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Algebraic Spivak’s theorem and applications

TONI ANNALA

We prove an analogue of Lowrey and Schiirg’s algebraic Spivak’s theorem when
working over a base ring A that is either a field or a nice enough discrete valuation
ring, and after inverting the residual characteristic exponent e in the coefficients. By
this result algebraic bordism groups of quasiprojective derived A—schemes can be
generated by classical cycles, leading to vanishing results for low-degree e—inverted
bordism classes, as well as to the classification of quasismooth projective A—schemes
of low virtual dimension up to e—inverted cobordism. As another application, we
prove that e—inverted bordism classes can be extended from an open subset, leading
to the proof of homotopy invariance of e—inverted bordism groups for quasiprojective
derived A-schemes.
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1 Introduction

Algebraic bordism €2, is the universal oriented Borel-Moore homology theory in
algebraic geometry. It should naturally fit in the more general framework of bivariant
algebraic cobordism, together with algebraic cobordism Q*, the corresponding ring-
valued cohomology theory. These two theories €, and * contain an abundance of
geometric information: they are expected to refine the Chow and the G—theory groups,
and the Chow cohomology and K-theory rings, respectively (note that, as of now,
there is no well-established Chow cohomology theory), and, furthermore, the latter
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352 Toni Annala

groups and rings should be recoverable from the former by a straightforward algebraic
operation. Consequently, computing the algebraic (co)bordism groups of schemes
should be infeasible in general. However, any formulas proven for (co)bordism classes
will automatically hold for the induced classes in other oriented theories, and therefore
the role of algebraic (co)bordism is comparable to that of the Grothendieck ring of
varieties in the study of Euler characteristics: it serves as the canvas for the universal
oriented (co)homology computations, which clarify the geometric essence of formulas
of which other theories only see the shadows.

There are, roughly speaking, two approaches to algebraic cobordism, neither of which
gives a satisfactory theory as of this moment. The original approach was to consider
the theory represented by the motivic spectrum M GL in Morel and Voevodsky’s Al—
homotopy theory [23]. This approach has several advantages. The associated bivariant
theory of Déglise [9] provably satisfies most of the expected properties, such as projec-
tive bundle formula, and the existence of homological localization long exact sequences.
In fact, it is expected that the Borel-Moore homology theory represented by M GL gives
the correct (higher) algebraic bordism groups. These advantages are countered by two
main disadvantages, the first of which seems to be a fundamental flaw in the approach:
any theory coming from A!~homotopy theory is A!l—invariant, but algebraic cobordism
should not be Al—invariant (because K—theory is not). The second disadvantage of
the approach is its abstractness: it is very hard to give geometric interpretation for the
groups, which is in stark contrast to the topological case; see eg Quillen [24].

The second approach, which is also the approach of our paper, is to define (co)bordism
directly in geometric terms, namely in terms of cobordism cycles modulo an algebraic
geometric analogue of the cobordism relation. This is also the approach that seems
to be preeminent in applications, due to its simplicity and geometric nature; see for
example the proof of the degree O Donaldson-Thomas conjectures by Levine and
Pandharipande [21], the computation of K—theoretical degeneracy classes of Hudson,
Ikeda, Matsumura and Naruse [14], subsequently generalized to algebraic bordism by
Hudson and Matsumura [15], and the relationship between algebraic Morava K—theories
and torsion in Chow groups studied by Sechin [25]. All of the above applications employ
the algebraic bordism theory of characteristic 0 algebraic schemes, studied by Levine
and Morel in their seminal work [20], which was later simplified by the employment
of derived algebraic geometry by Lowrey and Schiirg [22]. The approach of Lowrey
and Schiirg also gave the first serious candidate for a geometric algebraic bordism in
positive characteristic. This construction was later extended to a bivariant theory by
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the author with Yokura [2; 6] using the universal bivariant theory of Yokura [29], and
the author studied these theories in greater detail in [5; 3; 4].

Besides its geometric nature, the main advantage of the second approach is that its
associated cohomology theory has the expected relationship with K—theory, implying
that the theory is not Al—invariant. This gives strong evidence that at least the cohomo-
logical part of the theory gives the correct model for algebraic cobordism. However,
this approach also has several disadvantages, the most serious being the difficulties
with defining higher cobordism groups and proving localization exact sequences, both
of which are easily taken care of in the context of motivic homotopy theory. It is
conceivable that both of these difficulties could be resolved by a deeper understanding
of derived algebraic geometry. The relationship between the two approaches is not well
understood: the only known comparison results are the ones obtained in characteristic 0
by Levine [19], identifying Levine—Morel algebraic bordism with part of the motivic
homotopy algebraic bordism. Finally, we note that the dichotomy between the two
approaches is not perfect, and recent work of Elmanto, Hoyois, Khan, Sosnilo and
Yakerson [10] employs both geometric models and motivic homotopy theory.

The purpose of this paper is twofold. The first goal is to further our understanding of
the geometric bordism groups in positive and mixed characteristic. The second goal,
which uses the improved understanding of algebraic bordism, is to make progress in
the following cohomological conjecture:

Conjecture 1.1 Let A be a local Noetherian ring. Then the natural map

L* — Q*(Spec(A4))
is an isomorphism, where IL* is the Lazard ring (with cohomological grading).
The above conjecture is known in characteristic 0; see [20]. Moreover, by standard
arguments employing “twisting” of cohomology theories and the Conner—Floyd theorem
established in [5], the full conjecture is known for with rational coefficients. We manage

to make partial progress on this conjecture in the cases where A is a field or a nice
enough discrete valuation ring.

1.1 Summary of results

We denote by 2° the base-independent bivariant algebraic cobordism constructed in [4],
which has no grading as a bivariant theory. This theory generalizes both algebraic
bordism €2, and algebraic cobordism 2%, the latter of which has a natural grading.
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The results of Spivak [27] and Lowrey and Schiirg [22] serve as the inspiration for
our main result, an algebraic Spivak’s theorem. These results state that certain cobor-
dism theories, constructed using derived geometry (in the context of differential and
algebraic geometry, respectively), coincide with their classical counterparts. Since the
corresponding classically defined cobordism theory is the theory of Levine and Morel,
which is defined only in characteristic 0, we have no theory to compare derived bordism
with in positive and mixed characteristic. Instead, we prove that all derived bordism
cycles can be expressed in terms of classical cycles.

Theorem 4.12 Let A be a field or an excellent Henselian discrete valuation ring with
a perfect residue field, and let e be the residual characteristic exponent of A. Then
the algebraic cobordism ring Q*(Spec(A))[e™!] is generated as a Z[e™']-algebra by
classes of regular projective A—schemes. Moreover, for all quasiprojective derived
A-schemes X, Q,(X)[e™!] is generated as an Q*(Spec(A4))[e~']-module by classes
of regular schemes mapping projectively to X.

