrees with the Euclidean metric on Rn far from 0 2 Rn, while in a neighborhood
of 0 2Rn, it is a smoothed-out cone metric on Rn with cone angle proportional to ı.
The parameter � governs the scale at which this cone metric is smoothed out. This
component can roughly be thought of as Euclidean Rn, although taking the smoothed
cone in place of Rn provides a crucial positive scalar curvature contribution in order to
guarantee that (9-8) holds as long as n� 3. The component '2

ı;�
.r/ dx2 adds a fiber

at each point on .Rn; dr2C f 2
ı;�
.r/h/. Away from 0 2Rn, these fibers are Euclidean,

but for r small, the fibers become increasingly degenerate.

If we choose � D ı and let � ! 0, then the metric tensors converge smoothly to
the Euclidean metric g1 D lim�!0 g�;� D

PnC1
iD1 .dxi/2. However, if � is relatively

small compared to ı, then the limiting metric will be Euclidean away from a ray
` D fx W xiD0 for iD1; : : : ; ng in RnC1 and ` will be collapsed to a point along
the sequence. For instance, if we choose ı D .�log �/�1=2 and let �! 0, then in a
pointwise sense, lim�!0 gı.�/;� D

Pn
iD1.dxi/2 C .1� �rD0/.dxnC1/2. In both of

these two examples, the constructed sequence converges to the Euclidean metric in L
p
loc

for all p > 1, while in the latter case the Gromov–Hausdorff limit is very different; see
Example 9.4 below. This will correspond to our general dp �–regularity theorem when
the entropy and scalar curvature have lower bound converging to 0.

9.2 Examples constructed from the main building block

In the following, we will make use of the metrics gı;� with ı D .�log �/�1=2 to
produce sequences of metrics whose dp limits and Gromov–Hausdorff limits are
entirely different. First, we go into greater depth concerning the basic metric gı;� with
ı D .�log �/�1=2. We will take n D 3 since this is the borderline case. The case of
n� 3 can be constructed similarly.

Example 9.4 (collapsing along a line in Euclidean space) Let n� 3. By choosing
ı D .�log �/�1=2 in (9-1), we obtain a sequence of metrics which degenerate along a
ray in RnC1 and remain the flat metric away from it. In the Gromov–Hausdorff limit,
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the ray collapses to a point. On the other hand, from construction, it is easy to see that
g� converges to the Euclidean metric in L

p
loc.R

nC1/ for all p > 1. By Theorem 1.15
(and the proof of Proposition 8.2), the pointed dp limit is the flat Euclidean space. In par-
ticular, notice that Theorem 1.7 implies that volg�

�
Bp;g� .0; 1/

�
! volgeuc.Bp;euc.0; 1//

as �! 0, while the volumes of metric balls are tending to infinity:

(9-10) volg� .Bg� .0; 1//!C1:

Indeed, for � sufficiently small, Bg� .0; 1/ contains the Euclidean strip˚
.x;y/ 2Rn

�R W 1
4
� jxj � 1

2
; jyj � 1

2�

	
:

Since g� converges smoothly uniformly to the Euclidean metric away from jxj D 0,
we see that (9-10) holds.

We see from the above example that the metric degeneration which causes the metric
collapse occurs along a line in R4. More generally, we conjecture that this metric
collapsing can occur only along codimension-3 subsets along converging sequences.

Example 9.5 (dp–convergence does not hold for all p) In contrast to Example 9.4,
in this example we only pass �! 0 but fix ı > 0 small in the construction of (9-1). The
corresponding sequence of metrics converges pointwise, and in L

p
loc for p less than

some p1.ı/, to g1 D gconeC r ı dx2, which degenerates at r D 0. By Theorem 1.15
(and the proof of Proposition 8.2), the sequence converges in the pointed dp sense to
.RnC1;g1; 0

n/ for p2 ŒnC2;p0.ı/�. However, this dp convergence to .RnC1;g1; 0
n/

does not hold for all p 2 ŒnC 2;1/. Indeed, for p sufficiently large, the metric space
.RnC1; dp;g1 ; 0

n/ is topologically distinct from the underlying topology on RnC1,
and in particular is not dp–complete.

This illustrates that ı must be taken to depend on p in our �–regularity theorems, and if
we only assume a lower bound on the entropy lower bound and scalar curvature along
the sequence, then the limiting rectifiable Riemannian metric g1 may have an inverse
that is only bounded in L

p0

loc for some p0.ı/ > 1 but not all p > 1.

Example 9.6 (collapsing lines in Euclidean space) In this example, we use the
building block of Example 9.4 to construct a sequence of metrics on RnC1 for n� 3

whose Gromov–Hausdorff limit is the taxicab metric, while the dp limit is the flat
metric on RnC1. The basic idea of the construction is to cut off the building block of
Example 9.4 to obtain a degenerating metric on a tubular neighborhood of a line in
Euclidean space, and to glue this metric into tubular neighborhoods of an increasing
dense collection of lines in RnC1.
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Let us now go into the details of this construction. Let n � 3. First, we obtain a
collection of disjoint strips (ie tubular neighborhoods around lines) fSi;j .r0/g for i 2N

and j 2 f1; : : : ; nC1g in the following way. Define the projection �1 WR
nC1!Rn by

�1.x/D .x2; : : : ;xnC1/, and let �j be defined analogously for each j D 1; : : : ; nC 1.
Next, for each j D 1; : : : ; nC 1 and .k1; : : : ; kn/ 2 Zn, we consider the collection of
points fzk1;:::;kn;j g �Rn D �j .RnC1/ with coordinates given by

(9-11) zk1;:::;kn;j D ..100nC 10j /r0k1; : : : ; .100nC 10j /r0kn/:

Up to reindexing the countable set of .k1; : : : ; kn/ 2 Zn by i 2 N, we let fzi;j g D

fzk1;:::;kn;j g. Now, let BRn.z; r/ denote the Euclidean ball in Rn and define the
strip Si;j .r0/ of radius r0 around the line f�j .x/D zi;j g by

(9-12) Si;j .r0/D �
�1
j .BRn.zi;j ; r0//:

It is easy to check that the collection of strips fSi;j .r0/g are 200nr0 dense, in the sense
that for any x 2RnC1, there exists Si;j such that distgeuc.x;Si;j /� 200nr0, and that
these strips are pairwise disjoint.

Now, with the collection fSi;j .r0/g of disjoint strips in hand, and for any r0 > 0 fixed,
we use (9-1) to define a metric gr0

on each strip in the following way. Up to a rigid
motion of RnC1, it suffices to define gr0

on the strip S D ��1
nC1

.BRn.0; r0//. Let
ıD .�log �/�1=2, and take � depending on r0 to be sufficiently small that Rgı;� ��r3

0

and �.gı;�; 2r�2
0
/� �r0 by Theorem 9.2. Then consider the rescaled metric

(9-13) gr0
D dr2

C
�

1
5
r0

�2
f 2
�

�
5r

r0

�
hC'2

�

�
5r

r0

�
dx2

nC1;

where � D �.r0/, which satisfies R � �r0 and �.gr0
; 2/ � �r0. Note that after

this rescaling, the metric gr0
agrees with the Euclidean metric outside of the strip

Bgeuc.`; r0/. Finally, by restricting this metric to the set jzj< r0, we define the metric gr0

on the strip S.

