Geometry &
Topology

Volume 27 (2023)

d ,—convergence and e-regularity theorems
for entropy and scalar curvature lower bounds

MAN-CHUN LEE
AARON NABER
ROBIN NEUMAYER

:.msp



:. Geometry & Topology 27:1 (2023) 227-350
msp pol: 10.2140/gt.2023.27.227
Published: 1 May 2023
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ROBIN NEUMAYER

Consider a sequence of Riemannian manifolds (M}, g;) whose scalar curvatures and
entropies are bounded from below by small constants R;, i; > —¢;. The goal of this
paper is to understand notions of convergence and the structure of limits for such
spaces. As a first issue, even in the seemingly rigid case €; — 0, we will construct
examples showing that from the Gromov—Hausdorff or intrinsic flat points of view,
such a sequence may converge wildly, in particular to metric spaces with varying
dimensions and topologies and at best a Finsler-type structure. On the other hand, we
will see that these classical notions of convergence are the incorrect ones to consider.

Indeed, even a metric space is the wrong underlying category to be working on.

Instead, we will introduce a weaker notion of convergence called d,—convergence,
which is valid for a class of rectifiable Riemannian spaces. These rectifiable spaces will
have a well-behaved topology, measure theory and analysis. This includes the existence
of gradients of functions and absolutely continuous curves, though potentially there
will be no reasonably associated distance function. Under this d}, notion of closeness, a
space with almost nonnegative scalar curvature and small entropy bounds must in fact
always be close to Euclidean space, and this will constitute our e-regularity theorem.
In particular, any sequence (M", g;) with lower scalar curvature and entropies tending
to zero must d,—converge to Euclidean space.

More generally, we have a compactness theorem saying that sequences of Riemannian
manifolds (M}, g;) with small lower scalar curvature and entropy bounds R;, u; > —e
must dp—converge to such a rectifiable Riemannian space X. In the context of the
examples from the first paragraph, it may be that the distance functions of M; are
degenerating, even though in a well-defined sense the analysis cannot be. Applications
for manifolds with small scalar and entropy lower bounds include an L*°-Sobolev
embedding and a priori L? scalar curvature bounds for p < 1.
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1 Introduction

It is a well-known theme that understanding the structure of a manifold (M", g) under
restrictions on curvature is essentially equivalent to understanding the structure of
singular limits M;* — X . During the early days of studying manifolds with bounded
curvature operator, it was sufficient to restrict the study to manifold limits X under C koo
convergence; see Cheeger [14; 15]. When the analysis of spaces with lower and bounded
Ricci curvature began, it became necessary to expand this point of view to general
metric space limits X', and to discuss convergence in the Gromov—Hausdorff sense; see
Gromov [26]. This allowed for the necessary formation of singularities in possible limit
spaces. It also became quite important at this stage to distinguish between collapsed
and noncollapsed limits, where noncollapsing of the sequence M;" can be understood
as the existence of a uniform lower bound on the volumes of balls. A key result in
this context, and indeed the beginning point for the regularity theory, is an e-regularity
theorem. This says that if the volume of a unit ball is close to that of the Euclidean ball,
then that ball must be close both topologically and geometrically to a Euclidean ball.

In this paper we study manifolds and sequences M;" under lower bounds on scalar
curvature. The correct replacement for noncollapsing in this context is a lower bound
on the entropy p of the manifold, or almost equivalently one could ask for bounds
on the L!-Sobolev constant, though we will see there are unnatural aspects to that
assumption. Our goal is then to prove and understand the corresponding e—regularity in
this context: a statement which should say that if the scalar and entropy lower bounds
are small, then a ball should be close to a Euclidean ball.
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d p—convergence with entropy and scalar lower bounds 229

It is already understood from the work of Sormani [48] that there is an immediate
problem when dealing with lower scalar curvature bounds, namely the notion of
Gromov—Hausdorff closeness cannot be the correct one. The examples in [48] mimic
those from minimal surface theory, and show that small volume tentacles may appear
when only a lower scalar curvature bound is assumed. One possible fix for issues
like this is the intrinsic flat distance; see Sormani and Wenger [49]. We will see in
this paper that the problem is actually much worse. We will build examples — see
Theorems 1.12-1.14 and Section 9 — which show that even under small lower bounds
on scalar curvature and entropy, the Gromov—Hausdorff and intrinsic flat limits may
be completely wild. Wild here can include jumps in topology, dimension and the
formation of Finsler or worse types of geometries. Fundamentally, the issue at hand
is that distance functions simply do not behave well under lower scalar curvature and
entropy bounds, and therefore any notion of convergence which is based on the distance
function must correspondingly fail. From the correct perspective, this should not be
surprising as the distance function is closely related to the W 1:°° behavior of functions,
and it may simply be too much to ask that this remains uniformly controlled in such a
sequence. Indeed, it is now well understood from the study of RCD spaces! that, said
correctly, W 1>®_control on the analysis is essentially equivalent to lower bounds on
Ricci curvature, and therefore one should almost expect distance functions to break
down in the context of only scalar curvature bounds.

In order to solve this problem we will introduce in this paper a new notion of conver-
gence, dp—convergence. The effect of this will be to take the required W 1:%°_control
needed for convergence of distance functions, and reduce it to a required W !»—control
for this weaker notion of convergence. The notion of d,—convergence is based on
associating to a manifold, or more generally a rectifiable space, a natural family of
distance functions dj,. As we will see, dj, understands and controls the behavior of the
Sobolev space W17, with do, = d becoming the standard distance function. Let us
begin with a definition.

Definition 1.1 (d,—distance on manifolds) Given a Riemannian manifold (M", g)
and a real number p € (n, oo], we define the d), —distance between any x, y € M by

(1-1)  dpg(x,y) =dp(x,p) = SUP{|f(X) —fWI: /M IVF17 dvolg < 1}-

ISee Ambrosio, Gigli and Savaré [6], Bakry and Emery [9], Lott and Villani [38] and Sturm [50].
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230 Man-Chun Lee, Aaron Naber and Robin Neumayer

Remark 1.2 The concept of the d,—distance has made an appearance in the literature
previously for distinct reasons; for instance in [20], De Cecco and Palmer used it in the
study of Lipschitz n—manifolds and showed that §(x, y) := limp_oo dp(x, ) defined
a distance function on such spaces and coincides with the geodesic distance on smooth
Riemannian manifolds.

We will discuss this more precisely in Section 2.2, but let us observe that d,, does
not need an underlying metric structure in order to be defined. A rectifiable structure,
which gives the ability to differentiate functions and integrate them, will be sufficient.
In particular, the functions d), are well-defined on rectifiable Riemannian spaces (X, g).
These are precisely defined in Definition 2.2, but roughly are topological measure
spaces with a compatible rectifiable structure and Riemannian metric on the rectifiable
charts.

For such a rectifiable space X, it may be that d,(x, y) = 0 for p sufficiently large,
and thus d, only defines a weak distance function. This will be possible even for
limits of manifolds under small lower scalar curvature and entropy bounds R, i > —e;
see Example 9.5. We will say X is d,—complete when it defines an honest distance
function whose topology is that of X'; see Section 2.2 for a larger account of the subtle
points which arise. A consequence of our main theorems is that for p < p(n, €), limits
will be dp—complete, and indeed d), is actually very well behaved. In particular, such
limits X will be doubling spaces up to scale 1 with respect to the d,—distances.

Now that we have the d,—distance defined and the correct category of spaces to consider
it on, namely rectifiable spaces X with a Riemannian structure, let us consider their
convergence. As is usual let us begin with the compact case.

Definition 1.3 (d,—convergence) A sequence {(X;, g;)} of compact rectifiable Rie-
mannian spaces, in particular a sequence of compact Riemannian manifolds, converges
to a compact rectifiable Riemannian space (X, g) in the d), sense if

(1-2) deH((X,', dp.g;,dvolg,), (X,dp g, dvolg)) — 0.

Here dngu denotes the measured Gromov Hausdorff distance between metric spaces.
Remark 1.4 One could also consider the intrinsic flat distance between the spaces
(Xi,dp,g;,dvolg,) and (X, dp g, dvolg). The main observation in this work is the
weakening of the usual distance with p = oo to p < co. We believe that a counterpart

of Theorem 1.7 below should hold with respect to the intrinsic flat distance between
the d), spaces, making use of the key estimates of Theorem 1.11 below.
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d p—convergence with entropy and scalar lower bounds 231

Remark 1.5 Even if a sequence {(M;, g;)} of Riemannian manifolds has a (geodesic)
Gromov—Hausdorff limit (Y, d), the spaces X and Y need not even be topologically
equivalent.

Remark 1.6 Let us briefly mention that pointed convergence for noncompact spaces
is defined in a similar spirit as in the Gromov—Hausdorff case, however there is a subtle
point due to the behavior of d, at large distances. See Definition 2.39 for precision.

Throughout the paper we will let B, ¢(x,r) denote the ball of radius r with respect
to dp. That is,

(1-3) Bpg(x,1r)={yeM :dy(x,y) <r}.
1.1 Main e-regularity theorem

Let us now move toward our first main result of the paper. We begin by recalling that
the Perelman W—functional, introduced in [43], is defined for a function f € C*°(M)
and real number t > 0 by

1
1-4 W(g, f,1) = ——+ t(\Vf> + R)+ [ —nte™/ dvol,.
14 W fio) (4m),,/2fM{ (/12 + R+ [ —n) .
The Perelman entropy (g, t), which can be viewed as the optimal constant in a
1/2

log-Sobolev inequality at scale 7°/~, is given by

(1-5) ;L(g,r)zinf{W(g,f,r): / e_fdvolgzl,e_f/2eW1’2(M)}.
M

(4mT)n/?
Finally, Perelman’s v—functional is given by

v(g. 1) =inf{u(g.7') : 7" € (0, 1)},

and just guarantees that we are measuring the entropy at all scales below some point.
See Section 3.3 for more background. The Perelman entropy n(g, t) of a complete
well-behaved Riemannian manifold (M, g) is nonpositive for all ¢ > 0. Moreover, if
the entropy is equal to zero for some 7 > 0, then (M, g) is isometric to Euclidean
space. This rigidity statement is the basis of our first main result, which is perturbative
in nature.

Theorem 1.7 (e-regularity theorem) Let (M™", g) be a complete Riemannian mani-
fold with bounded curvature and fix € > 0 and p > n + 1. There exists a § = 6(n, €, p)
such that if

(1-6) R>—-6 and v(g,2)=> -4,
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then for all x € M, we have

(1-7) dGH((Bp,g(xv 1), dp,g), (Bp,ge..(0.1), dp,geuc)) =€,

and forany 0 <r <1,

(1-8) (1= €)|Bp.gu.(0,7)] < volg(Bp.g(x0.7)) < (1 + €)|Bp.g...(0.7)].

Here | - | denotes the Euclidean volume. In particular, the measure dvolg on the metric
measure space (M, dp ¢, dvolg) is a doubling measure for all scales r < 1.

Remark 1.8 The assumption of (nonuniformly) bounded curvature is simply to control
degeneration at infinity of M, a local version of these statements would drop this
condition.

Remark 1.9 (L'-Sobolev constant) We may replace the entropy lower bound in
Theorems 1.7 by a rigid bound on the L!'-Sobolev constant. Namely, we may replace
the assumption v(g,2) > —§ in (1-6) with the assumption that for all compactly
supported f: Bg(x,1) — R with x € M we have

(n—1)/n
(1-9) ( / Ifl”/‘”‘”) < (14 8)en f 7.
M M

where ¢, is the sharp Sobolev constant on Euclidean space. However, we avoid focusing
on this because, as we will see, metric balls are badly behaved objects, and thus any
condition which used a metric ball may be more restrictive than it appears. The pu—
entropy intrinsically understands the correct dj,—distance, and thus (g, 1) becomes a
condition on the unit dp—scale, as opposed to the d = d scale.

Remark 1.10 (scaling) For any Riemannian manifold (M, g), the rescaled metric
g = r2g satisfies

By z(x0, p) = Bg, p(x0, pr' ™/P), Rz =r"2Rg, v(g,2r})=v(g,2).

If (M, g) is closed or is well behaved at infinity (see eg [54]), then lim,;_,o (g, 7) =0.
In particular, for any such Riemannian manifold (M, g), the hypotheses of Theorem 1.11
hold at some scale.

The proof of Theorem 1.7 depends on the following, which guarantees the existence
of W12 charts on an e-regularity ball. Further, one is able to get that for large but
finite p it is possible to control the W !-? energies of limiting functions; this connects
to the perspective discussed above of d,—convergence as a type of convergence of
Sobolev spaces.
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d p—convergence with entropy and scalar lower bounds 233

Theorem 1.11 (L ?—estimates for the metric coefficients) Let (M", g) be a complete
Riemannian manifold with bounded curvature. Fix € > 0, x > 1 and p € [k, 00). There
exists 6 = 6(n, p, k,€) > 0 such that if

(1-10) R>—-6 and v(g,2)>= -4,

then for any x € M there exist an open set Q C M containing x and a smooth
diffeomorphism v : Q@ — B(0, 1) C R” with ¥ (x) = 0 satistying

(1-11) f
B(0,1

s

N |(¢_1)*g—geuc|p dy <e and fg |w*geuc_g|p dvolg <.
Furthermore, for any f € W1-P(B(0, 1)), we have

(1-12) (A=Y * fllpocy = IflLrBo,1y)y < A+OIY* [l @),
(1-13)  A=OIVY* fllLrrcy < NV lLeBo,1)) = A +IVY™ fllLer ().

The notation f, u dvolg is used to denote Volg(Q)_1 Jq u dvolg. In (1-11), the nota-
tion | - | indicates the tensor norm with respect to geyc and g respectively.

1.2 Examples and counterexamples

We have been explaining from the beginning what can fail as one converges with
sequences of spaces with lower scalar curvature and entropy bounds. In particular, we
have discussed how the distance function itself is almost entirely uncontrollable. Let us
now make this precise, and in the process see that the d,—convergence in Theorem 1.7
cannot be replaced with Gromov—Hausdorff convergence or intrinsic flat convergence.

Theorem 1.12 (counterexample to Gromov—Hausdorff convergence) Fixn > 4 and
€ > 0. There exists a sequence of metrics (T", g;) on the n—dimensional torus with
8; — 0 such that

(1-14) Rg; > —6i and v(gi.2) > —€,

and such that (T", g;) converges in the Gromov—Hausdorff topology to a point, and in
the intrinsic flat topology to the zero current as i — co. On the other hand, the sequence
(T", gi) converges to a flat torus (T", gqa) in the d), sense for all finite p € [n+ 1, 00).

The example of Theorem 1.12 is given in Example 9.9. Preserving the lower scalar
curvature in the above example is not too challenging, but showing that the entropies
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are well behaved takes quite a bit more work. Philosophically, this example is similar
to situations studied very recently by Allen and Sormani [5], without the lower scalar
curvature and entropy requirements; see also [4].

In fact, in Section 9, we construct a variety of other compact and noncompact examples
of sequences satisfying (1-14) such that the Gromov—Hausdorff and intrinsic flat limits
are not locally Euclidean. For example, we have the following.

Theorem 1.13 Fix n > 4. There exist a sequence of metrics (R”, g;) satisfying

(1-15) Ry,

1

> —% and v(g;,2) > _%‘

that converge in the d,—sense to flat Euclidean space for any p € [n+ 1, 00), but whose
pointed Gromov—Hausdorff limit is (R", £°°), ie the taxicab metric on Euclidean space.

The example of Theorem 1.13 is given in Example 9.6. Theorems 1.12 and 1.13
demonstrate that one cannot replace d,—closeness with Gromov—Hausdorff or intrinsic
flat closeness in Theorem 1.7. Furthermore, the following theorem shows that the p for
which we establish d,—convergence in Theorem 1.7 cannot be taken arbitrarily large
for fixed §.

Theorem 1.14 Fixn > 4 and § > 0. There exists a sequence (R", g;) that satisfies
(1-16) Rg, > —6 and v(g;,2)> -6,

and a singular metric g, on R" such that (R", g;) converges in d), to (R", g), as a
rectifiable Riemannian space, for all p € [n+ 1, po) for some po = po(8), but does not
dp—converge to (R", goo) for p > po.

The example of Theorem 1.14 is given in Example 9.5.

1.3 Structure of limit spaces
The next main result of the paper is the following compactness result and structure

theorem for limit spaces. We show that under almost nonnegative scalar curvature and
entropy, we indeed have a rectifiable Riemannian limit X .
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Theorem 1.15 (structure of limit spaces) Let {(M;, g;, x;)} be a sequence of com-
plete pointed Riemannian manifolds with bounded curvature and let p > n + 1. Then
there exists § = §(n, p) > 0 such that if

(1-17) Rg; =8 and v(gi,2) =46,

then there exists a pointed rectifiable Riemannian space (X, g, x), with X topologically
but not necessarily metrically a smooth manifold, such that:

(1) After passing to a subsequence, we have d,((M;, gi, x;), (X, g, x)) — 0 in the
pointed sense of Definition 2.44.

(2) The space (X, g, x) is WP —rectifiably complete and d,—rectifiably complete,
in the sense of Definitions 2.24 and 2.35, respectively.

The first part of the above theorem just tells us that there exists a rectifiable space X to
which the M; converge. As we have emphasized, it may be that X does not have a well-
behaved metric structure and this convergence may not be in the Gromov—Hausdorff
or intrinsic flat sense. The second condition in the above theorem touches on some
subtle points that we have avoided in the introduction, and essentially tells us that X is
a well-behaved rectifiable space which behaves the way one might feel it should in a
reasonable scenario. In particular, the gradient of a function is indeed the coordinate
gradient that one would compute in rectifiable charts, and the metric d), generates the
topology of X. Note that for ¢ > p, this may fail for d,.

1.4 Further results under lower scalar curvature and entropy

Finally, let us conclude by discussing some applications of the results to the underlying
structure of spaces with lower scalar curvature and entropy bounds. To begin, we obtain
on such spaces an a priori L4 bound for the scalar curvature for ¢ < 1:

Theorem 1.16 (L4 scalar curvature estimates) Let (M", g) be a closed Riemannian
manifold and let € > 0 and ¢q € (0, 1) be fixed. There exists § = §(n,q,€) > 0 such
that if

(1-18) R>—-6 and v(g,2)> -4,
then we have

(1-19) % |R|? dvolg <e.
M
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Motivated by the above we conjecture the following:

Conjecture 1.1 Let (M", g) be a closed Riemannian manifold with R, v(g,2) > —A.
Then there exists B(n, A) > 0 such that

(1-20) % |R| dvol, < B.
M

In our last main result we prove that Riemannian manifolds satisfying a uniform lower
bound on entropy and scalar curvature satisfy a Morrey—Sobolev embedding with a
uniform constant.

Theorem 1.17 (L°°-Sobolev embedding) Let (M", g) be a complete Riemannian
manifold with bounded curvature and let p > n + 1 and g > n. There exists a § =
8(n, p,q) > 0 and Cy, 4 > 0 such that if

(1-21) R>—-6 and v(g,2)> -4,
then for all f € W14 (M), we have

(1-22) I/ Lo ary = Crg VS iaavy + 1L/ L)
More locally, for all xo € M and f € Wol’q(Bp,g(xo, 1)), we have

(1-23) IS oo By ¢ (x0,1)) = CrgIVS ILa(B,. 4 (x0,1))-

In terms of the d,—distance we can upgrade this to a Holder embedding: there exists
a=a(n,q) € (0,1) such that

(1-24) | /()= S = Crg,pdp(x, V¥V La (B, 4 (x0,1))
forall x,y € Bp,g(xo,1).

Remark 1.18 The examples of Section 9 demonstrate that the Holder embedding of
(1-23) cannot hold with the geodesic distance in place of the dp—distance.

The following theorem provides a type of stability for a theorem of Schoen and Yau [45]
and Gromov and Lawson [28], which states that a metric of nonnegative scalar curvature
on a torus must be flat. Stability for this rigidity theorem statement was conjectured
by Gromov in [27], with a more concrete formulation of the conjecture given by
Sormani in [48]. Progress toward this conjecture has been made in various cases. The
first developments were due to Gromov [27], also established by Bamler [10] using
Ricci flow, and showed that if a sequence of metrics g; on a torus that converge in C° to
a C? metric g also have R ¢; = —1/1i,then g is the flat metric. Using (regularizing) Ricci
flow, Burkhardt-Guim [11] extended this result to limiting metrics that are only C°,

Geometry & Topology, Volume 27 (2023)



d p—convergence with entropy and scalar lower bounds 237

and also proved a generalization of the rigidity result to C° metrics with nonnegative
scalar curvature in a weak sense. Further progress toward this conjecture, in the form
stated by Sormani in [48], has been made in the setting of warped product metrics [3]
by Allen, Hernandez-Vazquez, Parise, Payne and Wang, graphical tori [12] by Cabrera
Pacheco, Ketterer and Perales, and metrics that are conformal to the flat metric [2] by
Allen. We note that the hypotheses in Theorem 1.19 differ from those in the conjecture
of Sormani; most notably our assumption of an entropy lower bound takes the place of
the lower bound on the minA quantity there, and here stability is with respect to the
dp—distance rather than the intrinsic flat distance.

Theorem 1.19 Fixn > 2 and p > n + 1. There exists § = §(n, p) and Vo = Vy(n, p)
such that the following holds. For any V >V}, let (M;, g;) be a sequence of compact
Riemannian manifolds, diffeomorphic to tori, with volg, (M;) < V and satisfying

(1-25) v(gi,2) > —8 and Riz_ll_

Then (M;, g;) converges in the dj, sense to a flat torus with v(g,2) > —6.
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2 Rectifiable Riemannian spaces and convergence

2.1 Rectifiable Riemannian spaces

We introduce precisely the notion of rectifiable Riemannian spaces, which are the
objects which arise as limits in the d,, sense of Riemannian manifolds with uniform
lower bounds on scalar curvature and on the entropy.

Let X be a Hausdorff topological space equipped with a Borel measure 72 on X. We
will refer to (X, m) as a topological measure space. We first define the notion of
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rectifiability of a topological measure space. Since these spaces are not equipped with
metrics, the rectifiable structure is provided via an atlas of charts with bi-Lipschitz
transition maps.

Definition 2.1 (rectifiable atlas) Let (XX, m) be a topological measure space, and
consider a collection of charts {(Uy, ¢q)}aecz, where U, € R”, ¢y: U, — X is one-
to-one and continuous with continuous inverse on its image, and Z is a countable
index set. For each a,b € T let us denote U, , = U, N ¢; 1 (¢p(Up)) € R™. We say

that {(Uy,, ¢q)}acz is a rectifiable atlas for (X, m) if:

(1) For each a, b € T such that U, ; is nonempty, every point in U, ; has Lebesgue
density one.

(2) For each a, b € Z such that U, ; is nonempty, the transition map

¢ba = ¢;1 © ¢a: Ua,b - Ub,a
is bi-Lipschitz.

(3) We have

m(X\ U %(Ua)) = 0.

a€’l

(4) For each U, we have that (¢, 1)«m is absolutely continuous to the Lebesgue
measure.

Given a topological measure space (X, m) equipped with a rectifiable atlas {(Uy,, ¢4)},
we may define a Riemannian structure on X by defining a (possibly degenerate)
Riemannian metric in the charts U,. Naturally, we must ask that this metric is suitably
compatible with the rectifiable atlas and the measure. We call the resulting space a
rectifiable Riemannian space.

Definition 2.2 (rectifiable Riemannian space) Let (X, m) be a topological measure
space. We say that (X, m) has a rectifiable Riemannian structure if there is a rectifiable
atlas {(Uyg, ¢q)}aez on (X, m) together with a collection of matrix-valued functions
ga: Uz — R™" such that:

(1) Foreach x € U,, gq4(x) is a positive definite symmetric matrix such that

sup || gall + llgz || = Ca,

xeU,

and g, is continuous on U,.
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(2) {ga}aer satisfies the compatibility condition: for almost every x € U, p, ¢p, is
differentiable and g, = d)Z‘a gp at x. More precisely, we have

dgg, el )
axi dxJ B or )

(a)ij|,=

(3) The measure ¢, m on U, is given by

pam = y/det g, dx.

We say that {g,}qe7 is the coordinate expression of a rectifiable Riemannian metric g
on X and call (X, g) a rectifiable Riemannian space.

Remark 2.3 For condition (1), the continuity assumption is only made for convenience.
Indeed, since U, is not necessarily an open set in R”, by the Lebesgue differentiation
theorem one can always remove an arbitrarily small set in U, so that the continuity
holds under the L°° condition.

2.1.1 Examples of rectifiable Riemannian spaces One can imagine a variety of
ways in which a rectifiable Riemannian space can degenerate. We will first work our
way through some basic examples which explore this. This will give some first intuition
on what kind of structure is needed to avoid this. Future sections will explore examples
that might arise as limits, which will tell us when these degeneracies can and cannot be
avoided.

Example 2.4 Any smooth Riemannian manifold (M, g) is a rectifiable Riemannian
space.

With regard to Example 2.4, observe that even for a smooth Riemannian manifold
(M, g) a given rectifiable atlas may only cover M up to a set of measure zero:

Example 2.5 Let X = R” with g.,. the Euclidean metric, and let m = dx be the
Lebesgue measure. Consider the rectifiable atlas {(Uy, ¢1), (Us, ¢p2)} where

Uy ={(x1,....,xp):x1>0} and U, ={(x1,...,x):x1 <0}

are complementary open half-spaces and ¢; is the identity chart restricted to U; for
i =1,2. Then (R", geyc) is a rectifiable Riemannian space with respect to this rectifiable
atlas.

Example 2.6 Any stratified Riemannian manifold X is a rectifiable Riemannian space.
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Example 2.7 As a concrete case of Example 2.6, let X C R? be a countable union of
lines {£; };en passing through the origin, and let m be defined by m|,, = H! ¢; - Define
gle; = grzle; and let {(R\{0}, ¢;) };en be the rectifiable atlas with ¢; : R\ {0} — £; \ {0}
defined via the obvious isometric embedding. Then (X, g) is a one-dimensional
rectifiable Riemannian space.

Example 2.8 Let (X", d, m) be a metric measure space which is also a noncollapsed
RCD(N, K) space, that is, a metric measure space with lower bounds on the Ricci
curvature in the generalized sense. Then it follows from [40] that X is a rectifiable
Riemannian space.

Due to the flexibility, we can also allow the metric tensor to be mildly singular. Let us
consider some examples of this.

Example 2.9 (degenerate metric on R”) Let X = R” and consider the metric defined
byg=>Y"_fi (x)2(dx")?, where each f; is a smooth nonnegative function on R”
such that the set = = |J_,{x : f;j(x) = 0} has Lebesgue measure zero. Further let
m = ,/det g dx be the induced measure. Consider the rectifiable atlas on the topological
measure space (R”, m) given by {(Ug, ¢g)}aen Where

n
U, = ﬂ{xeR”:a_l < fi <a}
i=1
and ¢, is the identity chart on R” restricted to U,. Then, with respect to this rectifiable
atlas, (R”, g) is a rectifiable Riemannian space.

An important feature of Example 2.9 is that, while the geodesic distance gives rise
to a metric space structure (X, d), the metric space may not even be topologically
equivalent to R”, as seen in the following example.

Example 2.10 As a special case of Example 2.9, consider the rectifiable Riemannian
space (R2, g) where g = dx? +|x|? dy?. Let dg be the distance function with respect
to g, ie dg(x, y) = inf, fol |y (¢)| dt, where the infimum is taken among all curves
y with y(0) = x and y(1) = y. Then we see that dg(p1, p2) = 0 for all p;, p, €/
where £ = {(x, y) : x = 0}. In particular, the metric space (R2, dg) collapses ¢ to a
point and is not topologically equivalent to R2. We will examine the dp—distance for
this example in Section 2.2.
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In Section 9, we will construct rectifiable Riemannian metrics that are qualitatively
similar to Examples 2.9 and 2.10, which arise as limits of smooth Riemannian manifolds
with uniform lower bounds on scalar curvature and entropy.

2.1.2 WP spaces on rectifiable Riemannian spaces We would like to use the
rectifiable structure of a space in order to do analysis. In order to do this, we need to
make sense of W17 functions in our context, which means being able to take gradients
of functions and look at their norms. Ideally, we would want to use the rectifiable
charts in order to do this in coordinates. Realistically, one has to be quite careful about
this. A function might be perfectly differentiable in every coordinate chart, but not
really be a W !+ function as its gradient may have a distributional component, as we
see in the following example.

Example 2.11 Consider (R”, geyc) with the rectifiable atlas {(U1, ¢1), (U,, ¢2)} com-
prising two open half-spaces as in Example 2.5. The function f: R” — R defined by
f(x)=0if x; <0and f(x)=1if x; > 0 clearly does not have gradient in L?(R"),
since its distributional gradient is a singular measure supported on {x; = 0}. However,
letting fz = ¢ f fora = 1,2, we have g"fa,-faa,-fa =(0forallx e U, fora=1,2.

In order to deal with this issue, we will follow a classical approach from metric measure
spaces (see for instance [29, Sections 5-7]) to build the Sobolev space theory by
considering the behavior of functions along curves. The key is that these ideas adapt
themselves very well to this context, as in the end, even when no a priori distance
function is available, the notion of an absolutely continuous curve and the behavior of
a function along it is available and can be studied.

Let us begin by discussing the notion of an absolutely continuous curve on a rectifiable
Riemannian space. In the setting of a smooth manifold or a metric measure space,
the theory of Sobolev spaces can be built up by considering the behavior of functions
along rectifiable curves. In these settings, a rectifiable curve is defined as one with
finite length, where length is defined via approximation by polygonal curves. This
definition is independent of parametrization, and every rectifiable curve in a smooth
Riemannian manifold or a metric space admits an absolutely continuous (in fact,
Lipschitz) parametrization, namely the arc-length parametrization. In practice, it is this
absolutely continuous parametrization that is used in the Sobolev space theory.

Moving to the context of rectifiable Riemannian spaces, there are two major factors that
must be taken into account when determining the appropriate class of curves along which
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to study the behavior of functions. First, curves must be appropriately compatible
with the rectifiable atlas on the space in order to avoid the difficulty illustrated in
Example 2.11. Second, the absence of a distance function prohibits us from speaking
about the length of a polygonal curve, and thus of considering rectifiable curves in the
sense described above. Instead, we must restrict our attention to absolutely continuous
parametrizations of curves. To be more specific about these two considerations, the
definition of an absolutely continuous curve in a rectifiable Riemannian space is given
in Definition 2.12 below.

Let (X, g) be a rectifiable Riemannian space with rectifiable atlas {(Uy, ¢4) }aez, and
denote the singular part of X by X* = X \ |J, U,. This may or may not correspond
to topological singularities of the space.

Definition 2.12 (absolutely continuous curves) Let y:[o, 8] — X be a continuous
curve and define I, =y * (¢4 (Uy,)) for each a € Z. We say that y is absolutely continuous
if the following properties hold:

(a) y*(X’) CJa, B]is a countable set.

(b) For every € > 0, there exists § > 0 such that if {(s;, #;)}72, is a collection of
disjoint intervals in [o, B] such that for each i we have s;,t; € I,; for some a; € T

and ) 72 |si —t;| <8, then

o0
@-1) D 1Vai (50 = Var ()| gu sy <€

i=1

Some further discussion is in order about Definition 2.12. As we saw in Example 2.11,
part (a) of the definition is necessary to guarantee that the behavior of an absolutely
continuous curve y can be entirely reflected in the charts of its rectifiable atlas, since
the rectifiable charts may only cover (X, g) up to a set of measure zero. Together with
the assumption that y is continuous, part (a) ensures that there is no contribution to the
singular part of the distributional derivative of y on the set y*(X ), and in particular
eliminates the issue illustrated in Example 2.11:

Example 2.13 In Example 2.11, the curve y(¢) = (¢,0,...,0) is not an absolutely
continuous curve in the sense of Definition 2.12 because it violates condition (a).