In particular, the e—inverted algebraic bordism groups are generated by derived fibre
products over A of regular A—schemes. It is possible to use this fact to prove that
classical cycles generate these groups as Z[e~!]-modules, leading to the following
corollaries:

Corollary 4.13 Suppose A is as in Theorem 4.12. Then, for all quasiprojective derived
A-schemes X, Q.(X)[e™!] is generated as a Z[e™']-module by cycles of the form

[V — X]

with V' a classical complete intersection scheme and the structure morphism V —
Spec(A) is either flat or factors through the unique closed point of Spec(A4).

Corollary 4.14 If k is a field, then the e—inverted bordism groups Q2,(X)[e '], where
X is a quasiprojective derived k—scheme, are generated as Z[e~']-modules by classes
of regular k—varieties mapping projectively to X.

Note that these results are not strictly speaking generalizations of the results of Lowrey
and Schiirg: since we do not have a classically defined (geometric) bordism theory
against which to compare €2,, the best statement we can hope for is this kind of result
stating that classical cycles are enough to generate the bordism groups. Notice also
how these results bring us closer to proving Conjecture 1.1 after inverting the residual
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characteristic: instead of classifying all quasismooth and projective derived 4—schemes
up to cobordism, we only have to classify the Ici projective A—schemes, or even just
smooth projective k—varieties if 4 =k is a perfect field, up to cobordism, and this seems
like a much easier problem (and can be done in low dimensions, as we shall see below).

Most of the article is dedicated to proving the above results. The basic idea is to
compute the fundamental class of a quasiprojective derived scheme X by resolving the
singularities of the deformation to the normal cone of the truncated inclusion X < U,
where U is an open subscheme of P%, and then using the special presentations of Chern
classes given by Lemma 3.5. Carrying out this strategy is made difficult by the facts
that desingularization by alterations, unlike Hironaka’s resolution in characteristic 0,
may drastically change the geometry outside the singular locus, and the technique
does not provide birational resolutions. To solve the first problem, we need to be able
to approximate classes of generically finite morphisms to projective space, which is
achieved by Theorem 3.9, and, to solve the second problem, we need to invert the
residual characteristic. Note that it is not easy to compute the classes of generically
finite morphisms is general without localization exact sequences, which is why we
only do the computation when the target is a projective space. Even this case is not
simple, and Theorem 3.9 is the main reason we have to restrict our attention to the
case where the base ring A is an excellent Henselian discrete valuation ring having
a perfect residue field instead of a more general excellent discrete valuation ring. In
order to generalize further to, say, the case where A an excellent regular local ring of
Krull-dimension =< 3, one would need to generalize also the Bertini-regularity theorems
from Ghosh and Krishna [13] to hold in this generality.

Theorem 4.12, Corollary 4.13 and especially Corollary 4.14 considerably simplify the
study of algebraic bordism whenever they apply, as derived schemes are much harder
to study than classical schemes, let alone smooth varieties over a field. As the first
immediate corollary, we obtain the following vanishing result:

Corollary 4.15 Let X be a quasiprojective A—variety, with A as in Theorem 4.12.
Then the groups
QA(X) := Q7 (X — Spec(A))

vanish fori < —1. If A = k is a field, then Qé‘(X) vanish fori < 0.

Note that the above result is far from obvious without the algebraic Spivak’s theorem,
as there exists an abundance of derived schemes having negative virtual dimension.
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One can also imagine such vanishing results being very useful, as they allow proving
results by induction on degree, rather than by some ad hoc induction scheme. Another
easy application is the computation of the cobordism rings in low degrees.

Corollary 4.17 Let A be as in Theorem 4.12. Then:
(1) Q¥(Spec(A4))[e~!] vanishes fori > 0, and the natural map
Zle = L%e™ ] — Q°(Spec(k))le ']

is an isomorphism; in other words, Q2°(Spec(A)) is the free Z[e™!]-module
generated by 1 4;

(2) If A =k is a field, then the natural map
L*[e™"] — Q*(Spec(k))[e"]

is an isomorphism in degrees 0, —1 and —2; in other words, Q! (Spec(k)) is
the free Z[e™']-module generated by [P,i] and Q2 (Spec(k)) is the free Z[e™']-
module generated by [}P’li]2 and [X; x], where X1 i is the Hirzebruch surface of
degree 1 over k.

We are hopeful that more progress towards the computation of algebraic cobordism of
fields can be made in the future.

Another application, which is no longer an immediate corollary of the algebraic Spivak’s
theorem, is the following extension result:

Theorem 4.19 Let A be a field or an excellent Henselian discrete valuation ring with
a perfect residue field, and let j: X — X be an open embedding of quasiprojective
derived A—schemes. Then the pullback morphism

Jh el = Qu(X)[e ]

is surjective.

Let us consider the difficulty in proving such a result: The most straightforward strategy
would be to find for each bordism cycle [Y — X] a bordism cycle [Y — X] extending
it. To achieve this, we would first relatively compactify ¥ over X — see Gaitsgory
and Rozenblyum [12, Section 5.2.2] — and then “resolve the singularities” to make the
compactification quasismooth. Alas, such resolution results do not exist for derived
schemes or in positive characteristic, and the proof of the extension theorem is dedicated
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to overcoming this issue. Note also that this result is the right side of the conjectural
localization exact sequence (known in characteristic O by the work of Levine and
Morel), but it seems hard to say anything worthwhile about the kernel of L

Combining the extension theorem with the projective bundle formula, we obtain the
following homotopy invariance result:

Corollary 4.22 Let A be as in Theorem 4.19, let X be a quasiprojective derived
A-scheme and let p: E — X be a vector bundle of rank r on X. Then the pullback
map

PuX)le™] > QuE)e]

is an isomorphism.

While this result was expected as the cobordism analogue of Al—invariance of Chow
groups and of Grothendieck groups of coherent sheaves, the reader should compare it
with the fact that the cobordism rings ©*(X) are usually not Al—invariant.

Conventions

All derived schemes are assumed to be Noetherian and of finite Krull dimension.
Derived fibre product is denoted by X x§ Y, and truncation is denoted by X.;. A map
of derived schemes is called projective if it is proper and admits a relatively ample line
bundle. The Krull dimension of a derived scheme means the Krull dimension of its
truncation. A flat Ici morphism is called syntomic. An snc scheme is a scheme that can
be globally expressed as an snc divisor inside a regular scheme. We will write

[r]:=A{1,...,r}.
Acknowledgements

The author would like to thank his advisor Kalle Karu for discussions and comments,
and the referees for the careful reading of the manuscript and for their useful comments.
In particular, these comments helped us to state Corollary 4.14 in its current generality,
the initial statement being for perfect fields only. The author was supported by Vilho,
Yr1jo and Kalle Viisild Foundation of the Finnish Academy of Science and Letters.