Finally, let zgr0
be the metric on RnC1 be defined by

(9-14) zgr0
D

�
geuc if x 2RnC1 n

S
Si;j .r0/;

gr0
if x 2 Si;j .r0/:

Direct computation shows that zgr0
converges to gRnC1 in L

p
loc.R

nC1/ for all p � 1.
In particular, this implies that volzgr0

.�/! voleuc.�/ for any compact set ��RnC1.
By Theorem 1.15 (and the proof of Proposition 8.2), the sequence converges to
.Rn;geuc; 0

n/ in the pointed dp sense for all p 2 ŒnC 1;1/. However, in the pointed
Gromov–Hausdorff topology, this sequence converges to the taxicab metric.
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To roughly explain this, consider the metrics .RnC1; yg�/ � .RnC1; ��2zgr0
/. Here,

� D �.r/ is the parameter chosen above. Clearly the metrics .RnC1; yg�/ are isometric
to .RnC1; zgr0

/ by a Euclidean dilation. Let `ij � �
�1
j .zij / denote the lines we have

glued around. Then, roughly, we have on each such line `ij that yg� D 1 in the direction
of this line, and that yg� � ��2 in all other directions and at all other points. We also
have, in coordinates, that these lines are o.�/–dense. Clearly, a path of minimal length
from x to y is now one which stays on these lines as long as possible, and moving
from one line to another now causes an error which is approximately ��1o.�/D o.1/.
In particular, we see that dyg� .x;y/D

P
jxi �yi jC o.1/. Further, as �! 0 we see a

minimal path is any path which is always moving in coordinate directions (specifically,
along our increasing dense collection of lines `ij ). Hence, .Rn; yg�/ is converging to
the taxi-cab metric.

Next, we construct some examples in the compact setting.

Example 9.7 (collapsing circle in torus) In this example, we construct a sequence
of metrics fgigi2N on the torus TnC1 for n � 3 so that each gi coincides with the
flat metric away from a shrinking tubular neighborhood of a fixed S1 � TnC1. The
sequence gi becomes degenerate along this S1, and in the Gromov–Hausdorff limit, the
S1 collapses to a point. In particular, the metric space arising as the Gromov–Hausdorff
limit is not topologically a torus. The dp limit will be the flat torus for any p � nC 2.

We begin the construction. Fix n� 3 and r0 > 0. Let gr0
be the metric on Euclidean

space RnC1 defined in (9-13) in the previous example, which we recall agrees with the
Euclidean metric outside the strip Bgeuc.`; r0/ and is translation invariant in the xnC1

direction. Now, consider the torus TnC1DRnC1=ZnC1, equipped with the metric zgr0

given by gr0
descending to the quotient.

We now let r0 ! 0. For every r0, the smooth Riemannian manifold .TnC1; zgr0
/

satisfies Rzgr0
� �r0. Moreover, for any ı > 0, there exists �0 D �0.ı/ such that

�.gflat; �0/� �
1
2
ı. So, arguing as in the proof of Proposition 9.12 below, we find that

for r0 � xr0.ı/, we have �.zgr0
; �0/��ı. We directly see that the metrics zgr0

converge
in Lp for every p to the flat metric on TnC1. Applying the proof of Theorem 1.7, we
see that .TnC1; zgr0

/ converges to .TnC1;gflat/ in the dp sense for all p 2 ŒnC 2;1/.
On the other hand, in the Gromov–Hausdorff topology, the S1 factor corresponding to
the projection of the degenerating line ` collapses to a point in the limit. In particular,
the metric space arising in the Gromov–Hausdorff limit is not topologically a torus.
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By replicating the construction of the degeneracy, we can construct examples so that the
sequence of metrics on the torus TnC1 converges to a metric space Y k with k < nC1

or even k D 0 (a point) in the Gromov–Hausdorff topology.

Example 9.8 (collapsing of TnC1 to Tn) In the previous example, Example 9.7, we
constructed a sequence of metrics on TnC1 which degenerate along a single S1 inside.
In this example, we will modify the construction to obtain a sequence of metrics gi on
the torus that degenerate along increasingly dense sequences of parallel copies of S1

and remain flat away from them. In the Gromov–Hausdorff topology, the .TnC1;gi/

collapses to the n–dimensional flat torus Tn. In particular, the Gromov–Hausdorff
limit is one dimension lower than the dimension of each manifold in the sequence. On
the other hand, the limit with respect to dp is the flat torus TnC1 for p � nC 2.

More precisely, we again fix an .nC1/–dimensional flat torus for n� 3, identified with
Œ0; 1�nC1=� and with coordinates .x1; : : : ;xnC1/. Now consider a maximal 100r0

dense set fzig in Œ0; 1�nC1=�.

Let S1
i D f.x1; : : : ;xn/D zig � TnC1, and let Si be the strip around S1

i of radius r0

as in the previous example. We let

(9-15) zgr0
D

�
geuc for x 2 TnC1 n

S
Si.r0/;

gr0
for x 2 Si :

Here, gr0
is the same metric on a strip around S1 as defined in Example 9.7 above.

For every r0, the smooth Riemannian manifold .TnC1; zgr0
/ satisfies Rzgr0

� �r0,
and for every ı > 0, there exist �0 D �0.ı/ and xr0 D xr0.ı/ such that for r0 � xr0, we
have �.zgr0

; �0/ � �ı. In the Gromov–Hausdorff topology, .TnC1; zgr0
/ converges

to the n–dimensional flat torus Tn with the usual distance as r0! 0. On the other
hand, .TnC1; zgr0

/ converges to the .nC1/–dimensional flat torus with respect to dp–
convergence for each p � nC 2 by (the proof of) Theorem 1.7.

Example 9.9 (collapsing TnC1 to a point) In this example, we further modify the
construction in Examples 9.7 and 9.8 to produce a sequence of metrics on TnC1

such that the sequence collapses to a point in the Gromov–Hausdorff and intrinsic flat
topologies. Once again, the dp limit will still be the flat torus TnC1 for p � nC2. The
basic idea of the construction is to choose an increasingly dense collection of strips
around copies of S1 � TnC1 with all different orientations, in a similar fashion to
Example 9.6, and then to paste the degenerating metrics of Examples 9.7 and 9.8 into
each of these strips.
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More specifically, we begin with the sequence of metrics zgr0
on RnC1 constructed in

Example 9.6. Without loss of generality, we may assume that r0 is always chosen so
that for each j D 1; : : : ; nC 1, we have that 1=.100nC 10j /r0 is an integer. With this
assumption, the metrics zgr0

are invariant under the ZnC1 action on RnC1, so we may
consider the quotient TnC1 DRnC1=ZnC1 equipped with the metric descending from
zgr0

under the quotient, which we again denote by zgr0
.