Part (b) of Definition 2.12 is a replacement of the classical notion of a curve with finite
length, as one typically takes the supremum over lengths of polygonal approximations
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to the curve. As we noted above, in the context of rectifiable Riemannian spaces this
notion is unsuitable as one does not have a notion of a distance function with which to
measure the length. Instead, we will see that condition (b) guarantees that the curve is
absolutely continuous in each chart in a suitably uniform sense.

Note that Definition 2.12 is parametrization dependent, as it requires an absolutely
continuous parametrization. This is not restrictive, as on a smooth Riemannian manifold
with a classical atlas of charts, every rectifiable curve in the classical sense admits
a reparametrization, namely its arc-length parametrization, which is an absolutely
continuous curve in the sense of Definition 2.12.

The following lemma provides some basic consequences of the Definition 2.12 that
further clarify this notion of absolutely continuous curve and how it fits into the classical
notion on smooth spaces.

Lemma 2.14 Let y: [, B] — X be an absolutely continuous curve in the sense of
Definition 2.12 above. Then the following properties hold.

(1) For each a € Z, the function y, = ¢a_1 oy: I, — U, is differentiable for a.e.
s € I,. Here we again let I, = y*(¢4(Uy,)) C |, B].

(2) For all € > 0, there exists § > 0 such that if S C [«, B] with |S| < §, then
fs7lg <e.

(3) If (X, g) is a smooth Riemannian manifold, then the length of y is given by
L) = [L17]gdr.

Remark 2.15 In Lemma 2.14(2) and (3) and in the sequel, we let |y |z = /g(y, V),
which is well-defined for a.e. ¢ € [, ] by Lemma 2.14(1) and via the rectifiable atlas

{(Ua. $a)}acz

Remark 2.16 Having in mind Lemma 2.14(3), we define the length of an absolutely
continuous curve y: [o, 8] = X in a rectifiable Riemannian space by L(y) = /. f [V]g-
One can check that this notion is independent of Lipschitz reparametrizations.

Proof of Lemma 2.14 We first prove (1). Fix a € Z. Because ¢, 1'is continuous, we see
that y, : I, — U, satisfies the absolute continuity property (2-1) for endpoints s;, ¢; € I4;
thus y, extends to a continuous function ¥, : I_a — Ua. Moreover, the complement
[, B]\ I, of 1, is relatively open in [«, 8] and therefore comprises a countable union
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of disjoint relatively open intervals («;, B;) in [, B]. We may therefore extend y, to
a continuous curve Y, : [, B] = R” by letting ¥, interpolate linearly between y, («;)
and y,(B;) for each j € N.

To prove (1), we will show that the curve ¥,: [, 8] — R” is a uniformly continuous
curve on R”. More specifically, we claim that for any € > 0, there exists §o > 0 such
that for any disjoint collection of intervals {[s;, #;]}$2, such that Y2y Isi —ti] < 8o,
we have

o0
(2-2) D17 (i) = Pt ]ewe <.

i=1
It will follow immediately from this absolute continuity of ¥ that ¥ is differentiable
for a.e. ¢ € [, B] and so in particular that y is differentiable for a.e. ¢t € I, proving (1).

Fix € > 0, let §o > 0 be a fixed number to be determined within the proof, and consider
a disjoint collection of intervals {[s;, z;]}72, in [e, B] such that Y72 Isi —ti] < 8. Up
to refining the collection of intervals (which can only increase (2-2)), we may assume
for each i € N that s;, #; either both lie in I, or both lie in [o, 8]\ I, = U;iﬂaj’ Bl
So, subdividing the index set N by letting

o0
(2-3) Jo={ieN:s;t € I_a} and J; = {i eN:s;,t; € U[Oéj,ﬂj]},
j=1
we will establish (2-2) by showing that

24 Y 7050 P e < e
i€Jo

@ 3 17051 = Pt e = L.
€T

Recall that there exists C, > 0 such that
(2-6) Ca_lga < Geuc = Cula

in Ug. So, (2-4) follows directly from this fact and (2-1), provided we take 8¢ < 41,
where §; > 0 is a number small enough that (2-1) holds with €/4C, in place of €. In
order to establish (2-5), we further subdivide the index set 77 in the following way.
Since Y 72, |Bj —aj| < |B —«l, there exists Jo such that 3 72 ;' |B; —a;| <&;. Up

to further refinement of our collection of intervals, we may assume that for each i € Ji,
Jo—1

both endpoints s; and #; lie in (J;Z,

[, Bj] or both endpoints lie in U]?iJO [, Bl
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So we let
Jo—1
T = {i eN:s; 1 € U [Olj,ﬂj]} c J1,
@-7) )
T3 = {i €N :sili € U [Oéj,ﬂj]} Cc .
j=Jo

so that 7, U J3 = J;. We establish (2-5) by bounding the sums over J, and J3
separately, starting with J3. By the triangle inequality and the piecewise linear way
that 7 was defined on [«, 8]\ I, we see that

(2-8) D 6D = F(t)lewe < Y 17() = F(B)leue.

i€T3 j=Jo

Then, since «;, B; € I, we may apply (2-6) and (2-1) to find that

(2-9) D 17@) =T (B)lewe < €

j=Jo
provided 8o < &1, with §; as above. Together, (2-8) and (2-9) show that
(2-10) D 70 = () |ewe < €.
i€J3

Now, to bound the analogous summation over 7», notice that the linear segment of y
defined on [«}, B;] is absolutely continuous for each j =1, ..., Jy. Since there are
finitely many such intervals, we may find 6§, > 0 such that if §5 < §,, then

(2-11) D17 (si) = T (@) lewe < e
i€

Finally, choose §o < min{éy, §;}. Then together (2-11) and (2-10) prove (2-5). This
shows that 7 is an absolutely continuous curve on R” and thereby establishes (1).

Before moving to the proof of (2), observe that as a consequence of (1), we may define

|Valga = v/ &a(Va, Va) for ae. t € I, and we have

(2-12) fim 1Va(t) = Ya ()| gt

s—t |s—t|

= 1Ya(®)lg.t)

for each such ¢. It is easily checked that this definition is independent of a, and thus
we may define |y |y for a.e. f € o, B].
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Now we establish (2). The main idea will be to use (2-12) to relate the integral of |y |
to the absolute continuity assumption (2-1). Fix € > 0 and let § > 0 be a fixed number,
to be specified within the proof. Fix a measurable set S C [«, 8] with |S| < §, and let
{Sq}aez be a collection of pairwise disjoint subsets of S with S, C I, for eacha € 7
such that ‘S \ Uger Sa} = 0, ¥, is differentiable for every ¢ € S, and every point of
S, is a density point of /.

In order to make use of (2-12), we must show that the limit in (2-12) is uniform on
a large subset of each S,. More specifically, we claim that for any n > 0, there exist
rp > 0 and a measurable set S; C S, with |S7| > (1 —1)|Sg| such that if € S, then

Va(t) = Va(5)lgu(0)
|t =]

(2-13) 1Va(D)|ga0) — 1 = < 1Va(O)lguc) +1

for all s € 4 with |t —s| < ry. Indeed, let

_ |17a®) = Va($)lga)
|t =]

(2-14) R(s,1) —1Ya(O) g 0|

For each fixed ¢t € S,, we have limg—,; R(s,?) = 0. So, if we define the sequence of
functions pg (1) =sup{|R(s,t)|:s € Sq, |s—t| <1/ k}, we see that py (#) — 0 pointwise
as k — oo. Applying Egorov’s theorem, for any 1 > 0, there exists a measurable set S,
such that |S, \ S7| < n|Sa| and px(¢) — 0 uniformly on S.. In particular, letting
ry = 1/k for k chosen sufficiently large, we see that |R(s, )| <7 for all z € S,. This

establishes the claim.

Next, for each a € Z, we aim to estimate the integral of || over S.. Consider a
collection of disjoint intervals {/,,; = [s;, #;]}72, covering S; with endpoints in S,
such that |1, ;| < ry, for each i and such that ), |I,;| < (1 + 1)|SZ|. For each i, let
teSin 1,,; be a point such that

(2-15) A+ 0Ya(@i)lg, Gy = supilVa(®)lg, ) 1t € S N 1ai}.

At least one of the endpoints of I, ; has distance at least %|Ia,,~| from 7;; without loss
of generality suppose it is s;. So, thanks to (2-13), we find that for each i,

(2-16) / e (®)lguy dt < (140 il 1705, 0
SN, ;

) IAGEAT IS
|si — 1]

< 2(1+0)|Va(@) = Va5 g, Gy + A+ M0l Lai]

= 2(1+Ya(@) = va(si)l g, Gy + (1 +mnl il

< (I+n)a,l + (1L +n)n|1a,l
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The final equality follows from the definition of J and the fact that ti,5i €Sy C 1.
Consequently, summing up over a and i, we find that

2-17) Z/ |y|<ZZ/a%l

a€l a€l j=1

< 22(2(1 +mlYa@) = valsi)| + (1 +m)nla,l)

acl i=1
<2(1+me+(1+n)ns,
where in the final inequality we have applied (2-1), again using that ;, s; € Sy C I,.

Finally, we send n — 0. The right-hand side of (2-17) tends to 2¢, while, making use of
the dominated convergence theorem, we see that the left-hand side converges to | syl
We therefore see that (2) holds. We omit the proof of (3) since it is standard. O

Following the classical approach in metric measure spaces, we next want to use our
absolutely continuous curves to define the notion of a p—weak upper gradient of a
function. We will see that most of the Sobolev theory is built up in an identical fashion
to the metric measure space setting.

To begin, we need a notion of a collection of curves that have p—measure zero, an idea
first introduced by Ahlfors and Beurling in [1] and further developed by Fuglede in [23]
in the Euclidean and Riemannian settings. To this end, let 90t denote the collection
of all absolutely continuous curves on (X, g). For 1 < p < 0o, we say that a family
of curves I' C 901 has Mod,, (I') = 0 if there exists a nonnegative Borel measurable
function f € L?(X) such that fy f = 400 for every y € I'. Here and in the sequel,
we use the notation fy f to mean

B
(2-18) [ fi= / FO)7 e dr.
y o

A property is said to hold for p—a.e absolutely continuous curve if it holds for every
curve in 9\ I' where Mod, (I") = 0. For the corresponding definition of families of
curves with Mod,, (I') = 0 in the metric measure space context; see [29, Definition 5.1]
and the equivalent formulation of the definition given in [29, Theorem 5.5].

It follows directly from the definition that for any nonnegative Borel measurable function
f e L?(X), then fy f < oo for p—a.e. absolutely continuous curve. In a similar vein,
the following lemma shows that convergent sequences in L? (X') converge along p-a.e.
absolutely continuous curve.
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Lemma 2.17 (cf Theorem 5.7 of [29]) Fix 1 < p < oo. Letuy: X — R U {z£o0} be
a sequence of Borel measurable functions converging in L? (X') to a Borel measurable
function u: X — R U {f+o0}. Up to a subsequence,

b
(2-19) / lug —ul|ylg dt =0
a
ask — oo forall y € M\ T", where Mod,(I") = 0.

Lemma 2.17 was shown in the context of metric measure spaces in [29, Theorem 5.7].
In our setting, the proof carries over without modification.

Having in hand the notions of absolutely continuous curves and families I" of absolutely
continuous curves with Mod,, (I"') = 0, we are now in a position to define upper gradients
and p—weak upper gradients of functions u#: X — R. The notion of weak upper gradient
was first introduced by Heinonen and Koskela in [34], and the definition we give here
is analogous to [29, Definition 6.1].

Definition 2.18 (upper gradients and p—weak upper gradients) Let #: X — R and
G: X — [0, 00] be Borel measurable functions. We say that G is an upper gradient
for u if

-20) uy@) - ur®)I = [ G

Y

for every absolutely continuous curve y:[a, b] — X. For 1 < p < 0o, we say that G is
a p—weak upper gradient for u if the upper gradient condition (2-20) holds for p-a.e.
absolutely continuous curve y: [a,b] - X.

The following example shows that this is a natural notion of gradient.

Example 2.19 Consider Euclidean space as a rectifiable Riemannian space with the
rectifiable atlas comprising only the identity chart. For a smooth function u: R” — R,
the classical gradient |Vu| is an upper gradient for u.

Furthermore, we note that the potential issues highlighted by Example 2.11 are elimi-
nated with respect to this definition.

Example 2.20 Consider the rectifiable Riemannian space and the function f defined
in Example 2.11. We see clearly that G = 0 is not a p—weak upper gradient for f,
since the upper gradient condition (2-20) fails for any curve that crosses the hyperplane
{x1 = 0}. In fact, considering the family I" of absolutely continuous curves of the
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form y(t) = (0, x") + tey fort € (—¢, €), we easily see that f has no p—weak upper
gradient in L?(X).

Now, let W 1-7 (X)) be the collection of all Borel measurable functions #: X — R such
that u is L? integrable and u has a p—weak upper gradient G € L?(X). The Sobolev
space W1-?(X) on a rectifiable Riemannian space is defined in the following way,
following the definition first introduced by Shanmugalingam in [46] in the context of
metric measure spaces and presented in Definition 7.1 of [29]. We note that a closely
related definition of Sobolev spaces on a metric measure space was given by Cheeger
in [16].

Definition 2.21 For any u € W-?(X), we define
(2-21) lellw vy = lullze oo +EIGLr ).

where the infimum is taken over all p—weak upper gradients G of u. We define the space
WP (X)=W'P(X)/~, where u ~ v for u,v € WHP(X) if ||u — vl xy =0.

Remark 2.22 One subtlety of Definition 2.21, which is also present in the analogous
metric measure space setting, is that it is possible to modify a function u € wl.p (X)
on a set of m measure zero to obtain a function # that is not in W !-? (X). For instance,
on Euclidean space, consider the functions u = 0 in W 1-?(R”) and & = x g, where
E is the set of all rational points in R”. Then # has no p—weak upper gradient in L?.
This subtlety explains why some of the statements in Proposition 2.23 below require
the choice of a certain representative for an L? function. However, if u, i € W12 (X)
and u = i m—a.e., then u and # define the same element in W17 (X).

From this point, we can establish a number of basic properties of the space W17 (X)
showing that this space possesses many of the important features of Sobolev spaces
in smooth settings, which we collect in the following proposition. The analogous
properties are established in the metric measure space setting in [29, Section 7]. In fact,
the proofs there can be carried over almost verbatim, with only the modification being
the distinction between the use of absolutely continuous curves in our setting as opposed
to rectifiable curves in the setting of metric measure spaces. For this reason, we omit the
proofs and instead point the reader to the corresponding statements in [29, Section 7].
Properties (1)—(3) and (5) were originally proven by Shanmugalingam [46], and (4) was
established by Cheeger in [16] for p > 1 and Hajtasz [29] for p = 1.
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Proposition 2.23 (basic properties of the Sobolev space W -7 (X)) Let (X, g) be a
rectifiable Riemannian space and fix 1 < p < oo. Then the following properties hold:

(1) Closedness (cf [29, Lemma 7.8]) Suppose {u;}72,,1Gi}72, are sequences
in L? (X)) such that u; and G; converge weakly tou € LP(X) and G € L?(X),
respectively. If G; is a p—weak upper gradient of u; for eachi € N, then there is

a representative of u in L? such that G is a p—weak upper gradient of u.

(2) Lower semicontinuity (cf [29, Corollary 7.10]) Letu; € W P pe a bounded
sequence converging weakly in L?(X') to u. Then there is a representative of u
such that u € W2 (X) and

(2-22) el 1.0 (xy = liminf flu [y 10 x)-
1—>00

(3) Banach space (cf[29, Theorem 7.12]) The space W L.p (X)) is a Banach space.

(4) Minimal p—weak upper gradient (cf [29, Theorem 7.16]) There exists a
minimal p—weak upper gradient G, € L?(X) in the sense that G, < G m-a.e.

for every p—weak upper gradient G € L?(X).

(5) Smooth spaces (cf [29, Theorem 7.13, Corollary 7.15]) Suppose (X, g) is
a smooth Riemannian manifold, then W1-?(X) coincides with the standard
Sobolev space of X . Moreover, the norm of gradient vector |Vu|g is the least
p—weak upper gradient foru € WP (X).

Thanks to Proposition 2.23, for any u € W (X)) we may write

(2-23) lullwroxy = lullLexy + 1GullLr x)s
where G, is the least p—weak upper gradient of u.

Without imposing any additional structure, the space W !>? on a rectifiable Riemannian
space may be trivial. Moreover, as we saw in Example 2.11, the usual coordinate
expression for the norm of the gradient may not be meaningful. For this reason,
we introduce the notion of rectifiable Riemannian spaces that are W 1-P—rectifiably
complete, that is, spaces for which the space W !>? is sufficiently large and the minimal
p—weak upper gradient coincides with the derivative in charts almost everywhere.

Definition 2.24 (W !>P_rectifiable completeness) Fix p > n. We say that (X, g) is
W 1-P_rectifiably complete if the following hold:

(@) WLP(X) is dense in L?(X).
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(b) Forallu e WP (X) and a € I, the function 1, = ¢xu: Uz — R is differentiable
a.e. and

Gu(@a(x)) = |Vulg = v/gg ' (Jua(x). duta(x))

for ¢ m-a.e. x € Ug,. Here, du, denotes the Euclidean gradient of u,.

Example 2.25 A smooth Riemannian manifold is W 1-P—rectifiably complete for any
p € (n,00).

Example 2.26 It is easy to check that the rectifiable Riemannian space of Example 2.7
is W 1-P_rectifiably complete for any p € (1, 00).

Example 2.27 For « > 0, consider the rectifiable Riemannian space (R2, g»), where
go = dx? + |x|** dy?. This is a generalization of Example 2.10 and a special case
of Example 2.9. Fix p > 2. There exists & = a(p) € (0, 1/2p) such that (R?, g,) is
rectifiably complete; the proof of this fact is a special case of the proof of Proposition 8.5
in Section 8.2.

Example 2.28 Thanks to Theorem 1.15, the dp—limits of sequences of smooth Rie-
mannian manifolds satisfying uniform lower bounds on scalar curvature and entropy are
W L-P_rectifiably complete for suitably chosen p. See Section 8 for further discussion
and the proof of this fact.

2.2 The d ,—distance

In view of Example 2.9, we see that the geodesic distance does not reflect the underlying
structure of a rectifiable Riemannian space. This is mainly due to the degeneracy of the
metric. More seriously, we will see in Section 9 that these types of examples can arise
as limits of manifolds with lower scalar curvature and entropy bounds. At its heart,
this occurs because the distance function requires W 1**—control, which will be too
much to ask for. We introduce and discuss the notion of the d,—distance here, which
depends only on W »P—control of our space. In the context of lower scalar curvature
and entropy bounds, this will be obtainable for at least some n < p < oo.

Definition 2.29 (d,—distance) Let (X, g) be a rectifiable Riemannian space. Given
p € (1,00) and x, y € X, the dp—distance d), ¢ x (X, y) between x and y is defined as

dpg.x(x.7) = sup{|f(x> — SOl /X VfIPdm <1, f e WP (x)n Clgc(X)}.
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When there is no ambiguity, we will frequently write dj, or dp ¢ or dp x in place
of dp ¢ x. On Euclidean space, we will often use the short-hand dj cuc = dp ... R"-
The definition of d, makes sense for any p € (1, 00), but is only interesting for p > n.
For instance, on Euclidean space, dj(x, y) = 4oo for all x # y whenever p < n.
Indeed, for p € (1, n), consider any function f with f(x) # 0 that vanishes outside
of B(x, %|x — y|) and has [|Vf||L»@®n) < 1, and consider the maximizing sequence
given by f3(z) = A'™"/? f(z/}). For the borderline case p = n, take a maximizing
sequence of smooth functions approximating f(z) = ¢, loglog(1 4+ 1/|z — x|), where
cn is chosen so that [|Vf | pnwn) = 1.

2.2.1 Examples We consider two examples of the d,—distance on some rectifiable
Riemannian spaces. To begin with, we study the behavior of the d,—distance on
Euclidean space.

Example 2.30 (the d,—distance on Euclidean space) On Euclidean space, for p > n
we directly compute that dp(x, y) = S|x — y| 1=n/P  where

(2-24) S=8y,= sup{|f(x)—f(0)| :x € B(0,1), / IVSfIPdx < 1}
R~

is a normalizing constant. Note that Sy , — 1 as p — oo. Thus,

(2-25) Bp g (0, Sr17P) = B(0, 1)

for any r > 0. By taking the test function that is equal to |x|w, "/P in B(0,1) and
is the constant a)n_”/p on R"”\ B(0,1), we see that § = Sy , > o ~"/P and thus
Bp,g...(0,1) € B(0, w;,’/(p_")rp/(l’_”)). In particular, if p > n then

(2-26) Bp g (0,7) € B(0, Cyr P/ P71y
for all r > 0, where C, depends only on the dimension.

Example 2.31 (hyperbolic space) Givenn > 2 and n < p < oo, hyperbolic space
(H", gnyp) has finite bounded diameter with respect to d,,. More specifically, there is a
constant C = C(n, p) such that d,(x, y) < C for all x, y € H". Indeed, this follows
from the Morrey—Sobolev inequality on hyperbolic space established in [42] (see
also [41] for the two-dimensional case), which states that there exists C = C(n, p) > 0
(which is, in fact, explicit and sharp) such that for any f € W -7 (H"), we have
(2-27) sup | f(x)| = CIVS e qmy-
xeH”

In the definition of dj,, we do not require f to be globally integrable. However, the
proof of (2-27) is based on the Polya—Szeg6 principle and the symmetric decreasing
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rearrangement of f, so it is easy to check that the same proof implies that, for any
R>0and /€ WIP(Bg, (R)),

(2-28) sup | f(x) =S = CIVS l|Lr (B, R

x,yethyp (R)
where C is the same constant as in (2-27) and in particular is independent of R. Thus,
passing R — 0o, we arrive at the inequality

(2-29) sup | f(x) = S = CIVS |Lrmy.
x,yeH”

Consequently, dj(x, y) < C for all x, y € H".

On any smooth closed Riemannian manifold (M, g), dj ¢ defines a distance metric
on X as long as p > n. On the other hand, d, may only define a pseudometric if the
metric is degenerate, as we see in the following example.

Example 2.32 Fix « > 0 and consider the rectifiable Riemannian space (R?, g4),
where gy = dx?+|x|**dy?. This is a generalization of Example 2.10 and a special case
of Example 2.9. For p such that orp > 1, we have d ¢, (x, y) =0 forall x, y € {0} xR.

Remark 2.33 The definition of the dj,—distance makes sense more generally for
any space equipped with a W1? structure. For instance, one may define the d),—
distance on a metric measure space (X, d, m). For reasonable metric measure spaces,
for instance those which are doubling and have a Poincaré inequality, one can show
dp(x,y) — d(x,y) as p — oo for any pair of points x, y € X. To see this, for each
x,y € X, p>nande >0 we choose f, sothat f,(x) =0,

(2-30) dp(x,y) < |fp(y)— fp(x)|+€ and /X IVfplPdm < 1.

Then the Sobolev embedding theorem for such spaces [30] shows that { f,},>0 is
locally uniformly Holder continuous and is bounded in W !4 on each bounded open
subset for any ¢ > 0. Hence, there is a sequence p; — +ooand an f € ﬂp>0 Wlé‘;p (X)
such that fj,, converges to f weakly in Wléc’q (X) for all ¢ > 0 and locally uniformly

in Clgc(X ). In particular, we have |Vf| <1 and
(2-31) limsup dp, (x, y) < | /() = f(X)[+€=d(x,y) +e,
i—-+o00

where we have used the characterization of the geodesic distance on such spaces:
d(x,y) = sup{|f(x)— f(¥)| : |Vf] < 1}; see Sections 5 and 6 of [16]. Thus, we
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have limsup,_, ; o, dp(x, y) = d(x, y). For the opposite direction, if X is of finite
diameter, X is of finite measure. By taking f,(z) = m(X)"YPd(x,z) for z € X,
|V/pllLr =1 and hence f, is an admissible function. By letting p — 400, we have
the reverse inequality, lim sup,,_, o, dp(x, y) = d(x, y). If the diameter is infinite, by
the volume-doubling properties, X is of polynomial volume growth. By modifying the
test function with a cutoff f,(z) = cp¢(d(z, y)/p) -max{d(z, y),2d(x, y)} where ¢,
is chosen so that ||Vf,|L» =1 and ¢, — 1 as p — 400 thanks to the volume growth,
a similar argument will give us the reverse inequality as well.

The proof above can be easily extended to the measured Gromov—Hausdorff convergence
version for RCD spaces. More precisely, fix a measured Gromov—Hausdorff convergent
sequence of compact RCD(K, N) spaces with N < +o0:

(2-32) (X, d' m') — (X, d®, m™).

By the above argument, we may write d(’;o = d’. The same argument together with
the convergence [7; 8; 25] for p—Cheeger energies with respect to (2-32) shows
that whenever p; — pPoo, Xi, Vi = Xoo, Voo TOr Xi, yi € X;j and Xeo, Voo € Xoo»
we have d;;l_ (xi, yi) = dp (Xoo, Yoo). In fact, by using a contradiction argument,
one can in addition show that the convergence is uniform. Namely, for any € > 0
and RCD(K, N) space (X,d,m) with diam(X) =1l and 0 <v <m(X) <V <
400, there is a po(K, N, v, V) such that for all p > pg and x,y € X, we have
ldp(x, y)—d(x,y)| <e.

2.2.2 Properties of the d ,—distance Let us discuss some basic facts about the
dp—distance.

Remark 2.34 (scaling) Given a W !"P—complete rectifiable Riemannian space (X, g),
let g = p—2g. Then for any x, y € M, we have

(2-33) dyz(x, ) = p"'P7Vdy o (x, y).

Next, in Example 2.32, we saw an example of a degenerate metric on a rectifiable
Riemannian space for which d), only defined a pseudometric. It would therefore be
sensible to formalize knowing when this does and does not happen:

Definition 2.35 (d),—rectifiable completeness) Given a rectifiable Riemannian space
(X, g), we say that (X, g) is dp—rectifiably complete if d,, defines a metric on X and
the topology induced by d), coincides with the topology of X
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By Sobolev embedding, smooth compact manifolds are indeed d,—complete for p > n.
Morally speaking, that is to say that the d), metric geometry coincides with the original
geometry on compact manifolds. The following shows that two Riemannian manifolds
which are dj,—isometric are in fact isometric as Riemannian manifolds.

Proposition 2.36 Fixn>2 and p >n. Let (M, g) and (N, h) be compact Riemannian
n—manifolds and suppose that (M, dp ¢) and (N, d), ;) are isometric as metric spaces.
Then (M, g) and (N, h) are isometric as Riemannian manifolds.

The proof relies on multiple steps of approximation and is a corollary of the proof of
Theorem 1.7; we will postpone the proof to Section 7.

Remark 2.37 From the definition of d),, we see that for all x € X we obtain the local
Sobolev inequality
(2-34) sup | (x) =S = RIVSfLrx)-

yeBp (X,R)

In particular, if (X, g) is a compact rectifiable Riemannian space that is dj,—rectifiably
complete, then it satisfies the Sobolev embedding W17 (X) — L>®(X).

Remark 2.38 (d, as the (W!:?)*—norm) Fix p > n and let (X, g) be a rectifiable
Riemannian space satisfying the Sobolev embedding W17 (X) — L*(X). For
instance, one can consider any compact dp,—rectifiably complete (X, g) by Remark 2.37.
Then for any x € X, the Dirac delta §y is an element of the dual space (W12 (X))*
and

(2-35) dp(x,y) = 16x = Syllw1.rx))=-

In particular, reinterpreting the usual distance function d(x, y) = [[8x =8y [| 5 1.00 (x))*»
we see that the dp—distance function has been obtained by weakening the function
space norm we use to measure the distance between the distributions 6, and §,.

2.2.3 dp—convergence Our primary interest in the d,—distance is to give rise to
a notion of convergence which captures some Sobolev control. We begin with d),—
convergence of compact sequences.

Definition 2.39 (d,—convergence) Let (X, g) and (Y, /) be compact d,—complete
rectifiable Riemannian spaces. Given € > 0, we say that

(2'36) dp((X’ g)’ (Y’ h)) =€
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if there exist collections of points {)c,-}l.N= ; € X and { y,—}i]\i { C Y such that each

collection is e—dense with respect to d,, and

(2-37) |dp,g, x (Xi,Xj) —dp py Vi, yj)| <€,
and further

- volg (Bp(xi, 1)) -

2-38 -
(2-38) €= voly(Bp(yi, 1)) —

1+€

for all r € [¢, 1].

Remark 2.40 It is more standard to replace (2-38) with something like

(2-39) l—e< pr(Xi,r) 1 _r_ldp(xivz) -
- pr()’iJ) 1 _V_ldp(yi,Z) -

which is strictly weaker and does not rule out the possibility that the measures are

1 +e,

concentrating. In our context we can work with the stronger condition, so we leave it
as in (2-38).

In other words, two compact spaces are € close in the d), sense if their d), metric spaces
are e—Gromov—Hausdorff close and the volumes of balls above scale € are close.

Remark 2.41 In (2-38), we require volumes of balls to be e—close up to scale 1. Up
to scaling, we may replace 1 with any other fixed number.

Recall that a sequence of pointed proper metric spaces (X;, d;, x;) is said to converge to
a pointed proper metric space (X, d, x) in the pointed Gromov—Hausdorff topology if
(Ed,» (xi, R).d;) = (B4(x, R),d) in the Gromov—Hausdorff topology for every R > 0.
In view of Example 2.31, we clearly cannot adopt a direct analogue of this definition
when defining pointed d,—convergence. Indeed, we have seen that the hyperbolic space
equipped with the dj, metric is not a proper metric space for p > n, since sufficiently
large balls have noncompact closure. For this reason, we cannot define pointed d),—
convergence by asking for d,—convergence on dp,—balls of increasingly large radius.
Instead, we make use of d,—completeness to construct an exhaustion that plays the
role of balls of large radius.

More specifically, let (X, g, x) be a d,—complete pointed rectifiable Riemannian space.
By dp—completeness, for any y € X there is some radius r < 1 sufficiently small that
Bp(y,4r) € X has compact closure. Roughly speaking, we define Cov(x, N) to be
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the set of points that are linked to x by a sequence of N precompact balls of radius at
most 1. More concretely, define Cov(x, N) be to the collection of points y such that
there is a sequence {(z;, ri)}f\; | satisfying

() =1,

@ x,y e UL, By ri),

(3) Bp(zi,ri) N Bp(zig1.riy1) #S foralli =1,..., N —1,
(4) Bp(zi,4r;) is precompact.

Note that Cov(x, N) is an open set, and that by the triangle inequality, we always
have the containment Cov(x, N) € B,(x,2N). To get an intuitive idea for how the
sets Cov(x, N) behave, if we define the analogue of Cov(x, N) with respect to the
geodesic distance instead of the d,—distance, then on any Riemannian manifold (or more
generally, on any proper length space), this set is simply a geodesic ball of radius 2N .

The main advantage of working with the sets Cov(x, N) instead of p—balls of increasing
radius is highlighted in the following two initial lemmas, which show the sense in
which {Cov(x, N)}nen provides an exhaustion of X. The first lemma shows that any
y € X is contained in Cov(x, V) for some N € N.

Lemma 2.42 Let (X, g,x) be a dy—complete rectifiable Riemannian space. For
any compact connected set Q2 C X containing x, there exists an N € N such that
Q Cc Cov(x,N).