2 Background

In this section we recall the necessary background material.

Geometry € Topology, Volume 27 (2023)



358 Toni Annala

2.1 Quasismooth morphisms and derived complete intersection schemes

In this section we review the background of various notions of derived complete intersec-
tions that we are going to use in the work. Let us recall that a closed embedding Z — X
of derived schemes is called a derived regular embedding (of virtual codimension r) if
it is locally on X of the form

SpeC(A//(al Y ar)) — SpeC(A)’

where // denotes the derived quotient; see [18, 2.3.1]. In other words, Z is locally given
as the derived vanishing locus of r functions on X. Let us begin with the following
definition:

Definition 2.1 A finite-type morphism f: X — Y of Noetherian derived schemes is
called quasismooth if the relative cotangent complex Ly, y has Tor-dimension <1 (it
follows that ILy/y is perfect and /" is of finite presentation; see eg [4, Proposition 2.23]).
If Ly, y has constant virtual rank d on X, then we say that /" is quasismooth of relative
virtual dimension d.

Let us then recall the basic properties of quasismooth morphisms.

Proposition 2.2 (1) Quasismooth morphisms are stable under composition and
derived base change. Relative virtual dimension is additive under composition,
and is preserved in derived pullbacks.

(2) A morphism of classical schemes is quasismooth if and only if it is Ici.

(3) A closed embedding is quasismooth if and only if it is a derived regular embed-
ding.

Proof The first claim is obvious, the second is classical and the third is [18, Proposition
2.3.8]. m|

We are also going to need the following absolute version of quasismoothness:
Definition 2.3 A Noetherian derived scheme X is called a derived complete intersec-
tion scheme if only finitely many of the homotopy sheaves ;(Ox) are nontrivial, and

if for all points x € X the cotangent complex LL(x),x has Tor-dimension < 2, where
Kk (x) is the residue field of X at x.
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Derived complete intersection schemes admit the following alternative characterization:

Proposition 2.4 Let X be a Noetherian derived scheme. Then the following are
equivalent:

(1) X is a derived complete intersection scheme.
(2) The cotangent complex Ly 7 has Tor-dimension < 1.

(3) For all morphisms X — Y with Y a regular scheme, the relative cotangent
complex Ly, y has Tor-dimension < 1.

(4) There exists a morphism X — Y with Y regular such that the relative cotangent
complex Ly, y has Tor-dimension < 1.

Proof The equivalence of (1), (2) and (3) is [4, Proposition 2.28], but the proof shows
also that they are all equivalent to (4). a

Example 2.5 The following types derived schemes are derived complete intersections:

(1) Classical complete intersection schemes (in particular, regular schemes).

(2) If X is a derived complete intersection and f: Y — X is a morphism such
that Ly, x has Tor-dimension < 1 (eg if / is quasismooth), then Y is a derived
complete intersection scheme.

2.2 Derived blow-ups

One of the main technical tools we are going to need in this article is the construction
of derived blow-ups and derived deformation to normal cone from [18]. Let us recall
the definitions and the results we are going to use:

Definition 2.6 Let Z < X be a derived regular embedding. Then, for any X—
scheme S, a virtual Cartier divisor on S lying over Z is the datum of a commutative
diagram

ip

2
—

NTD

M — W

such that:

(1) ip is a derived regular embedding of virtual codimension 1 (ie a virtual Cartier
divisor).
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(2) The truncation is a Cartesian square.

(3) The canonical morphism
g Ny /X Np /S

induces a surjection on .
It is then possible to define derived blow-ups via its functor of points.

Definition 2.7 Let Z < X be a derived regular embedding. Then the derived blow-up
Blz (X) is the X—scheme representing virtual Cartier divisors lying over Z. In other
words, given an X —scheme S, the space of X —morphisms

S — Blz(X)

is naturally identified with the maximal sub-co—groupoid of the co—category of virtual
Cartier divisors of S that lie over Z.

Theorem 2.8 Leti: Z — X be a derived regular embedding with X Noetherian.
Then:

(1) The derived blow-up Blz(X) exists as a derived scheme and is unique up to
contractible space of choices.

(2) The structure morphism 7 : Blz (X)) — X is projective, quasismooth, and induces
an equivalence

Blz(X)-¢&—-X—-Z,
where E is the universal virtual Cartier divisor on Blz (X') lying over Z (also
called the exceptional divisor).
(3) The derived blow-up Blz(X) — X is stable under derived base change.
(4) The exceptional divisor £ is naturally identified with Pz (N7, x).

O Irz iy x<Iivisa sequence of quasismooth closed embeddings, then there
exists a natural derived regular embedding j: Blz(X) — Blz(Y), called the
strict transform.

(6) Given derived regular embeddingsi: Z — X and j:Y — X, the strict transforms
7 and j do not meet in Blzny (X).
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(7) If Z and X are classical schemes (so that Z — X is Ici), there exists a natural
equivalence
Blz(X) ~BIZ(X),

where the right-hand side is the classical blow-up.

Proof The statements (1), (3), (4), (5) and (7) are directly from [18, Theorem 4.1.5].
The second claim is essentially from loc. cit., but the authors only prove that  is
proper; projectivity of 7 follows from the fact that the line bundle O(—¢) is w—ample.
For a proof of (6), see for example [2, Lemma 4.5]. O

Another result we are going to need is the following:

Proposition 2.9 Let Z < X be a derived regular embedding. Then there exists a
natural closed embedding Bl‘%Cl (Xa) < Blz(X) and a derived Cartesian square

£a — BIZ (Xa)

l [

£ —— Blz(X)

where & is the classical exceptional divisor.

Proof Indeed, the closed embedding i 7, x from [3, Appendix B.4] has this property;
see Lemma B.15 and Theorem B.16. |

2.3 Algebraic cobordism

In this section, we will recall the base-independent algebraic cobordism of finite Krull-
dimensional Noetherian derived schemes that admit an ample line bundle [4]. There
exists a well-behaved extension of this theory to those (finite-dimensional, Noetherian)
derived schemes that admit an ample family of line bundles, but, since we will not need
this generality, we choose to restrict to this less complicated theory. An even simpler
choice would have been to utilize the bivariant algebraic A—cobordism theories [3] for
a fixed Noetherian ring A4 of finite Krull dimension. Although these theories have the
advantage of being graded, this is outweighed by the clarity provided by working with
a single base-independent theory rather than multiple base-dependent ones, which in
any case can be recovered from the former. There is also the added benefit of (absolute)
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algebraic bordism being naturally part of the more general theory: it is the bivariant
group associated to the morphism X — Spec(Z).

Throughout this section we will denote by C the co—category of finite-dimensional
Noetherian derived schemes admitting an ample line bundle.