The smooth Riemannian manifolds .TnC1; zgr0
/ satisfy R zr0

� �r0, and for any ı > 0,
there exist �0 D �0.ı/ and xr0 D xr0.ı/ such that for r0 � xr0, we have �.zgr0

; �0/� �ı,
provided �.r0/ is taken to be sufficiently small depending on r0. Sending r0! 0, the
metrics converge in the Gromov–Hausdorff topology to a point. To see this, we claim
that for any x;y 2 .TnC1; zgr0

/,

(9-16) distzgr0
.x;y/� 10� 200n2r0C n�.r0/:

Indeed, let S1
ij denote the S1 factor in TnC1 that is the projection of the line ��1

j .zij /2

RnC1 in the construction of Example 9.6. Then we have distzgr0

�
y;
S

S1
ij

�
� 200nr0

and distzgr0

�
x;
S

S1
ij

�
� 200nr0 because the collection fS1

ij g is 200nr0–dense. Fur-
thermore, for any two points zx; zy 2

S
S1

ij , we have distzgr0
.zx; zy/� n�.r0/C�200n2r0.

Furthermore, by [49, Corollary 3.21], .TnC1; zgr0
/ converges to the zero current in the

intrinsic flat sense. However, we directly see that the metric tensors converge to the
flat metric on TnC1 in Lp for all p <1. Using this fact and appealing to the proof of
Theorem 1.7, we see that .TnC1; zgr0

/ converges to the flat .nC1/–dimensional torus
in the dp sense for each p 2 ŒnC 2;1/.

9.3 Scalar curvature of the metrics gı;�

In this subsection, we show that the negative part of the scalar curvature of gı;� can be
made arbitrarily small if ı; � are small enough. More precisely, we have the following.

Proposition 9.10 For any n� 3 and � > 0, there exist �0 > 0 and ı0 > 0 depending
on � such that for all � � �0 and ı � ı0, the metric gı;� defined in (9-1) satisfies
Rgı;� � ��.

To begin with, we need the following expression for the scalar curvature of a metric g

taking the general form of (9-1).
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Lemma 9.11 Let M DRC�Sn�1�R and let h denote the standard metric on Sn�1.
For any metric g on M taking the form

(9-17) g D dr2
Cf 2.r/hC'2.x; r/ dx2;

the scalar curvature Rg of g is given by

(9-18) Rg D
n� 1

f 2
Œ2� .f 2/00�C

.n� 4/.n� 1/

f 2
Œ1� .f 0/2��

2'00

'
�

2.n� 1/'0f 0

'f
:

Here , the prime denotes a derivative with respect to r .

Proof Let i; j ; k; : : : be the coordinates on Sn�1. As noted in the statement of the
lemma, for a function F we will use F 0 to denote @r F . We let Fx denote @xF . We
first compute the Christoffel symbols that will be needed in our computation. First, we
have

(9-19) �B
rA D

1
2
gBC .@r gAC C @AgrC � @C grA/D

1
2
gBC @r gAC

D

8̂̂̂<̂
ˆ̂:
f 0

f
ıi
j if AD j ;B D i;

'0

'
if AD x;B D x;

0 otherwise:
Next, note that

(9-20) �k
ij D

1
2
gkl.@igjl C @j gil � @lgij /D

1
2
hkl.@ihjl C @j hil � @lhij /D z�

k
ij ;

where z�k
ij denotes the Christoffel symbol for the standard metric h. Next, we compute

(9-21)

�r
ij D�

1
2
grr@r gij D�ff

0hij ;

�r
xx D�

1
2
@r'

2
D�''0;

�x
xx D

1
2
gxx.@xgxxC @xgxx � @xgxx/D

'x

'
:

The remaining Christoffel symbols vanish: �x
ij D �

�

ix D �
i
xx D 0.

With these Christoffel symbols in hand, we compute the Ricci curvatures Rrr , Rij

and Rxx . We have

(9-22) Rrr D @A�
A
rr�@r�

A
rAC�

A
AB�

B
rr��

B
rA�

A
Br

D 0�.@r�
i
riC@r�

x
rx/C0�.�

j
ri�

j
riC�

x
rx�

x
rx/

D�

n�1X
iD1

@r

�
f 0

f

�
�@r

�
'0

'

�
�

n�1X
iD1

�
f 0

f

�2

�
.'0/2

'2
D�.n�1/

f 00

f
�
'00

'
:
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For Rij , we have

(9-23) Rij D @A�
A
ij�@j�

A
iAC�

A
AB�

B
ij��

B
jA�

A
Bi

D zRijC.@r�
r
ijC@x�

x
ij /�.@j�

r
irC@j�

x
ix/

C.�r
rk�

k
ijC�

x
xk�

k
ijC�

A
Ar�

r
ijC�

A
Ax�

x
ij /

�.�r
jk�

k
riC�

x
jk�

k
xiC�

B
jr�

r
iBC�

B
jx�

x
iB/

D zRijC@r�
r
ijC�

k
ij .�

r
rkC�

x
xk/C�

r
ij .�

k
krC�

x
xr /�.�

r
jk�

k
riC�

k
jr�

r
ik/

D zRij�.f
0/2hij�ff

00hi xjC.�ff
0hij /

�
.n�1/

f 0

f
C
'0

'

�
C2.f 0/2hij

D zRij�hij

�
ff 00C.n�2/.f 0/2C

'0ff 0

'

�
:

Here, zRij denotes the Ricci curvature of h. Finally, for Rxx , we have

(9-24) Rxx D @A�
A
xx � @x�

A
xAC�

A
AB�

B
xx ��

B
xA�

A
Bx

D .@r�
r
xxC @x�

x
xx/� .@x�

x
xx/C .�

r
xx�

A
Ar C�

x
xx�

A
Ax/

� .�B
xr�

r
BxC�

B
xx�

x
Bx/

D .�''00� .'0/2/C�r
xx.�

i
ir C�

x
rx/C�

x
xx�

x
xx

� .�x
xr�

r
xxC�

r
xx�

x
rxC�

x
xx�

x
xx/

D .�''00� .'0/2/C�r
xx�

i
ir ��

x
xr�

r
xx

D .�''00� .'0/2/C .n� 1/.�''0/
f 0

f
C .'0/2

D�''00� .n� 1/
''0f 0

f
:

Therefore, using the fact that zRij D .n� 2/hij , we have

RD grr Rrr Cgij Rij CgxxRxx(9-25)

D�.n� 1/
f 00

f
�
'00

'

C
1

f 2
hij

�
zRij � hij

�
ff 00C .n� 2/.f 0/2C

'0ff 0

'