Proof By compactness of 2, we can find 1 > r > 0 sufficiently small that for all z € €2,
Bp(z,4r) € X. Then by compactness of €2, we can find N such that €2 is covered by
{Bp(zi, r)}fil for z; € Q. Hence Cov(x, N) contains €. a

The second lemma is more subtle, and shows that Cov(x, N ) has compact closure for
any N € N.

Lemma 2.43 Let (X, g, x) be a d,—complete rectifiable Riemannian space. For any
N € N the set Cov(x, N) has compact closure.

Proof We argue by induction. For N =1, let o < 1 be the supremum over radii » < 1
such that for some y € X we have x € B,(y,r) and B,(y,4r) € X. So we may find
some yo € X and ry, € (1—9()r0,r0) such that x € By, (o, 1y,) and By(yo,4ry,) € X.
We claim that

(2-40) Cov(x, 1) C Bp(yo.,4ry,).
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the latter of which has compact closure by assumption. Indeed, for any z € Cov(x, 1),
we have z € B, (y,r) for some y € X and for some r < ro with B,(y,4r) € X. Then
by repeatedly applying the triangle inequality,

(2-41) z € Bp(y,r0) C Bp(x,2ro) CBp(yo,3ro) C Bp(yo, 4ry,)-
This establishes (2-40).
Now, suppose that we have shown that Cov(x, N) is precompact. We claim that

Cov(x, N + 1) € X. It suffices to show that for all sequences in Cov(x, N + 1), there
is a subsequence that converges with respect to the underlying topology on X'.

Let x; be a sequence in Cov(x, N + 1). For each 7, we can find {(z; 4, r,-,a)}fl\’:"'l1 such

that

(1) rig<lforalla<N +1,
2) x,x; € Uflv:ll Bp(Zi,a.Ti,a)s
(3) Bp(zia ria) N Bp(Zig+1:tia+1) # D fora=1,..., N,
4) Bp (Zi,a, 4ri,a) EX.
We may assume X; € By(z; N+1.7i,N+1) and x € Uévzl By (zi,a, i ) for all i large
enough. Otherwise, x; € Cov(x, N), which we already know to have compact closure
and thus x; has a convergent subsequence with respect to the underlying topology.
Let z; € Bp(zi, N+1.7i,N+1) N Bp(zi N, Fi,n) € Cov(x, N). By compactness, we can
assume z; — Zoo € Cov(x, V), which is compactly contained in X. Therefore for all i
and k,
(2-42) dp(xi, zg) < dp(Xi, zi) + dp(zi, zx) = 2ri N+1 + dp(Zi, Zk)-

By compactness, we may assume r; y+1 — F'oo € [0, 1] as i — oo.

Case 1 If roo > 0, then we can find K such that for all i > K,
(2-43) dp(zi.zk) < drg.n1 and  riN41 < 3rE N1

Therefore for i > K, we have x; € By(zk,3rk, N+1) C Bp(zk,N+1, 47K, N+1), Which
is compactly contained in X.

Case 2 If roo = 0, then
(2-44) dp(Xi, Zoo) < dp(xi, zi) + dp(zi, Zoo) < 2ri N4+1 + dp(Zi, Zoo) = 0.

By dp—completeness, there is an r;, > 0 such that By(ze0,72,,) € X. By (2-44),
Xi € Bp(Zoo, T'z5,) for i sufficiently large. This completes the proof. |
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With these two lemmas in hand, we can now define pointed d,—convergence.

Definition 2.44 Let (X;, g;,x;) and (X, g, x) be dp—complete pointed rectifiable
Riemannian spaces. We say that
(2-45) (Xi, gi xi) > (X, g, x)
in the pointed d, sense if the following holds. For all N € N, there exists N/ > N and
compact sets 2 C X and 2; C X; such that:

(1) Cov(x,N)C Q C Cov(x,N').

(2) Covi(xj, N) C Q; C Covi(x;, N') for i sufficiently large.

(3) For all € > 0, there exists an N such that for all i > N, the following holds:

There exist {xJ’: }sz ; C2; and {y; }sz | C €2 such that each collection is e~dense

with respect to d o, and d), q, respectively, and for all r € [¢, 1] satisfy
(2-46) |dp,0; (xp, X)) — dp.2 (ks )| S €,

- volg(Bp(x;;,r)) -
~ ol (Bp(ye. 1))

Remark 2.45 In part (3) of Definition 2.44 above, the d,—convergence on the compact

(2-47) 1—e 1 +e.

sets 2; and 2 corresponds to the relative d,—distances d, 4, @, and dp ¢ . This is
necessary as dj is not a local object.

3 Further preliminaries

In this section, we introduce further preliminaries that will be needed in the paper.

3.1 Ricci flows

Let us cover some of the basics of the Ricci flow in this subsection. A Ricci flow
(M, g(1))se(0,1) is a family of smooth metrics g(7) on a smooth manifold M" satisfy-
ing the evolution equation

3-D drg(t) = _ZRng(t) .
If (M", g) is a complete Riemannian manifold with bounded curvature,

(3-2) sup |Rmg|(x) < 400,

xeEM
then Shi in [47] established the short-time existence of the Ricci flow for such a metric,
following the existence theory on closed Riemannian manifolds due to Hamilton [31]
and the trick by DeTurck [21].
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A sequence {(M;, gi(1), Xi)se(0,1)} of complete pointed solutions of the Ricci flow
satisfying

¢
t
is compact in the C* Cheeger—Gromov topology. That is, up to a subsequence,

(3-3) [Rmg 4| < and inj(M, g(t)) > cot'?

{(M;, gi(t), Xi)re(o,)} converges smoothly to a pointed complete solution of the
Ricci flow (Moo, goo(?), Xoo)re(0,7)» Which also satisfies (3-3). This compactness
theorem was originally observed in Hamilton [32]; see also [19, Theorem 6.35].

Along the Ricci flow, the scalar curvature R = Rg(;)(x) evolves by
(3-4) 3;R = AR + 2|Ric|%.

The equation is coupled to the Ricci flow in the sense that A = Ag (). Because it is a
supersolution of the heat equation, lower bounds on the scalar curvature are preserved
under the Ricci flow. In other words, if Rg(g) = —6 for all x € M, then

(3-5) Rgiry = -4

for all x € M and ¢ € (0, T). This monotonicity provides one-sided control on the
expansion of volumes under the Ricci flow, since the volume form evolves by

(3-6) 0t dvolg(s)y = —Rg () dvolg(y).

As such, a flow satisfying (3-5) has dvolg(;) < exp{d(¢ —s)} dvolg(s) for all s <¢. So,
provided § < 1, a Taylor expansion shows that for all 0 < s <¢ < min{l, T},

(3-7) dVOlg(t) <{1426(t—s)} dVOlg(s).

3.2 Heat flows coupled to Ricci flow

Given a complete bounded curvature Ricci flow (M, g(¢)), with ¢ € [0, T'), we consider
the heat operator d; — A coupled to Ricci flow, along with its formal adjoint the
conjugate heat operator —d; — A + R. The Cauchy problem for the conjugate heat
equation is well-posed backward in time. The two operators are conjugate in the sense
that if # and v are smooth functions, with suitable decay at infinity if M is noncompact,
then

(3-8) [uvdvolg(T)—/ uv dvolg o)
M M

T
:/ / W0 — A)u —u(—=0; — A+ R)v}dvolg () dt.
0o JM
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For0<s <t <T,welet K(x,t;y,s) denote the heat kernel with singularity at (y, s),
ie the solution to

(0: — Ax)K(x,2;y,5) =0 fort € (s,1),
(3-9)

Iim K(-,¢;y,8) =0dy.
AN ( V. ) y

As a function of (y, s), K(x,t; y,s) is the kernel for the conjugate heat equation with
singularity at (x, ¢), that is,

{(as + Ay —R)K(x,t;y,5)=0 forse(0,7),

lim K(x,t; -,8) = 8x.
st

(3-10)
Suppose ¢ satisfies (0; + A — R)p =0 on M x [0, T]. Then
(3-11) / @(x, 1) dvolg)(x) = / @(x, T)dvolg(r)(x)
M M
for all ¢ € [0, T']. In particular, for any s € [0, ) we have
(3-12) / K(x.,t;y,5) dvolgs(y) = 1.
M
If (3-5) holds, then (3-7) and (3-9) imply that for s <¢ < min{l, T},
(3-13) / K(x,t:y,5)dvolg(x) = 1+28(1 — ).
M

From the evolution (3-4), we have the following representation formula for the scalar
curvature in terms of the heat kernel:

(3-14) Ry(x) = /M K(x.1: 7. 0) Ry (0 () dvolgo) ()

t
+ 2/0 /M K(x,t;y, s)|Ricg(s)(y)|2 dvolg(s)(y) ds.

We refer the reader to [17, Chapter 26.1] for these basic properties on kernels for
heat-type equations coupled to Ricci flow.

3.3 The YW-ftunctional and Perelman entropy

Let (M, g(?))se0,] be a complete Ricci flow with bounded curvature. The W-
functional defined in (1-4) is monotone along the Ricci flow in the following sense. Set
t(t) =T —t and let

(3-15) u(x,t) = (drr) 20
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be a solution of the conjugate heat equation along the flow on [0, T']. Provided u decays
suitably at infinity (eg if #(7") is compactly supported) if M is noncompact, then

(3-16) W(g(s), f(5),T(s)) =WI(g@), /1), (1))

for s < ¢. This monotonicity was shown in [43] for closed manifolds and in [13,
Theorem 7.1(i)—(ii)] for complete manifolds with bounded curvature. By taking a
compactly supported minimizing sequence for u(g(¢), T'), we see from (3-16) that the
Perelman entropy p(t) defined in (1-5) is also monotone along the Ricci flow in the
sense that

(3-17) p(g(s), 7(s)) = u(g). =(r))

for s <. Correspondingly, if (M, g(7));e(0,2) is a Ricci flow and if v(g(0),2) > —4,
then v(g(¢),1) > —§ for all ¢ € (0, 1].

Suppose the infimum in @ (g(¢), ©(2)) is achieved. This is the case, for instance, if M
is closed; see [54] for necessary and sufficient conditions in the complete noncompact
case with bounded geometry. Then the entropy p(g(¢), t(¢)) is constant in ¢ only if
the Ricci flow is a gradient shrinking soliton that becomes singular at time 7". This
means that, if f is a function achieving the infimum in ©(g(¢), t(¢)) and ¢(¢) is the
diffeomorphism generated by V f(¢), then

(3-18) g(t) = (T —)p()"g(0).

On Euclidean space (R”, geyc), the entropy fi(geuc, T) is equal to zero for all T > 0,
and the infimum in jt(geye, T) is achieved by f(x) = |x|?/4t. The following lemma
asserts that Euclidean space is the only complete Riemannian manifold with bounded
curvature with (g, v) = 0; cf [43, Section 3.1].

Lemma 3.1 Let (M, g(t)):e(o,1) be a complete Ricci flow with bounded curvature.
Then 1(g(0),7) <0 forall t € (0, T), with equality if and only if the flow is isometric
to Euclidean space. Furthermore, fixt € (0,7) and x € M. Set t(s) =t —s, and let
f(y,s) be defined by

(3_19) K(X,l‘;y,s) = (4ﬂf)_n/ze_f(.)’ss)‘
If
(3-20) W(g(s), £(s),7(s)) = 0,

then the flow is isometric to the constant Euclidean flow.
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Proof Fix¢e€(0,7)and x € M. Set t(s) =t —s, and let f(y, s) be defined by (3-19).
Then limg—; W(g(s), f(s), t(s)) = 0. Hence, by monotonicity and the definition of
u(g,7) as an infimum,

(3-21) n(g.1) =W(g(0). f(0).7) = 0.

This concludes the proof of the first claim. Furthermore, suppose that (g (0),¢#) =0
for some ¢t € (0, T'). By (3-21), f achieves the infimum in (g (0), ), where again we
let f be defined by (3-19). So, g(#) is a gradient-shrinking soliton given by (3-18). In
particular,

1
(3-22) [Rmg )| = —— [Rmg q)|.

The flow exists and has bounded curvature for s € (0, T'), with T > ¢. Thus (3-22)
implies that [Rmg(gy| = 0. This (in particular, that |Ric,g)| = 0) together with (3-18)
implies that (M, g(¢)) is a metric cone, cf [51]. However, a flat manifold which is also
a metric cone can only be the Euclidean space. We conclude (M, g) = (R”, geue). O

Finally, let us recall Perelman’s no-local-collapsing theorem, which ensures that small
balls are noncollapsed along the flow if the entropy is bounded below. More specifically,
fix x € M and r € (0, T'). Then for r € (0,¢1/2), if Rg) < r~2 on Bg(s)(x,r), then

(3-23) Volg(r)(Bg ) (X, 7)) = k",

where « depends only on # and v(g(0),27).

3.4 Uniform existence time and scale-invariant estimates

A crucial point throughout the paper is that, under the lower bounds on the entropy
assumed in our main theorems, the Ricci flow starting from (M, g) exists for a uniform
time and enjoys small scale-invariant estimates on the curvature tensor. The following
theorem establishes this fact, and essentially follows from an epsilon regularity theorem
of Hein and Naber in [33]. For the sake of completeness, and because the assumptions
made here are slightly different than the ones there, we include the proof.

Theorem 3.2 Fix n > 2 and A > 0. There exists § = §(n,A) > 0 such that the
following holds. Let (M, g) be a complete Riemannian n—manifold with bounded
curvature satisfying

(3-24) v(g,2) > 6.
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Then the Ricci flow (M, g(t)) with g(0) = g exists fort € (0, 1]. Furthermore, for all
x € M andt € (0, 1], we have the scale-invariant estimates

A
(3-25) Rmg ] < 2.

Remark 3.3 Thanks to Shi’s derivative estimates, (3-25) implies that for all k € N,
we have

Cn,k, )
k

The key point of the proof of Theorem 3.2 is the continuity property contained in the
following lemma.

Lemma 3.4 Fixn > 2 and C > 0. Let {(M;, gi(t).Xi)se(—1,1]} be a sequence of
complete Ricci flows such that each time slice has bounded curvature and

(3-27) IRm| <C on M x(—1,0].
Suppose that

where §; — 0. Then, up to a subsequence, {(M;, gi(t), Xi)te(~1,0]} converges smoothly
to the constant Euclidean flow (R", geuc, 0")e(~1,0]-

Proof Perelman’s no-local-collapsing (3-23) together with the curvature bounds (3-27)
provide a lower bound on the injectivity radius for each time-slice; see for instance
[44, Chapter 10, Lemma 51]. So, by Hamilton’s compactness theorem, the flows con-
verge smoothly to a smooth limiting Ricci flow (Moo, goo(?), Xoo) re[0,1] Satisfying
(3-27).

For eachi € N, let f;(y,s) = fi(x;, 1; y,s) be the function defined by

(3-29) Ki(xi,1:y,5) = (4 (1 —5)) "% exp —fir: )]

4(1—y)
Here K; is the heat kernel on (M;, g;, x;) defined in (3-9). From (3-28), we see that
(3-30) —8i = W(gi(s), fi(s), 1 —s) =<0.

The uniform curvature bounds (3-27) ensure that the heat kernels are uniformly Gaussian.
That is, setting t = 1 — s for s € [0, 1], we have

—dg; (1) (xi. ¥)?
4t

—dg,; (1)(Xi, y)z}

C
(3D - exp{ "

C
<Ki(xi,1;y,5) = a7z SXP
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Since K;(x;, 1; y, s) is also a solution of the conjugate heat equation (3-8), we determine
that for s € (0, 1), the sequence { f;} converges smoothly on compact sets to a function
Joo: M x (0,1) — R that satisfies the minimization constraint in the definition of
u(g(0), ). Thus from (3-30), we have

(3-32) W(goo(5). foo(s), T(s)) = 0.

We conclude by applying Lemma 3.1. O

Now, Theorem 3.2 follows from Lemma 3.4 by a standard contradiction argument,
which we show below. Before giving the proof, it will be convenient to introduce
the following notation. Let (M, g(t));e(0,7) be a smooth Ricci flow such that each
time-slice is complete with bounded curvature. Given x € M and ¢ € (0, T'), we define
the regularity scale r|gy| (X, 7) to be

(3-33) F[Rm| (X, 1) = sup{r >0: sup |Rm|=< r_z}.
P(x,t,r)

Here P(x,t,1) = Bg(r)(x,r) x (f — r2,t] is a parabolic cylinder.

Proof of Theorem 3.2 In order to prove the theorem, it suffices to prove the following
claim.

Claim Fixn € N and A > 0. There exists § = §(n, A) such that if (M, g(t))e(0,T]
satistying v(g(0),27T) > —§, then

(3-34) Ml (5, T 2 L

Before proving the claim, let us see how it implies the theorem. Let Tin,x > 0 be the
maximal existence time for the Ricci flow with g(0) = g, and let To = min{1, Tyax}.
For any x € M and ¢ € (0, Tp), we apply the claim to find that (3-25) holds at (x, ¢).
Finally, recall that if Ti.x < 400, then supys|Rm| — 400 as t — Thax. So, we
conclude that Ty« > Tp, and thus Ty = 1. This concludes the proof of the theorem.

Let us now prove the claim. Up to rescaling the flow and translating in time, it
is equivalent to showing that if (M, g());e(—1,0] satisfies v(g(—1),2) > —4, then
FiRm| (X, 0)2 > 1/A. Suppose for the sake of contradiction that the claim fails. Then
we may find a sequence of flows {(M;, g;(1))se[—1,01} With v(g;(—1),2) = —6; for a
sequence §; — 0, but inf{r gy (x, 0)2:x € M;} < 1/A. Let x; € M; be chosen so that

(3-35) FRm| (X7, 0)% < 2inf{rjgy|(x,0)? : x € M;}
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and set ,ol.2 = %Ar|Rm|(x,-,0)2 < 1. Then the rescaled flow g;(z) = ,ol._zgi(,ol.zt) is
defined on [—p; 2, 0] and satisfies v(g; (—,ol._z), 2,01._2) > —4§;. In particular, thanks to the
monotonicity of the Perelman entropy, (3-28) holds with g; replacing g;. Furthermore,
with respect to the rescaled metric,

(3-36) Ml (51, 0)% = 2

and 7jgm|(y, 0)2 > 1/A for all y € M;. This latter fact implies, in particular, that
|[Rmg, )| <A forall (y,7) € M; x[—1,0]. Applying Lemma 3.4, we see that the flows
converge smoothly to the constant Euclidean flow. On the other hand, the regularity
scale (3-36) passes to the limit, and we reach a contradiction. O

3.5 Applications of Theorem 3.2

Finally, we have two direct applications of Theorem 3.2. See also [52] for applications
of pseudolocality for a localized entropy. These applications could in fact be understood
without most of the structure of Theorem 1.15. The first is a finiteness theorem and is
closely related to the pseudolocality finiteness in [35] and the e—regularity of [33].

Theorem 3.5 (finiteness theorem) Fix n > 2. There exists 8o = 8o(n) > 0 such
that for any § < 8¢, and for any positive Cy, 7o, V, the space Mg c, 1, v of compact
Riemannian manifolds satisfying

R>—-Cy, v(g,70)=—6 and volg(M)=V

contains finitely many diffeomorphism types.

Proof The proof is analogous to [35, Theorem 37.1], which was proved by Perelman
[43, Remark 10.5] using Perelman’s pseudolocality. In our case, we replace the use
of Perelman’s pseudolocality by Theorem 3.2 under assumptions on entropy and the
almost-monotonicity of the volume (3-7). O

We also show that a compact Riemannian manifold with entropy and scalar curvature
lower bounds admits a metric of nonnegative scalar curvature.

Theorem 3.6 Fix n > 2. There exists §g = §¢(n) > 0 such that for any positive tq
and V, there exists € = €(8¢, 1o, V') such that if (M, g) is a compact manifold with

(3-37) R>—€, v(g,t9)=—8p, volg(M)=<V.

Then M admits a metric of nonnegative scalar curvature.
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Proof Suppose by way of contradiction that the claim is false, so we may find
a sequence of compact Riemannian manifolds (M;, g;) such that v(g;, tg) = —0do,
volg, (M;) =V, Rg; = —1/i and M; does not admit a metric of nonnegative scalar
curvature. Up to rescaling each metric, we may assume without loss of generality that
7o = 1. Applying Theorem 3.2, we obtain a sequence of Ricci flows (M;, g; (1)) (0,1
such that the sequence (M;, g;(1)) has uniformly bounded geometry, g;(1)—diameter
uniformly bounded above, and satisfies Ry, (1) > —1/i. So, up to a subsequence,
(M;, gi(1)) converges in the Cheeger—Gromov sense to a compact Riemannian manifold
(M, g) with Rg > 0 and volg (M) < V. In particular, for i sufficiently large, M; is
diffeomorphic to M. This contradicts the assumption that each M; does not admit a
metric of nonnegative scalar curvature. |

3.6 Basic Ricci flow estimates

In the final subsection of this preliminaries section, we give two further basic estimates
that will be needed in the paper.

First, the following lemma is a consequence of the proof of Theorem 3.2, which shows
that the g(1) ball of radius 16 is smoothly close to the Euclidean ball of radius 16,
provided that the entropy is chosen to be sufficiently small; see also [52, Theorem 1.2].
This observation will allow us to compare the metrics g = g(0) and geyc by way of
comparing g(0) and g(1), and will be used repeatedly throughout the paper.

Lemma 3.7 Given any fixed € > 0, we may choose § > 0 and A > 0 sufficiently small
that if (3-24) and (3-25) hold, then for any xo € M and t € (0, 1], we may find a
diffeomorphism ¢: Bg(sy(xo, 16t'/2) — @ C R”, with inverse Y = ¢~ such that
¢(x9) =0 and

(3-38) (1—€)geuc < VY™ g (1) < (14 €)geuc

for all x € Q2. In particular,

(3-39) (1 —€)wur™ < volg)(Bgr)(x, 7)) < (1 + €)wnr”

for any r € (0, 1611/2).

The second fact contained in this section is the following elementary lemma using the

scale invariant estimates (3-25) to bound the evolution of the metric from one dyadic
scale to the next. We will make use of this lemma in Section 5.
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Lemma 3.8 Fixn >2and B € (0, ). There exists a > = A(n, B) > 0 such that the
following holds. Let (M, g(t))¢e(0,1] be a Ricci flow satisfying (3-25). For any x € M
and 0 < s1 < s, <1, we have

S1 B S1 —#
(3-40) — ) gls1)=glsa)=|—) gl).
§2 S2
Consequently, for any r > 0 we have
(3-41) Bg(s) (X, 751/%) € By(oyy(x,r53/?)  forall s, <s,.

Furthermore, there is a universal constant Ao such that if A < Aq, then for x €
Bg(1)(p.2), we have

1
(3-42) Bg(ry(x,4t'/%) C By (p,4) forall 1 < %

Proof We first show (3-40). Fix v € T M and consider the function g(¢)(v, v). By the
scale-invariant bounds (3-25), we have for all # > 0 that

A A
(3-43) —C%g(v, v) < 9;g(v,v) = —2Ric(v,v) < C%g(v, v)

for some dimensional constant C,,. This can be seen by taking normal coordinates at
each point so that Ric is diagonal while g is a identity matrix. Hence, by integrating
the function log g(v, v), we see that for any 0 <s <¢ < 1 we have

$\Cnk \Cnh
(3-44) (3) e == (%) " 2.
This showed (3-40) by choosing A sufficiently small.

From (3-40) we directly deduce that for all » > 0 and s1 < 55, we have

1/2 1/2( 52 b
(3-45) Bg(s))(x,75,"7) € Bg(sy) | X, 75, ; .

Then (3-41) follows from (3-45) because B < % To see (3-42), we take r = 4 and
s> = 1 in (3-45) to find

(3-46) Bo(ry(x,411/2) C By (x,4t127P) € B, (1) (x,2),
where the second containment holds for all r < 1/23 because B < %. The triangle

inequality then ensures that (3-42) holds. |
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4 Integral estimates for Ricci and scalar curvature

This section has two main goals. The first is to prove an integral estimate for the Ricci
curvature under the hypotheses of Theorem 1.7: this key estimate is used in Section 5
to prove the decomposition theorem, Theorem 5.1. The second goal is to prove the
integral bounds of scalar curvature in Theorem 1.16, whose proof goes along similar
lines to that of Theorem 4.1.

Theorem 4.1 (integral Ricci estimate) Fixn >2,e>0and6 € [O, %) There exists
ad =4(n,0,€) > 0 such that the following holds. Suppose (M, g(t)) (0,17 is a Ricci
flow satisfying

(4-1) Ry0) = -5,
(4-2) v(g(0),2) > —4.
Then for any x € M and any t € (0, 1],

4-3) /’(5)_9f |Ric(5)| dvol ds < €2
0 M By (1) (x,411/2) g(s) g(s) 45 =

This section is organized in the following way. In Section 4.1, we prove an almost-
Gaussian lower bound for the conjugate heat kernel and for a cutoff function evolving
by the conjugate heat equation. A major tool is a heat kernel estimate due to Zhang;
see Proposition 4.5 below. In Sections 4.2—4.3, we establish Theorems 4.1 and 1.16,
respectively, by integrating the evolution equation for the scalar curvature (3-4) against
suitably chosen functions to which we apply the estimates of Section 4.1.

By Theorem 3.2, the hypotheses of Theorem 4.1 imply that the scale-invariant curvature
bounds

A
4-4) |[Rmg | < 7
hold for all x € M and ¢ € (0, 1], with A as small as desired by choosing § sufficiently
small.

4.1 Heat kernel lower bounds and evolving cutoff function

In Proposition 4.2 below, we establish lower bounds on the heat kernel, and in
Proposition 4.4 we prove lower bounds for a cutoff function that evolves by the conjugate
heat equation. Both lower bounds become degenerate for small times. Nonetheless, the
degeneration occurs in a sufficiently controlled way for our application in the proofs of
Theorems 4.1 and 1.16.
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Proposition 4.2 Fixn > 2 and A > 0. There exist§ = §(n,A) >0and C = C(n) >0
such that the following holds. Suppose that (M, g(1))s¢[0,1] is a complete Ricci flow
with bounded curvature satistying (4-1), (4-2) and (4-4). Then forany 0 <s <t < 1,
letting T =t — s, we have

—4dg(r)(x, )? }

(4-5) K(x,1;y,5) >( ) Ct"/? exp{ .

Remark 4.3 The hypothesis (4-1) is not actually necessary in Proposition 4.2, but for
convenience we assume it, to allow for a simpler proof; in particular, we can directly
call upon Zhang’s heat kernel lower bound Proposition 4.5 below.

Before proving Proposition 4.2, let us state its main consequence. Fix ¢ € (0, 1] and
r% > t. Consider a smooth function ¢: M x {t} — R such that

in Bg(;)(x0,87),
in M\ Bg(s)(xo,167).
For s €0,¢), let p(y, s) be the solution of the conjugate heat equation with terminal

(4-6) e(y) = {(1)

data given by ¢(y,1):

4-7) {(3s +A—R)p(y,s)=0 in M x[0,1),

(y.1) = p(y).
Proposition 4.4 below shows that ¢(y, s) behaves sufficiently like a cutoff function for
all 5 € (0, 1] that we can derive useful estimates.

Proposition 4.4 Fix n > 2. There exist § = §(n) > 0 and C = C(n) > 0 such that the
following holds. Suppose that (M, g(t));¢[o,1] is a Ricci flow satisfying (4-1), (4-2)
and (4-4) for A < 1. Then we have

A
s
(4-8) (.92 ()
for all (y,s) € Bg(r)(x0,4r)x (0,1).

We now proceed to the proof of Proposition 4.2, which follows from the following
lower heat kernel bound, due to Zhang in [53].

Proposition 4.5 (Zhang) Fixn >3 and let (M, g(t))¢[o,1] be a Ricci flow satisfying
(4-1) and (4-2). Then for any 0 <s <t < 1, we have

4-9) K(x,t;y, )> exp{ . dg(r)(x,y) ——/ «/_R(y,t sy ds' — 25}

Here ¢ = c¢(n) and we let t =t — 5.

Geometry & Topology, Volume 27 (2023)



d p—convergence with entropy and scalar lower bounds 271

Proof of Proposition 4.2 Provided we choose § < 1, the estimate (4-9) implies that

—dd g (x, y)z}
T

(4-10) K(x,t;p,s) > cp /2 exp{ x F(y,s),

where c is a dimensional constant and
1 T
4-11) F(y,s) = exp{——/ Vs'R(y,t —s') ds/}.
V7 Jo
We claim that

(4-12) log F(s, y) > log(?)k.

Exponentiating (4-12) will conclude the proof of the proposition. To this end, we
change variables and then bound the scalar curvature using the scale-invariant curvature
bound (4-4), finding that

1 T
(4-13) —log F(s,y) = —— [ ~s'R(y.t—s")ds'
/2 |,
)\‘ T
<— | Jsu—-sHtds
/2 |,
T t t
sx/ (t—s")"tds' =x/ o Vdp=MAlog=.
0 K S
Negating this expression establishes (4-12) and thus concludes the proof. a

We now prove Proposition 4.4.

Proof of Proposition 4.4 Expressing the solution with respect to the conjugate heat
kernel, we have

(4-14) o(y,s) = /M p(x)K(x,t;y,5) dvolg)(x).

Fix any y € Bg(;)(p.4r). Having chosen r? > t, we note that Bg(,)(y,ll/z) C
Bg()(p.8r), and in particular ¢(x, 7) = 1 in this set. Using this observation, followed
by Proposition 4.2, we find that

t

C _4d ) 2
Z/ exp{M} dvolg)(x).
B T

ey (7,11/2) /2

s\ s\A
(4-15) (—) o(y,s) > (—) / K(x,t;y,5) dvolg(,)(x)
t Bo((n.11/2)
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Since T =t —s < t, we see from Lemma 3.7 that the right-hand side is bounded below
by a universal constant, namely, by

—n/2 _4|x|2 2
(4-16) T expy ——— ¢ dx = exp{—4|x|“} dx,
B(0,71/2) T B(0,1)

so long as A < A¢. This completes the proof. |

4.2 Proof of Theorem 4.1

Before proving Theorem 4.1, let us make the following observation.

Lemma4.6 Fixn>2,6>0andA > 0. Let (M, g(t));e[0,1] be a Ricci flow satisfying
(4-1) and (4-4). For any t € (0,1], let ¢: M x {t} — R be a nonnegative smooth
function, and if M is noncompact then assume ¢ has compact support. Let ¢(y, s) be
the evolution of ¢ by the conjugate heat equation for s € (0,¢). Then

t
@17 2[ [ IRicgy(1)Por.5) dvolyin ) ds = (5+8) [ o(rn)dvolyio ().
0JM M

Proof We multiply ¢(y, s) by the evolution equation for the scalar curvature (3-4)
and integrate in space and time to obtain the following. After an integration by parts,
we find that

t
19 2[0 /M|Ricg(s)(y)|2‘p(y’s) dvolg(s)(y) ds
t
- /(; /M (0s — D) Rg(5)(¥)(y, ) dvolg(s)(y) ds
t
- /0 [M Re(e) () Bs + A= Re(9)@(y. 5) dvolg(s)(7) ds
+ /M Rgy@(y, 1) dvolgy () —/M Rg(0)@(7,0) volg(o) ()

= /M Renye(y.1) dVOlg(t)(y)_/M Rg0)9(y.0) volgoy(»).