2.3.1 Definition of algebraic (co)bordism Let us start with the definition of universal
precobordism.

Definition 2.10 Let X — Y be a morphism in C. Then the universal precobordism
group 2°(X — Y) is the group completion of the abelian monoid on cycles

v L5 x,

where f is projective, Ly, y has Tor-dimension < 1 and the monoid operation is
given by taking disjoint union. These cycles are subjected to the derived double point
relations: given a projective morphism W — P! x X such that Ly /p1xy has Tor-
dimension < 1, and virtual Cartier divisors D; and D, on W such that their sum is
the fibre Wso of W — P over oo,

[Wo — X]=[D1 = X]+[D2 = X]=[Pp «r p (O(D1) ®O) — X] € Q*(X),
where W, is the fibre of W — P! over 0. To see how the bivariant operations are
defined, see for example [4, Definition 2.38].

Definition 2.11 If X — Y is a finite-type morphism in C, then Q°*(X — Y) (and its
quotient discussed below) has a naturally defined grading. Indeed, if
[V—->X]eQ' (X —>Y),

then V' — Y is of finite type, and the condition on Tor-dimension implies that it is
quasismooth. The degree of [V — X]is —d, where d is the relative virtual dimension
of V' — Y. The bivariant group of X — Y, equipped with this grading, is denoted by
Q*(X —=Y).

Definition 2.12 (bivariant fundamental classes) Given a morphism X — Y in C such
that Ly, y has Tor-dimension < 1, we have the bivariant fundamental class
ly)y =[X - X]eQ*'(X = 7).

These classes give rise to a stable orientation on the bivariant theory Q°. If X — X is
the identity morphism, we will often use the shorthand notation 1x := lyx, x, and, if
either X or Y is a spectrum of a ring, we will often drop “Spec” from the notation.
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It was shown in [4, Theorem 3.15] that there exists a formal group law
F(x,y)= ) aijx'y’ € Q" (Spec(Z))[x, ]
i,j=0
such that, for every X € C and for all line bundles .#; and ., on X, the equality
(A ® L) = F(e1(A1), c1(£2)) € Q°(X)

holds, where ¢1 (%) is the first Chern class (also called the Euler class) of &, ie the
cycle represented by [Zs < X, where s is any global section of .# and Zj is the
derived vanishing locus of s.

Definition 2.13 Consider the stack [A!/G,,] x [A! /G,,], which classifies the data
(21,81, %2, 52),

where .%; are line bundles and s; are global sections of .%;. Let
(181, 25 53)

be the universal such data classified by the identity morphism, and let us denote by V, V;
and V1, the derived vanishing loci of s{s%, si and (s{, s7) inside [Al /G ] < [Al /G ).
Notice that there exists a commutative square

Vip —— V,

[ NG L

Y, ——5 vy

and none of the maps ¢!, (2 or (12 is a derived regular embedding. The embeddings

V12 < V; are derived regular.

The stack V is a gadget allowing us to detect and decompose derived schemes that look
like a sum of two virtual Cartier divisors, and it is a fundamental tool in our definition
of algebraic cobordism.

Definition 2.14 Let X — Y be a morphism in C. Then the bivariant algebraic
cobordism group Q°*(X — Y) is obtained by imposing the following decomposition
relation on Q*(X — Y): Given a projective morphism f: V' — X such that L,y
has Tor-dimension < 1, and a morphism V — V, denote by V; and V;, the derived
pullbacks V xy, V; and V xy,V;, and by /7 and f!2 the induced projective morphisms

Geometry € Topology, Volume 27 (2023)



364 Toni Annala

Vi — X and Vi, — X, respectively. If Ly,,y and Ly, ;y have Tor-dimension < I,
then

1 [V—X]=
Vi > X]+[Va— X]+ f ( Z aijei (L) " eci () e 1V12/Y)
i,j=1
in Q°(X — Y), where . are the pullbacks of the universal line bundles £/ and
ly,, /v is the bivariant fundamental class

Vi = Vi2]l € Q*(Via = Y).

Remark 2.15 The decomposition relation (1) holds already in Q°*(X — Y) if V is
the sum of virtual Cartier divisors on a derived scheme W admitting a projective map
W — X such that the triangle

e

commutes and Ly, y has Tor-dimension < 1. It is not known whether or not such
a W can be found in general.

Let us then recall in more detail the homology and cohomology theories associated
to Q°, starting with the homology theory.

Definition 2.16 (algebraic bordism) Given X € C, we define its algebraic bordism

group as
Q. (X) :=Q°(X — Spec(Z)).

Let f: X — Y be a morphism in C. If f is projective, then there exists a pushforward
morphism

Jr:1 Re(X) = Q.(Y)
given by the formula

[V £ X1 [V L2 v,

and, if IL. s has Tor-dimension < 1, there exists a Gysin pullback morphism

FHQu(Y) = Q.(X)
given by the formula

W — Y] [W xE X > X].

Pushforwards and Gysin pullbacks are functorial in the obvious sense.
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The following result is an immediate consequence of Proposition 2.4 and the bivariant
formalism:

Proposition 2.17 Let Y € C be a regular scheme. Then, for all X — Y in C, the
morphism
—elyz: QY (X) = QX - ¥) - Q.(X)

is an isomorphism, and these maps commute with pushforwards and Gysin pullbacks.
O

Let us then recall the cohomology theory.

Definition 2.18 (algebraic cobordism) Given X € C, we define its algebraic cobor-
dism ring as
Q*(X) =Q*(X — X),

where the ring structure is given by the formula
[V — X]e[W — X]=[VxZW > X]e Q*(X),

and the grading is defined as in Definition 2.11. Suppose then that f: X — Y is a
morphism in C. Then there exists a pullback morphism

f* QYY) — Q*(X)
given by the formula
[W—>Y]r—>[Wx§X—>X],

and, if f is projective and quasismooth, there exists a Gysin pushforward morphism

[ Q% (X) — QF(Y)
given by the formula

V25 X [V L%y,

Note that /* is multiplicative and preserves the grading while f; does not have to do
either. Both pullbacks and Gysin pushforwards are functorial in the obvious sense.

These theories have the following formal properties:
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Proposition 2.19 (projection formula) The group Q2,(X) is an Q*(X')-module, with
the action given by

[V — X]e[W — X]=[VxZW - x].

Moreover, if f: X — Y is a projective morphism, then, for all « € Q*(Y) and all
B € Q.(X), the equality

Jx(f (@) B) = s fu(B) € Qu(Y)

holds. If f is projective and quasismooth, then, for all « € Q*(Y) and all y € Q*(X),
the equality

S @) ey)=as fily) € Q5(Y)
holds.