��
�

1

'2

�
''00C .n� 1/

''0f 0

f

�
D�.n� 1/

f 00

f
�

2'00

'
�
.n� 1/'0f 0

'f

C .n� 1/

�
n� 2

f 2
�
f 00

f
� .n� 2/

.f 0/2

f 2
�
'0f 0

'f

�
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D�
2.n� 1/f 00

f
�

2'00

'
C
.n� 2/.n� 1/

f 2

�
.n� 2/.n� 1/.f 0/2

f 2
�

2.n� 1/'0f 0

'f

D�
2.n� 1/f 00

f
C
.n� 2/.n� 1/

f 2
Œ1� .f 0/2��

2.n� 1/'0f 0

'f
�

2'00

'
:

Finally, to arrive at (9-18), we note that 2f 00=f D .f 2/00=f 2� 2.f 0/2=f 2, and so

(9-26) �
2.n� 1/f 00

f
D�

.n� 1/.f 2/00

f 2
C

2.n� 1/.f 0/2

f 2

D
n� 1

f 2
Œ2� .f 2/00��

2.n� 1/

f 2
Œ1� .f 0/2�:

Rearranging this expression, we arrive at (9-18), completing the proof.

With Lemma 9.11 in hand, we are now ready to prove Proposition 9.10.

Proof of Proposition 9.10 For notational convenience, we will omit the indices ı and
�, letting g, f and ' denote gı;�, fı;�, and 'ı;�, respectively. We will assume that
� � �0 and ı � ı0, where �0; ı0 <

1
4

will be fixed within the proof. By Lemma 9.11,
the scalar curvature of g takes the form

(9-27) RD
n�1

f 2
Œ2�.f 2/00�C

.n�4/.n�1/

f 2
Œ1�.f 0/2��

2'00

'
�

2.n�1/'0f 0

'f

D IC IIC IIIC IV:

We estimate the scalar curvature from below in three different intervals of r in the cases
that follow. First, recall from the definition (9-7) of f that

(9-28) f .r/D

�
zf .r/ for r � 2;

r for r � 4;

where zf is the solution of the ODE (9-6). We first collect some useful estimates for zf .
For notational convenience, we write � D 104nı.1��/ and �0D 104nı in the definition
of (9-6) so that zf 0 D 1� � where � increases from 0 to �0 D 104nı. We will assume
that ı0 is small enough that �0 <

1
4

. Since zf .0/D 0, by integrating, we find that

(9-29) 3
4
r < .1� �0/r � zf .r/� r and 1� �0 �

zf 0.r/� 1:

Case 1
�
r � 1

2
�
�

In this case, '.r/� �, so terms III and IV in (9-27) vanish, and
f D zf thanks to (9-28). We first consider the case when n � 4, since II is clearly
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nonnegative by (9-6). By (9-6) and (9-29), if ı0 is sufficiently small that � < 1, then

(9-30) IC II�
n�1

f 2
.2�.f 2/00/D

2.n�1/

f 2
.1�ff 00�.f 0/2/

�
2.n�1/.2��/�

f 2
>

2.n�1/�

f 2
:

Here we have used � 0 � 0 and hence R> 0 when n� 4. It remains to consider nD 3.
In this case, we have

(9-31) IC IID
2

f 2
.1� .f 2/00C .f 0/2/D

2

f 2
.1� 2ff 00� .f 0/2/

�
2

f 2
.1� .1� �/2/�

2�

f 2
:

Hence we also have R> 0 when nD 3 as long as ı0 is small enough.

Case 2
�
r 2

�
1
2
�; 2

��
In this case, we still have f D zf by (9-28) and � � 104nı in

this range. Therefore by (9-29) and the computation in Case 1, for n� 3 and sufficiently
small ı0,

(9-32) IC II�
�

f 2
�

104nı

r2
:

On the other hand, by (9-5), we see that

(9-33) IIID�
2'00

'
� �

100ı

r2
:

Similarly, using (9-5) and (9-29) we find that

(9-34) IVD�
2.n� 1/f 0'0

f '
� �

1200nı

r2
:

Hence, RD IC IIC IIIC IV> 0.

Case 3 .r > 2/ In this case, ' � 1, and so terms III and IV in (9-27) vanish.
Furthermore, we directly see that ID IID 0 when r � 4, since f .r/D r there. So it
remains to show that IC II � �� in the case when r 2 .2; 4/. Note that for r in this
interval, we have from (9-29) that

(9-35) f .r/D �
�

1
4
r
�
zf .r/C

�
1� �

�
1
4
r
��

r � 1
2
r � 1:

Therefore, it remains to estimate j2�.f 2/00j and j1�.f 0/2j for r 2 .2; 4/. By rewriting
2� .f 2/00D .r2�f 2/00 and 1� .f 0/2D .r 0/2� .f 0/2, it suffices to estimate .r �f /00.
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By the construction of � and (9-29) for r 2 .2; 4/,

(9-36) j.f � r/00j �
ˇ̌
�00
�

1
4
r
�
. zf � r/

ˇ̌
C
ˇ̌
�0
�

1
4
r
�
. zf � r/0

ˇ̌
C
ˇ̌
�
�

1
4
r
�
. zf � r/00

ˇ̌
� 10j zf � r jC 10j zf 0� 1j � 100�0:

Combining with (9-29), we conclude that kf �rkC 2..2;4//�Cnı0. Hence for r 2 .2; 4/,

(9-37) RD IC IIC IIIC IV

� �.n� 1/j.r2
�f 2/00j � .n� 4/.n� 1/j1� .f 0/2j � �Cnı0:

Therefore, if ı0 is sufficiently small, then the right-hand side will be larger than ��.
This completes the proof.

9.4 Entropy lower bound for the metrics gı;�

In this section, we will show that the entropy of the metric gı;� on RnC1 can be made
arbitrarily small by taking � and ı to be sufficiently small for n� 3.

Proposition 9.12 For any n� 3 and �;L> 0, there exists an �0 > 0 such that for any
�; ı � �0, the metric gı;� defined in (9-1) satisfies

�.gı;�;L/� ��:(9-38)

Before we give the proof of Proposition 9.12, we start with some basic notation and
preliminaries. Throughout this section, it will be convenient to rescale the metric
by ��1 so that we only need to estimate �.g; �/D �.��1g; 1/. Given a minimizer f�
of �.��1g; 1/, we define the associated function

u� D .4�/
�n=4 exp

˚
�

1
2
f�
	
;

which satisfies
R

M u2
� dvol��1g D 1. In a slight abuse of terminology, we will refer

to this function u� as a minimizer of �.��1g; 1/. A minimizer u� of �.��1g; 1/ is a
positive smooth function satisfying the Euler–Lagrange equation

(9-39) �4�u�CRu��2u� ln u��
�

1
2
.nC1/ log.4�/C.nC1/C�.��1g; 1/

�
u� D0;

where the Laplacian and scalar curvature are with respect to ��1g. On Euclidean
space RnC1, it is well-known that the minimizers u of �.geuc; 1/ are uniquely given
by the Gaussian functions

(9-40) u2
D .4�/�.nC1/=2 exp

˚
�

1
4
jx�yj2

	
;

where j � j is the Euclidean metric and y is a fixed point on RnC1. Indeed, this is precisely
the log-Sobolev inequality on Euclidean space. The following lemma shows that these
functions are in fact the only bounded W 1;2 subsolutions of (9-39) on Euclidean space.
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Lemma 9.13 (characterization of solutions on Euclidean space) Fix �� 0 and let
u 2W 1;2.RnC1/ be a bounded solution to

(9-41) 4�uCu log u2
C
�

1
2
.nC 1/ log.4�/C .nC 1/C�

�
u� 0

in RnC1 with

(9-42)
Z

Rn

u2 dx � 1:

Then �D 0 and u takes the form (9-40) for some y 2RnC1.