This integration by parts is justified because, for each fixed time-slice, ¢ and |V|
decay exponentially with respect to dg()(x,-); see [17, Chapter 26.1]. We wish to
bound the right-hand side of the last equation on (4-18) from above. By the maximum
principle the function ¢(y, s) is nonnegative for all y, s. Hence, making use first of the
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lower bound on scalar curvature (4-1) and then of the conservation of the L!-norm
under the conjugate heat equation (3-11), we have

(4-19) —/ Rovolgg) < 5/ @volg (o) = 8/ @volg(s).
M M M

Pairing this with (4-18) and applying the scale-invariant curvature estimates (4-4) to
bound the scalar curvature in the r—time slice, we find that

t
420 2 /0 /M [Ricy(s) (1)@ (v, ) dvoly(s) () ds
< /M(Rgm(y) 1 8)¢(y. 1) dvolgn ()

< (% + 5)/M o(y.1) dvolg ().

This concludes the proof of the lemma. O
Finally, we prove Theorem 4.1.

Proof of Theorem 4.1 Up to rescaling the flow, we may assume that ¢ = 1. Together

1/2

Lemma 4.6 and Proposition 4.4 (with r =¢'/< = 1) imply that

1
(4-21) / s / Ricg (s)|? dvolg(sy ds < C(A + 8) volg (1) (Bg(1)(x, 16))
0 Bg(])(x,4)
<C(A+9),

where the second inequality comes from (3-39). Further, by (3-7) and (3-39), we have

(4-22) 0<ir;£1 Volg (5) (Bg(1)(x,4r)) = (1 —28) volg(1)(Bg(1)(x,4r)) > c.
Hence,
1
(4-23) / s)‘f Ricg(s)|? dvolg(sy ds < C(A +6).
0 Bg(l)(x,4)

Now, fix A > 0 sufficiently small that A < % — 6. In this way, if we set 6y := 6 + %k,
we ensure that

(4-24) 1—-260 > 5 —6.
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Choose § sufficiently small that (4-4) holds for this choice of A. Then by Holder’s
inequality, for any 2 € M we have

1
(4-25) / 570 % |Ricg(5)| dvolg(s) ds
0 Q

1 1/2 1 1/2
=< (/ 520 ds) ([ s)‘% IRic|? dvolg(s) ds)
0 0 Q

1 1/2
=(1 —290)_1/2 (/0 s* %Q IRic|? dvolg(y) ds) .

The constant (1 — 260)~1/2 is bounded above by (% — 9)_1/2 thanks to (4-24). By

choosing A and § such that C(A + §)1/2 < €2, together with (4-25) and (4-23) this
concludes the proof. |

4.3 Integral bounds for the scalar curvature

We now prove Theorem 1.16, which we restate below as Theorem 4.7 below. The proof
is similar to that of Theorem 4.1.

Theorem 4.7 (L7 scalar curvature estimates) Fixn > 2, ¢ € (0,1) and € > 0. There
exists a § = 8(n,q,€) > 0 such that the following holds. Let (M, g) be a closed
Riemannian n—manifold such that

(4-26) R>-8 and v(g,2)>—6.
Then we have

(4-27) % |R|? dvolg <e.
M

Proof of Theorem 1.16 Let Ry and R_ denote the positive and negative parts of R,
respectively. Since f RZ dvolg < 87, we choose §7 < %e and it suffices to show that
fR‘fr dvolg < %e. By Theorem 3.2, for any fixed A > 0, we may choose § small
enough that the Ricci flow (M, g (7)) with g(0) = 0 exists for ¢ € (0, 1] and enjoys
the scale-invariant curvature bounds (4-4) for all x € M and ¢ € (0, 1]. Consider the

nonnegative function

(4-28) f(x,t)= Rg(,)(x) + 26.
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Note that /> R, so it suffices to show that £, /7 dvolg(g) < %e. For any ¢g € (0, 1],
we see that 17 is a supersolution of the heat equation coupled to Ricci flow. Indeed,
noting that ¢(¢ — 1) < 1 and recalling (3-4), we compute that

4-29) (9;—A) [T =qf7 (3 —A) f—q(g—1) fI2|Vf*= qfT (0, —A)R > 0.

So, applying (3-8) with u = f? and v = 1, we find
1
(4-30) /M fq dVOlg(o) = /M fq dVOIg(l)—/(; /M{(at—A)fq—qu} dVOlg(t) dt

1
f/ fquOIg(l)—i-// qudVolg(t)dl.
M 0JM

We bound each of the terms on the right-hand side of (4-30) separately. For the first
term, using the scale-invariant curvature bounds (4-4) and (3-7), we see that

4-31) / fq dVOlg(l) < ()\. + 25)qV01g(1)(M) < 2()\ + 25)qV01g(0) (M)
M
As for the second term on the right-hand side of (4-30), we note that
Rf9 < fq+1 < 2q+1(|R|q+1 + (25)q+1).

So, again making use of (3-7), we find

1 1
(4-32) /0 /M Rf T dvolg(yy dt < C89volggy(M) + C/o /M |R|9H! dvolg s dt,

where C is a constant depending on ¢g. We bound the second term on the right-hand side
of (4-32) using the same argument as in the proof of Theorem 4.1. More specifically,
let ¢: M x(0,1) — R be the solution to the conjugate heat equation with terminal data
@(x,1) =1 o0on M x {1}. By (the proof of) Proposition 4.4, we see that ¢(y, s) > cs*
for all y € M and s € (0, 1], where ¢ = ¢(n). Thus, applying Lemma 4.6 to this choice
of ¢, we find that

1 1
(4-33) / zX/ |R|? dvoly sy dt §C/ / |R|2@(y. 1) dvolg( dt
0 M 0oJM
<C(A+96) VOlg(l)(M)
<C(A+9) VOlg(o)(M).

We choose § sufficiently small that A < (1—¢)/(14+¢), andset 0 =A(1+¢q)/(1—¢q) < 1.
Holder’s inequality with p = 2/(1 + ¢) and p’ = 2/(1 — g), together with (4-33),
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allows us to deduce that

1
(4-34) /O /M |R|9T! dvolg(y dt

1 (1-¢q)/2 1 (1+q)/2
< (2 VOlg(o)(M)/ 570 ds) (/ s)‘/ |R|2 dvolg(s) ds)
0 0 M

< C@)(+ 8D ol ) (M),
Pairing this estimate with (4-30), (4-31) and (4-32), we find that

(4-35) f f9dvolggy < C(8+ )T+ C87 + C(h +8)11D/2
M

where C depends on ¢ and n. Choose § sufficiently small that the right-hand side of
(4-35) is bounded above by %e. Recalling that /> R, this concludes the proof. O

S Decomposition theorem

The main goal of this section is to establish the decomposition theorem, Theorem 5.1
below. The end purpose of this decomposition is to allow us to gain W *?—control on
our initial manifold for large but finite p < co. Thus, Theorem 5.1 will be an essential
tool used to prove Theorem 1.11. The integral estimate for Ricci curvature established
in Theorem 4.1 is the key estimate in the proof.

Before stating the decomposition theorem precisely, let us give an informal description
of its contents. Given a complete Ricci flow satisfying —3§ lower bounds on the scalar
curvature and the entropy, each ball By (1)(xo,2) can be decomposed as a countable
union of “good sets” gk and a “bad set” A. The bad set has measure zero and on the
k™ good set, the metrics g(0) and g(1) are equivalent up to an error of size (1 + e)k.
Furthermore, the volumes of the G decay geometrically, and the complement of the
first k good sets satisfies a geometrically decaying content bound.

In fact, if we restrict the time to compare g(0) and g(¢) for ¢ small, then we can obtain

the same kind of decomposition with smaller error.

Theorem 5.1 (decomposition theorem) For each € > 0 there exists ad = §(n,e) > 0
such that the following holds. Let (M, g(t));c(0,1] be a complete Ricci flow with
bounded curvature satisfying

(5-1 Rg(0) = =6,
(5-2) v(g(0),2) > —6.
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Fix xo € M andn<e. Thereexistsat =1(n, n) € (0, 1] such that every ball Bg(1)(x0,2)
can be decomposed into good sets G and a bad set A as

o0
(5-3) Byy(x0.2)= | J dFu A,
k=1

where the sets have the following properties:
(1) volg(gy(A) = 0.
(2) For all x € G¥ and for all s,t € (0, 7], the metrics satisfy

(5-4) (1= - 'g(s) =g) = (1-n( +)*'g(s).
(3) Foreach k > 2, we have Volg(o)(gk) < (1 + e)knek—2.

(4) Foreachk € N, let A¥ = Bg(1)(x0.2)\ Ullf=1 Gt be the complement of the first
k good sets. There is a countable collection ck and a mapping y >ty for y € ck
such that

(5-5) A ) Begp (1217,
yeck

with ", cen 3/ < nek 1.

When 1 = €, then we may take f = 1.

Remark 5.2 The effect of n > 0 in the above theorem is that, for small ¢, one can
force the bad sets comparing g(0) to g(¢) to have decreasingly small volume. In this
way one gets that g(¢) is converging to g(0) in various norms.

Throughout this section we use the notation

(5-6) B, (x) 1= By(ry(x,411/?)

to denote the scale-invariant balls of radius 4 and we let

(5-7) B := B, (xo).

In this notation, Theorem 4.1 states that for any 6 € (0, %) and € > 0, we may find
8 =68(n, 0, €) > 0 such that, under the hypotheses of Theorem 5.1, we have

! S —0 . 2
(5-8) / (;) % [Ricg(s)| dVOlg(s) ds < €”.
0 Et(x)
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5.1 Preliminary results

As in the previous sections we have by Theorem 3.2 that for any A > 0, we may choose §
sufficiently small in Theorem 5.1 that

A
(5-9) |[Rmg | < 7
holds for all x € M and ¢ € (0, 1]. The norm of the Ricci curvature |Ricg ()| evolves
along the Ricci flow by

(5-10) (8, — A)lRng(t)| < CanIIlg(t)| |Ricg(,)|;

see [18, Lemma 6.38]. For a Ricci flow satisfying (5-9), the evolution (5-10) becomes
A
(5-11) (a, —A—CnT)|Ricg(,)| <0.

That is to say, when ¢ is uniformly bounded away from zero, the norm of the Ricci cur-
vature evolves as a subsolution of a heat-type equation with smooth bounded potential.
Note that (5-9) provides uniform lower bounds for the Ricci tensor when ¢ is bounded
away from zero, a necessary ingredient for establishing parabolic regularity estimates.
So, after rescaling the metric, a standard Moser iteration argument (along with a trick of
Li and Schoen [36] to pass from the L?-norm to the L!'-norm) leads to the following
pointwise estimates for the norm of the Ricci curvature; see [17, Theorem 25.2] for a
proof.

Proposition 5.3 Fix n > 2. There exist constants C = C(n) and Ao(n) such that if
(M, g(t))te(0,1] 18 a Ricci flow satisfying (5-9) with A < Ao(n), then for any t € (0, 1]
we have

t
(5-12) [Ricg () (¥)| = Cf % [Ricg(s)| dvols(y) ds
t/4 Bt(x)

forall (y,s) € Bg(s(x, 3t1/2) x (%l, z).

In the proof of Theorem 5.1, we will need the following Vitali-type lemma. The
difference from a usual Vitali cover is that the balls are not taken with respect to a fixed
metric, but rather the covering comprises geodesic balls with respect to different time
slices g(¢) along a Ricci flow. At various points in the proof, we will call upon the
elementary containments of balls established in Lemma 3.8.
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Lemma 5.4 (Vitali-type lemma) Given n > 2, there exists a Ao(n) such that the
following holds. Let (M, g(1))+e(0,1] be a Ricci flow satisfying (5-9) with A < Ao(n).
For any xo € M and o € (0, 1], consider a set A C Bg(;,)(xo, 2t5/2) and a mapping
y >ty € (0, ﬁzo] defined for all y € A. There exists a countable collection C € A
such that

(1) the balls B, (y) are pairwise disjoint for all y € C,

(2) the collection { Bg(361,) (X, 12ly1/2)}yec is a covering of A,
(3) foreach y €C, Bsq,, (y) S By (x0) and B, (y) € B (xo).

Definition 5.5 We call a pair (C, y + 1)) satisfying (1)—(3) a covering pair of A in
Bto (x0)-

Proof of Lemma 5.4 Up to rescaling the flow, we may assume that 5 = 1. The
inductive construction of the cover is similar to a standard Vitali covering argument.
For each k € N, let

(5-13) Fie={B,(y):ye At e@* 127

Set Hy = Fy and let Gy be a maximal disjoint subcollection of Hy. Now, suppose we
have defined Gy, ... Gj_;. Then let

(5-14) Hy={BeFy:BNB =oforall B € GyU---UGj_,}.

and take Gy to be a maximal disjoint subcollection of Hy. Note that G contains
finitely many balls. We define the countable set C C A by

(5-15) c=JtyeA: B, (») eGi}.
k=1

Let us verify that the three properties claimed in the lemma are valid. Lemma 5.4(1)
holds by construction, and both parts of Lemma 5.4(3) follow directly from (3-42) in
Lemma 3.8 thanks to the assumption that 7, < Zlﬁ.

To establish Lemma 5.4(2), fix any x € A and choose k € N so that 7, € (27k~1 27k].
Then either B, (x) € Hy or not. In the first case, since Gy is a maximal set, we
know that B, (x) intersects some B f () € Gi. (where possibly x = y). In this case
%ty <1y <21ty. So, if we take z € B, (x) N B, (), the triangle inequality and (3-40)
imply that

(5-16)  dg(r,)(x. ¥) < dgie,) (1. 2) + dgr,) (x. 2) < 4t)/2 + 4 1112 < 101)/2,
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The final inequality holds provided we have taken A sufficiently small. In the second
case, when B, (x) & Hy, we see that B, (x) must intersect some B, ( y) € Hy w1th

Lef{l,... . k— 1} Then, s1ncetx<ty,weﬁndby (3-41) that B, (x)CBg(,y)(x Sty ).

In part1cular Bg(z,)(x, SZy/ 2) and B, ( y) intersect nontrivially, and thus by the triangle

inequality x € Bg(s,) (v, 10ty )

So, in both the first and second cases, we have x € Bg(;,)(, 105}/2) for some y € C.
In order to complete the proof of (2), we apply (3-40) to find that

(5-17) By (7. 106,7%) € Byasr,) (1, 2361,)'/%),
where the final containment holds provided we choose A small enough. This completes

the proof of the lemma. |

5.2 Good and bad sets on an arbitrary ball

Throughout this section, we fix € € (0, 1) and 6 € ( ) and assume that (M, g(7))¢e[o,1]
is a Ricci flow satisfying (5-1) and (5-2) with § chosen according to Theorem 4.1.

For a ball B, we define the stopping time 1(x) for each x € Bg(1)(xo,2) by
(5-18) t(x)=

t
inf{t/ < ﬁ :% % |Ricg(5)| dvolg(s) ds SIG/Z_IG forall r € [Z’, ﬁ]}.
t/4 Bt(x)

Observe that, provided we take € < 20072, applying (5-8) with t = 200~! ensures that

1/200
(5-19) f f Ricg (ry| dvolg( dt <2009/ e,
1/800 JBy p00(x

so the stopping condition holds at ¢’ = ﬁ
For a ball B, (xo) with 7o < 1, we define the stopping time #(x) by
(5-20) H(x) = 1o 1(x)

for each x € By (4, (x0, 2[& / 2), where 7(x) is the stopping time defined in (5-18) applied
to the rescaled flow g(r) =t La(to ).

The good and bad sets on B, (xo), respectively, are defined by

G(B,, (x0)) = {x € By(sy)(x0.2'%) 1 1(x) = 0},

(5-21) 2
A(B 1, (x0)) = {x € By(ry(x0.213) 1 1(x) > 0}.
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In the following proposition, we establish estimates on the good and bad sets that
will be iteratively applied to establish Theorem 5.1. When convenient, we adopt the
shorthand ¢, = #(x).

Proposition 5.6 Fixn>2,¢€(0,1) and 6 € (0, %) There exists a§ = §(n,€,0) > 0
such that the following holds. Let (M, g(t))e[o,1] be a Ricci flow satistying (5-1)
and (5-2). Fix B, (xo).

(1) Forany x € G(B,(xo0)) and for any s, s" € [0, to], the metrics g(s) and g(s") at x
satisty

(5-22) (1-e)g(s) =g(s") = (1 +e)g(s).

(2) Suppose x € A(B,,

Y € Bg(sy)(x, 25(1)/2), the metrics g(s) and g(s’) at y satisty
(5-23) (1-0)g(s) < g(s) = (1 +)gs).

(3) There is a countable collection C = C(B,,(xo)) < A(B,,(xo)) such that (C, 1)
is a covering pair for A(B, (xo)) in the sense of Definition 5.5, where t, = 1(y)

(x0)) and fix sq € [tx,to]. Then for all s,s’ € [sq, to] and

is the stopping time, and
(5-24) Z t)gn—G)/Z <e¢ Z(511—9)/2.
yecC

Proof Up to rescaling the flow, we may assume without loss of generality that 7y = 1.
We choose § sufficiently small that (5-8) holds.

Observe that (1) follows immediately from (2), since the estimate (5-22) is a particular
case of (5-23) with 5o = 0. Let us prove (2). Thanks to (3-40), it suffices to establish

(5-23) for s, 5" € [so, 21W]' Together the pointwise estimates of Proposition 5.3 and the

definition of the stopping time imply that
(5-25) IRicg(n| < Cet??>71 on By (x,3t1/%) x {1}
forallz € [so, zlﬁ]' So, calling upon (3-41), we find that

(5-26) [Ricg (| < Cer®271 on By(ey)(x. 255/%) % [50. 385 ]-

Now, for any y € By (s) (X, s(l)/ 2), we integrate (5-26) from s to s’ precisely as in the
proof of Lemma 3.8 to find

(5-27) (1-Ce)g(s) =g(s") = (1 +Ce)g(s),

where C = C(n). Up to further decreasing § so that (5-27) holds with ¢’ = ¢/C in
place of e, this establishes (5-23) and hence (1) and (2).
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We now prove (3). We apply the Vitali-type Lemma 5.4, taking A = A(B) with the
mapping y — t, given by the stopping time 7, = #(y). Lemma 5.4 ensures the existence
of a covering pair (C, t) for A(B) in B with C C A(B). We prove the content bound
(5-24) in the following way. For any y € C, the definition of the stopping time 7,
guarantees that

Iy
(5-28) / f IRicy )| dvolg(s) ds = etf/?.
ty/4JB,,(»)

By rearranging terms in (5-28) and calling upon the volume lower bound in (3-39), we
find that

Ct,% v
(5-29) 1m0 < 2 f / [Ricg(s)| dvolg(s) ds
€ ty/4 Bty )

C (" _y
< s / [Ricg(s)| dVvolg (s ds.
ty/4 Bty (69)]

=

Now, by Lemma 5.4(1) and (3), respectively, the balls { B f (¥)}yec are pairwise disjoint
and contained in B. So, we sum (5-29) over all y € C and apply (5-8) to discover that

1
(5-30) > =012 < % /0 s /B IRicg(5)| dvolg(s) ds < Ce.
yec =

Again, up to further decreasing § so that (5-30) holds for ¢’ = €/ C, this concludes the
proof of (3) and thus the proposition. a

5.3 The k' good and bad sets and the proof of Theorem 5.1 with n = ¢

In this section, we apply Proposition 5.6 inductively in order to define k™ good and
bad sets and establish Theorem 5.1 in the case when 1 = ¢, and thus 7 = 1. Separating
the proofs when n < € and n = € is convenient as it allows us to apply Corollary 5.7
below to establish estimates needed for the case n < €.

Proof of Theorem 5.1 when n = € Let § be chosen according to Proposition 5.6.

Step 1 We inductively define sets Qk C ﬂk_l, Ak - Ak=1 and ck - Ak for each
k € N satisfying the following properties:

(1) Forall x € G¥ and s, 5" €0, 1], we have

(5-31) (1—e)fg(s) < g(s) < (1 +e)Fg(s).
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(2) For each x e ck we have a mapping y — ¢, € (0, 2007%) such that (C¥, ty)isa
covering pair for A¥ in B as in Definition 5.5, and such that

(5-32) Yot <ék,
yeck

(3) Furthermore, if y € Ck, then
(5-33) (1—eg(s) <g(s) = (1 + ) (s
for all x € Bg(s,) (1, 21)}/2) and for all 5, s’ € [ty, 1].

In the claim above and in its proof, we suppress in the notation the dependence of 7,
onk for y € ck. Let A° = B, and for k = 1, we set

(5-34) G'=G(B) and A' = A(B),

as defined in (5-21). Let (Cl,ty) be the covering pair provided by Proposition 5.6.
Then properties (1)—(3) above for k£ = 1 follow directly from Proposition 5.6.

Now, suppose that we have defined the sets gk C Zk_l, Ak - Ak=1 and ck - Ak
satisfying properties (1)—(3). We define ghk+1 by

(5-35) gttt =k n | 9B, ).

yeck

If x € Gkt then x € g(g,y ()) for some y € C¥. So, Proposition 5.6(1) applied to
G(B,,(y)) implies that for all 5, 5" € [0, #y], we have

(5-36) (1-6)g(s") =g(s) = (1 +e)g(s)

at x. The inductive hypothesis ensures that (5-33) holds at x. Together, (5-36) and
(5-33) imply that

(5-37) (1-oFg(s) =g() = (1 +0)fg(s)
for all 5,5’ € [0, 1]. Therefore, (5-31) holds with k + 1 replacing k for each x € Gk*1.
Similarly, define

(5-38) AHt =k ) AB, ().
yeck

For each y e CK, Proposition 5.6(3) ensures the existence of a covering pair (Cy, z > 1;)
for A(B,, () in B, () with z; € (0, 5552y) < (0, 200~ *+D) We set

(5-39) k=] o.
yeCk
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Together Proposition 5.6(3) and the inductive hypothesis (2) ensure that (CK*1, z > t,)
is a covering pair for Ak+1 i B. Further, Proposition 5.6(3) and (5-32) show that

(5-40) o<k
zeck+1
50 (5-32) holds for Ck+! with k + 1 replacing k. Thus property (2) holds for k + 1.
Finally, Proposition 5.6(2) along with (5-33) ensures that
(5-41) (1—ofg(s) = g(9) = 1+ g(s)
for all x € Bg(,)(z, 2[21/2) and for all s, s” € [t;, 1]. Thus property (3) holds for k + 1.

This concludes the proof of the claim.

Step 2 We now finish the proof of Theorem 5.1. Theorem 5.1(2) follows directly from
(5-31) and the definition of the sets Gk. Noting that

k
(5-42) AF = Byy(x0. 20\ | 6¢ < A%,
{=1

Theorem 5.1(4) follows from property (2) above. Next, as Gk c Ak-1 by construction,
we have

(5-43)  volg(1)(GF) < volg(iy(A*1) < D volgr)(Bgzer,) (3. 2(361,)'/2).
yeckfl

We apply (3-7) followed by (3-39) to find that
(5-44)  volg(1)(Bg (361, (X, 2(361,) /%) < (1426) volg(361,) (B 361, (. 2(361,)/?)

<Ciy’?,
where C is a dimensional constant. Thus, by (5-43), (5-44) and (5-32), we see that
(5-45) volgy(GF) < C Y 1)/2 < ekt

yeck—l

Pairing this estimate with Theorem 5.1(2), this establishes Theorem 5.1(3). Finally,
observe that the same argument shows that Volg(zoofk)(zk) < Cék. So, defining
A=, Ak we see that

(5-46) Volg()(A) = lim voly(y0-k)(A) = lim voly (200—#) (A¥) = 0.
This proves Theorem 5.1(1) and thus concludes the proof of the theorem. |

An immediate consequence of Theorem 5.1 with 7 = 1 is the following comparison of
volumes of balls.
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Corollary 5.7 Fixn > 2 and € > 0. There exists a§ = §(n,¢) > 0 such that the
following holds. Let (M, g(t));e(0,1] be a Ricci flow satistfying (5-1) and (5-2). Fix
Xo € M andty € (0, 1]. Forall s,t € (0, ty], we have

1/2
. < VOlg(t)(Bg(to)(XOazlo/ ) _
< <
volg(s) (By(r) (0. 25'%)

Proof Up to parabolic rescaling, we may assume that 7o = 1. Thanks to (3-7), it suffices
to show that volg (o) (Bg(1)(X0,2)) < (1 + €) volg(1)(Bg(1)(Xo. 2)) provided § is taken
to be sufficiently small depending on €. Let § also be taken sufficiently small according

(5-47) 11— 1 +e.

to Theorem 5.1. Applying Theorem 5.1 with = € and thus 7 = 1, we find that

o0 [e.e]
(5-48)  volg(0)(By(1)(x0.2)) = Y volg(0)(GF) < volg(o)(GF)+ > " (1+e)k ek !
k=1 k=2

< (I1+¢€) volg(1)(xg,2)+Ce < (1+Ce¢) volg(1)(xo, 2).
The final inequality follows from Lemma 3.7. By further decreasing §, we may replace €
by €/C to complete the proof. m]

5.4 Improved Ricci estimate and good and bad sets on the initial ball

When 71 < €, we will need to apply a refined form of Proposition 5.6. To this end, we
first show that an improved integral estimate for the Ricci curvature holds outside a set
of small content. As usual, we use the notation B,(x) = Bg(;)(x, 4¢1/2) as defined
in (5-6).

Lemma 5.8 (improved Ricci integral estimate) Fixn > 2, € > 0 and 6 € (0,1).
There exists a§ = §(n, €, 0) > 0 such that the following holds. Let (M, g(t));e[0,1] be
a Ricci flow satisfying (5-1) and (5-2). Then for any xo € M and n < €, there exist
t=1(n,e,0,n) € (0, 1] and an exceptional set E C Bg(1)(x0,2) such that the following

properties hold.

(1) For all x € Bg(1)(xo,2) \ E, we have the improved integral Ricci curvature
estimate

7 s —0/2 .
(5-49) / (;) % |Ricg(5)(¥)| dvolg(s)(y) ds < 2.
0o \7 Bi(x)

(2) There is a finite set { yy }é\’:l C Bg(1)(x0,2) such that

N
(5-50) E | B,g (. 2" with N <yi /2,
=1
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Proof Fix any € € (0, 3). Let § = 8(n, €, 6) be chosen sufficiently small that we may
apply Theorem 4.1 with # = € = 1 and Lemmas 3.8 and 3.7 with A to be determined in
the course of the proof. Throughout the proof, we use the shorthand B = By (1)(xo, 2).

Step 1 We first claim that
9/2 _ o
(5-51) / f % [Ricg(5)(1)| dvolg(s)(y) ds dvolg gy (x) < 2t

for any ¢ <7, provided 7 is taken small enough.
Step 1a Recall from Corollary 5.7 and Lemma 3.7 that
(5-52) Volg (5) (Bg(1)(x0.4)) = (1 +€) volg(1)(Bg(1)(x0.4)) = (1 + 4 w,.

This together with Theorem 4.1 (taking = € = 1) implies that for any # < 1 we have

t
(5-53) / s0/2 / IRicg (s) ()] dvolg(sy (1)
0 B](x())

t
< t0/2/ s / [Ricg(5) (1) dvolg(s)(¥) = (1 + e)4”wn19/2
0 B (xo)
Step 1b A basic maximal function argument shows that

(5-54) /f [Ricg(s)| dvolg(s)(y) dvolg(g)(x)
B JB,(x)

< (142¢) IRicg (5) ()] dvolg() ().
Bg(l)(X,4)

To see this, take 7 small enough such that 4172 < 1. By the proof of Corollary 5.7 and
Lemma 3.7, we have

(5-55) (1— €)wn(41)"* < volg(s)(B,(x)) < (1 + €)wn(41)"/?

for any s € [0, ¢]. Furthermore, by Lemma 3.8, for any x € B, we have B,(x) C B, (xp).
With these observations in hand, we see that for fixed s € (0, 1),

(5-56) / f |Ricg(5)| dvolg(s) () dvolg(g)(x)
t X

l+e€ .
< ot ) B O Rieg 0] vl () dvolgo ()

1+e€

- a)nt”/2

< (1 +2¢) / IRicg (s) (»)] dvolg() ().
(Hx

/ (.2) (/B XB,(y)(x) dvolg (o) (x)) |Ricg(s)|(¥) dvolg(s)(»)
g(H X,
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Here x g, (x) is the indicator function of B,(x). This establishes (5-54).

Step 1¢ Multiplying (5-54) by 5792 and integrating with respect to s and then
combining the subsequent estimate with (5-53), we establish that

t
(5-57) / 3_0/2% IRicg (5)(7)| dvolg(s) (y) ds < 92
0 B(ty)

holds for # < 7. Multiplying both sides of (5-57) by t/2, we obtain (5-51).
Step 2 Now, let

7 —0/2
(5-58) E= {x €B :/ (i) % IRicg(s) ()] dvolg(s) (y) ds > ?9/2}.
0 ! Et(x)

By definition, (5-49) holds on B\ E; it remains to show the content bound (5-50). Let
(5-59) B,y (E.T'?) = | ] By (x.7'7).

x€E

We see that every x € B, ;) (E, 11/2) satisfies

S

7 —6/2
(5-60) / (;) % _|Ricg(s) ()| dvolg () (») ds > cai?/2.
0o \I? By (x,871/2)

Thus, by applying Chebyshev’s inequality to (5-51), we find that
(5-61) volg(o)(Byy (E.T1/2)) < G2

Take {yy }é\;l to be a maximal %tAl/ 2_dense subset of E with respect to g(7). We
conclude that (5-50) holds by taking 7 sufficiently small depending on 1. a

We now proceed as in Section 5.2 to decompose a ball B, satisfying the improved
Ricci integral estimate (5-49). For a ball B, we define the refined stopping time ¢(x)
for each x € Bg(1)(xo,2) by

(5-62) t(x) =
t
inf{t/f ﬁ :% f |Ricg(5)| dvOlg(s) ds < (91417914 for all ¢ € [t/, ﬁ]}.
t/4 JB,(x)
As in Section 5.2, provided we take 79 < 20072, if a ball B satisfies (5-49), then

1
200
(5-63) f % IRicg (1| dvolgy dt < 2009/47179/4,
1/800 Bl/zoo(x)

. .- r 1
so the stopping condition holds at " = 555.
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For a ball B,(xo) with ¢ < 1, we define the stopping time (x) by
(5-64) t(x) =ti(x)

for each x € By () (X0, 2¢ 172) where 7(x) is the stopping time defined in (5-62) applied
to the rescaled flow g(s) = t~!g(¢s). The refined good and bad sets on B,(xo),
respectively, are defined by

G(B,(x0)) = {x € By(y(xo,2t'/%) 1 1(x) = 0},

(5-65) R 12
A(B, (x0)) = {x € By(py(x0.2/%) 1 1(x) > 0}.

In the following proposition, we establish estimates on the good and bad sets. This
6/4
0
identical and thus omitted. Again, when convenient, we adopt the shorthand ¢, = #(x).

is exactly Proposition 5.6 with #,” " in place of € and %0 in place of 6; the proof is

Proposition 5.9 Fixn >2,6 € (0,1), 7> 0,7 € (0,1] and xo € M. Suppose that the
improved Ricci estimate (5-49) holds on B;(x). Then the following properties hold:

(1) Forany x € G(B;(x¢)) and for any s, s' € [0, 7], the metrics g(s) and g(s’) at x
satisty

(5-66) (1—mg(s) <g(s") <= (1 +mng(s).

(2) Suppose we have x € A(B7(xp)), and fix so € [tx,?]. Then for all s, s’ € [sq, ]
and y € Bgs,)(x, 2s(1)/2), the metrics g(s) and g(s’) at y satisfy

(5-67) (1-mg(s) =g <=1 +ngls).