Proof This is an immediate consequence of bivariant formalism, but can also be easily
checked on the level of cycles. O

Proposition 2.20 (push—pull formula) Suppose that

X — Y

le s
x L.y

is a derived Cartesian square in C. Then:
(1) If Ly has Tor-dimension < 1 and g is projective,
floge=glof": Q.Y = Q.(X).
(2) If g is projective and quasismooth,
fFogi=glo Q" (Y) - Q*(X).

Proof This is an immediate consequence of bivariant formalism, but can also be easily
checked on the level of cycles. O

Proposition 2.21 (naturality of the duality map) For every X € C derived complete
intersection, there exists a natural duality morphism

_'IX/Z: Q*(X) — Q.(X)

Moreover:
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(1) If f: X — Y is a projective quasismooth morphism, then the square

—elx /7

QX)) — Q.(X)

Is I

—el
Q*(¥) —Z5 Q.(Y)
commutes.

(2) If f: X — Y is such that Ly ,y has Tor-dimension < 1, then the square

—ely,z

QYY) —— Q.(Y)

o

Q*(X) —XZ Q.(X)

commutes.

Proof This is an immediate consequence of bivariant formalism, but can also be easily
checked on the level of cycles. a

2.3.2 Basic properties Let us then recall the basic properties of algebraic cobordism.
Note that the formal group law acting on the Chern classes of 2* induces a map

L* - Q*(X)
for all X € C, which is compatible with pullbacks. We will have to use some of the

basic properties of this morphism later in the article, which we collect below.

Proposition 2.22 Let X €C. Then the image of L* — Q* (X)) is generated by derived
schemes smooth over X.

Proof By the same argument as in [20], one shows that the image of L* — Q*(X) is
generated by towers of projective bundles over X. a

Proposition 2.23 Let X € C. Then the natural map
L* - Q*(X)
is an injection.
Proof Since the morphism is compatible with pullbacks, we can pull back to the

generic point of an irreducible component of X to reduce to the case where X =~ Spec(k)
is the spectrum of a field k. Moreover, following the arguments of [20, Section 4.1.9],
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which are based on the ideas of Quillen in [24] and depend only on the formal properties
of Chern classes, we can construct the total Landweber—Novikov operator

Q* - Q*[by. by, ...]17D,
and, combining this with the degree morphism
deg: 2°(Spec(k)) — K°(Spec(k)) =~ Z,
we obtain a natural morphism
Q*(Spec(k)) — Z[by,bs,...].
As in [20, Lemma 4.3.1], one proves that the composition IL* — Z[b, b,,...]is an

injection, proving the claim. O

Next we have to recall that the decomposition relations used in the construction of €2°
imply the so-called snc relations of Lowrey and Schiirg, which follow as a special case
of the following result:

Proposition 2.24 [4, Lemma 3.5] Let X € C be a derived complete intersection

scheme and let
D :nlDl +"'+nrDr

be a virtual Cartier divisors on X with n; > 0. Let us denote for every I C [r] by 1! the

canonical inclusion of the derived intersection

Dy :=()Di— D.
iel
Then

Ipjz =Y (F " (ct(O(D).....c1(O(Dy)) * 1p,7) € (D)
1Cr]
for universal homogeneous power series

Fpoomr(xy, o xp) € L v ]
of degree 1 — |I]. i

We also record the following dimension formula, which can be used to calculate the
Krull dimension of V in a nice enough cycle [V — X] e Q™4 (X):

Lemma 2.25 Let A be a discrete valuation ring with residue field k, let V and X be
integral and projective A—schemes and let V. — X be an Ici A—morphism of relative
virtual dimension d. Then

dim(V) =dim(X) + d.
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Proof Note that the analogous claim is known over fields, and therefore we obtain
the result in the case that X is not flat over 4 (and hence X and V' are projective
k—schemes). To prove the general case, we will use the dimension formula (see eg [7,
Tag 02JU]) to conclude that, if X is flat over A4, then

dim(X) = dim(Xy) + 1 = dim(X,) + 1,
where X3 and X are the general and the special fibres of X — Spec(A) respectively.
If both V and X are flat over 4, then

VK—)V

|

Xe — X

is derived Cartesian and therefore dim, (V' /X) = dimy(V,/ X)), where dim,, stands
for the relative virtual dimension. It follows that

dim(X) =dim(X,) + 1 =dim(Vy) +d + 1 =dim(V) + d,
and we are done in this case.
If X is flat over A but V is not, then V — X factors as
VoXe— X
and dim, (V/ X,) = dimy(V/X) + 1. Therefore,
dim(V) =dim(Xx) +d + 1 =dim(X) + d,

proving the claim in the last remaining case. O
Finally, we record the following formulas, which are going to be useful when classifying
low-dimensional varieties up to cobordism:
Lemma 2.26 Let X €C and let E be a vector bundle of rank r on X. Then

[Py ! — X]—[P(E)— X]
is an L-linear combination of elements of positive degree in Q1" (X).

Proof By twisting E if necessary, we may assume that there exists a short exact

sequence

0>E—->0%N L. Fr 0
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of vector bundles. Let 7 be the morphism IP’)](V —1 — X it follows that
[P(E) = X] = m(cn—r (F(1))) € ' (X)

is an [L-linear combination of products of Chern classes of F, proving the claim. 0O

Lemma 2.27 Let Z — X be a derived regular embedding in C. Then
IX —[Blz(X) — X]

is an L-linear combination of elements of positive degree in Q°(X).

Proof Considering the algebraic cobordism given by the blow-up of P! x X at co x Z,
we obtain the formula

Iy —[Blz(X) > X]=[Pz(Nz,x ® O0) > X]—[Pp, (nvz, 1) (O(1) & O) > X]

in Q°(X). The claim follows from applying Lemma 2.26 to [Pz (N2 /x ®0)— Z]
and [Pp_, (r,, ) (O(1) ® O) — Z] and then pushing forward. O

2.4 Desingularization by alterations

In this section we are going to recall desingularization results, which will play an
important role later in this article. Desingularization by alterations was first introduced
by de Jong in [16], after which it (and several improvements of the original theorem)
have found numerous applications in the study of algebraic geometry in positive and
mixed characteristic. Our main reference will be the fairly recent article [28] by Temkin.

We start by recalling alterations.