Proof By [54, Lemma 2.3], a bounded solution u of (9-41) with kukL2.RnC1/ � 1 has
Gaussian decay in the sense that for any y 2RnC1, there exist positive numbers r0, a

and A depending on y such that

u.y/�A expf�ajx�yj2g when jx�yj � r0:

In particular, multiplying the equation (9-41) by u and integrating over RnC1, we are
justified in integrating by parts to find

(9-43) 0�

Z
RnC1

�4u�u�u2 log u2
�
�
.nC 1/C 1

2
.nC 1/ log.4�/C�

�
u2 dx

D

Z
RnC1

4jruj2�u2 log u2
�
�
.nC 1/C 1

2
.nC 1/ log.4�/C�

�
u2 dx:

Now, setwDu=kukL2.RnC1/ so that kwkL2.RnC1/D 1. Divide (9-43) by kuk2
L2.RnC1/

to see that

(9-44) 0�

Z
RnC1

4jrwj2�w2 logw2
�w2 log kuk2

L2.RnC1/

�
�
.nC 1/C 1

2
.nC 1/ log.4�/C�

�
w2 dx

D

Z
RnC1

4jrwj2�w2 logw2
�
�
.nC 1/C 1

2
.nC 1/ log.4�/

�
w2 dx

� log kuk2
L2.RnC1/

��

� �log kuk2
L2.RnC1/

��;

where the final inequality is obtained by applying the Euclidean log-Sobolev inequality
to w. By (9-42) and �� 0, we conclude that �D 0 and kukL2.RnC1/ D 1. Then from
(9-43), we see that u is a minimizer of the Euclidean log-Sobolev inequality and so
u2 is a Gaussian as in (9-42). This concludes the proof.
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The following lemma ensures the existence of the minimizer of the entropy for .M;gı;�/

with exponential decay at infinity.

Lemma 9.14 (existence and estimates for extremals) Fix �; ı;L> 0 and � 2 .0;L/
and let gı;� be the metric defined in (9-1). A minimizer u� of the entropy �.��1gı;�; 1/

exists. Furthermore there exist constants a;A> 0 and a point y 2M depending on ı, �
and � such that u� satisfies

(9-45) u� .x/�A expf�ad2.x;y/g:

Here d. � ; � / denotes the geodesic distance with respect to ��1gı;�.

Proof The existence of minimizers follows from minor modifications of the existence
proof of [54, Theorem 1.1(a)]; we therefore only outline these modifications. As in the
proof of [54, Theorem 1.1(a)], we let vk denote a minimizer of the entropy restricted to
the ball Bg.0; k/ (here we let gD ��1gı;�) and let xk be a point where vk achieves its
maximum. Viewing g as a metric on Rn�R with coordinates .z;y/2Rn�R, the metric
is translation invariant with respect to the y component. Hence we may assume without
loss of generality that xk D .zk ; 0/ for all k. There are then two cases to consider:
either the sequence fzkg is bounded in Rn, or it is not. In the case that the sequence
is bounded, the existence of a minimizer follows just as in [54, Theorem 1.1(a)]. The
case that fzkg is unbounded is even simpler than the corresponding case in [54]: since
�.��1gı;�; 1/ < 0, then arguing as in [54, Theorem 1.1(a)] we obtain a bounded
W 1;2 solution to (9-41) with � < 0 on RnC1, a contradiction to Lemma 9.13. Finally,
the Gaussian decay is established in [54, Lemma 2.3].

As usual, let gı;� be the metric defined in (9-1). In the next lemma, we show that the
rescaled metric ��1gı;� is uniformly close to the Euclidean metric in any compact
subset centered at xx, after appropriate change of coordinate. To do this, we define
an explicit diffeomorphism centered at xx that takes into account how and in which
direction the metric is degenerating.

In the application, we will take xx to be a point such that u� , the minimizer of
�.��1gı;�; 1/, achieves its maximum at xx. Thanks to the symmetry of gı;�, we
can and will assume without loss of generality that xy D 0 and that xz D xr xe for a fixed
unit vector xe 2 Sn�1 � Rn. For this reason, in what follows we will always assume
xx is as above. Before giving the precise statement, we would like to introduce some
notation. Consider ı; � > 0 and � > 0 fixed. Let ` 2Rn �R be the line defined by

(9-46) `D f.0n;y/ W y 2Rg:

Geometry & Topology, Volume 27 (2023)



338 Man-Chun Lee, Aaron Naber and Robin Neumayer

For xx D .xr xe; 0/ 2 M D Rn � R, where xe 2 Sn�1 � Rn, we define an associated
diffeomorphism ˆ�;xr ;ı;� WR

n �R!M by

(9-47) ˆ�;xr ;ı;�.x/D

�
�1=2zCxr xe;

�1=2

'ı;�.xr C �
1=2/

y

�
:

Notice thatˆ�;xr ;ı;�.0/D xx. In principle, there are two rescalings performed byˆ�;xr ;ı;� .
Firstly, we rescale the coordinates centered at xx by � to compensate for the scaling of
the metric by ��1. Secondly, we additionally rescale the y coordinate to account for
the degeneracy of 'ı;�. Under the diffeomorphism, the image of ` where the metric
degenerates will play a key role. Let x�D ��1=2xr and denote the pullback of ` as

(9-48) z̀ WDˆ��;xr ;ı;�.`/D f.�x�xe;y/ W y 2Rg:

In particular, if x� tends to infinity along the sequence, then the degeneracy z̀ is pushed
off to infinity and becomes invisible in the limit. On the other hand, if x� stays bounded,
we will show that the singularity of the sequence of rescaled pullback metric is still
mild and close to the Euclidean metric away from z̀.

The next lemma shows that the pullback of ��1gı;� under ˆ�;xr ;ı;� converges to the
Euclidean metric away from z̀ as ı; �! 0.