(3) There is a countable collection C = C(B7(x¢)) € A(B7(xo)) such that (C, 1)) is
a covering pair for A(B7(x)) in the sense of Definition 5.5, where t, = t(y) is
the stopping time and

(5-68) > 2O < iz,
yec
In particular,

(5-69) > o2 <qginl2,
yeC

Now we prove Theorem 5.1 in the case when 1 < €. The proof by induction is completely
analogous to the proof when 1 = €, with the only modification coming from the first
step of the iteration.
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Proof of Theorem 5.1 when 5 < € Let § be chosen according to Lemma 5.8. We
inductively define sets Gk € A%—1, Ak c Ak—1 and C¥ C A¥ for each k € N satisfying
the following properties:

(1) For all x € G¥, we have

(5-70) (1=m1 - 'gs) =g() = A+ +) g
for all s, s’ €[0,7].
(2) For each x € CK we have a mapping y ty € (0, 2007%) such that (C¥, fy)isa
covering pair for A¥ in B as in Definition 5.5 and such that
(5-71) >l <prlpek2,
yGCk

(3) Furthermore, if y € Ck, then

(5-72) (I-n(1—-ef g <g(s) <1+ +e)f g
for all x € Bg(;,)(», 21;/2) and for all 5, 5" € [t, 7).

As before, we suppress in the notation the dependence of 7, on k for y € ck. The proof
of the inductive step is identical to that in the case when 7 = 1, so we need only to
establish the base case. Let A° = B.

Let E be chosen according to Lemma 5.8; by Lemma 5.8(2) we see that

N
(5-73) Ec | Bixp). with N <ni"/2,
(=1
Next, consider a maximal %?1/ 2_dense set {xi}l].\;/ , in B\ E with respect to g(@). In

this way,
y N

(5-74) B\E C | B, (.77,
i=1
and thanks to Corollary 5.7, we have that
(5-75) N’ < Cut /2.
Since (5-49) holds for each i = 1,..., N’, we apply Proposition 5.9 to decompose
Bg(a(x,-, 4t1/2) foreachi = 1,..., N’. Now, we set

N’ N’
(5-76) ¢'=J 0By, and A'=EU| ) A(By,,)
i=1 t=1
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as defined in (5-65). For each x; for £ = 1,..., N, we define 7, = ?1/2, and set
N N’

(5-77) ¢'=JtxauJ By,
=1 =1

Then properties (1)—(3) follow directly from Proposition 5.6 along with (5-73) and
(5-75), since
(5-78) 2= N2 N2 < Cu.
cl
We have thus inductively defined the sets G¥, A* and Ck. The remainder of the proof

is identical to the proof in the case when 1 = €, shown in the previous subsection. This
completes the proof of Theorem 5.1. O

6 L7” bounds for the metric coefficients

In this section, we prove Theorem 1.11, which we restate below as Theorem 6.1 for
the convenience of the reader.

Theorem 6.1 (Theorem 1.11 restated) Fixn > 2, P €[1,00) and € > 0. There exists
8 =8(n, P, €) > 0 such that the following holds. Let (M, g) be a complete Riemannian
n—manifold with bounded curvature satisfying

(6-1) R>—-§ and v(g,2)>-4.

Then for any xo € M, there is an open set 2 C M containing xo and a smooth
diffeomorphism ¥ : Q — B(0, 1) C R” with ¥ (x¢) = 0 satistying

6-2) f
B(0

Furthermore, for any k > 1 and q¢ € [k,00) we may choose § additionally small

)|(¢_1)*g_geuc|de§€ and fg|w*geuc_g|PdV01g§€.
1

s

depending on gy and k such that for any f € W14 (B(0, 1)) withq € [k, qo], we have

(6-3) A=Y* fllpan = IfllLao,y < A+ fllLca@).
(6-4) (I=OIVY* fllparcq) = IV ILaBo,1) < A+ VY™ fllLcaq).

Remark 6.2 The estimates in (6-2) are equivalent to

(6-5) f||dw||§;dvolg51+e andf ldy L dy <1+e.
Q B(0,1)
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Here, given a map u: (M, g) — (N, h), the notation ||du|| o (x) indicates the operator
norm of the linear map dux: (TxM, g) — (Ty(x)M, h). Given B: TM xTM — R a
bilinear form, we let || B||co = sup||B(v, ) |loo/||V]g-

Remark 6.3 It will be apparent in the proof that, given any number R > 1, by choosing
8 > 0 additionally small depending on R, we may obtain the conclusion of Theorem 6.1
with B(0, R) replacing B(0, 1).

Proof Let us begin with some initial observations. Without loss of generality we
may assume that € < €(n, P), where €(n, P) will be determined in the proof. By
Theorem 3.2, the Ricci flow g(7) with g(0) = g exists for # € [0, 1] and [Rmg| <A /¢
for all x € M and ¢ € (0, 1]. Here A may be taken as small as needed by choosing §
sufficiently small. We let

(6-6) Q = Bg(1)(xo, 1).

By Lemma 3.7, we obtain a smooth diffeomorphism v : B, (1)(xo,2) — U C R", with
inverse ¢ = ¥ ! such that ¥ (xo) = 0, ¥ () = B(0, 1) and

(6'7) (1 - %E)geuc = ¢*g(1) = (1 + %G)geuc

for all x € U. This holds as long as A (and hence §) has been chosen to be sufficiently
small depending on € and n.

Now, let

(6-8) Bey(x0.2) = [ J ¥ uA
k=1

be the decomposition provided by the decomposition theorem, Theorem 5.1, with € = 1.
From (6-7) and Theorem 5.1(2), for every x € ¢*gk we have

(6-9) (1= g <¢* g < (1 + 6 geue.
Therefore, we have

(6-10) 6" ¢ — Zeuclgo < (1 +F T =1 <e(k + 1)(1 +)F
for all x € ¢*GK, and likewise

(6-11) g — V™ Genclg < €(k + 1)(1 +e)F
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for all x € G¥. Furthermore, volg (A) = voleyc(¢*A) = 0 and for all k£ > 2, we have

(6-12) volg (%) < (1 + e)k ek,
(6-13) volewe(*GF) < (1 + )X 1.

We begin by proving the first estimate in (6-2). Set

(6-14) wu(r) = voleuc({y € B(0, 1) : |¢*g — Zeuelgee Z7})

and r; = e(k + 1)(1 + €)*. Note that ;£(0) < wj,, while (6-10) and (6-13) ensure that
k
(6-15) (0 = vl BO.D\ 6"
(=1

= Z VOleye (¢ * g()
l=k+1

o0
< Z (14 e)tet™! < Cex,
{=k+1

where C is a universal constant. We apply the layer cake formula to find that

o0
(6-16) / 6% ¢ — geucl P dy = P / PP dr
B(0,1) 0

Fi4+1

ro o0
f,u(O)P/ rP_ldr—i—PZ /,L(Vk)/ Pl gy
0 k=0 v

k

o0
<en(0)+ ) ulrrdy
k=0

o0
< ewy+Ce? Z ek(k+2)P(1 +E)P(k+1) < Cewy
k=0

for some C = C(n, P) provided that € is small enough, depending on P. Further
decreasing §, we may replace € by €/C. Dividing through by wj,, we establish the first
estimate in (6-2). The second estimate is entirely analogous, with the only additional
point to note being that volg (€2) < (1 4 €)wj thanks to (6-10) and (6-12).

We now show (6-3). Let 0 = g (e, «, ¢) be chosen later in the proof and let § = §(n, o)
be sufficiently small to apply the decomposition theorem, Theorem 5.1, with o in place
of €. Fix any f € W14(B(0, 1)). From (6-10) and vole,.(¢*A) = 0, we find that
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(6-17) ||f||Lq(B(0 ) — Z / S1t dx

*gkN B(0, 1)
o0
SZ(1+U)nk/2+1[ [y* 19 dvolg.
k=1 grne

Next, for each k, we apply Holder’s inequality with k and ¥ = k/(kx — 1) and apply
(6-12) to find that

00 1/k
618) 11/ 19a(p0.1y = D (1 +0)"™/*F volg(gH) !/ ( /g e dvolg)
k=1

o0
<™ oy D (1L +0) KGR
k=1

Now, by choosing o = o (¢, ) sufficiently small, the sum on the right-hand side is
bounded above by 1+ ¢, and thus by (1 + €)? for any ¢ > 1; after taking the (1/¢)®
power of both sides, we have shown that

(6-19) 1/ LacBo 1)) = L+ Y™ fllLea(g)-
The proof of the other inequality in (6-3) is completely analogous.

The proof of (6-4) is similar. From (6-10), we have

(6_20) / |Veucf|equc dx
B(0,1)

/ Voo /1%, dx
¢*GkNB(0,1)

(14 o) @tn/Dk+1 /gk |V yr* £19 dvolg

A

kRN

=

=
Il
_

1/k oo
/ |Vgl/f*f|xq dVOlg) Z(] +0)(q+”/2)k+1volg(gk)1/'€
Q
k=1
1/k oo /
= (/ |Vg1ﬁ*f|/cq dvolg) Z(] +0)(51+n)ko,k/lc
Q

k=1

A
A/

=1+ E)vaw*f”ikf](g)’

where again the final inequality holds provided that o is sufficiently small depending
on gy, € and «. The other inequality in (6-4) is analogous. This completes the proof. O
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As a consequence of the proof of Theorem 6.1, we obtain the following estimate for
the Ricci flow. In short, it tells us that, at in least in L, the metrics g(¢) converge as
t — 0.

Corollary 6.4 Fixn > 2, P €[1,00) and € > 0. There exists aé = §(n, P,e) >0
such that the following holds. Let (M, g) be a complete Riemannian n—manifold with
bounded curvature satistying

(6-21) R>-§ and v(g,2)>—6.
For all n € (0, €), there exists tA,, = ZA,?(n, P, e, n) such that for any xo € M, s,t € [O,ZA,,],

(6-22) f |g(s)—g(@)] §(,,7) dvolg(,) = 1.
Bg(1)(x0,1)

Moreover, for any k > 1, we may choose § additionally depending on k such that for
all s,t €10, 1),

P
(6-23) f g (s) —g(t)lg(/f) dvolg(1y = 1.
Bg(1)(x0,1)
Remark 6.5 Upgrading this L coefficient convergence to d »—convergence is morally,

though not explicitly stated, in Section 8. This is in fact significantly harder, as one
needs to understand how the analysis on g(s) varies, not just the metric coefficients.

Proof The proof of (6-22) is identical to the proof of (6-2), but now we apply the
decomposition theorem, Theorem 5.1, with 5 in place of €. Then the proof of (6-23)
follows precisely by repeating the proof of (6-4). a

7 Epsilon regularity

In this section, we prove the epsilon regularity theorem, Theorem 1.7, and the uniform
L°°-Sobolev embedding, Theorem 1.17. The main tool is Theorem 6.1, established in
the previous section.

7.1 Preliminary lemmas

Let us first establish two preliminary lemmas that will be needed in the proof of
Theorem 1.7. The first lemma allows us to localize the dj,—distance in Euclidean space.
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We use the notation d,; (o, g) to denote d, ¢ B(0,R), that is,

-1y dq,B<o,R)(x,y>=sup{|f(x>—f<y>|: / ( IVfqux51}-

s

Our first lemma tells us that on Euclidean space we may localize the d,—distance.

Lemma 7.1 Forall €e >0 and p > n + 1 there exists R = R(n, €, p) such that for all
q=p-— % and for all x € By g.,.(0, 1), we have

(7-2) |dg,B(0,R)(X,0) —dg,q..(x,0)| <e.

Proof One inequality in (7-2) follows immediately from the definition: for any
x € B(0, R), we have

(7_3) dqagcuc (‘x’ 0) S dq?B(O,R) (‘x’ 0)

Next, we show that for any x such that d; p(o,g)(x,0) <1+ €, we have

(7_4) dq,B(O,R) (X, 0) = d‘Iageuc (X, 0) + €.

Note that this immediately implies that (7-4) holds for any x € By g, (0, 1) and thus
together with (7-3) will complete the proof. Let f be a function such that

(7-5) / IVf9dx <1, f(0)=0 and dg po.r)(x,0)< f(x)+e.
B(0,R)

We will modify f to produce an admissible test function for dp g (x,0). Without
loss of generality, we may replace f with min{| /|, 2}, which also satisfies (7-5). Now,
consider a cutoff function ¥ such that 0 < <1 and
_ (1 in B(0,2),

V= {o in R"\ B(0, R)
for a dimensional constant C. By choosmg R sufficiently large dependmg onn, € and p,
we have ||V || La®n) < CR"41<1 e for any ¢ > p— 5. So, letting f =(—e)fy,
we have

(7-6) and  |Vy|<CR™!

(7-7) f0)=0, [f(x)=(1-2€)dy po,r)(x.0)

and

(7-8) IIVfIILq(Rn) A=Y VSfilrawny + A= f VY Lawrrn)
<A =9IVfilrao,ry) +2(0 =)V Lawn)
<l—e+4+e=1.
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In particular, f is an admissible test function for dg g (x,0) and so

(7-9) dg,gec(x,0) = (1 —2€)dy B(o,r) (X, 0).

After replacing € with %e, this completes the proof of (7-4) and thus of the lemma. O

Remark 7.2 In the course of proving of Lemma 7.1, we have established the following
statement under the same hypotheses For any x € R” such that dy p(o, R) (x,0) <2,
we may find a function f e W, ’q(B(O R)) such that |Vf||La@mn) =1, f(O) =0and

J(x) = (1-2€)dy o, r) (. 0)-

The next lemma shows the continuity of the d), y—distance with respect to the Euclidean
distance, and will be used in the proof of Lemma 7.4 below.

Lemma 7.3 Fix p > n, let U C R" be a bounded open set with smooth boundary and
V € U be precompact. For any sequences {x;},{yi} C V with X;, yi = Xoo, Voo € V,
we have dp y (Xi, yi) = dp,u(Xoo: Voo)-

Proof Fix € >0 andlet f € W12(U) be a continuous function such that f(yeo) =0,
S (Xoo) = dp (X0, Yoo) — € and fU VS|P dx < 1. Taking f as a test function in the
definition of d, y(x;, y;) for each i, we find that

(7-10) liminfdp g (xi, yi) = lim |1 (xi) = (i)l = [/ (Xoo) = / (¥oo)|

> dp,U(xoo, Yoo) — €.

Letting € — 0, we see that liminf; oo dp v (Xi, yi) = dp,U (X0, Yoo)-

On the other hand, fix € > 0 and for each i let f; € W12 (U) be such that f;(y;) =0,
Ji(xi) = dp u(xi, yi) — € and fU |[Vfi|? dx < 1. Up to a subsequence, f; = foo in
WLP(U) with fU |Vfso|? dx < 1, and by the Morrey—Sobolev inequality, { f;} is
locally uniformly Holder continuous and so, up to a further subsequence, f; = foo
locally uniformly. In particular, f~ is continuous and we use the triangle inequality to
see that f;(x;) = foo(Xoo) and fi(¥i) = foo(Xoo) asi — 00. S0, foo is an admissible
test function in the definition of d) y(Xo0, Yoo) and

(7-11) dp,U(xoo’ Voo) = | foo(Xoo) = foo(Voo)| = 11—1>rgo | fi(xi) — fi(yi)l
> .lim dp’U(X,’, y,-) —E.
1—>00
Letting € — 0, we see that lim; 0 dp, U (Xi, i) < dp (X0, Yoo) along this subse-

quence. So, we see that lim; o dp y (Xi, yi) = dp, U (Xco, Yoo) along this subsequence;
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since any subsequence has a further subsequence to which the argument can be applied,
we see that the convergence holds for the full sequence. This concludes the proof. O

The next lemma also deals with the d,—distance on Euclidean space, and establishes
uniform continuity of dg y with respect to ¢g. Again, the notation dg y is used here to
denote dy ¢, u foraset U C R".

Lemma 7.4 Fix p > n and let U C R” be a bounded open set with smooth boundary.
Then d, y(x, y) converges tody, y(x, y) uniformly on a precompact set V' with VeU
asq — p.

Proof We first consider the case ¢ — p~. By definition, for ¢ < p, we have

(7-12) dpu(x,y) < |UIMI7VPd, y(x, y).

In particular, for any € > 0 we have d, iy (x, y) < (14€)dy,u(x, y) for g < p sufficiently
close to p. Suppose by way of contradiction that there are €9 > 0, x;, y; € V and
pi — p~ such that for all i > 1,

(7-13) dp,u(xi, yi) + 2€0 < dp; u(xi, yi).
For each i, let f; € W-P(U)NC (U) be such that fi(y;) =0, [; IV/fi|P <1 and
(7-14) dp;u(xi, yi) <|fi(xi) = fi(yi)| + €o.

After passing to a subsequence, X;, Vi — Xoo, Voo € V by compactness. By Lemma 7.3,
dp,u(xi, yi) = dp,U(Xoo. Yoo) as i — oo. For any fixed ¢ < p, for i sufficiently large
we may apply Holder’s inequality to find

(7-15) / V|9 dx <|U|'"9/Pi,
U

In particular, we see that ||Vf;| ra() is bounded uniformly in i. Moreover, by the
Morrey—Sobolev inequality, { f;} is uniformly Holder continuous. We therefore see that
fi = foo in WH4(U) with [;; |Vfoo|?dx <1 forall g < p,and f; > foo uniformly.
Letting ¢ tend to p, we see that [, [Vfe|? < 1, and so foo is an admissible test
function for dp y (Xeo, Yoo). Thus, passing to the limit and using (7-13) and (7-14), we
reach a contradiction, since

(7-16)  dp,u(Xco, Yoo) + €0 = i_ljgloo | /i (xi) = fi(yi)| = [ foo (¥o0) = foo(Veo)]

=< dp,U(x009 yOO)
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Now we consider the case when ¢ — p™. Again by (7-12), we see that for any € > 0,
we have d,, y(x,y) = (1 —€)d, uy(x,y) for ¢ > p sufficiently close to p. Suppose by
way of contradiction that there exist p; > p, €9 > 0, p; — p* and x;, y; € V such that
for all i,

(7-17) dp; U (Xi, yi) + €0 < dp,u(xi, yi).

We may assume X;, i = Xoo, Voo € V. Let o be a small constant to be determined
later. By smooth approximation, let f € C'(U) be such that Ju IVfI? <14 0€p and

(7-18) dp,u(Xoo: Yoo) = |f (¥eo) = f (Voo) | + 0 éo.

We let A = supg |Vf'|. For i sufficiently large, we have

1/p; 1/pi
(7-19) (/ |Vf|Pi dx) §A(1’f‘1’)/1"'(/ |Vf|P) < (1 +0e).
U U

So f/(1 4 0¢€p) is an admissible test function for dp, v (x;, y;). We thus see that
(7-20) | f(xi) = S| = (1 +o€0)dp, u(xi, yi)-
So, by (7-17), (7-18) and (7-20), respectively, we find
(7-21) limsup dp, v (Xi, yi) + €0 = dp,u(Xoo: Yoo)
1—>00
< lim | f(x;) = f(i)| + o€
1—>00
= (I +o€p)liminfdp, y(xi, yi) + oeo.
1—>00

We reach a contradiction by choosing o small enough. |

7.2 Proof of Theorem 1.7

In this section, we prove Theorem 1.7, which we restate below as Theorem 7.5 for the
convenience of the reader.

Theorem 7.5 (Theorem 1.7 restated) Fixn > 2. Foranye > 0 and p > n + 1,
there exists a § = §(n, €, p) such that the following holds. Let (M", g) be a complete
Riemannian manifold with bounded curvature satistying

(7-22) R>-§ and v(g,2)>-6.
Then for all x € M,

(7_23) dGH((Bp,g(x, 1)’ dp,g), (Bpageuc (O’ 1)’ dpageuC)) <E€.
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Moreover,
(7-24) (1 =€)|Bp,gec (0, 7)| = volg(Bp,g(x0,7)) < (1 4+ €)|Bp,g... (0,7)]

for all 0 < r < 1, where |- | denotes the Euclidean volume. In particular, the measure
dvolg on the metric measure space (M, dp g, dvolg) is a doubling measure for all
scalesr < 1.

Proof of Theorem 7.5 Let ¢/ > 0 be a fixed number, to be specified later in the proof.
To begin, notice that we may choose R = R(n, % p.€ ) > 2 according to Lemma 7.1,
and k = k(n, p,€’, R) > 1 sufficiently close to 1 according to Lemma 7.4 so that for

any z, y € Bpg...(0,2), we have
|d B R(Z,y)—d,cuc(Z,y)|<€/,
(7-25) p/k,B(0,R) D8 /
|dep,BO,R) (2, V) = dp,g... (2, V)| < €.

Up to possibly increasing R depending on p and n, we have B, ¢..(0,2) C B(O, %R)
by (2-26).

Now, choose § = 8(n, p,€’,k, R) = §(n, p, €') sufficiently small that we may apply
Theorem 6.1 with € = €’ and with R as above (see Remark 6.3), obtaining a diffeo-
morphism ¥ : Q" — B(0, R) satisfying the properties of Theorem 6.1. We claim that
for any z, y € Bp,g...(0,2) we have

(7-26) ldp,e (V1 (2). ¥ () — dpgac(z. »)| <€,

so, in particular, the diffeomorphism ¥ ~! is an e~Gromov—Hausdorff approximation
between (Bp,g...(0,2), dpeuc) and (2, dp g), where Q = 1 (Bp ¢...(0,2)) C M.

Fix 2,y € Bp g...(0,2) and set yo = ¥~ 1(»), zo = ¥~ !(z) € Q for brevity of notation.
Thanks to (7-25), in order to prove (7-26) it suffices to show that

(7-27) dp.g(20, ¥0) < (14 3€') dp,(0,R) (2, 1),

(7-28) dp.g(z0, y0) = (1 =3€")dp /i B0.R) (2. V).

We begin by showing (7-27). Let f € W1?(M) N C%(M) be a function such that
Jas IVf 1?7 dvolg <1 and

(7-29) dp,g (20, ¥0) < (1 +€)| f(z0) — f(¥o)l.
Thanks to Theorem 6.1, we find that
(7-30) IVY™ fllLerBeo,r)) < (1 +ENIVSILr (@)

<1+ VS lLran < 1+€.
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So h = y*f/(1 + €) is an admissible test function for dy, p(o,r)(y,z), and thus
dyp,B(0,R)(¥,2) = |h(z) — h(y)|. Furthermore,

(7-31)  [hE) —h()| = (1 +) 7S (z0) = S (o)l = (1 4+ €) 2 dp g (20, yo)-
This establishes (7-27).

The proof of (7-28) is similar. Fix a function 7 € W 1-P/¥(B(0, R)) N C°(B(0, R))
such that fB(o R |VA|P/* dx <1 and

(7-32) dp /. B(0,R) (20, o) < (1 +€")|h(z0) — h(yo)l.

By Remark 7.2, we may assume / to be vanishing outside B(0, R) and hence f =¥ *h
can be extended to a function on M. By Theorem 6.1, we have

(7-33) IVfllLeary < A+ NNVl Lo po,ry < 1+¢€.

Hence, f/(1 + €’) is an admissible test function for dp ¢(y, z), and so

(7-34) (1 +€)dpg(y.2) = [ f(y) = f(2)] = [h(y0) — h(zo)].

This establishes (7-28), and hence (7-26). From (7-26), it follows immediately that
(7-35) ¥ (Bpgoe(0.1—8€) S Bpg(x. 1) S Y (Bp g, (0.1+8€)),

and hence (7-23) holds taking ¢ = %e. Finally, (7-24) is now an immediate conse-
quence of (7-35), Theorem 5.1 and a rescaling argument. This completes the proof of
Theorem 7.5. o

Using the same approximation strategy as in obtaining (7-26), we now give the proof
of the d), version of the Myers—Steenrod theorem, namely Proposition 2.36.

Proof of Proposition 2.36  Since the manifolds are d,—complete this immediately tells
us that we have a homeomorphism ¢: M — N suchthatd ¢ (x, y) =d, p(¢(x), $(y))
for all x, y € M. By the Myers—Steenrod theorem, it suffices to show that dg and dj,
are locally isometric. We first show that d), ¢ is locally a function of dg.

Claim 1 For any x € M, we have

(7-36) i g™
y—>x dg(x, y)l—n/P

’

where S is the Euclidean dp—distance from the origin to a point on the standard unit
sphere; see (2-24).
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Proof of Claim 1 Suppose that, on the contrary, we can find a sequence {y;} C M
with d; = dg(x, yi) — 0 and €p > 0 such that

dp,g(X, Vi)
dhl—”/P

1

(7-37) —S|>¢€p>0.

Consider the rescaled metric g; = d;” 2g so that dg;(x,y;) = 1foralli € N and
dp,g; (x, i) = dl.”/p_ldp,g(x,y,-). Clearly, we have (M, g;,x) — (R", geyc, 0) in
the C°°—Cheeger—Gromov sense. By the smooth convergence, the argument used in
obtaining (7-26) shows that d ¢; (x, y;) — S, which contradicts (7-37). O

In particular, from the claim and the d,—isometry, we conclude that for any x € M,

3% i GBE).$0))

1.
y=x o dg(x,y)

By repeating the argument on ¢~ !, we conclude that ¢ and ¢! are both 1-Lipschitz.
In particular, this implies that ¢ is a isometry with respect to geodesic distance. Now,
the classical Myers—Steenrod theorem implies that ¢ is differentiable at x and satisfies
(¢p*h)(x) = g(x) for all x € M. This completes the proof. |

7.3 Proof of Theorem 1.17

Now we prove the L°°—Sobolev inequality on manifolds with small entropy and R_.
We restate Theorem 1.17 below as Theorem 7.6.

Theorem 7.6 (L°°-Sobolev embedding) Fix p,qo > n + 1. Then there exists
ad = 8§(n, p,qo) > 0 such that the following holds. Let (M",g) be a complete
Riemannian manifold with bounded curvature satistfying

(7-39) R>-§ and v(g,2)>-6.

Then for all xo € M and q € (. qo), there exists a Cp,g = C(n, ) > 0 such that for all
/e Wo1 “1(Bp.g(x0, 1)), we have

(7-40) I flLoo By ¢ (x0.1) = Crg IV I La(5Bp 4 (x0.1))-

Forall f € Wl’q(Bp,g(xO, 1)) and x, y € Bp,g(x¢, 1), we have

(7-41) |/ () = SO = CuglIVS lILa(B, ¢ (xo.1))-
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For all f € WY4(M), we have

(7-42) | S lLooary < CugUIVSllLaary + I f lLacary)-

In terms of the dp—distance we can upgrade (7-41) to a Holder embedding: there exists
an o = a(n,q) € (0, 1) such that

(7-43) | /() = fO) = Cugopdp(x, NIV LBy, ¢ (x0,1))

forall x,y € Bp,g(xo,1).

Proof of Theorem 7.6 Fix any € < 1, and fix § = §(n, p, €) according to Theorem 7.5.
As in the proof of Theorem 7.5, we obtain a diffeomorphism ¥ : By ¢ (xg,5 +€) — Q,
where Bp euc(0,5) C QcC Bp,euc(0, 5 + 2¢), satisfying the properties of Theorem 6.1.
Recall from (2-26) that there exists an R = R(n) such that By ¢, (0, 6) C B(0, R) for
all p>n+1.

Let f e WO1 “1(Bp,g(xo, 1)) and extend f by zero to be defined in all of Q. Leth= Y f
and then naturally extend / by zero to be defined on B(0, R). By (6-4) of Theorem 6.1
and Remark 6.3, for any ¢ € (kn, g¢) we have

(7-44) IVAllpareBeo,r)y = (1 + NV IILa5, o (x0.1))-

So, applying the Morrey—Sobolev embedding on B(0, R) followed by (7-44), we have

(7-45) £l zoo 5, o ro.1) = IRl Loo(B0,R) < Crg I VIl Larc (0. R))
< CuglIVSllLa,. o (x0.1))-
This completes the proof of (7-40).

To prove (7-41) consider any function f € W14(B, ¢(xo, 1)) and let & = ¥« f be
the function defined on €’ = Y (Bp,g(xp,1)). By the Morrey—Sobolev inequality on
Euclidean space, for all x, y € By ¢(x¢, 1) we have

(7-46) |f () = SO = [ () = h(f WD = CuglIVAIl pare @y
= CugIVSfllLas, 4 (xo,1))-

In fact, we may apply the Holder Morrey—Sobolev embedding on €’ in (7-46) above
to see that

(7-47) /()= SO = 1h () = (¥ ()]
< Cugl¥ ) =y '™ V| Lo/ 51
< Cugl¥V () =Y O™ VS | La5, 4 (xou1))-
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Hence it suffices to show that [ (x) —¥(y)| < Cdp ¢(x, y) for some C(n, p) > 0
for x, y € By g(xp,1). Since Qo Bp cuc(5), and by the proof of Theorem 7.5, we get
that ¥ (x), ¥ () € Bp.euwc(2) = B(0, (2S~1)P/(P=m) wwhere S = S(n, p) is given by
(2-25). Consider the test function ¢(z) = min{|y (x) — ¥ (2)], 2(2S~1)?/(P=m1 ' which
is compactly supported on Q. By (6-4) of Theorem 6.1 and Remark 6.3, we see that
C is an admissible function for dj ¢ (x, y) for some C(n, p) > 0. The claim follows.

To prove (7-42), let f € W4 (M). Fix xo € M and let ¥ be the diffeomorphism
obtained above such that ¥ (x¢) = 0. Let & = v« f be the pushforward of f, which
is defined on €. Let ¢ be a cutoff function such that ¢ =1 on B eyc (O, %), @ van-
ishes outside By cuc(0, 1) and [dp| < Cy; recall (2-25). Then by the Morrey—Sobolev
inequality on Euclidean space followed by Theorem 6.1, we have
(7-48) |/ (x0)| = [1hellLee (8, we0,1)

= CugIV(h)l Lare (B, we(0,1)

= Cug(IVhllLare 5, we0,1) F 1l Larc(s, wo0,1)

< CugUIVSllLaany + 1S lLaary)-

Since X is arbitrarily chosen, this completes the proof. a

8 Global convergence theorem
In this section we prove Theorem 1.15, which we restate below as Theorem 8.1.

Theorem 8.1 (Theorem 1.15, restated) For p > n + 1, there existsad = §(n, p) > 0
such that if {(M;, g;, x;)} is a sequence of complete pointed Riemannian manifolds
with bounded curvature such that

(8-1) Rg; = =8 and v(gi,2) =6,

then there exists a pointed rectifiable Riemannian space (Moo, €00, Xoo), With Mo
topologically a smooth manifold, such that the following holds:

(1) After passing to a subsequence, we have d,((M;, gi. Xi), (Moo, &oos Xo0)) = 0
in the sense of Definition 2.39.

(2) The space (Xoo, §oos Xoo) is W 1P —rectifiably complete and d,—rectifiably com-
plete in the sense of Definitions 2.24 and 2.35, respectively.
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This section is organized in the following way. In Section 8.1, we construct the
rectifiable Riemannian space that will ultimately be shown to be the pointed d), limit
in Theorem 8.1. Then, in Section 8.2, we show that this limit is W *?—rectifiably
complete. In Section 8.3, we establish the pointed d, convergence of the sequence, and
finally in Section 8.4 we put these pieces together to conclude the proof of Theorem 8.1.

8.1 Constructing the limit space

We first obtain the rectifiable Riemannian space (Moo, oo, Xoo) that will ultimately be
the pointed d, limit, and establish the integral convergence of the metric tensors to this
limit. For notational convenience, all convergence means subsequence convergence.

Proposition 8.2 Fix P > n + 1. There exists § = 6(n, P) > 0 such that the following
holds. Suppose {(M', gi, x;)} is a sequence of complete pointed Riemannian manifolds
with bounded curvature satisfying

(8-2) Rg; >—6 and v(g;,2)>—6.