Definition 2.28 A map n: X — Y of integral Noetherian schemes is called an
alteration if it is proper, dominant and generically finite. If P is a subset of the prime
numbers, then 7 is called a P—alteration if its degree is a P—number, ie all of its prime
divisors lie in P. If |P| < 1, then we will also use the term e—alteration, where

o peP if|P|=1,

1 ifP=g,

is the characteristic exponent of P.
Given an integral scheme X, we are going to denote by char(X) the set of nonzero
residual characteristic of X. The main result of Temkin is that, under certain assumptions,

X admits a char(X)-alteration X’ — X from a regular scheme X. Before giving the
main result, we recall the following terminology:
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Definition 2.29 A Noetherian ring A4 is quasiexcellent if, for all primes p C A, the
completion morphism 4, — /’fp is flat (automatic) and has geometrically regular fibres,
and, for all finite-type A—algebras B, the regular locus of B (ie the set of primes q C B
such that By is a regular local ring) is an open subset of Spec(B). A quasiexcellent
ring A is called excellent if it is also universally catenary (eg A is a regular local ring).
A Noetherian scheme X is (quasi)excellent if it admits an open affine cover by spectra
of (quasi)excellent rings.

The following result is a special case of the main result of [28] (combined with [8]):

Theorem 2.30 Let X be an integral Noetherian scheme admitting a finite-type mor-
phism to a quasiexcellent scheme Y of dimension at most 3 and let Z < X be a closed
subscheme. Then there exists a projective char(X )—alteration

X' > X

with X' regular and w~'(Z) a strict normal crossing divisor. a

We will only use this result in the case where Y is the spectrum of a field or an excellent
discrete valuation ring.

2.5 Bertini theorems

Bertini theorems, saying that ample enough line bundles have global sections whose
(derived) vanishing locus has good properties, are going to play an important role in
the arguments of this paper. We start with the following easy observation, which shows
the existence of enough “classical sections” in great generality:

Lemma 2.31 Let X be a quasiprojective scheme over a Noetherian ring A and let
# be an ample line bundle. Then, for all n > 0, the line bundle #®" has a global
section s which is not a zerodivisor on X. In particular, the derived vanishing locus of
s coincides with the classical vanishing locus of s.

Proof This is classical, but see for example [11, Theorem 5.1] for a reference. O

When A4 is a discrete valuation ring, we can say a lot more using the recent Bertini-
regularity result over discrete valuation rings by Ghosh and Krishna.
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Theorem 2.32 [13, Theorem 9.6] Let A be a discrete valuation ring, let X be a
regular quasiprojective A—scheme, and let ¥ be a very ample line bundle on X. Then,
for all n > 0, the line bundle #®" has a global section s whose vanishing locus Zy is
regular and of codimension 1. Moreover, if X is flat over A, then we can find such a
global section s with Z flat over A.

Proof We may assume without loss of generality that X is connected. Note that the
authors assume the structure morphism X — Spec(A) to be surjective. However, if
this is not the case, then X is quasiprojective over either the fraction field of A or the
residue field of A4, and the claim follows from the Bertini-regularity theorems over
fields. Moreover, the authors assume the Krull dimension of X to be at least 2, but this
is only because the surjectivity of X — Spec(A) implies that otherwise X is going to
be affine and semilocal, and hence all line bundles are going to be trivial, rendering the
claim trivial. To prove the last claim, we note that, if X is flat over A4, then Z; is not
flat over A if and only if it has a component defined over the residue field of 4. But,
looking at the proof of [13, Theorem 9.6], it is clear that this does not happen, so we
are done. |

3 Presentations of Chern classes and refined projective bundle
formulas

The purpose of this section is to prove that Chern classes of vector bundles and line
bundles often admit presentations in terms of nice cobordism cycles, and to use this
to prove several refined versions of the projective bundle formula, which will play an
important role in Section 4. We note the unfortunate expositional fact that some results
of Section 3.2 for discrete valuation rings use the results of Section 4 for fields, so the
logic of Sections 3 and 4 proceeds really as follows:

Section 3 for fields = Section 4 for fields
= Section 3 for discrete valuation rings
= Section 4 for discrete valuation rings.

We hope that the reader does not get confused because of this nonlinear narrative.

3.1 Presentations of Chern classes

The purpose of this section is to record several presentability results of Chern classes
that are going to be useful in the proofs of the refined projective bundle formulas as
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well as later in the article. We start with the following observation, which is useful
when we know that large enough powers of a line bundle admit nice sections:

Lemma 3.1 Let X be a finite-dimensional divisorial Noetherian derived scheme and
let £ be a line bundle. Then, given coprime integers p and ¢ and integers a,b € Z
such that ap + bg = 1,

1(2) = @ (29 +ber(2%0)+ (1 + Y b (2)') € 21 (1),

i=1

where b; 1= b;i(p.q,a,b) e L.

Proof Indeed, from the formal group law it follows that

aci(£87) +be ) (£89) = e1(L) » (1X + D aicr (z)"),

i=1
where a; € L™, The claim follows from the fact that 1y + Zfil a;c1(Z) is invertible.
O

The next result will enable us to find nice presentations of Chern classes of all vector
bundles by arguing inductively on the rank.

Lemma 3.2 Let X be a finite-dimensional Noetherian derived scheme having an
ample line bundle, and let E be a vector bundle on X. Then, denoting by
0—->0(-1)>E—->Q—0

the tautological exact sequence of vector bundles on P (E), the class

Ipg) +c1(O(=1)) ¢ [Pp(£)(O(=1) ® O) — P(E)]
1 —cr(E)*[Ppg)(E ® O) — P(E)]

cc,1(Q) € Q"N (P(E))
pushes forward to 1y € QO(X).
Proof Indeed, this is just [4, Lemma 3.28]. O

Our first two results show that Chern classes of vector bundles on classical schemes
can be often presented by classical cycles. These results are not needed later in the
article, but they might be useful for other purposes, which is why we record them here.
The uninterested reader may skip ahead to Lemma 3.5.

We begin with the case of line bundles.
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Lemma 3.3 Let X be a quasiprojective scheme over a Noetherian ring A and let &
be a line bundle. Then c¢;(%) € Q'(X) is equivalent to an LL—-linear combination of
cycles of the form [Z — X, where Z — X is a classical regular embedding.

Proof We start by proving the claim for ample line bundles by arguing inductively
on the Krull dimension of X, the base case of an empty scheme being obvious. By
Lemma 2.31, we can find coprime integers p and ¢ and effective Cartier divisors
i1:Z1—> X and iy: Z5 — X in the linear systems of £®P and £®1, respectively.
By Lemma 3.1 and the projection formula it follows that

c1(2) o
= (a[Zl —> X]+b[22 —> X])'(lX'i‘Z biCl(g)i)

i=1

=a[Zy = X|+b[Z; — X]+ai12(z bicy (flzl)i)-i-biz! (Z bicy ($|Zz)i)

i=1 i=1
with a,b € Z and b; € L, so we have proven the claim for .# ample by the inductive
assumption.