Lemma 9.15 (good charts) Fix n� 3 and L> 0, and consider sequences �i ; ıi! 0,
�i 2 .0;L� and xri 2 .0;1/. Let x�i D �

�1=2
i xri and assume that x�i ! x�1 2 Œ0;1�.

Define z̀1 D f.�x�1xe;y/ W y 2Rg if x�1 <1 and z̀1 D∅ if x�D1.

Then the metrics gi WDˆ
�
�i ;xri ;�i

.��1
i gıi ;�i

/ converge to the Euclidean metric gRnC1 in
C1loc .R

nC1 n z̀1/. Furthermore , in the case when x�1 <1, we have

(9-49) min
�

1
2
;

�
jzC x�ixei j

1C x�i

�ıi
�

geuc � gi.z;y/� geuc:

Here j � j denotes the Euclidean norm on Rn.

Proof For convenience, we omit the index i and let 'D'ı;� . Let gDˆ�
�;xr ;ı;�

.��1gı;�/.
Then at a point .z;y/ 2Rn �R, we have

(9-50) gj.z;y/ D gcone;f;� .zC x�xe/C z'
2.jzC x�xej/ dy2;

where gcone;f;� denotes the pullback of the cone metric on the Rn component and we set

(9-51) z'.s/D
'.�1=2s/

'.�1=2.1C x�//
:
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It is clear that the cone metrics gcone;f;� converge smoothly to the standard Euclidean
metric on Rn on any compact set as i !C1. Therefore, to show the desired smooth
convergence of the metrics away from z̀1, it remains to show that

(9-52) z'.j � C x�xej/! 1

smoothly on compact subsets of Rn n f�x�1xeg. To this end, note that z' satisfies
jz'0.s/=z'.s/j�50ı=s by (9-5), and that z'.1Cx�/D1 by definition. In this way, we have

(9-53) jlog z'.jzC x�xej/j D
ˇ̌̌̌Z jzCx�xej

1Cx�

z'0.s/

z'.s/
ds

ˇ̌̌̌
�

ˇ̌̌̌Z jzCx�xej
1Cx�

50ı

s
ds

ˇ̌̌̌
D 50ı

ˇ̌̌̌
log
�
jzC x�xej

1C x�

�ˇ̌̌̌
:

To establish (9-52), and hence the desired convergence, we consider two cases.

Case 1 (x�1 D1) When x�D1, it is clear that j � Cx�ixej=.1C x�i/! 1 uniformly
on compact subsets as i !1, and hence z'.j � Cx�ixej/! 1 uniformly on compact
subsets by (9-53). The higher-order convergence follows analogously by using (9-5),
and thus we establish (9-52) in this case.

Case 2 (x�1 <1) Fix 
 2 .0; 1�. For any z 2Rn in the annular region defined by

(9-54) 
 .1C x�1/� jzC x�1xej � 

�1.1C x�1/;

we see from (9-53) that j log z'.jzC x�xej/j � 2ıj log 
 j for i sufficiently large. Expo-
nentiating both sides, we discover that

(9-55) 
 2ı
� z'.jzC x�xej/� 
�2ı:

So, as � and ı tend to zero, we see that z'.jzC x�xej/ converges uniformly to 1 for all z

in this set. The convergence of the higher derivatives of ' follows in the same way
thanks to (9-5), and we see that (9-52) holds in this case as well.

Finally, we show (9-49). The upper bound is immediate from the construction of the
metrics. To establish the lower bound in (9-49), we note that, by construction,

(9-56) gcone;f;� �
1
2
gRn

Next, notice that for any z such that jzCx�xej�1Cx�, we have z'.jzCx�xej/�1 because ' is
a monotone increasing function. On the other hand, for any z with 0< jzC�x�j � 1Cx�,
we exponentiate the left- and right-hand sides of (9-53) to find that

(9-57) z'.jzC x�xej/�

�
jzC x�xej

1C x�

�ı
:

Together, (9-56) and (9-57) establish (9-49). This concludes the proof of the lemma.
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In the proof of Proposition 9.12, we would like to show that the entropy �.��1gı;�; 1/

converges to 0 for any � 2 .0;L� as �; ı! 0 by analyzing the limit of the corresponding
sequence of minimizers. A key point will be to show that the limit is nontrivial, for
which we need the following uniform mean value inequality.

Lemma 9.16 (mean value inequality) Fix n� 3 and L> 0, and consider sequences
ıi ; �i ! 0, �i 2 .0;L� and xri 2 .0;1/. Let ui be a minimizer of �.��1

i gıi ;�i
; 1/, let

ˆ�i ;xri ;ıi ;�i
be the diffeomorphism defined in (9-47), and let vi Dˆ

�
�i ;xri ;ıi ;�i

ui .

Suppose that x�i D xri=�
1=2
i ! x�1 for some x�1 2 Œ0;C1/. Then there are N D

N.n; x�1/ 2N and C.n/ > 0 such that if i >N , then for all x 2RnC1 we have

(9-58) kvikL1.Beuc.x;1=4// � C.n/

�Z
Beuc.x;1/

v2
i dvolgi

�1=2

for i sufficiently large. Here , the balls are taken with respect to the Euclidean metric
on RnC1. In particular , kvikL1.RnC1/ � C.n/.

If x�i!C1, then the L1–estimate holds in the following sense: for all �b RnC1,
there is an N DN.�/ 2N such that if i >N , kvikL1.�/ � C.n/.

Proof We let gi Dˆ
�
�i ;xri ;ıi ;�i

��1
i gıi ;�i

. For notational convenience, we will omit the
index i when no confusion can arise. Moreover, each ball is taken with respect to the
Euclidean metric.

If x�i !C1, then by Lemma 9.15, gi ! geuc in C k
loc.R

nC1/ for all k 2 N, and the
result follows from standard Moser iteration; see for example [37] or [54]. It therefore
suffices to consider the case where x�1<1. In this case, we modify the Moser iteration
argument to account for the mild singularity of g near `.

Keeping in mind the lower bound for the metric (9-49) established in Lemma 9.15, we
define the functionƒ.x/Dmax

˚
2;
�
jzCx�xej=.1Cx�/

��ı	 (where xD .z;y/2Rn�R)
so that geuc �ƒ.x/g. We will make repeated use of the upper bound in (9-49), which
implies that dvolg � dx and j@uj � jrguj for any function u, where j@uj denotes the
Euclidean norm of the Euclidean gradient.

As a first step, fix any p > 1 and � b RnC1. Provided ı < ı0.n;p/, we note that
kvkL2=p.�;geuc/

is uniformly bounded for any i . Indeed, apply Hölder’s inequality and

Geometry & Topology, Volume 27 (2023)



dp–convergence with entropy and scalar lower bounds 341

use the fact that
R

Rn v
2 dvolg D 1 to see that

(9-59)
Z
�

v2=p dx �

Z
�

ƒ.nC1/=2v2=p dvolg

�

�Z
�

v2 dvolg

�1=p�Z
�

ƒ.nC1/p0=2 dx

�1=p0

� C;

where C D C.diam.�/;p; n/, provided that ı is small enough so that ƒ.nC1/p0=2 is
integrable. Here p0 denotes the Hölder conjugate of p.