Then there exists a pointed rectifiable Riemannian space (Moo, €00, Xoo), With Mo
topologically a smooth manifold, such that up to a subsequence, the following holds.
For any compact subset Q2 € Mo, we can find subsets Q2; € M; and diffeomorphisms
Viq: Q2 — Q; such that ¥; q(Xo0) = X; and

(8-3) IV qgi—glrag) — 0

forany q €[1, P].

Proof We proceed in several steps. The first three steps involve constructing the
pointed rectifiable Riemannian space (Moo, €00, Xoo) that will later be shown to be the
dp limit of (M;, g;, x;), while in the fourth step we establish the convergence of the
metric tensors (8-3).

Step 1 (constructing the smooth pointed topological manifold (M, Xso)) Fix A >0
to be specified later in the proof. By Theorem 3.2 and Perelman’s no-local-collapsing
theorem (3-23), if § = 6(n, A) is taken sufficiently small, then there is a sequence of
complete Ricci flow solutions {(M;, g; (7))} +e[o,1] such that g;(0) = g; and

IRm(g; ()| < Ar7 !,

& {inj(gi () = eav/i.
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By Hamilton’s compactness theorem [32], after passing to a subsequence, we get that
(M, gi(t),xi) > (Moo, g0o(t), Xo0) in the pointed C*°—Cheeger—-Gromov sense so
that goo(?) is a solution to the Ricci flow on My, X (0, 1] also satisfying (8-4).

Step 2 (constructing the rectifiable Riemannian metric goo and measure n,) We
now construct a rectifiable Riemannian metric as an L* limit of goo () as ¢ tends to zero.

From the previous step, for any precompact set 2 € M, containing xo, we can find
a sequence of maps V; o: £ — M;, each a diffeomorphism onto its image, such
that ¥; o(Xeo) = X; and ¥ gi(t) — goo(?) smoothly on any compact subsets of
Moo % (0, 1]. For notational convenience, we will use g; and g;(¢) to denote wi’fsz gi
and 111:9 gi(2), respectively. By way of a covering argument, it suffices to consider the
case Q = B, (1)(Xo0. 1).

Fix any 1 > 0. By (6-23) of Corollary 6.4 (taking € = %, k =2 and 2 P in place of P),

we may find #, = t,(n, P,n) € (0, 1) such that for all 5,7 € (0, t;), we have

(8-5) /Q 1gi(s) — gi()I] (1) dvolg 1y < 7.
So, passing to the smooth limit as i — oo, we find that
(8-6) /Q |800(5) — goo (DL _ 1y dvolg (1) <1

for all s,# € (0,¢;). Then we see that goo(f) is a Cauchy sequence and hence
Zoo = lim;_, o+ Zoo(?) exists in LP(Q. goo(1)). Next, by letting Qj € My be an
exhaustion of M, we define goo on the whole M,. With g4 in hand, we define
the measure mq, on Mo by setting i, to be the “induced measure” of goo. More
precisely, consider the function f(x) = (det goo/det 200 (1))1/2 on Moo. Thanks to the
L£C—convergence of goo(t) t0 goo as t — 0, f is coordinate-free and is in Lf;C(Moo)
for P> 1. Now we define moo = f dvolg__ (1), which is a well-defined Radon measure
on M. This completes the construction.

Step 3 (verifying that (Mo, €00, Xoo) 18 a rectifiable Riemannian space) Now we
claim that (Meo, €00, Xoo) 1S a rectifiable Riemannian space. To construct a recti-
fiable atlas for (Moo, g00s Xoo0), let {xj} C My be a collection of points such that
{ng(l)(xj, %)} covers M and {Bgoo(l)(x]-, %)} are pairwise disjoint. By taking
A > 0 sufficiently small in Step 1, we may apply Lemma 3.7 and (8-5) to obtain charts
¢j:Uj — Bg_1)(xj,2), where U; C R” is such that

(8-7) L |¢,*goo _ge:uclgeuC dx < C.

J
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Let Ug,j = {x € Uj 1 |¢; goo — Geuclge. = a} and let ¢g,i: Ua,j — Moo be defined
by ¢jlu,. ;- We easily check from (8-7) that {(Uy,, ¢a,j)}a,ieN 1s a rectifiable atlas
for (Moo, X0, Moo) and that g is a rectifiable Riemannian metric with respect to this
rectifiable atlas, by the construction of goc and mi.

Step 4 (convergence) Finally, the L —convergence (8-3) of g; — goo follows from
the LP—convergence in (8-5) and a diagonal subsequence argument. This completes
the proof of the proposition. O

Remark 8.3 From the proofs of Proposition 8.2 and Theorem 6.1, we may immediately
deduce the following properties of the limit space (Mo, €00, Xoo) constructed in
Proposition 8.2. Given any x € My, we may apply Lemma 3.7 to obtain a diffeo-
morphism ¢: B(0,2) — Q' C My, such that ¢(0) = x and Q := ¢(B(0, 1)) satisfies
Bg (1)(x,1—€) CQ C Bg_1)(x,1—¢€). In aslight abuse of notation, we identify
¢*g and ¢* g; with g and gy, respectively. We have the following estimates:

/ 1800 — gk ldee = 0. / 1800 — &k 'lewe = 0,
/B |goog,:1 —Id|£JC — 0, /B |gkg_1 —Id|£lc — 0.

Here the measure of integration can be taken to be dx, dvolg or dvolg, . Furthermore,
for any fixed p >n+1 and for k> = (p+n)/2n > 1, we may choose § in Proposition 8.2
additionally depending on p and « so that

(8-9) (1 =S Lr/c(B,1),g00) = IF1LP(B0,1),800) = (1 + OIS lLrr(B(0,1), g000)-

Similarly, we may replace gey. with gz above.

8.2 W L:P_rectifiable completeness of the limit space

In this section, we prove that the limiting rectifiable Riemannian space (Mo, €00, Xo00)
obtained in Proposition 8.2 is W »P—rectifiably complete as in Definition 2.24. Given
1 < p < oo fixed, we let WP (Mo, go0) denote the Sobolev space as defined in
Section 2.1.2. For any function u € W (Muo, goo), we let Gpr. .. 4 denote the
least p—weak upper gradient of u, whose existence is guaranteed by Proposition 2.23.
We will show that the function u, = ¢} u is differentiable a.e. in U, and thus we may
let Vg u|: X — R be the function defined in charts by

(8-10) Vet ($a(x)) = (85 0i1a(x)jua(x)) ">

for a.e. x € U,.
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Proposition 8.4 Fix p > n+ 1. By choosing P = P(p, n) sufficiently large and thus
8 = é(n, p) sufficiently small in Proposition 8.2, the limiting rectifiable Riemannian
space (Moo, 800, Xoo) constructed in Proposition 8.2 is W 1-P —rectifiably complete in
the sense of Definition 2.24. That is:

(@) WIP( My, g0o) is dense in LP? (Mso, 80o).

(b) Forany u € WP (Mwo, g00), the function ug, = ¢}u is weakly differentiable
in Uy, and thus the function |Vg__u| in (8-10) is defined for m-a.e. x € Moo.
Moreover, the least weak upper gradient satisfies Gpr, . goou = |Vgoott| for
m-a.e. X € M.

More precisely, in Proposition 8.4(b), we mean the following when we say that u, is
weakly differentiable in U, (recall that U, may not be an open set). From Proposition 8.2
and Step 4 of its proof, in which we construct the rectifiable atlas for (Moo, g00), We
see that we have a classical atlas of charts {$j} for the smooth manifold M4, and
these charts agree with the charts {¢,} of the rectifiable atlas where they are both
defined. The function $ ]’."u, defined on an open ball in Euclidean space and agreeing
with u, = ¢ u on the intersection of their domains, has weak partial derivatives in L?
in the sense of Sobolev spaces, defined for instance in [22, Chapter 4].

We will first establish a localized version of Proposition 8.4(b) in Section 8.2.1 be-
low (Proposition 8.5). Using this proposition, we will then prove Proposition 8.4 in
Section 8.2.2.

8.2.1 The local estimate In this section, we will prove the following local version
of Proposition 8.4(b). In order to alleviate notation, we let g = go. Fix x € M
and let ¢: B(0,2) — Q' with ¢(0) = x be as in Remark 8.3. As in Remark 8.3, we
slightly abuse notation by identifying ¢* ¢ and ¢* g, with g and gy, respectively. We
set B = B(0, 1) and denote by W1-2(B, g) the W 1P space as defined in Section 2.1.2
with respect to the metric g on the space B. We let G g g, denote the least p—weak
upper gradient of u in W?(B, g) and |y|g = g(y, ¥)/2. We will use the analogous
notation for gz and geyc.

Proposition 8.5 Fix p > n+ 1. By choosing P = P(n, p) sufficiently large and thus
§ = §(n, p) sufficiently small in Proposition 8.2, any u € W =P (B, g) is differentiable
m-a.e. and we have Gg ¢ ,, = |Vgu| form-a.e. x € B.
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In preparation for the proof of Proposition 8.5, we first prove some preliminary lemmas.
Let Mg and 9.y denote the collection of all absolutely continuous curves with respect
to g and geyc, respectively, in B. Note that 91, is also the collection of g absolutely
continuous curves in B for every k.

Lemma 8.6 Fix P as in Proposition 8.2. Forany 1 < p < %P, we have

Modg, p (Mg \ Meye) =0 and  Modg,,,, p(Meue \ Mg) = 0.
Proof Consider the family I' C 90t of curves y: [a, b] — B(0, 1) such that

b
/ 187 Il 71 dt = +oo.
a

Because |g ™! |él{3 e LP/2(B, g) by (8-8), it follows from the definition of Mod, that
Modg, p/>(I') = 0. Notice that Mg \ Meye C I'. Indeed, for any y € Mg \ Meye, we
apply the Cauchy—Schwarz inequality to find that

b b
/ g Y2 g de > f 17 () lewe df = +o00,
a a

and so y € I'. It follows that Modg, , (I \ Meyc) = 0. The other claim is proven
analogously. |

In view of Lemma 8.6, we will henceforth let 9t = 9, N M., and will restrict our
attention to curves in 1.

Lemma 8.7 Fix p>n+ 1 andlet k*> = (p +n)/2n > 1. By choosing P = P(n, p)
sufficiently large and thus § = §(n, p) sufficiently small in equation (9-3), for any family
of curves I' C M with Modg, »(I") = 0 we have Modyg, ,/(I') =Modg_  ,/c(I') =0.

Proof Let I' C 91 be a family of curves with Modg, ,(I") = 0. By definition, there
exists an F > 0 such that F' € L?(B, g) and f: F(y)|ylgdt = +oo forall g €T
For each k, consider the function Fy = F|gg™! |ell{C2. By Remark 8.3, we have
Fy € LP/*(B, gi) provided P is chosen sufficiently large depending on p and n. Then

b b
/ Fr1Y i drz/ F(y)|ylg dt = +oo,
a a

and so Mody, ,/(I") = 0. The same proof holds for geyc letting Feye = Flg~! |é1{C2. O
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Lemma 8.8 Fix p >n+ 1 andlet k> = (p +n)/2n > 1. By choosing P = P(n, p)
sufficiently large and thus § = 6(n, p) sufficiently small in equation (9-3), we have
WUAP(B, geye) C WP (B, g) C WHPIH(B, geye).

Proof We prove the second inclusion; the proof of the first inclusion is analogous. Fix
ue WHP(B, g), so by definition we have

b b

Gpgu)|Plgdi < / o (V)21 17 g i

1) (@) -u )] < [
a a

forall y € M\ T", where I" C 91 is a family of curves such that Modg ,(I") = 0. Letting

H=Gpgul g|éu/c2 , we directly see that H satisfies the weak upper gradient condition

for u with respect to geyc. Moreover, by Lemma 8.6, we see that Modg, /i (I') = 0.

This implies that H is a p/k—weak upper gradient for u with respect to geyc. Moreover,

we deduce from Remark 8.3 that H € L?/¥(B, geuc), and so u € WP/ (B, geuo). O

In Lemma 8.8, we have used the Newtonian space definition of W 2/¥(B, geuc). It is
known (see [29, Theorem 7.13]) that this space agrees with the typical definitions of
Sobolev spaces on Euclidean space.

Lemma8.9 Fix1<g < p<oo.Letuc WVP(B, g) and let G be a g—weak upper
gradient of u. Then G is a p—weak upper gradient of u.

Proof As usual, let Gp 4, denote the least p—weak upper gradient of u. We will
show that G > G g 4, for m—a.e. x € B, which implies directly that G is a p—weak
upper gradient. To this end, we employ a trick from [29, Lemma 6.3]. Since G is
a g—weak upper gradient for u, we know that the weak upper gradient condition is
satisfied for G for all y € 9\ I', where Modg 4(I") = 0. By definition, there exists
a function F € L9(B, g) such that fab F(y)|y|g dt = 400 for all g € I'. Therefore,
the function Gy, = G + F/k is an upper gradient of u, and in particular, a p—weak
upper gradient for u. Therefore, Gy > Gp g , for m—a.e. x € B. Now, since F is finite
m-a.e., we have Gy — G and thus G > Gp ¢ , for m-a.e. x € B. O

We are now ready to prove Proposition 8.5.

Proof of Proposition 8.5 We consider two cases: first, the case when u is a smooth
function in B, and then the general case when u € W12 (B, g). In each case, we
proceed in two steps: first showing that |Vgu| is a p—weak upper gradient of u with
respect to g, and then showing that it is the least p—weak upper gradient of u with
respect to g.
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Casel u e C>®(B, geu)-
Step 1 |V,u| is a p—weak upper gradient for u with respect to g.

The main estimate toward showing Step 1 is the following. Up to passing to a sub-
sequence, we have

b b
(8-12) / Ve ()17 dt—)/ Vel ()17 lg di
a a

for every curve y: [a,b] — B in MM\ I', where I' is a family of curves such that
Modg, ,(I') = 0. Once we establish this fact, it will easily follow that |Vgu| is a
p—weak upper gradient for u with respect to g. Indeed, since g is a smooth metric
for each k, we know that |Vg, u| is the least upper gradient for u with respect to gy.
So, for any y € M\ I', we have

b b
13)  |u(y(@) —uy (b)) < / Vgt ()17 it — / Vgl ()71 dt

as k — oo. Since Mod, ,(I") = 0, it follows that |Vgu| is a p—weak upper gradient
for u with respect to g.

We employ Lemma 2.17 in order to prove (8-12). More specifically, for any curve

y € 9, we have
b b
/|ngu|(y>|y'|gkdr—/ Vel ()7le di| <T+1IL
a a
where
b
- / (Ve ul = [VeuD) ()17 lex dt.
(8-14) ‘
H=[ Vel () (7 )er — 171) dt .
a

We claim that terms I and II tend to zero as k — oo for all y € 9\ ', where
Modg, ,(I') = 0. Indeed, consider the sequence of functions

—1,1/2
|CUC’

Fir = ‘|ngu| - |Vg”” gk &

and notice that I < f: Frx(y)|y|g dt. Thanks to (8-8), we see that Fy — 0in L? (B, g),
provided P is large enough depending on p. Then Lemma 2.17 implies that, after
passing to a subsequence, I — 0 for all y € 9\ I'}, where I't C 901 is a family of curves
with Modg_,(I') = 0.
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We argue in a similar fashion for term II. Consider the sequences

Fr = |Veu|(lgrg ' 1M2=1) and Fy = |Veul(1—|ger ol/?).

euc euc
Since |Vgu| > 0, we have

b

b ~
/|vgu|<y)<|y'|gk—|y'|g)dzf/ Fe) 9l dt.

a
b

b ~
/|vgu|(y)(|y'|g—|y'|gk)dzs/ FeI7lg dr.

a

Furthermore, thanks to (8-8), we see that ﬁk, ﬁk — 0in L?(B, g) provided that P is
chosen sufficiently large depending on p. So, by Lemma 2.17, we see that, after passing
to a further subsequence, we have I — 0 for all y € 9t \ I'y where Modg_ ,(I'r) = 0.
Letting I' = I'1 U I';, we conclude that (8-12) holds. This completes Step 1.

Step 2 |V, u| is the least p—weak upper gradient of u with respect to WbLP(B, g).

Let H € L?(B, g) be any p—weak upper gradient of u with respect to g. By definition,
we have

b b
@15 Ju(y@)—u(r®) < [ H)|7 1 di < / Hlg g 12171y di

forall y € M\ T, where I' is a family of curves such that Modg ,(I") = 0. In particular,
letting Hy = H|g g |euC , we see immediately that Hj, satisfies the upper gradient
condition for every y € MM\ I". By Lemma 8.6, we see that Modg, ,/(I") =0, and thus
Hj, is a p/k—weak upper gradient for u with respect to g;. Moreover, it follows from
Remark 8.3 that Hy € L?/%(B,g) N LP/¥(B, g}) and that H, — H in L?/*(B, g).
In particular, H;, — H for m-a.e. x € B.

Similarly, since u € C°°(B, geuc), We deduce from (8-8) that |Vg, u| — |Vgu| in
LP?(B, g), and therefore m—-a.e. Since |V, u| is the least g—weak upper gradient for u
with respect to g for any ¢, we have that |Vg, u| < Hy m-a.e. Passing k — oo, it
follows that |Vgu| < H, and so |Vgu| is the least p—weak upper gradient for u with
respect to g.

Case2 uec WHP(B,g).
Step 1 |Vgu| is a p-weak upper gradient of u in W17 (B, g).

By Lemma 8.8, we know that u € W :P/¥ (B, g...), and thus we may find a sequence
u; € C°(B, geye) such that u; — u in wl.p/k (B, geuc)- So, using Remark 8.3, we see
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that |Vgu;| — |Vgu| in LY(B, g) for ¢ = p/k>. Therefore, applying Lemma 2.17
once again, after passing to a subsequence, we have

b b
(8-16) / Vet di »/ V|17 | di
a a

asi — oo for all y € M\ Ty, where Modg 4 (I'g) = 0. Moreover, applying Case 1 to each
smooth function u;, we know that |Vgu;| is a g—weak upper gradient for u; and thus

b
(8-17) i (y (@) — i (y (B))| < / Vsl ()71 di

for all y € MM\ I';, where I is a family of curves such that Modg 4(I';) = 0. Now,
since p/k > n, we have that u; — u uniformly by the Morrey—Sobolev inequality
on Euclidean space. So, letting I' = I'y U [ I';, we see that Modg 4(I") = 0, and
letting i — oo in (8-17), we find that |u(y(a)) —u(y(b))| < f: |[Veul|(y)|y|e dt for
all y e M\ I'. This proves that |Vgu| is a g—weak upper gradient of u with respect
to g. Applying Lemma 8.9, we see that |Vgu| is also a p—weak upper gradient with
respect to g, completing Step 1.

Step 2 |Vgu| is the least p—weak upper gradient of u in W17 (B, g).

Letv; =u;—u € WP(B, g). As noted in the previous step, v; — 0in W ?/%(B, geuc),
so in particular |Vgv;| — 0 m—a.e. Moreover, applying the previous step, |Vgv;| is a
p—weak upper gradient of v; in W7 (B, g).

Now, consider any p—weak upper gradient H € L? (B, g) for u with respect to g and
let H; = H + |Vgv;|, which converges pointwise m—a.e. to H. Applying the triangle
inequality, we see that H; is a p—weak upper gradient for ;. Moreover, from Case 1, we
know that |V u;| is the least p—weak upper gradient for u; with respect to g, and hence

(8-18) H; = |Vguil

for m-a.e. x € B(0,1). Since |Vgu;| = |Vgul| in LY(B, geyc), after passing to further
subsequences, the sequence also converges pointwise a.e, and thus m—a.e. Thus sending
i — oo in (8-18), we see that |Vgu| is the least p—weak upper gradient for u with
respect to g. This concludes the proof of Step 2 and thus of the proposition. a

8.2.2 Proof of Proposition 8.4 We are now ready to prove Proposition 8.4.

We first prove part (b). Fix u € WP (M, go0). By Proposition 8.5, we know
that the pullback of u is weakly differentiable in charts and that |Vg__u| is defined
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for a.e. x € M. To show that |Vg | = Gar,,g00,u» We proceed in two steps: first
showing that |Vg__u| is a p—weak upper gradient of u, and then showing that it is the
least p—weak upper gradient.

We claim that |Vg__u| is a p—weak upper gradient of u with respect to W17 (Mo, g00)-
To this end, let {x;} C Moo be a collection of points such that { Bg__1y(xj, 3)} covers
M and the Bgoo(l)(xj, %) are pairwise disjoint. For each j, let ¢;: B(0,2) — Q; C
Bgoo(l)(xj, %) be as in Remark 8.3.

Consider any absolutely continuous curve y: [a, b)] = M. The continuous image
under y of the compact set [a, b] is compact, and thus the image of y in M, intersects
finitely many of the ;. Take a finite partition ¢ = ag < a; <--- <ay = b of the
interval [a, b] such that the image of [a;, a;+1] is contained entirely in ; for one j.
Then, applying the triangle inequality and Proposition 8.5, we see that

N

(8-19) [u(y (@) —u(y®) <Y |u(y(@i—1)) — u(y(a))|

i=1

i=1

b
Vet e di =/ Vet ew d1.

a

a;
ai—1
It follows that |V, _u|is a p—weak upper gradient for u with respectto W 2 (Moo, g00).

Now we show that |V _u| is the least p—weak upper gradient of u with respect to
WP (Mso, g00), thus proving (b). Notice that, for each j, the restriction of G Moo, goo it
to 2; is a p—weak upper gradient for u# with respect to whr(Q > 8o0). S0, since we
know from Proposition 8.5 that |Vg__u| is the least p—weak upper gradient of u with
respect to WP (Q;, gs0), it follows that |V u| < G, g u for m—ae. x € Q;.
Since the collection {2} } covers Mo, we thus see that |Vg_u| < Gpr. g .4 for m-ace.
X € M. This completes the proof of (b).

Finally, we prove (a). Fix any v € L? (M, go) and € > 0. We wish to show that
there exists u € W1 (Moo, g00) such that [|v — ullLr(pr., ¢o,) < €. It is apparent
that bounded and compactly supported functions are dense in L? (M, go0), and
thus we may assume without loss of generality that v is bounded and compactly
supported. Let {x; }§V=1 C My be a finite collection such that the support of v is
contained in U}V=1 2j, where the Q; are defined as in the previous step. Let {1}
be a partition of unity subordinate to {$2; i=1 such that ¢J’." ¥ is a smooth function
in B(0, 1). Since u is bounded, for each j we have ¢]’."u € L*P(B(0,1), geuc). So we
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may find a smooth function v; such that ||¢>j’."u — V|l rr(B,go) =< €/2N. Thus, by
Remark 8.3, we have %{ —VillLr(Q),800) = ||¢;‘u —Vj|lLr(B,g) < €/N. Here we let
vj = ¢«0;. Letv =} ;_;¥;v;. Thanks to Lemma 8.8 and part (b) above, we see that

ve WP (Mg, g00). Finally,

N
(8-20) lu =Vl Lr (Mg < D =i Lr() g00) S €.
j=1
This completes the proof of (a) and thus of the proposition. |

8.3 Convergenceind,

In this section, we establish the following proposition, which is Theorem 8.1(1).

Proposition 8.10 Fix p > n + 1. We may choose P = P(n, p) sufficiently large
and thus § = 6(n, p) sufficiently small in Proposition 8.2 such that it (M;, g;, x;) and
(Moo, g00s Xoo) are as in Proposition 8.2, then, after passing to a subsequence,

In order to prove Proposition 8.10, we will first show the following local version.

Proposition 8.11 Fix p > n 4+ 1. We may choose P = P(n, p) sufficiently large
and thus § = §(n, p) sufficiently small in Proposition 8.2 so that if (M;, g;, x;) and
(Mo, 800s Xoo) are as in Proposition 8.2, the following holds. For any compact set
Q € M, after passing to a subsequence, we can find 2; € M; such that

(8-22) dp((Ri, g1), (2, g0)) = 0

asi — +o00, in the sense of Definition 2.39.

Before proving the propositions, we establish two lemmas that will be needed in the
proofs. First, we show that the supremum in the definition of d), 4 o(x, y) is achieved.

Lemma 8.12 For p > n + 1, there exists §(n, p) > 0 such that the following holds.
Let (M", g) be a complete Riemannian manifold with bounded curvature such that

Rg>—6 and v(g,2)>-6.

Then for any bounded subset Q € M and x, y € Q, there exists a function f € W 1-P(Q)
such that dp g o (x,y) = | f(x)— f(y) and [ |Vf|? dvolg = 1.
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Proof Consider a maximizing sequence f; € W17 (Q) with Jo IVfil? dvolg <1,
Ji(x)=0and f;(y) = dp,¢ .o(x,y). Choosing § = §(n, p) according to Theorem 7.6,
we may apply Theorem 7.6 to see that | f;| < C = C(n, p, g, 2) on Q. In particular, the
sequence f; is uniformly bounded in W -7 (€2). Hence, after passing to a subsequence,
f; converges weakly in W 17 () to a function £ € WP (Q) with Jo IVfI? dvolg < 1.
Moreover, by applying Theorem 7.6 to rescalings of the metric, we see that each f; is
continuous with a modulus of continuity that is uniform in i. So, by the Arzela—Ascoli
theorem, f; converges uniformly to /. In particular, f(x) =0and f(y) =d, ¢.(x, ).
Finally, note that [, |[Vf|? dvolg = 1, otherwise a multiple k / for ¥ > 1 would be an
admissible test function for d, ¢ o (x, y). This completes the proof. O

Next, we use Gehring’s lemma and the doubling property of the d), metrics to show
that a function f € W17 (Q) achieving the supremum in dp.¢.0(x, y) enjoys higher
integrability properties.

Lemma 8.13 Fix p > n + 1. There exist constants §(n, p) > 0, k(n, p) > 1 and
Co(n, p) > 0 such that the following holds. Let (M, g) be a complete Riemannian
manifold with bounded curvature and

Rg>—6 and v(g,2)>-6.

Fix Q € M and x, y € Q, and let f € W1-P(Q) be a function achieving the supremum
indy g (x,y). Then for all By g(z,4r) C 2 such thatr < 1—10 min{dp ¢ (x, ), 1}, we
have

1/pk 1/p
(8-23) (f V| P* dvolg) <G (f IVf|P dvolg) .
Bp.g(z,r) Bp.g(z,4r)

Proof Letx,ycQ &M and f € WP () be a function such that Jo IVfI? dvolg =1
and dp ¢ @(x,y) = | f(x) — f(y)|. We may assume without loss of generality that
f(x)=0.Fixr < 11—0 min{dp ¢(x, y), 1} and z € M such that B, ¢(z,4r) C Q.

Step 1 Fix any ¢ € (n, p). We claim that there exists Cy, p 4 > 0 such that

1/p 1/q
(8-24) (% IVfI? dvolg) <Cupyg (f IVf]4 dvolg) )
Bp.¢(z,r) Bp.¢(z,4r)

To see this, notice that by the definition of d), ¢ . the function f satisfies
(8-25) / IVf|? dvolg
Q

- inf{/ IVh|? dvolg : h € WHP(Q), [h(x) —h(y)| = dp,g,g(x,y)}.
Q
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So, computing the Euler—Lagrange equation associated to (8-25), we see that for any
h e WHP(Q) satisfying h(x) = h(y), we have

(8-26) / \VfI1P~2(Vf, Vh)dvolg = 0.
Q

We first consider the case when x € By ¢(z,2r) and y & By, ¢(z, 2r). Let ¢ be a cutoff
function on M such that ¢ = 1 on By ¢(z, ) and vanishes outside By ¢(z,2r). We
will make the construction more precise below. Since f(x) = 0, the function & = f'¢?
satisfies /1(x) = h(y) = 0. Therefore, choosing 7 = f¢? as a test function in (8-26)
and applying Young’s inequality, we find that

(8-27) f IVf PP dvol,
Q

<p [ 1917719771 V911 dvol
Q
p—1
< [ 191767 dvoly + 2 s oy [ 19917 dvols
Consequently, absorbing the first term on the right-hand side of (8-27) and using the
volume estimate (7-24), we find that

1/p
(8-28) (f IVF|P dvolg)
Bp.g(z,r)

< Cllf oo, o220y (fB

1/p
[Vol|? dvolg) ,
p.g(2,21)
where C = C(n, p). By applying the Sobolev inequality of Theorem 7.6 and the
volume estimate (7-24) to the rescaled metric § = A2g, where 4rA!="/P = 1 so that
By z(z,1) = Bp g(z,4r), we find that

1/q
(8-29) ||f||Loo(Bp,g(z,2r»scn,p,qrp/@—")(f v/ dvolg) .
B

p.g(2,41)
On the other hand, let us now construct a good cutoff function ¢. Begin by constructing
a cutoff function ® on Euclidean space such that ® =1 on Bp eyc (O, %), & vanishes
outside Bp,euc (0, %) and [09®|1°7 < C, ,®19P~1. Let ¢ be its pullback along the diffeo-
morphism obtained from g. A similar argument as in Theorem 7.6 using Theorem 5.1
shows that

1/p
(8-30) (% |Vg|? dvolg) < Gy pr PP,
Bﬁ.g(zszr)

By combining (8-28)—(8-30), we conclude that (8-24) holds in this case.
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Next, consider the case when y € B, ¢(z,2r), and so x & Bp, ¢(z, 2r). Applying the
same argument to the function f =dpy ¢.0(x,y)— f, we deduce the same inequality
(8-24) because |Vf| = |V]7|. Finally, if x, y & B ¢(z, 2r), we consider f: -7,
where fe R so that pr.g(Zm) fdvolg = 0. Hence, we still have (8-29) and thus the
proof above can be carried over without any change. We thus have (8-24) in this case
as well.

Step 2 Since (M, dp ¢, dvolg) is a metric measure space and the measure dvolg is
a doubling measure with respect to dp, ¢ for scales r < 1, by choosing ¢ = %(n + p)
we may apply the form of Gehring’s lemma in [39, Theorem 3.1] to see that there are
a p > pand a Cy > 1 depending only on n and p such that for all B, ¢(z,4r) C Q
where r < % min{dp ¢(x, y), 1}, we have

_ 1/p 1/p
(8-31) (f VS|P dvol) < Co(% VS|P dvol) )
Bp.g(z,r) Bp.g(z,4r)

Note that the reverse Holder inequality assumption on [39, Theorem 3.1] is stated
on balls of the same radius. It is clear from the proof that (8-24) suffices; see also
the classical Gehring lemma [24] on Euclidean space. Letting k = p/p completes
the proof. O

Remark 8.14 Assume that P = P(n, p) is taken sufficiently large and thus § = 4(n, p)
is taken sufficiently small in Proposition 8.2, so that we may apply Proposition 8.4 to
the limit space (Moo, €00, Xoo) constructed in Proposition 8.2. Since (Mo, €00, Xoo0)
is W1-P_rectifiably complete, we see from the proof of Proposition 8.2 that the
e—regularity theorem, Theorem 7.5, and Sobolev inequalities of Theorem 7.6 pass
to the limit (Mo, €00, Xoo). In particular, the proofs and conclusions of Lemmas 8.12
and 8.13 also hold for (Meo, €o0s Xoo)-

We are now ready to prove Proposition 8.11.

Proof of Proposition 8.11 Assume that P = P(n, p) in Proposition 8.2 is taken large
enough to apply Proposition 8.4 and thus Remark 8.14. Fix Q2 € M and choose
Q cQc Q € Moo. From the Cheeger—Gromov convergence established as in Step 1
of the proof of Proposition 8.2, we may assume that the g; are all defined on Q via the
diffeomorphisms ; : Q— Q; C M.