Suppose then that . is an arbitrary line bundle on X. By the quasiprojectivity of X’
we can find ample line bundles ¢} and %, such that ¥ =~ .4 ® $2V, and therefore it
follows from the formal group law that

c1(£) =Y _bijer (L) e e (L)
i’j
for some b;; € L. Hence the claim follows from the ample case using the projection

formula and the fact that ample line bundles are stable under pullbacks along immer-
sions. O

It is then not very hard to deal with arbitrary vector bundles.
Proposition 3.4 Let X be a quasiprojective scheme over a Noetherian ring A and let E
be a vector bundle on X. Then c;(E) € Q(X) is equivalent to an integral combination

of cycles of the form [V — X| with V — X Ici.

Proof We will proceed by induction on the rank r of the vector bundle, the base case
r = 1 following from Lemma 3.3. Suppose that E is a rank r vector bundle on X and
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that the claim is known for all quasiprojective A—schemes and for all vector bundles of

rank at most r. Then, by Lemma 3.2 and the projection formula,

Ipe) +c1(O(=1) *[Ppg)(O(=1) ® O) = P(E)]
1 —cr(E)*[Ppg)(E ® O) — P(E)]

() = m( ey (0) -c,-(E>)

€ Q*(X),

where 7 is the natural map P (E) — X. Moreover, the element

Ipg) +c1(O(=1)) ¢ [Pp(£)(O(=1) ® O) — P(E)]

1 —cr(E)*[Pp(g)(E D O) — P(E)] *¢r-1(Q)*ci(E)

can be expressed in the desired form by the inductive assumption and the Whitney sum
formula, so the claim follows by pushing forward. a

Next we show that we can prove stronger results when working over discrete valuation
rings. Again, we start with the case of line bundles.

Lemma 3.5 Let X be a regular quasiprojective scheme over a discrete valuation ring
(or a field) A, and let . be a line bundle on X. Then ¢; (%) € Q1 (X) is equivalent to
an IL-linear combination of cycles of the form [Z — X, where Z is a regular scheme.
If X is flat over A, then we can moreover assume the Z to be flat over A.

Proof Let us first assume that . is very ample. We will proceed by induction on
the Krull dimension of X, the base case of an empty scheme being obvious. By
Theorem 2.32 we can find coprime integers p and ¢ and regular divisors i;: Z; < X
and iy: Z < X in the linear systems of .#®? and .#®9, respectively. By Lemma 3.1
and the projection formula it follows that

() = @z = X)+ 8(za = XD+ (1 + Y bier(2) )

i=1

=a[Zy = X]|+b[Z, — X]+ai1!(Zb,-cl(.$|Zl)")

i=1
+bi2!(zb,~c1(z|zz)")

i=1
with @, b € Z and b; € L, and the claim follows from the inductive assumption. Note
that, if X was flat over A4, then we could have chosen Z; to be flat over A4 too, proving
the stronger claim as well.
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In general, we can find very ample line bundles ¢} and %, such that ¥ ~ ¥ ® .2,
and therefore, by the formal group law,

(@)=Y biyei(A) se1 (%) € Q*(X)
i,j=0
for some b;; € IL. As very ample line bundles are stable under restrictions to closed
subschemes, the general case follows from the very ample case. m|

Finally, we deal with general vector bundles.

Proposition 3.6 Let X be a regular quasiprojective scheme over a discrete valuation
ring (or a field) A, and let E a vector bundle on X. Then c;(E) € Q!(X) is equivalent
to an integral combination of cycles of the form [V — X| with V regular. If X is flat
over A, then we can moreover assume the V' to be flat over A.

Proof This is identical to the proof of Proposition 3.4, using Lemma 3.5 instead of
Lemma 3.3 for the base case. |

3.2 Refined projective bundle formula

The purpose of this section is to prove refined versions of projective bundle formula
that are going to be useful later in the article. We start with the easier one. Note that
the first part of the following result is not needed later in the article:

Proposition 3.7 Let X be a quasiprojective derived scheme over a finite-dimensional
Noetherian ring A, and let 7w be the projection P x X — X. Then a cobordism class
[V - P"x X] € Q4P" x X)

is equivalent to
n
> (O em* (@)

i=0
and:

(1) If V is a complete intersection scheme, then o; € Qd-i (X) are equivalent to
integral combinations of complete intersection schemes mapping projectively
to X.

(2) If A is a discrete valuation ring (or a field) and V is regular, then «; € Qd—i (X)
are integral combinations of regular schemes mapping projectively to X.
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Proof By the projective bundle formula there exist unique «; € *(X) such that

[V —>P"xX]=Y i (O()) s 7* () € Qu(P" x X)
i=0

holds; our task is to find the desired presentation for «;. But this is easy: clearly
e (c1 (O()) o[V = P" x X1) = ay—i + [P oty—i—1 + -+ + [P" o,

where [P?] is the class of P? in L™, so the first claim follows from Proposition 3.4
and the second claim follows from Proposition 3.6. O

Remark 3.8 There is a more general version of Proposition 3.7 that holds for all
projective bundles and not just the trivial ones. However, the proof is much more
complicated and, since we will not need the more general result, we have chosen only
to prove a special case.

The following result is one of the crucial results needed in the proof of the algebraic Spi-
vak’s theorem as it allows us to approximate the class of a generically finite morphisms
to a projective space:

Theorem 3.9 Let A be a Henselian discrete valuation ring with a perfect residue field
(or let A be an arbitrary field), and let f: V — P} be a projective morphism from an
integral regular scheme V of relative virtual dimension Q. If f is generically finite of
degree d > 0, then

n
[V —>Pil=d+) ci(0O) en*(;) € QU]
i=1
where the «; are integral combinations of regular projective A—schemes and e is the
residual characteristic exponent of A. If A is a field, then the equality holds without
inverting e.

Proof Suppose first that f is dominant, which also implies that V is flat over 4.
Using Proposition 3.7 and Lemma 2.25 it follows that

[V > Pil=> c1(O(1) ew* ()
with =0

oy = Z n;i[Spec(B;) — Spec(A)] € Q°(Spec(4)),

1
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where B; are finite, flat, integral and regular A—algebras, and n; € Z. Using the
specialization morphism of cohomology theories Q* — K one checks that

D> nideg(Bi/A) =d.

so the claim follows from Lemma 3.10 below.

Suppose then that f is not dominant. If V is flat over A (eg if A4 is a field), then
the above proof shows what we want. Otherwise V is a regular k—variety, and, by
Proposition 3.7 and Lemma 2.25,

ay = Zn,-[C,- — Spec(A)] € Q°(Spec(4))
i
with C; smooth curves over k and n; € Z. Using the computation of 27! (Spec(k))[e™!]
from Corollary 4.17 (whose proof only needs this result for fields), we see that

ag = b[Spec(k) — Spec(A4)] = 0 € Q°(Spec(x))[e™],

where b e L™1[e™!]. ad

We needed the following computation of cobordism classes of finite regular algebras in
the above proof:

Lemma 3.10 Let A be a Henselian discrete valuation ring with a perfect residue field
(or let A be an arbitrary field) and let B be a finite, flat, integral and regular A—algebra
of degree d. Then

[Spec(B) — Spec(A)] = d € Q°(Spec(A)).