Next, let xx D .�x�xe; xy/ for some xy 2R. Let 1� r1 > r0 >
1
4

and let � be a Lipschitz
cutoff on RnC1 defined by

(9-60) �.x/D

8̂̂<̂
:̂

1 on B.xx; r0/;
r1� jx� xxj

r1� r0

on B.xx; r1/;

0 outside B.xx; r1/:

We will henceforth use Br to denote B.xx; r/ for simplicity. We now establish an energy
estimate. On one hand, since v satisfies (9-39), we multiply the equation by vp�1�2

and integrate to find that for p > 1,

(9-61)
Z

Br1

�2vp�1.�4�v/ dvolg

D

Z
Br1

�2vp.�RC 2 log vC ..nC 1/C�C log.4�/.nC1/=2/ dvolg

�

Z
Br1

Cn�
2vp
C 2�2vp log v dvolg:

In the final line, we have used the fact that R��1 thanks to Proposition 9.10, provided
we choose � and ı sufficiently small (thus i sufficiently large), and that �D�.gi ; 1/�0.
Here the connection is with respect to g. On the other hand, we integrate by parts and
apply the Cauchy–Schwarz inequality to find

(9-62)
Z

Br1

�2vp�1.�4�v/ dvolg

D

Z
Br1

4rv � r.�2vp�1/ dvolg

�

Z
Br1

4.p� 1/�2vp�2
jrvj2� 8vp�1�jrvjjr�j dvolg

�

Z
Br1

2.p� 1/�2vp�2
jrvj2�

8

p�1
vp
jr�j2 dvolg:
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Combining (9-61) and (9-62), we see that

(9-63) 2.p� 1/

Z
Br1

�2vp�2
jrvj2 dvolg

�

Z
Br1

Cn�
2vp
C 2�2vp log vC 8

p�1
vp
jr�j2 dvolg:

Now, let us use the shorthand x�D .nC 2/=.nC 1/ > 1 and � D .nC 2/=.nC 3/ < 1.
Noticing that .2�/� D 2.nC 2/�=.nC 2� 2�/D 2x�, we apply the Euclidean Sobolev
inequality, followed by (9-49) and then Hölder’s inequality to see that

(9-64)
�Z

Br1

j�vp=2
j
2x� dx

�1=2x�

� Cn

�Z
Br1

j@.�vp=2/j2� dx

�1=2�

� Cn

�Z
Br1

ƒ.nC1/=2
jr.�vp=2/j2� dvolg

�1=2�

� Cn

�Z
Br1

ƒ.nC2/.nC1/=2 dx

�1=2.nC1/�Z
Br

jr.�vp=2/j2 dvolg

�1=2

� Cn.1C x�
2/cnı

�Z
Br

jr.�vp=2/j2 dvolg

�1=2

:

Using the same trick of interchanging g and geuc, (9-63) and Hölder’s inequality imply

(9-65)
Z

Br1

jr.�vp=2/j2 dvolg

�

Z
Br1

p2�2vp�2
jrvj2C 2vp

jr�j2 dvolg

�

Z
Br1

Cnp�2vp
CCnpvp

jr�j2CCnp�2vp log v dvolg

�

Z
Br1

Cnp�2vp
CCnƒv

p
j@�j2CCnp�2vp log v dx

�
Cnp.1C x�2/cnı

.r1� r0/2

�Z
Br1

vp� dx

�1=�

:

Here we let �D 2.nC 2/=.2nC 3/ 2 .1; x�/, and we have assumed that p is bounded
uniformly away from 1 so that p=.p�1/ is bounded above by a universal constant. We
have used the fact that

R
RnC1 v

2 dvolg D 1 to control the term arising from log v.
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By combining this with (9-64) and replacing p by p�, we conclude that for all
p > .2nC 4/=.2nC 3/,

(9-66) kvkLp� .Br0
;geuc/ �

�
Cnp.1C x�2/cnı

.r1� r0/2

�1=p

kvkLp.Br1
;geuc/

where � D .2nC 3/=.2nC 2/ > 1. Let R0 D 1 and Rk D 1�
Pk

iD1 2�i�1 so that
limk!C1Rk D

1
2

. Applying (9-66) inductively with r1 D Rk , r0 D RkC1 and
p D p0�

k for p0 2 ..2nC 4/=.2nC 3/; 2/, we have that if ı is small depending only
on n, p0 and x�1, then

(9-67) log kvk
Lp0�

kC1
.BRkC1

;geuc/

� log kvkLp0 .B1;geuc/C

kX
iD1

Cn

� i
log
�
Cn.1C x�

2/cnı� i2i
�

� C.n/C log kvkLp0 .B1;geuc/:

Here we have used the fact that x�i! x�1. By letting k!C1, we conclude that

(9-68) kvikL1.B1=2.xx// � C.n/

�Z
B1.xx/

v
p0

i dx

�1=p0

for some p0 2 ..2nC4/=.2nC3/; 2/. Together with (9-59), we have the upper bound of
vi on B1=2.xx/. The result follows by choosing p0< 2 and applying Hölder’s inequality
once more using the integrability of ƒ when we replace the volume form dx with
dvolg. For xx D .xz; xy/ where jxzC x�ixej �

1
2

, we can repeat the argument but apply the
iteration on a small ball B1=4.xx/ so that g is uniformly equivalent to geuc.

Now we are ready to prove Proposition 9.12.

Proof of Proposition 9.12 Let � > 0 and for a complete Riemannian metric g, define

(9-69) �0.g/D supfs > 0 W �.g; �/ > �� for all � 2 .0; s/g:

Since gı;� has bounded curvature and is not isometric to Euclidean space, we have
�.gı;�; �/< 0; see Lemma 3.1 or the proof of [17, Lemma 17.19], replacing Perelman’s
differential Harnack estimate with its noncompact generalization established in [13].

Claim 1 For ı; � 2 .0; 1/ fixed , we have �0.gı;�/ > 0.