Step 1 We claim that dp ¢, (X, y) = dp g..,@(x, y) forevery x,y € Q.

s800>
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Fix x,y € Q. By Lemma 8.12 and Remark 8.14, we may find f € WI’P(Q,gOO)
such that dp,goo,fz(x’ y)=|f(x)— f(y)| and fﬁ |VE& f1P dvolg_ = 1. Furthermore,

applying Lemma 8.13 (see Remark 8.14) to a covering of Q by g0 p-balls, we find that

1/kp
(8-32) (/ |VEoe [P dvolgoo) <Cy,
Q

where C; depends on n, p, Q, Q and dp go. (x,¥), and where k = k(n, p) > 1 is the
constant obtained in Lemma 8.13. Here we have used the fact that the topologies induced
by dg_ (1) and dp ¢ are equivalent. This can be seen by taking a multiple of dg__ (1)
as a test function for dj, ¢ together with (8-7) and the Morrey—Sobolev inequality.

Fix € > 0. We aim to show that f/(1+¢) is an admissible test function for dj, 5. o (x, »)
for i sufficiently large. By Proposition 8.2 and the W 1-P—rectifiable completeness of the
limit space, we see that |[V&i f|? = (14& ;)|VE>f|? and dvolg, = (1+&, ;) dvolg__,
where &£1;,&, ;1 @ — R are errors such that £; ;,&,; — 0in L9(2, goo) for any
q < P/(n+ p). Therefore, provided we choose P = P(n, p) large enough that the
Holder conjugate «’ of « is less than P/2(n + p), we use Holder’s inequality and
(8-32) to see that

1/p
(8-33) ( / |vgff|f’dvolg,-)
Q

1/p
= (/ [VESLI1P(1+ &1+ E2i +E1,iE20) dvolgoo)
Q

1/p
<1+ (/ |VECfIP(Ey i+ Eri +E1,i€0.0) dVOlgoo)
Q

ST+ IVEfllLer @) €1, + 2,0 + E1iaill Lo (@)
<1+e,

where the final inequality holds for i sufficiently large and makes use of (8-32). There-
fore, f/(1+ €) is an admissible test function for dj, ¢, o (x, y) and consequently

(8-34) dp,goo,fi(x’ V)= +e)dpg a(x,p)

for i sufficiently large. Letting i — 400 and then € — 0, we find that
(8-35) Ay g 3. 9) SHminfdy g, 0 (x. ).

Then an argument analogous to the proof of Lemma 7.4 shows that d), ¢ ¢ is continuous
with respect to the domain and hence we may let €2 tend to €2 to conclude that

(8-36) dp.goo.@(x,y) <liminfd, 4. a(x,y).
i—+00
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We now apply the analogous argument to x, y € Q with the roles of go, and g; swapped,
making use of the crucial fact that the upper bound in Lemma 8.13 and thus (8-32) are
uniform in ;. We find that for any € > 0, d), ¢, o(x,y) < (1 + E)dp,goo,ﬁ(x’ y) for i
sufficiently large and hence

(8-37) limsupdp ¢, o(x,y) <dpg..0(x, ).
i—>+o0

This completes the proof of Step 1.
Step 2 We claim that

(8‘38) dGH((Q ’ dp,g,-,Q)’ (Q > dp,goo,Q)) —0

and that the volumes of p-balls converge, thereby establishing the proposition. In-
deed, fix any € > 0. Letting g;(¢) and goo(¢) be the Ricci flows as in the proof of
Proposition 8.2. From the smooth convergence of g;(1) to goo(1), we see that there
exists an N € N such that  can be covered by {Bgi(l)(zj-,e)}jy= , for i sufficiently
large. For each i and z,w € Q, let / € W1?(Q) be a maximizer of d 4, o(z, w),
whose existence is guaranteed by Lemma 8.12. Since g;(1) has uniformly bounded
geometry, we apply the Morrey—Sobolev inequality and estimate (1-13) of Theorem 6.1
to f to see that

(8_39) dp,gi,Q(Z, w) S Co(nv p: Q)dg,(l)(za w)l_n/p
for all z, w € @ and i sufficiently large.

In particular, £ can be covered by {B; o (z;, Coe 1 _"/1’)}~§\’:1 , where B; q is the ball with
respect to d, ¢, @ and N is independent of i — +o0. Together with the convergence
dp.g;.2(Zj,2k) = dp g...2(2j. z) for each pair of zj, zx, this proves the Gromov—
Hausdorff convergence. The volume convergence in Definition 2.39 follows from
this Gromov—Hausdorff convergence together with the L —convergence of the metric
coefficients on Proposition 8.2. This completes the proof of the proposition. |

Finally, we use Proposition 8.11 to establish Proposition 8.10.

Proof of Proposition 8.10 Let P(n, p) and thus é(n, p) be as in Proposition 8.11.
Note that the largest radii less than or equal to 1 such that B, g (y,4r) @ My for
VY € Moo, and By g, (v, 4r) @ M; for y € M;, respectively, are both equal to 1 thanks
to the e-regularity theorem (Theorem 1.7) and Remark 8.14. Moreover, again by
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Theorem 1.7 and Remark 8.14 and (2-25), there exists an r < R depending on n and p
such that for any y € M and y; € M;, we have

By o()(3,1) CBpg. (¥, 1) C By (1)(», R),
Bg;(1)(yi, 1) C Bp,g; (yi, 1) C Bg,(1)(yi. R),

where goo(?) and g;(¢) are the Ricci flows as in the proof of Proposition 8.2. Hence,

(8-40)

from the second containments in (8-40), we see that for any NV € N,
Covgy, (X0, N) C Bg (1) (X0, 2N R),
Covg, (xi, N) C Bg;(1)(xi, 2NR).
So, for any N € N, choose 2 C M to be a compact set such that
(8-42) Bg  (1)(X00, 2ZNR+1) C Q2 C By (1)(Xo0, 2NR + 2).

(8-41)

By the Cheeger—Gromov convergence used in Proposition 8.2 to obtain the map
Y Q — M; and the set Q; := ¥ (2) C M;, we see that

(8-43) Bgi(l)(xi,ZNR) CcQ; C Bgi(l)(xi,2NR+3)
for 7 sufficiently large. Therefore, combining (8-41), (8-42) and (8-43), we find that
(8-44) Covg. (X0, N) CQ and Covg,(x;, N) C Q;.

Now, recall that the metrics goo(1) and g;(1) satisfy a uniform curvature bound.
Therefore, by volume comparison, there exists an N’ € N depending only on N, n
and p such that N’

Bgoo()(¥00: 2NR +2) C | ) Bgooty(ya: 1),

a=1

(8-45) N7
By,(1)(xi.2NR+3) C | J Bg,; (1) (Vasi- 1)

a=1
for some {ya}‘]l\’:/1 C My and {ya,i}fl\;’l C M;, where r and R are as in (8-40) and
depend only on 7 and p. So, applying the first containment of (8-40) to each ball above,

we find that
Be . (1)(X00, 2ZNR +2) C Covg, (X0, N,

Bgi(l)('xi? 2NR +3) C Covg, (x;, N).
Together with (8-42) and (8-43), this shows that
(8-47) Q C Covg, (Yoo, N') and Q; C Covg,(x;, N').

(8-46)

Now, having obtained the appropriate sets 2 and €2; for each N € N, we may apply
Proposition 8.11 to complete the proof. |
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8.4 Proof of Theorem 8.1

We finally prove Theorem 8.1.

Fix p > n+ 1. Choose P = P(n, p) sufficiently large according to Propositions 8.5
and 8.10. Now let § = 8(n, P) = §(n, p) sufficiently small to apply Proposition 8.2.

By Proposition 8.2, we obtain the space (Moo, €00, Xoo), and applying Proposition 8.10
implies the pointed dj,—convergence of Theorem 1.15(1). Proposition 8.5 yields the
first claim in (2), that is, that the limit space (Moo, Zoo, Xoo) is W 1P—rectifiably
complete. Finally, we show that (Moo, 800, Xoo) is dp—rtectifiably complete, that is,
that the topology generated by d, o agrees with the topology of M. Indeed, this
follows from the observation that Propositions 8.2 and 8.5 imply that the topology
generated by dj, s, 0., agrees with the topology generated by d), ar. ¢..(1)> Which
in turn agrees with the topology of a smooth manifold M. O

Remark 8.15 Let (Mo, goo, Xoo) be the limit rectifiable Riemannian space obtained
in Theorem 8.1. We have shown that for any suitable compact set 2 C M, we have
convergence along the sequence of the relative dp—distances on M; to dp ¢ o. Itis
worth noting that, for any x, y € M, and for any exhaustion {Q2,} of M, by compact
sets, we have

(8-48) Jim_ dp.goo. 4 (%, ¥) = dp goc. M (X, ).

To see this, we first see directly from the definition that the relative dj,—distance is
monotone decreasing with respect to set inclusion, so the limit on the left-hand side
of (8-48) exists and

(8-49) Jim_ dp.goe. 04X, ¥) = dp goe M (X, 7).

On the other hand, for each a € N consider a function f, € W1:?(Q,) achieving the
supremum in dj, ; o, (x, y); recall Lemma 8.12 and Remark 8.14. Then there exists
an f € WP (M) such that on every compact set @ C Moo, fy — f weakly in
W1-2(Q) and uniformly. Thus, | Mo VS |” dvolg <1 and so f is an admissible test
function for dj, o apr(x, ). Moreover,

8500 1= O = Jim | fa(0) = fa0)] = lim_dp g ,(x. ).

We therefore establish the opposite inequality in (8-48) and conclude.
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8.5 Proof of Theorem 1.19

We now prove Theorem 1.19, which provides a form of stability for rigidity of the flat
metric as the only metric on a torus with nonnegative scalar curvature.

Fix § = §(n, p) according to Theorem 1.15. Any compact Riemannian manifold with
v(g,2) > —§ has volume bounded below by a constant C = C(§), so choose Vy > C
so that the hypotheses of the theorem are not vacuous.

Consider a sequence of tori (Mj, g;) with

V(g 2) = —8, Vol (M) =Vy and R, =—1.
By Theorem 1.15, up to a subsequence, (M;, g;) converges in the d, sense to a
rectifiable Riemannian space (Mo, £00), Which is constructed in Proposition 8.2.

Moreover, M is diffeomorphic to a torus.

By the proof of Proposition 8.2, the Ricci flows (M;, g;(t)):¢[0,1] €xist and, at each
time slice have uniformly bounded geometry,

VOlgi(t)(Mi) <2V, and Rgi(t) = —ll.
By Hamilton compactness [32], after passing to a subsequence, we have convergence
(M;, gi(t)) > (Mo, g0o(t)) in the pointed C *°—~Cheeger—Gromov sense so that g0 ()
is a solution to the Ricci flow on Moo x (0, 1] with Rg__ () = 0 for all 7 € (0, 1]. So, by
Schoen and Yau [45] and Gromov and Lawson [28], we see that goo(?) is a flat metric
on the torus for each 7. Since (Moo, g00(?)) (0,17 is a Ricci flow, it follows that each

goo(2) is the same flat metric.

Furthermore, from the proof of Proposition 8.2, we know that the metric coefficients of
Zgoo(t) converge in L? to g, the limiting rectifiable Riemannian metric. It follows
that g is the flat metric on M. O

9 Examples

In this section, we will construct various examples of sequences of complete Riemannian
manifolds (M;, g;) with bounded curvature that satisfy the almost nonnegative entropy
and scalar curvature assumptions of our main theorems. In each example, the d), limits
of our spaces will be either Euclidean space or a flat torus, and these limits do not
agree with their Gromov—Hausdorff and intrinsic flat limits.
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9.1 The basic building block: a two-parameter family of metrics

We begin by constructing a two-parameter family of metrics on R”*! for n > 3, which
serves as the basic building block for constructing all of our examples. Let /2 denote
the standard metric on S”~!. We define the two-parameter family of metrics g5,e On
M =Ry xS" ! xR by

(9-1) 8s.e =dr’ + [ (Nh+ g5 (r)dx*.

The warping factor f will be used to identify R™ x S”~! topologically with R”;
however, geometrically this will be done in a way to add a large amount of positive
curvature to the space. The warping factor ¢ will be constructed so that it will slowly
degenerate as r — 0. If this degeneration is sufficiently slow we will see that we can
preserve the positive scalar curvature, and, much more challenging, the lower entropy
as well. If ¢(0) = 0, then this would imply that the line {0"”} x R has a fully degenerate
metric g along it, in particular dg ((0", s), (0", 7)) = 0 for any two points along the line
{0"} x R. The parameters €, § > 0 are built so that we may approach such a degenerate
limit smoothly and in different ways, depending on our end goal.

The functions fs ¢ and @5  are now precisely defined in the following way.

Definition of ¢5 . For € > 0, let ¢: R4 — R4 be a smooth function such that

€ forrf%e,
Yy for ;e<r<2e

(9-2) Ge(r)=13r for2e <r < é,

1) f0r§§r§2,
1 forr > 2,

where ¥;(r) are smooth nondecreasing functions with 7 <0,

(9-3) WP <8eF+1 and |yP| <4k for k=1,2.
We then let g5  : R4 — R be defined by

(9-4) ¢5,6(r) = pe(r)’.

Observe that @5 ¢ satisfies the properties

(/’5 € (”)
(/)8,6(7')

905 E(”)
(/)S,e(r)

¢5.c(r) 5 508
908,6(7')

_ 508 _ G

(9-5)

l
r
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Remark 9.1 As we have defined the two-parameter family of metrics, when € = 0 the
corresponding metric g5  vanishes at r = 0. In fact, we can modify the construction so
that g5 |,—o agrees with any prescribed singular metric /(x) dx? along r = 0. More
precisely, given fixed 8, € > 0 and a smooth function /: R — [0, +00), we could replace
@s.e by the function ¢g ((r, x) = [1 — De ()21 (x) + ¢e(r)® so that @s,e(ro. xo) — 1
when ro > 0 and @5 (0, x9) — /(xo) pointwise as § — 0.

Definition of f5 . Let {: Ry — R, be a smooth nonincreasing cutoff function such
that {(x) =1 on [0, 1], vanishes on [1, co) and satisfies [{’|? + || < 100.

Define fle to be the solution of the ODE

9-6) { Jse= [1 =105 (1 =255 )
J5,6(0) = 0.

In this way, the corresponding metric dr? + fszeh coincides with the Euclidean metric
on R” for r sufficiently small. Finally, we define

9-7) J.e(r) = z(%r)ﬁ;,e(r) +(1- E(ir))r,

so that f5 ¢ is equal to the solution to the ODE for r < 2, the function r for r > 4, and
interpolates smoothly in between.

Crucially, this two-parameter family of metrics satisfies a lower bound on entropy and
scalar curvature that is uniform for all € and § sufficiently small. Geometrically, what
is happening is that the warping factor is changing so slowly that even though the
actual metric geometry may be behaving very poorly, in some weaker sense (d,, sense!
though we will not directly appeal to this) the geometry looks very Euclidean at all
points and scales. This sense of closeness to Euclidean space will be good enough to
force the small lower entropy bound on the example.

Theorem 9.2 Fixn > 3,1 > 0 and L > 0. There exist €y > 0 and §o > 0, depending
onn, n and L, such that the following holds. For all € < €y and § < &, the metric g5 .
defined in (9-1) satisfies

(9-8) Rg, . > —1,
(9‘9) V(gs,e, L) = —n.

The scalar curvature lower bound and entropy lower bound of Theorem 9.2 will be
established in Sections 9.3 and 9.4, respectively.
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Remark 9.3 The metrics g5 . are defined on an (n+1)—dimensional space, so fixing
n > 3 means that our examples are of dimension 4 or higher.

Let us again discuss the examples geometrically, this time with more of a focus on
how each parameter behaves in the construction. One can think of the metric g5 ¢
defined in (9-1) in the following way. The portion dr2 + f52,€ (r)h of the metric g5 ¢
agrees with the Euclidean metric on R” far from 0 € R”, while in a neighborhood
of 0 € R”, it is a smoothed-out cone metric on R” with cone angle proportional to §.
The parameter € governs the scale at which this cone metric is smoothed out. This
component can roughly be thought of as Euclidean R”, although taking the smoothed
cone in place of R” provides a crucial positive scalar curvature contribution in order to
guarantee that (9-8) holds as long as n > 3. The component (pg’e (r) dx? adds a fiber
at each point on (R”, dr? + f52’E (r)h). Away from 0 € R”, these fibers are Euclidean,
but for  small, the fibers become increasingly degenerate.

If we choose € = § and let € — 0, then the metric tensors converge smoothly to
n+1
i=1
small compared to §, then the limiting metric will be Euclidean away from a ray

the Euclidean metric goo = lime_q gee = > i, (dx')?. However, if € is relatively

¢ ={x:x;=0fori=1,...,n}in R”*! and ¢ will be collapsed to a point along

1/2

the sequence. For instance, if we choose § = (—loge)™'/“ and let € — 0, then in a

pointwise sense, lim¢_s0 g5(),e = > (dx)? + (1 = x,—=0)(dx"T1)2. In both of

p
loc

for all p > 1, while in the latter case the Gromov—Hausdorff limit is very different; see

these two examples, the constructed sequence converges to the Euclidean metric in L

Example 9.4 below. This will correspond to our general d), e-regularity theorem when
the entropy and scalar curvature have lower bound converging to 0.

9.2 Examples constructed from the main building block

In the following, we will make use of the metrics gs  with § = (—log e)_l/ 2 to
produce sequences of metrics whose d), limits and Gromov—Hausdorff limits are
entirely different. First, we go into greater depth concerning the basic metric g5 . with
§ = (—loge)~1/2. We will take n = 3 since this is the borderline case. The case of
n > 3 can be constructed similarly.

Example 9.4 (collapsing along a line in Euclidean space) Letn > 3. By choosing

8 = (—log e)_l/ 2 in (9-1), we obtain a sequence of metrics which degenerate along a
ray in R”*! and remain the flat metric away from it. In the Gromov—Hausdorff limit,
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the ray collapses to a point. On the other hand, from construction, it is easy to see that
ge converges to the Euclidean metric in LY (R"*!) for all p > 1. By Theorem 1.15
(and the proof of Proposition 8.2), the pointed d, limit is the flat Euclidean space. In par-
ticular, notice that Theorem 1.7 implies that volg, (Bp,gé (0, 1)) = volg,.. (Bp.euc(0. 1))

as € — 0, while the volumes of metric balls are tending to infinity:

(9-10) volg (B¢ (0,1)) — 4o0.

Indeed, for € sufficiently small, Bg, (0, 1) contains the Euclidean strip
{(x.») eR"xR:%f x| <1 |yl < é}

Since g converges smoothly uniformly to the Euclidean metric away from |x| = 0,
we see that (9-10) holds.

We see from the above example that the metric degeneration which causes the metric
collapse occurs along a line in R*. More generally, we conjecture that this metric
collapsing can occur only along codimension-3 subsets along converging sequences.

Example 9.5 (d,—convergence does not hold for all p) In contrast to Example 9.4,
in this example we only pass € — 0 but fix § > 0 small in the construction of (9-1). The
corresponding sequence of metrics converges pointwise, and in L{;C for p less than
some p1(8), t0 goo = Zcone + r8 dx?, which degenerates at ¥ = 0. By Theorem 1.15
(and the proof of Proposition 8.2), the sequence converges in the pointed d, sense to
(R g0o, 0™) for p €[n+2, po(8)]. However, this d,, convergence to (R 11, g, 07)
does not hold for all p € [n + 2, 00). Indeed, for p sufficiently large, the metric space
(R d, 4., 0") is topologically distinct from the underlying topology on R”*1,
and in particular is not d,—complete.

This illustrates that § must be taken to depend on p in our e-regularity theorems, and if
we only assume a lower bound on the entropy lower bound and scalar curvature along
the sequence, then the limiting rectifiable Riemannian metric g, may have an inverse
that is only bounded in L?°

loc

for some po(§) > 1 but not all p > 1.

Example 9.6 (collapsing lines in Euclidean space) In this example, we use the
building block of Example 9.4 to construct a sequence of metrics on R**! for n > 3
whose Gromov—Hausdorff limit is the taxicab metric, while the d), limit is the flat
metric on R”T1. The basic idea of the construction is to cut off the building block of
Example 9.4 to obtain a degenerating metric on a tubular neighborhood of a line in
Euclidean space, and to glue this metric into tubular neighborhoods of an increasing
dense collection of lines in R *1.
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Let us now go into the details of this construction. Let n > 3. First, we obtain a
collection of disjoint strips (ie tubular neighborhoods around lines) {S;, j (r¢)} fori € N
and j €{1,...,n+ 1} in the following way. Define the projection 71 : R”+! — R” by
m1(x) = (x2,...,Xp+1), and let 7r; be defined analogously for each j =1,...,n+ 1.
Next, foreach j =1,...,n+ 1 and (kq,...,k,) € Z", we consider the collection of
points {zg, . k,.jt CR" =m; (R"*1) with coordinates given by

(9—11) Zkl’_”,kn’j = ((1007’1 + 10j)V0k1, ey (1007’1 + 10])V0kn)

Up to reindexing the countable set of (ky,...,k,) € Z" byi € N, we let {z; j} =
{Zky,....kn,jt- Now, let Bgrn(z,r) denote the Euclidean ball in R” and define the
strip S, j (ro) of radius r¢ around the line {7;(x) = z; j } by

(9-12) Si,j(ro) = 7 (Brn (zi,j. o))

It is easy to check that the collection of strips {S; j (r9)} are 200nr( dense, in the sense
that for any x € R"*!, there exists S;,j such that distg,, (x, S;,j) < 200nro, and that
these strips are pairwise disjoint.

Now, with the collection {S; ;(r¢)} of disjoint strips in hand, and for any r > 0 fixed,
we use (9-1) to define a metric g, on each strip in the following way. Up to a rigid

motion of R+, it suffices to define g, on the strip & = 7!, (Br=(0.70)). Let

3

§ = (—log €)~1/2 and take € depending on rg to be sufficiently small that Rg, . > —rg

and v(gs.e, 2ry 2) > —ro by Theorem 9.2. Then consider the rescaled metric
©9-13) aro = dr o+ (§r0)" 12 (3o )+ 02 () st

where € = €(rp), which satisfies R > —r¢ and v(gs,,2) > —ro. Note that after
this rescaling, the metric g,, agrees with the Euclidean metric outside of the strip
Bg,.. (£, 19). Finally, by restricting this metric to the set |z| <o, we define the metric g,
on the strip S.

Finally, let g,, be the metric on R"*! be defined by

_ if Rn-ﬁ-l S
©-14) Bo = {5 T e
gro if x € Si’j (I’()).

Direct computation shows that g,, converges to gga+1 in LY (R"*1) for all p > 1.
In particular, this implies that Volgro (R2) = voleye () for any compact set Q C R”+1,
By Theorem 1.15 (and the proof of Proposition 8.2), the sequence converges to
(R, geuc, 0™) in the pointed d), sense for all p € [n + 1, 00). However, in the pointed

Gromov—Hausdorff topology, this sequence converges to the taxicab metric.
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To roughly explain this, consider the metrics (R"*!, &) = (R"*! e72g,,). Here,
€ = €(r) is the parameter chosen above. Clearly the metrics (R”*!, g.) are isometric
to (R"*1,g,,) by a Euclidean dilation. Let {;; = nj_l (zij) denote the lines we have
glued around. Then, roughly, we have on each such line ¢;; that g = 1 in the direction
of this line, and that g, ~ ¢~2 in all other directions and at all other points. We also
have, in coordinates, that these lines are o(¢)—dense. Clearly, a path of minimal length
from x to y is now one which stays on these lines as long as possible, and moving
from one line to another now causes an error which is approximately € ~'o(e) = o(1).
In particular, we see that dg_(x, y) = > |x; — yi| + o(1). Further, as € — 0 we see a
minimal path is any path which is always moving in coordinate directions (specifically,
along our increasing dense collection of lines £;;). Hence, (R”, g¢) is converging to
the taxi-cab metric.

Next, we construct some examples in the compact setting.

Example 9.7 (collapsing circle in torus) In this example, we construct a sequence
of metrics {g;}ien on the torus T”*! for n > 3 so that each g; coincides with the
flat metric away from a shrinking tubular neighborhood of a fixed S' ¢ T”*!. The
sequence g; becomes degenerate along this S, and in the Gromov—Hausdorff limit, the
S collapses to a point. In particular, the metric space arising as the Gromov—Hausdorff
limit is not topologically a torus. The d), limit will be the flat torus for any p > n + 2.

We begin the construction. Fix n > 3 and ro > 0. Let g,, be the metric on Euclidean
space R"T1 defined in (9-13) in the previous example, which we recall agrees with the
Euclidean metric outside the strip By, (¢, o) and is translation invariant in the X,
direction. Now, consider the torus T"*1 = R"*1 /771 equipped with the metric g,
given by g, descending to the quotient.

We now let ry — 0. For every rg, the smooth Riemannian manifold (T”*+!, gro)
satisfies RErO > —rg. Moreover, for any § > 0, there exists 19 = 1o(§) such that
v(gfiat, To) = —%8. So, arguing as in the proof of Proposition 9.12 below, we find that
for ro <7o(6), we have v(gy,, 7o) > —4. We directly see that the metrics g,, converge
in L2 for every p to the flat metric on T”+!. Applying the proof of Theorem 1.7, we
see that (T"+!, g,.) converges to (T"*!, ggy) in the d, sense for all p € [n+ 2, 00).
On the other hand, in the Gromov—Hausdorff topology, the S factor corresponding to
the projection of the degenerating line £ collapses to a point in the limit. In particular,
the metric space arising in the Gromov—Hausdorff limit is not topologically a torus.
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By replicating the construction of the degeneracy, we can construct examples so that the
sequence of metrics on the torus T”*! converges to a metric space Y5 withk <n+1
or even k = 0 (a point) in the Gromov—Hausdorff topology.

Example 9.8 (collapsing of T”*! to T") In the previous example, Example 9.7, we
constructed a sequence of metrics on T”*! which degenerate along a single S! inside.
In this example, we will modify the construction to obtain a sequence of metrics g; on
the torus that degenerate along increasingly dense sequences of parallel copies of S'!
and remain flat away from them. In the Gromov—Hausdorff topology, the (T"*1, g;)
collapses to the n—dimensional flat torus T”. In particular, the Gromov—Hausdorff
limit is one dimension lower than the dimension of each manifold in the sequence. On
the other hand, the limit with respect to d,, is the flat torus T"*! for p > n + 2.

More precisely, we again fix an (n+1)—dimensional flat torus for » > 3, identified with
[0,1]"T1/~ and with coordinates (xi,...,X,4+1). Now consider a maximal 1007
dense set {z;} in [0, 1]"F1/~.

Let Sl-1 ={(x1,...,Xp) =2z;} C T"*! and let S; be the strip around Sl.1 of radius rg
as in the previous example. We let

Zeue for x € THH!1 \ U Si(ro),

9-15 g, =
( ) Ero {gro for x € §;.

Here, g/, is the same metric on a strip around S I as defined in Example 9.7 above.
For every rg, the smooth Riemannian manifold (T”+1,§r0) satisfies R§z~o > —ro,
and for every § > 0, there exist 79 = 7¢(8) and 7y = Fo(§) such that for ry <7y, we
have v(gr,, 70) = —§. In the Gromov—-Hausdorff topology, (T"*!,g,,) converges
to the n—dimensional flat torus T” with the usual distance as ro — 0. On the other
hand, (T"*!, g,,) converges to the (n+1)—dimensional flat torus with respect to dp—
convergence for each p > n + 2 by (the proof of) Theorem 1.7.

Example 9.9 (collapsing T”*! to a point) In this example, we further modify the
construction in Examples 9.7 and 9.8 to produce a sequence of metrics on T"*!
such that the sequence collapses to a point in the Gromov—Hausdorff and intrinsic flat
topologies. Once again, the d), limit will still be the flat torus T”*! for p > n +2. The
basic idea of the construction is to choose an increasingly dense collection of strips
around copies of S' C T”*! with all different orientations, in a similar fashion to
Example 9.6, and then to paste the degenerating metrics of Examples 9.7 and 9.8 into
each of these strips.

Geometry & Topology, Volume 27 (2023)



330 Man-Chun Lee, Aaron Naber and Robin Neumayer

More specifically, we begin with the sequence of metrics g,, on R”*1 constructed in
Example 9.6. Without loss of generality, we may assume that rq is always chosen so
that for each j = 1,...,n + 1, we have that 1/(100n + 10/ )rg is an integer. With this
assumption, the metrics g, are invariant under the Z™+1 action on R"*!, so we may
consider the quotient T?T1 = R”*+1 /771 equipped with the metric descending from
gr, under the quotient, which we again denote by g,.

The smooth Riemannian manifolds (T"*!, g,,) satisfy Ry = —r¢, and for any § > 0,
there exist 79 = 79(8) and 7y = 7o(§) such that for ry < 7o, we have v(g,,, 7o) = —§,
provided €(rg) is taken to be sufficiently small depending on ry. Sending rg — 0, the
metrics converge in the Gromov—Hausdorff topology to a point. To see this, we claim

that for any x, y € (T"*1,g,.),
(9-16) distgr0 (x, ) <10 x 200n%rg + ne(ry).

Indeed, let .S l.lj denote the S! factor in T”*+! that is the projection of the line nj_l (zij) €
R”*1 in the construction of Example 9.6. Then we have distz, (».U Silj) <200nr,
and distgro (x, U Sl-lj) < 200nry because the collection {Sl.lj} is 200nrg—dense. Fur-
thermore, for any two points X, y € | S l.lj, we have distg;ro (X, 7) <ne(rg) +x200n2ry.
Furthermore, by [49, Corollary 3.21], (Tn+1, gr,) converges to the zero current in the
intrinsic flat sense. However, we directly see that the metric tensors converge to the
flat metric on T”*! in L? for all p < co. Using this fact and appealing to the proof of
Theorem 1.7, we see that (T"+1, gr,) converges to the flat (n+1)—dimensional torus

in the d, sense for each p € [n 42, 00).

9.3 Scalar curvature of the metrics g5 .

In this subsection, we show that the negative part of the scalar curvature of gs . can be
made arbitrarily small if §, € are small enough. More precisely, we have the following.

Proposition 9.10 For any n > 3 and n > 0, there exist ¢y > 0 and 69 > 0 depending
on 1 such that for all € < €¢g and § < §y, the metric g5 . defined in (9-1) satisfies
Rgé,e z -

To begin with, we need the following expression for the scalar curvature of a metric g
taking the general form of (9-1).
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Lemma 9.11 Let M =R, xS ! xR and let h denote the standard metric on S"~!.
For any metric g on M taking the form

(9-17) g=dr*+ f2(r)h+ ¢*(x,r)dx?,

the scalar curvature Rg of g is given by

n—1 (n—4)(n—-1) nay 29" 2m—=1De' [’
(9-18) Ry = R—(fHN+ —F—L[1 = ()] - - — T,
e 12 ¢ of
Here, the prime denotes a derivative with respect to r.
Proof Leti, j,k,... be the coordinates on S™" 1. As noted in the statement of the

lemma, for a function F we will use F’ to denote 9, F. We let F, denote 0, F. We
first compute the Christoffel symbols that will be needed in our computation. First, we
have

9-19) TB =180, g4c +34grc —dcgra) = 1250, g4c
/
Lst ifAd=j B=i,

J
_1
- — ifA=x,B=x,
®
0 otherwise.

Next, note that
(9-20) Tf = 38" (9igji +0jgir — 018ij) = 3h* @ihjy + 0jhig — drhij) = TF;,
where fllj denotes the Christoffel symbol for the standard metric /4. Next, we compute
I =—38"0rgij =—ff hij.
(9-21) I, =-10,0=—¢¢,
I¥ = 1™ (xgux + 0xgxx — Oxgxx) = %x-
The remaining Christoffel symbols vanish: Fl.xj =I;. = Fix =0.
With these Christoffel symbols in hand, we compute the Ricci curvatures Ry, R;;j
and Rxx. We have

(9-22) Ry = 94T —0, T4 +T45TE -TE T4

rr

= 0—(3, T, +0,T% ) +0—(T/. T/ +TF ¥

riori

n—1 ’ / n—1 N 2 N2 " "
_ f) (90) (f) (o)~ S" e
—_ ar - _ar - | — - - - - - .

; (f ¢ ; f (=1) /e

=
l ¥
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For R;;, we have
(9-23)  Rij = 04Tf{=0; T4+ T{pT i -T T,
= Rij+(0,T};+0x 1) —(0; T}, +9;T}%)
(O T+ T T+ T4 T AT AT
—(C 4T T+ T AT g+ T AT )
= Eij+3rFirj+F{‘j(F,rk+F§k)+Firj(F11§r+F§r)—( ;krfi‘i'rjkrrirk)

~ o o VA4
= Rij—(f")hij—ff"hi7+(=f["hij) [(”l—l)?-i-; +2(f")?hij
! /
= Rij—hij (ff"+(n—2)(f/)2+%)-
Here, ﬁ,‘ 7 denotes the Ricci curvature of /. Finally, for Ry, we have
©-24) Rux = 04T — 0T + T4pT0 — T4 Ty
= (0T + 0xT3y) = OxT) + (Tiy T4, + THT )
B B
- (Fxr ng + Fxx ng)
= (—p¢" —(¢)) + To (T}, + T + T, TX,
- (F))ccr F)rcx + F;xrfx + F))ccxr))ccx
= (09" — (@) + L, I, —TX, Ty
/
= (—p@" = (")) + (n— 1)(—<ﬂ<p’)7 +(¢')?
o' [’
S

Therefore, using the fact that R;; = (n — 2)h;;, we have
(9-25) R=g""Ryr +g" Rij + 8" Rux

=—p¢" —(n—1)

f// (p//
=—(m-1)—-
(n )f1 - .
+ Fhij (Eij — hij (ff" +(n=2)(f)* + %
1 " o' [’
_F(W +@m—1) 7 )
=_(n_l)f_”_2<p” (=D S
S of )
n=2 f" " or
e N e
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__2(n—1)f”_2<p” n n—2)(n—1)
- f ¢ f?
Cm=Dm-DUN? 20— 1S

I? of
C2=1)f" == 2= S 2"
- 7t U of ¢

Finally, to arrive at (9-18), we note that 21"/ f = (f2)"/f? —2(f")?/f2, and so

20=Df" (=D 2= ()

(9-26) +
f /? I?
n—1 2(n—1)
= LU= T -
Rearranging this expression, we arrive at (9-18), completing the proof. |

With Lemma 9.11 in hand, we are now ready to prove Proposition 9.10.

Proof of Proposition 9.10 For notational convenience, we will omit the indices § and
€, letting g, f and ¢ denote g5, fs.. and @5 ¢, respectively. We will assume that
€ <¢€g and § < 8y, where €g, 8g < % will be fixed within the proof. By Lemma 9.11,
the scalar curvature of g takes the form

n—1 (n—4)(n—1) 20" 2(n—1)¢ [’
927) R= 2— (SN — - (- -
(9-27) f2[ (f)"1+ 72 1=/ p of
=1+ I+ II+IV.

We estimate the scalar curvature from below in three different intervals of » in the cases
that follow. First, recall from the definition (9-7) of f that

]7 (r)y forr <2,

r forr > 4,

(9-28) fr)= {

where f is the solution of the ODE (9-6). We first collect some useful estimates for f .
For notational convenience, we write o = 10*18(1—{) and o¢ = 10*x§ in the definition
of (9-6) so that f " =1 —0 where o increases from 0 to o9 = 10*n§. We will assume
that §¢ is small enough that gy < %. Since f (0) = 0, by integrating, we find that

(9-29) %r<(1—ao)r§f(r)§r and 1—0g< f/(r)<1.

Case 1 (r < %e) In this case, ¢(r) = ¢, so terms III and IV in (9-27) vanish, and
f = f thanks to (9-28). We first consider the case when n > 4, since II is clearly
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nonnegative by (9-6). By (9-6) and (9-29), if §y is sufficiently small that ¢ < 1, then

(9-30) = () = 3%;9 — 1=
2(n—1)2—0)c 2(m—1)o
T T

Here we have used ¢’ > 0 and hence R > 0 when n > 4. It remains to consider n = 3.
In this case, we have

(9-31) I+H=fi( —(A+ (N )_F( =2/f" = (/"%

_fghu—w>_ﬁ

Hence we also have R > 0 when n = 3 as long as §g is small enough.
Case2 (r €[1e.2]) In this case, we still have / = 7 by (9-28) and o = 10%1§ in

this range. Therefore by (9-29) and the computation in Case 1, for # > 3 and sufficiently
small §,

(9-32) frs O 5 100
R
On the other hand, by (9-5), we see that
2¢" 1006
(9-33) m=-=>__"2
[0 r

Similarly, using (9-5) and (9-29) we find that
2(n—1) f¢’ - 1200n6
fo = 2

(9-34) IV=-

Hence, R=14+114+ 1141V > 0.

Case 3 (r > 2) In this case, ¢ = 1, and so terms III and IV in (9-27) vanish.
Furthermore, we directly see that I = I = 0 when r > 4, since f(r) = r there. So it
remains to show that I + Il > —pn in the case when r € (2,4). Note that for r in this
interval, we have from (9-29) that

(9-35) SO =3 O+ =¢Gr))r=tr=1

Therefore, it remains to estimate |2—( £2)”| and |1 —( //)?| for r € (2, 4). By rewriting

2— (A" =@?= 3" and 1 —(f)? = (r')*> = (f")?, it suffices to estimate (r — f)".
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By the construction of ¢ and (9-29) for r € (2,4),

©-30) |/ =1 = [¢"(3r) (T =0+ [ Gr)(T =) [+ [s(Gr)(f =)'
<10|f —r| + 10| /' — 1| < 10005.

Combining with (9-29), we conclude that || /' —r[|c2((2,4y) = Cndo- Hence for r € (2, 4),

(9-37) R=I1+1I+4+1I14+1V

> (=10 = /)| = (=4 (=11 = (f)? = =Cpdy.
Therefore, if §y is sufficiently small, then the right-hand side will be larger than —n.
This completes the proof. a

9.4 Entropy lower bound for the metrics g5 ¢

In this section, we will show that the entropy of the metric g5 . on R”*1 can be made
arbitrarily small by taking € and § to be sufficiently small for n > 3.

Proposition 9.12 For any n > 3 and n, L > 0, there exists an €y > 0 such that for any
€,0 < €, the metric gs ¢ defined in (9-1) satisfies

(9-38) V(gs,e- L) = —.

Before we give the proof of Proposition 9.12, we start with some basic notation and
preliminaries. Throughout this section, it will be convenient to rescale the metric

1

by v~ ! so that we only need to estimate (g, 7) = u(z~'g, 1). Given a minimizer f;

of u(t~1g, 1), we define the associated function

Uy = (471)_”/4 exp{—%ft},
which satisfies |’ M u? dvol,— ¢ = 1. In a slight abuse of terminology, we will refer
to this function u, as a minimizer of u(t~!g, 1). A minimizer u, of u(z~'g,1)is a
positive smooth function satisfying the Euler—Lagrange equation

(9-39)  —4Aur+ Rur—2uzInuz—(3(n+1)log(dm)+n+1)+up(x " g, 1))u: =0,

where the Laplacian and scalar curvature are with respect to —!g. On Euclidean
space R”T1 it is well-known that the minimizers « of (t(gecuc, 1) are uniquely given
by the Gaussian functions

(9-40) u? = (4m) "D 2 expl Ly — p2},

where | - | is the Euclidean metric and y is a fixed point on R”*1. Indeed, this is precisely
the log-Sobolev inequality on Euclidean space. The following lemma shows that these
functions are in fact the only bounded W -2 subsolutions of (9-39) on Euclidean space.
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Lemma 9.13 (characterization of solutions on Euclidean space) Fix u < 0 and let
u € WH2(R™**1) be a bounded solution to

(9-41) 4Au+ulogu® + (L(n+ 1) log(dn) + (n+ 1) + p)u =0
in R*T1 with

(9-42) / u?dx <1.

Then p = 0 and u takes the form (9-40) for some y € R

Proof By [54, Lemma 2.3], a bounded solution u of (9-41) with [|u|| 2(gn+1y < 1 has
Gaussian decay in the sense that for any y € R”*!, there exist positive numbers rq, a
and A depending on y such that

u(y) < Aexp{—alx —y|*} when |x — y| > ro.
In particular, multiplying the equation (9-41) by u and integrating over R”*!, we are
justified in integrating by parts to find

(9-43) 0> / —4ulAu—ulogu® — ((n+ 1)+ L(n + 1) log(dn) + p)u* dx
Rn—i—l

= / 41Vul? —u?* logu® — ((n + 1)+ %(n + 1) log(4m) + ;L)u2 dx.
Rn+l

Now, set w = u/|[u|| 2(gn+1y s0 that [|w]| 2gn+1y = 1. Divide (9-43) by ”””iZ(RnH)
to see that

4V [ —w? logw? — w? log [ 22 g1,

(9-44) 0= /

o —((+ 1)+ 5+ 1) log(dm) + p)w? dx
B /R,m 4Vl —w?logw? — ((n+ 1) + 3 (n + 1) log(4m))w? dx

—log |ul|22 g1y~ 1
> —log ”””iz(Rn-H) — MK,

where the final inequality is obtained by applying the Euclidean log-Sobolev inequality
to w. By (9-42) and 1 < 0, we conclude that « = 0 and ||| 2(gn+1) = 1. Then from
(9-43), we see that u is a minimizer of the Euclidean log-Sobolev inequality and so

u? is a Gaussian as in (9-42). This concludes the proof. O
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The following lemma ensures the existence of the minimizer of the entropy for (M, g5 )
with exponential decay at infinity.

Lemma 9.14 (existence and estimates for extremals) Fixe,§, L > 0andt € (0, L)
and let g5 . be the metric defined in (9-1). A minimizer u of the entropy (™! gs.e: 1)
exists. Furthermore there exist constants a, A > 0 and a point y € M depending on §, €
and t such that u, satisfies

(9-45) u(x) < A4 exp{—adz(x, )}

Here d(-,-) denotes the geodesic distance with respect to 7~ ! g5.e-

Proof The existence of minimizers follows from minor modifications of the existence
proof of [54, Theorem 1.1(a)]; we therefore only outline these modifications. As in the
proof of [54, Theorem 1.1(a)], we let v; denote a minimizer of the entropy restricted to
the ball Bg (0, k) (here we let g = 71 8s,¢) and let xz be a point where vy achieves its
maximum. Viewing g as a metric on R” xR with coordinates (z, y) € R” xR, the metric
is translation invariant with respect to the y component. Hence we may assume without
loss of generality that x; = (zx, 0) for all k. There are then two cases to consider:
either the sequence {zy} is bounded in R”, or it is not. In the case that the sequence
is bounded, the existence of a minimizer follows just as in [54, Theorem 1.1(a)]. The
case that {z;} is unbounded is even simpler than the corresponding case in [54]: since
p,(f_lgg,é, 1) < 0, then arguing as in [54, Theorem 1.1(a)] we obtain a bounded
W12 solution to (9-41) with 1 < 0 on R”*!, a contradiction to Lemma 9.13. Finally,
the Gaussian decay is established in [54, Lemma 2.3]. O

As usual, let g5 . be the metric defined in (9-1). In the next lemma, we show that the
rescaled metric 77! g5,¢ 1s uniformly close to the Euclidean metric in any compact
subset centered at X, after appropriate change of coordinate. To do this, we define
an explicit diffeomorphism centered at X that takes into account how and in which
direction the metric is degenerating.

In the application, we will take X to be a point such that u,, the minimizer of
/L(r_lg(g,é, 1), achieves its maximum at X. Thanks to the symmetry of gs., we
can and will assume without loss of generality that y = 0 and that Z = 7 e for a fixed
unit vector ¢ € S”~! C R”. For this reason, in what follows we will always assume
X is as above. Before giving the precise statement, we would like to introduce some
notation. Consider §, ¢ > 0 and 7 > 0 fixed. Let £ € R” x R be the line defined by

(9-46) L={0",y):yeR]}.
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For X = (re,0) € M = R" x R, where ¢ € S"~! C R”, we define an associated
diffeomorphism @, 7 5 .: R” xR — M by

1/2
9-47 s ()= (22476, — )
( ) r,r,B,e( ) ( 908,6(7+71/2)y

Notice that @, 7 5 .(0) = X. In principle, there are two rescalings performed by ®, 7 5 .
Firstly, we rescale the coordinates centered at X by t to compensate for the scaling of
the metric by t~!. Secondly, we additionally rescale the y coordinate to account for
the degeneracy of ¢s . Under the diffeomorphism, the image of £ where the metric

—1/2

degenerates will play a key role. Let p =t 7 and denote the pullback of £ as

(9-48) U= @}, 5. (0) ={(—pe.y): y €R},

In particular, if p tends to infinity along the sequence, then the degeneracy {is pushed
off to infinity and becomes invisible in the limit. On the other hand, if p stays bounded,
we will show that the singularity of the sequence of rescaled pullback metric is still
mild and close to the Euclidean metric away from ‘.

The next lemma shows that the pullback of 77! gs,e under @ 7 5 . converges to the
Euclidean metric away from £ as §,€ — 0.

Lemma 9.15 (good charts) Fixn > 3 and L > 0, and consider sequences €;, §; — 0,
7 € (0,L] and i € (0,00). Let p; = 7; /2
Define {0 = {(—poo€, V) : V € R} if poo <00 and Lo = @ if p = 00.

7; and assume that p; — poo € [0, 00].

*

Then the metrics g; := 7, 7. . (rl._1 85, ;) converge to the Euclidean metric ggn+1 in

(s (R 1 \Zoo). Furthermore, in the case when pso < 00, we have
SN
. z+pieil \'
(9-49) mln{%, (|—,01_1|) }geuc <gi(z,)) = Zeuc-
1+ pi
Here |- | denotes the Euclidean norm on R”",

. . . . _1
Proof For convenience, we omit the index i andletp =¢s .. Let g = CID:‘,F’ 5. (7' g5.¢)-

Then at a point (z, y) € R” x R, we have

(9‘50) g|(z,y) = &cone, f,T (Z+/7)+¢2(|Z+/7|) dyz’

where gcone, £, denotes the pullback of the cone metric on the R” component and we set
~ o(t1/25)

(9-51) P(s) =

Ce(r/2(1+p))
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It is clear that the cone metrics geone, £, converge smoothly to the standard Euclidean
metric on R” on any compact set as i — +o00. Therefore, to show the desired smooth
convergence of the metrics away from £, it remains to show that

(9-52) @(|- + pel) — 1

smoothly on compact subsets of R" \ {—pooe}. To this end, note that ¢ satisfies
10" (s)/@(s)| <508/s by (9-5), and that ¢(1+ p) = 1 by definition. In this way, we have

_ L |z+pel N/(S)
o5 loeptz+peni=|[ T 8 a
1+5 @)
2402l 505 pe
< / —ds :505‘10g(|z+p_e|) .
1+5 S I+p

To establish (9-52), and hence the desired convergence, we consider two cases.

Case 1 (poo =00) When p = oo, it is clear that | - +p;e|/(1 4+ p;) — 1 uniformly
on compact subsets as i — oo, and hence @(| - +p;e|) — 1 uniformly on compact
subsets by (9-53). The higher-order convergence follows analogously by using (9-5),
and thus we establish (9-52) in this case.

Case2 (pso < o0) Fix y € (0, 1]. For any z € R” in the annular region defined by
(9-54) ¥ (14 Poo) = |2 + ool =¥~ (1 + Pic).
we see from (9-53) that |log @(|z + pe|)| < 25|log y| for i sufficiently large. Expo-

nentiating both sides, we discover that

(9-55) y? <3(z + pel) < y~%.

So, as € and § tend to zero, we see that ¢(|z + pe|) converges uniformly to 1 for all z
in this set. The convergence of the higher derivatives of ¢ follows in the same way
thanks to (9-5), and we see that (9-52) holds in this case as well.

Finally, we show (9-49). The upper bound is immediate from the construction of the
metrics. To establish the lower bound in (9-49), we note that, by construction,
(9’56) 8cone, f,T > %gR”

Next, notice that for any z such that |z+pe| > 1+ p, we have ¢(|z+pe]|) > 1 because ¢ is
a monotone increasing function. On the other hand, for any z with 0 < |z + p€| < 1+ p,
we exponentiate the left- and right-hand sides of (9-53) to find that
—_\$
~ __ |z + pe]
(9-57) o(|z + pel) = (—_ .
I+p

Together, (9-56) and (9-57) establish (9-49). This concludes the proof of the lemma. O
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In the proof of Proposition 9.12, we would like to show that the entropy u(t~!gs ., 1)
converges to 0 for any t € (0, L] as €, § — 0 by analyzing the limit of the corresponding
sequence of minimizers. A key point will be to show that the limit is nontrivial, for
which we need the following uniform mean value inequality.

Lemma 9.16 (mean value inequality) Fixn > 3 and L > 0, and consider sequences
8i,€i = 0,1 € (0, L] and 7; € (0,00). Let u; be a minimizer of,u(ri_lg,;i,ei, 1), let
D, 7 8 ¢; be the diffeomorphism defined in (9-47), and let v; = q%fnﬁi,ei Uj.
Suppose that p; = 1;/ rl.l/ s Poo for some poo € [0, +00). Then there are N =
N1, poo) € N and C(n) > 0 such that if i > N, then for all x € R"T! we have

1/2
(9-58) Vi ll oo (Buye (x,1/4)) = C(")(/B v} dVOIgi)

euc(xyl)

for i sufficiently large. Here, the balls are taken with respect to the Euclidean metric
on R"*!_ In particular, ||v; || poogn+1y < C(n).

If p; — 400, then the L>°—estimate holds in the following sense: for all Q@ € R"+1,
there is an N = N(2) € N such thatif i > N, ||vi| Lo (@) < C(n).

_. For notational convenience, we will omit the

l

-1
Proof Welet gi = @7 7 5. .7/ 5.
index i when no confusion can arise. Moreover, each ball is taken with respect to the
Euclidean metric.

If p; — o0, then by Lemma 9.15, g; — geue in C (R"+1) for all k € N, and the
result follows from standard Moser iteration; see for example [37] or [54]. It therefore
suffices to consider the case where poo < 00. In this case, we modify the Moser iteration
argument to account for the mild singularity of g near £.

Keeping in mind the lower bound for the metric (9-49) established in Lemma 9.15, we
define the function A(x) = max{2, (Iz+pel/(1 +,5))_8} (where x = (z,y) e R” xR)
so that geye < A(x)g. We will make repeated use of the upper bound in (9-49), which
implies that dvolg < dx and |du| < |Vgu/| for any function u, where |du| denotes the
Euclidean norm of the Euclidean gradient.

As a first step, fix any p > 1 and Q € R"*!. Provided § < 8o(n, p), we note that
vl L2/p (@, g.) 18 uniformly bounded for any i. Indeed, apply Holder’s inequality and
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use the fact that [, v* dvolg = 1 to see that

(9-59) / v/ P dx 5[ AOFTD/2421P gyol,
Q Q

1/p , 1/p'
= (/ v? dvolg) (/ AHDP2 dx) <C,
Q Q

where C = C(diam(S2), p, n), provided that § is small enough so that A@+1DP"/2 jg
integrable. Here p’ denotes the Holder conjugate of p.

Next, let X = (—pe, y) for some y € R. Let 1 >r; > rp > % and let ¢ be a Lipschitz
cutoff on R”*! defined by

1 on B(X,rp),
(9-60) pry = B,
ry—ro
0 outside B(X, ry).

We will henceforth use B, to denote B(X, r) for simplicity. We now establish an energy
estimate. On one hand, since v satisfies (9-39), we multiply the equation by v?~1¢?
and integrate to find that for p > 1,

(9-61) / ¢*v? "1 (—4Av) dvolg
By,

= | $>vP(=R+2logv + ((n+ 1) + u +log(4m) " TV/2) dvol,
By,
< f Cngp?*v? + 2¢*v? log v dvoly.
1
In the final line, we have used the fact that R > —1 thanks to Proposition 9.10, provided
we choose € and § sufficiently small (thus i sufficiently large), and that = u(g;, 1) <0.
Here the connection is with respect to g. On the other hand, we integrate by parts and
apply the Cauchy—Schwarz inequality to find

(9-62) / ¢*v? "1 (—4Av) dvolg
By,

= / 4Vv-V(p*v?~ ) dvol,

1

> f 4(p — Dp*v? 72| Vu|? —8vP 19| Vu||Ve| dvolg
r

z/ 2(p — 1)¢2vp_2|Vv|2—%v”Wqﬂzdvolg.

1
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Combining (9-61) and (9-62), we see that

(9-63) Z(p—l)[ > vP 2| Vv|? dvol,
By,

< v?|V|? dvolg.

</ Cnp?*v? +2¢2vP logv + P

1
Now, let us use the shorthand &t = (n+2)/(n+1)>1landv=m+2)/(n+3) < 1.
Noticing that (2v)* = 2(n + 2)v/(n + 2 —2v) = 2, we apply the Euclidean Sobolev
inequality, followed by (9-49) and then Holder’s inequality to see that

(9-64) ( /
B

1/20
p/221n 2
|pvP =¥ dx

1/2v
-c, ( [ ia@orr dx)

1

"1

1/2v
<Cy (/ ATV (guP/2) |2 dvolg)

r

1/2(n+1) 1/2
scn(/B A("“)("“)/de) (/B |V(¢u1’/2)|2dvolg)
rl r

1/2
fc,,(1+/72)6"5(/3 |V(¢v1’/2)|2dvolg) .

Using the same trick of interchanging g and geyc, (9-63) and Holder’s inequality imply

(9-65) / |V (¢pv?/?)|? dvol,

B,

</ p2P* P2Vl 4 20P|Ve|? dvolg

1

</ Cnp¢2vp+Cnpv1’|V¢|2+Cnp¢2vplogvdvolg

r1

</ Crpd*v? + CAVP 3| + Cp pp*v?P log v dx
n

—2\¢né 1/
< Gup(L4p7)™° ( / P dx) .
(r1 —ro)? B
Here we let A = 2(n+2)/(2n + 3) € (1, ), and we have assumed that p is bounded

uniformly away from 1 so that p/(p —1) is bounded above by a universal constant. We
have used the fact that f]R"+1 v2d volg = 1 to control the term arising from logv.

r
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By combining this with (9-64) and replacing p by pA, we conclude that for all
p>02n+4)/2n+3),

Cup(1+77)* 717
066 Pollroca e =| O ulna, e
where 0 = 2n+3)/2n+2)>1. Let Rg=1and R =1 — Z{;l 27=1 g0 that
limg 400 Ri = % Applying (9-66) inductively with r; = Ry, ro = R4 and

p = pook for py € (2n +4)/(2n + 3), 2), we have that if § is small depending only
on n, py and po, then

(9-67)  log [[vll pyok+1 (BRj 4 1 -8euc)

k
C ~ -
<log ||v||LPO(Bl;geuc) + ZU—:Z log(Cn(l + p2)6n50121)

i=1
< C(n) +log||vllLro(B,,ge)-

Here we have used the fact that p; — poo. By letting k — 400, we conclude that

1/po
(9-68) Hvi”L"O(B]/z()_c)) < C(n) (/ Ul.po dX)
B (%)

for some pg € ((2n+4)/(2n+3), 2). Together with (9-59), we have the upper bound of
v; on Bj/,(X). The result follows by choosing po < 2 and applying Holder’s inequality
once more using the integrability of A when we replace the volume form dx with
dvolg. For X = (z, y) where |Z 4 p;e| > %, we can repeat the argument but apply the
iteration on a small ball Bj/4(X) so that g is uniformly equivalent to geyc. O

Now we are ready to prove Proposition 9.12.

Proof of Proposition 9.12 Let n > 0 and for a complete Riemannian metric g, define
(9-69) T0(g) = sup{s > 0: u(g,v) > —n for all T € (0, s)}.

Since gs . has bounded curvature and is not isometric to Euclidean space, we have
1(gs.e. T) <0; see Lemma 3.1 or the proof of [17, Lemma 17.19], replacing Perelman’s
differential Harnack estimate with its noncompact generalization established in [13].

Claim 1 For 6, € € (0, 1) fixed, we have 19(gs,¢) > 0.

Proof of claim Since it is standard and similar to the proof in the compact case, see
[17, Proposition 17.20], we sketch the proof only.
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It suffices to show that lim,_, o+ t(gs.. T) = 0. Since the constants € and § are fixed,
we will omit the subscripts § and € for notational convenience. Supposing the claim is
not true, we can find a sequence of 7; — 0™ such that lim; , 4 o (g, ;) < —1 for some
1 > 0. Consider the rescaled metric g; = 7;~ g, so that u(g;, 1) < —n for i sufficiently
large. By Lemma 9.14, we can find a sequence of minimizers u; of u(g;, 1) such that

(9-70) —4Au;+Riju;—2u;logu; —(%(n—k 1) log(4m)+(n+ 1)+u(ti_1g, 1))u,~ =0.

Since u; has exponential decay at infinity by Lemma 9.14, we can find p; € R"*!
such that u;(p;) = max u;. Moreover, u;(p;) > C(n,n) by applying the maximum
principle to (9-70). On the other hand, since g is a smooth metric, it is easy to show that
(R"*1 g;, pi) converges to (R*T1, geyc, 0) as i — +oo in the C*®°~Cheeger—-Gromov
sense. Hence u; will converge to #oo > 0 (modulo diffeomorphism) in C3° (R”“),
and U satisfies [pay1 2, dx <1 and solves the equation

(9-71)  4Auoo + 2uUoo 10g too + (5 (n + 1) log(dm) + (1 + 1) + foo ) tloo = 0,

where fLoo =1im; 00 pu(T;” g, 1) <—n. Moreover, a standard Moser iteration argument
shows that the #; are uniformly bounded and hence u, is bounded as well. This can
be proved using the argument in the work of [37] or [54], or by modifying the proof
of Lemma 9.16. Therefore, using the equation we see that us, € W12(R"*1) and
hence oo = 0 by Lemma 9.13, which contradicts p(t;” g, 1) < —n for i sufficiently
large. |

We now prove that there is an €y small enough that for all €, § < €, we have 79(gs.¢) > L.
The proof is similar to that of Claim 1 above, but additional care must be taken
with respect to the convergence of the metrics and their corresponding minimizers.
Suppose the conclusion is not true, and that we can find a sequence of §;,¢; — 07
such that 7; = 79(gs,,¢;) < L for all i. By definition, we have u; = u(gs, ¢, 7i) =
[,L(‘L'l-_lg(gl.’ei, 1) = —n. By Lemma 9.14, we can find a minimizer u; of [,L(‘L'l-_lg(gt.,ei, 1)
which attains its maximum at some X; = (Z;, ;) € R” x R. We may assume without
loss of generality that 7; = 0 and Z; = 7;e for some fixed ¢ € S"~! C R” by the
symmetry of gs. .,. We again let p; = ‘Cl-l/ 2 /7i. Up to a subsequence, which we will
not relabel, we have p; — poo € [0, 00].

Let @, 7. 5. ¢ be the diffeomorphism defined in (9-47) using X; above and let g; =
O, 7 86 (T lg&-,ei)- If poo = +00, then by Lemma 9.15, we have convergence
(R™+1, T 1 85,610 Xi) = (R"+1 geie, 0) in the C*°—Cheeger—Gromov sense. Then
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the proof of Claim 1 carries over and we reach a contradiction to the assumption that
wi = —n. It therefore suffices to consider the case when ps < +00.

As in Lemma 9.15, we let {0 = {(—psoe, ¥) : y € R}. By Lemma 9.15, g; converges
t0 Zeuc iN CIISC(IR”"'1 \Zoo). Together with the L°° estimate of v; = CD:,-,E-,S,-,EI-”" from
Lemma 9.16, we have v; — v in Cﬁg(R”“ \Zoo) and Lf(’)c(]R”“) for p > 0, by the
dominated convergence theorem. Therefore, [g.+1 v, dx < 1 by Fatou’s lemma and

Voo SOlVES
(9-72) 4 AV + 200 10g Voo + (3 + 1) log(47) + (n + 1) — ) veo = 0

on R"*1 \Zoo. It remains to establish the following claim.
Claim 2 The limit voo is nontrivial and vee € W 1-2(R?*T1),

Proof of claim We first show that vy is nontrivial. By Lemma 9.16, we have

1/2
(9-73) vi(0) < c( / v? dvolgl.)
B,(0)

for some universal constant C independent of i. On the other hand, by the decay rate
of v; from Lemma 9.14, we may apply the maximum principle to the Euler-Lagrange
equation at its maximum point, which by our selection of X; is the origin, to show that
atx =0,

(9-74) 2v;i logv; = Rg,vi — (3(n + 1) log(4m) + (n + 1) —n)v;,
and hence
(9-75) / v? dvolg, > c(n,n).

B1(0)

This shows that voo 7 0 as v; — Vo in L{;C(R”"'l) and g; — ggn+1 in LY (R7F1)

loc
by construction for all p > 0.

It remains to show that v, € W12(R”*1). Since Jrn+1 v2, dx <1, it remains to
consider ||0veo||p2(rn+1)- We first point out that for each g;, [|Vvi|lL2n+1 g;) 18
uniformly bounded. This can be seen by integrating the Euler-Lagrange equation with
a cutoff function ¢ with respect to g;,

(9-76) 0:/ +1¢vi(—4Agivi+Rgiv,~—(%(n+1)10g(47r)+(n+1)—n)v,-
R —2v; log v,-) dvolg, .
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Since the scalar curvature of g; is uniformly bounded from below and v; is uniformly
bounded by Lemma 9.16 for i sufficiently large, we have for a suitable cutoff function ¢,

(9-77) C(n,n) / v? dvolg,
Rn-l—l

2

2/ Pvi (—Ag; ;) dvolg; + / ¢| dvolg,
Rn—i—l

_ . . ¢’|2

= Vv; - V(¢v;) dvolg, + dvolg,
Rn+1
1

> z/Ranvaﬂzdvolgi.

By letting ¢ — 1, this gives the uniform boundedness of ||V v;||f2gn+1 4;). Now let
Brn(—pooe, ) be the ball of radius r in R” and p > 1. By the metric equivalence
from Lemma 9.15, A~ geue < gi < Zeue for some A(z, y) < max{|z + pooe| %, 2},

(9-78) / |0v; |2/ dx
Brn(—poce,r)x[—r,r]

< A2V 2P dvoly,

LR” (—EOOE,I‘)X[—V,I‘]

1/p . 1/p*
< (/ |Vvi|2dvolg,.) (/ A"PT2 dx)
RA+1 Brn (—pooe,r)X[—r,r]

+1 1/p*
<cvn| C :
- 1 —cnéi p*

Letting i — +oo followed by p — 1 and r — 400, we have v, € WI2(R"F1), O

By the claim and the proof of Lemma 9.13, we deduce that

lim 1(ti ' 85,60 1) = poo =0,

l—)

which contradicts the fact that u(z;” 1 g5;.¢;» 1) = —n. This completes the proof. a
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