Proof of claim Since it is standard and similar to the proof in the compact case, see
[17, Proposition 17.20], we sketch the proof only.
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It suffices to show that lim�!0C �.gı;�; �/D 0. Since the constants � and ı are fixed,
we will omit the subscripts ı and � for notational convenience. Supposing the claim is
not true, we can find a sequence of �i! 0C such that limi!C1 �.g; �i/<�� for some
� > 0. Consider the rescaled metric gi D �

�1
i g, so that �.gi ; 1/ <�� for i sufficiently

large. By Lemma 9.14, we can find a sequence of minimizers ui of �.gi ; 1/ such that

(9-70) �4�uiCRiui�2ui log ui�
�

1
2
.nC1/ log.4�/C.nC1/C�.��1

i g; 1/
�
uiD0:

Since ui has exponential decay at infinity by Lemma 9.14, we can find pi 2 RnC1

such that ui.pi/ D max ui . Moreover, ui.pi/ � C.n; �/ by applying the maximum
principle to (9-70). On the other hand, since g is a smooth metric, it is easy to show that
.RnC1;gi ;pi/ converges to .RnC1;geuc; 0/ as i!C1 in the C1–Cheeger–Gromov
sense. Hence ui will converge to u1 > 0 (modulo diffeomorphism) in C1loc .R

nC1/,
and u1 satisfies

R
RnC1 u2

1 dx � 1 and solves the equation

(9-71) 4�u1C 2u1 log u1C
�

1
2
.nC 1/ log.4�/C .nC 1/C�1

�
u1 D 0;

where�1D limi!1 �.�
�1
i g; 1/���. Moreover, a standard Moser iteration argument

shows that the ui are uniformly bounded and hence u1 is bounded as well. This can
be proved using the argument in the work of [37] or [54], or by modifying the proof
of Lemma 9.16. Therefore, using the equation we see that u1 2 W 1;2.RnC1/ and
hence �1 D 0 by Lemma 9.13, which contradicts �.��1

i g; 1/ < �� for i sufficiently
large.

We now prove that there is an �0 small enough that for all �; ı<�0, we have �0.gı;�/�L.
The proof is similar to that of Claim 1 above, but additional care must be taken
with respect to the convergence of the metrics and their corresponding minimizers.
Suppose the conclusion is not true, and that we can find a sequence of ıi ; �i ! 0C

such that �i D �0.gıi ;�i
/ < L for all i . By definition, we have �i D �.gıi ;�i

; �i/ D

�.��1
i gıi ;�i

; 1/D��. By Lemma 9.14, we can find a minimizer ui of �.��1
i gıi ;�i

; 1/

which attains its maximum at some xxi D .xzi ; xyi/ 2Rn �R. We may assume without
loss of generality that xyi D 0 and xzi D xrixe for some fixed xe 2 Sn�1 � Rn by the
symmetry of gıi ;�i

. We again let x�i D �
1=2
i =xri . Up to a subsequence, which we will

not relabel, we have x�i! x�1 2 Œ0;1�.

Let ˆ�i ;xri ;ıi ;�i
be the diffeomorphism defined in (9-47) using xxi above and let gi D

ˆ�i ;xri ;ıi ;�i
.��1

i gıi ;�i
/. If x�1 D C1, then by Lemma 9.15, we have convergence

.RnC1; ��1
i gıi ;�i

; xxi/! .RnC1;geuc; 0/ in the C1–Cheeger–Gromov sense. Then
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the proof of Claim 1 carries over and we reach a contradiction to the assumption that
�i D��. It therefore suffices to consider the case when x�1 <C1.

As in Lemma 9.15, we let z̀1 D f.�x�1xe;y/ W y 2Rg. By Lemma 9.15, gi converges
to geuc in C k

loc.R
nC1 n z̀1/. Together with the L1 estimate of vi Dˆ

�
�i ;xri ;ıi ;�i

ui from
Lemma 9.16, we have vi! v1 in C1loc .R

nC1 n z̀1/ and L
p
loc.R

nC1/ for p > 0, by the
dominated convergence theorem. Therefore,

R
RnC1 v

2
1 dx � 1 by Fatou’s lemma and

v1 solves

(9-72) 4�v1C 2v1 log v1C
�

1
2
.nC 1/ log.4�/C .nC 1/� �

�
v1 D 0

on RnC1 n z̀1. It remains to establish the following claim.

Claim 2 The limit v1 is nontrivial and v1 2W 1;2.RnC1/.

Proof of claim We first show that v1 is nontrivial. By Lemma 9.16, we have

(9-73) vi.0/� C

�Z
B1.0/

v2
i dvolgi

�1=2

for some universal constant C independent of i . On the other hand, by the decay rate
of vi from Lemma 9.14, we may apply the maximum principle to the Euler–Lagrange
equation at its maximum point, which by our selection of xxi is the origin, to show that
at x D 0,

(9-74) 2vi log vi �Rgi
vi �

�
1
2
.nC 1/ log.4�/C .nC 1/� �

�
vi ;

and hence

(9-75)
Z

B1.0/

v2
i dvolgi

� c.n; �/:

This shows that v1 ¤ 0 as vi ! v1 in L
p
loc.R

nC1/ and gi ! gRnC1 in L
p
loc.R

nC1/

by construction for all p > 0.

It remains to show that v1 2 W 1;2.RnC1/. Since
R

RnC1 v
2
1 dx � 1, it remains to

consider k@v1kL2.RnC1/. We first point out that for each gi , krvikL2.RnC1;gi /
is

uniformly bounded. This can be seen by integrating the Euler–Lagrange equation with
a cutoff function � with respect to gi ,

(9-76) 0D

Z
RnC1

�vi

�
�4�gi

viCRgi
vi�

�
1
2
.nC1/ log.4�/C.nC1/��

�
vi

�2vi log vi

�
dvolgi

:
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Since the scalar curvature of gi is uniformly bounded from below and vi is uniformly
bounded by Lemma 9.16 for i sufficiently large, we have for a suitable cutoff function �,

(9-77) C.n; �/

Z
RnC1

v2
i dvolgi

�

Z
RnC1

�vi.��gi
vi/ dvolgi

C 8

Z
RnC1

v2
i

jr�j2

�
dvolgi

D

Z
RnC1

rvi � r.�vi/ dvolgi
C 8

Z
RnC1

v2
i

jr�j2

�
dvolgi

�
1

2

Z
RnC1

�jrvi j
2 dvolgi

:

By letting �! 1, this gives the uniform boundedness of krvikL2.RnC1;gi /
. Now let

BRn.�x�1xe; r/ be the ball of radius r in Rn and p > 1. By the metric equivalence
from Lemma 9.15, ƒ�1geuc � gi � geuc for some ƒ.z;y/�maxfjzC x�1xej�ı; 2g,

(9-78)
Z

BRn .�x�1xe;r/�Œ�r;r �

j@vi j
2=p dx

�

Z
BRn .�x�1xe;r/�Œ�r;r �

ƒn=2
jrvi j

2=p dvolgi

�

�Z
RnC1

jrvi j
2 dvolgi

�1=p�Z
BRn .�x�1xe;r/�Œ�r;r �

ƒnp�=2 dx

�1=p�

� C 1=p

�
C rnC1

1� cnıip�

�1=p�

:

Letting i !C1 followed by p! 1 and r !C1, we have v1 2W 1;2.RnC1/.

By the claim and the proof of Lemma 9.13, we deduce that

lim
i!C1

�.��1
i gıi ;�i

; 1/D �1 D 0;

which contradicts the fact that �.��1
i gıi ;�i

; 1/D��. This completes the proof.
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