Proof Note that if A is a field, then B is a finite field extension of 4 and the claim
follows trivially from Lemma 3.11, as any field extension factors as a composition of
primitive field extensions.

Let us then deal with the case where A4 is a Henselian discrete valuation ring with a
perfect residue field «. By [7, Tag 04GG], B is a Henselian discrete valuation ring;
let us denote its residue field by /. We will write n := [/ : k]. Let & € / be a primitive
element over &, let / be its minimal polynomial and let /" € A[x] be a monic lift of f.
It is clear that A" := A[x]/(f’) is a Henselian discrete valuation ring of degree n over A.
Moreover, as B is Henselian and « is a simple root of j_, we can lift « to a root &
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of f in B, giving rise to a morphism vr: A" — B by sending x to &. We have factored
A— B as
A2 4% B

with ¢ primitive by construction and ¥ primitive by [26, Chapter I, Proposition 18], so
the claim follows from Lemma 3.11 below. |

The above lemma needed the following result in its proof:

Lemma 3.11 Let A be a Noetherian ring of finite Krull dimension, and let : A — B
be a finite syntomic morphism of degree d. If \ factors as a composition of primitive
finite syntomic morphisms, then

[Spec(B) — Spec(4)] = d € Q°(Spec(4)).

Proof It is enough to consider the case where B itself is primitive over 4. Hence,

B = A[x]/(f)
for some f =x? +ag_1x? "' +---4ay € A[x], and therefore Spec(B) is the derived
vanishing locus of
_ d d—1 d 1.
Fx,y)=x"4ag_1x""y+---+agy” e (P, 0(d)),
and hence

[Spec(B) — Spec(4)] = m(c1(O(d))).

where 7 is the projection Pj — Spec(A). The claim then follows from noticing that
c1(0(d)) = dey (0(1)) and m(c1 (O(1))) = 1. i

We are going to use Theorem 3.9 in Section 4 in the form of the following corollary:

Corollary 3.12 Let A be a Henselian discrete valuation ring with a perfect residue
field k (or let A be an arbitrary field), and let f: D — P} be a projective morphism of
relative virtual dimension 0 from an snc scheme D. If f is generically finite of degree
d >0, then

[D—>Pil=delpnz+ Y n*@)*ci(O(1) ¢ 1prz € QuPYle"]

i=i
with a; € Q7% (X)) integral combinations of regular projective A—schemes. If A is a
field, then the equality holds without inverting e.
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Proof Let X be a regular scheme in which D is an snc divisor, let Dy, ..., D, be the
prime components of D and let ny,...,n, > 0 be such that

D:nlDl +"'+nrDr

as effective Cartier divisors on X. Then the snc relations and Poincaré duality imply
that

IcC[r]
where f7 is the canonical morphism Dy := (Nier Di — Pj. Applying Proposition 3.6
to the elements
Ff " (e (O(D), ..., e1(O(Dy)) € @' 7Dy,
we conclude that
[D — P4l =n[Dy > P4l +---+n,[D, > P4+ B € Q°(P)),

where f is an integral combination of cycles of the form [V — PJ] € QO(IP’:I'), where
V' is regular and the morphism V' — IP/j is nondominant. Combining this with the fact
that

d = ny deg(Dy/Py) +---+n, deg(D, /P})

with deg(D;/P)) = 0 whenever D; — P} is nondominant, the claim follows from
Theorem 3.9 and right multiplication by l]pz /7 O

4 Algebraic Spivak’s theorem and applications

The purpose of this section is to prove the algebraic Spivak’s theorem (Theorem 4.12)
and apply it to prove further properties of algebraic bordism. We start by fixing notation
in Section 4.1, after which we prove Spivak’s theorem in Section 4.2. Section 4.3 is
dedicated to proving the extension theorem (Theorem 4.19).

Throughout the section A will be either a field or an excellent Henselian discrete
valuation ring with a perfect residue field k. We will denote by

QA(X):= Q7*(X — Spec(4))

the A-bordism groups of quasiprojective derived A—schemes X, where the grading is
given by the relative virtual dimension over A. As A is regular, we have the natural
isomorphism

—*1y/z: Q7 (X) = Qu(X)
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but note that the right-hand side does not have a natural grading. The A-bordism
groups (X)) have a canonical *(Spec(4))-module structure given by the bivariant
product, which also has an explicit formula

[V — Spec(A)L[W — X] =75 ([V — Spec(A)]) o [W — X]=[V x§ . 4y W — X],

where my is the structure morphism X — Spec(A). Pushforwards and Gysin pullbacks
are maps of Q*(Spec(A4))-modules.

4.1 Deformation diagrams

Suppose that X is a connected quasismooth and quasiprojective derived A—scheme,
and let i : X < U be a closed embedding with U an open subscheme of P} for some
n > 0. We will denote by
Ta: Xop — Py

the scheme-theoretic closure of the truncation X, of X in U. The purpose of this
section is to record and study the basic properties of three deformation diagrams playing
an important role in Sections 4.2 and 4.3. Let us start with the derived deformation
diagram.

Construction 4.1 (derived deformation diagram of /) Denoting the derived blow-up
of cox X < P! x U by M(X/U) gives rise to a derived Cartesian diagram

X —Z 5 PWy/u ®0) +Bly(U) — oo

N

PlxX —"' 5 M(X/U) —— P!
b
X < ! s U 5> 0

where + denotes the sum of virtual Cartier divisors. Let us denote the induced mor-
phisms P(Ny,y @ O) < M(X/U) and Bly(U) < M(X/U) by j and j3°,
respectively.

Since P! x X does not meet Bly (U) by Theorem 2.8, we have the following result:

Lemma 4.2 Let everything be as above. Then
i'oj% =s"0 QM (X/U)) — Qi (X).

where s is the zero section X — P (Ny,y @ O).
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Proof This follows immediately from the fact that the squares

X—= 5 PWNy,u®0) X—1!t U
jj e ijo and lij 0 lij 0
Plx X1 s M(X/U) P! x X —— M(X/U)
commute up to homotopy. O

We will combine the above result with the following standard observation in Section 4.2:

Lemma 4.3 Let X be a quasiprojective derived A scheme, let p: P(E & O) — X be
a projective bundle over X withr =rank(E), and let s: X — P(E & O) be the zero
section. Then

5' (=) = pulcr (E(1) o —): QAP (E @ 0)) > Qi (X).

Proof This follows immediately from the fact that s is the derived vanishing locus of
a global section of E(1). ad

We will also need the following classical deformation diagrams:

Construction 4.4 (classical deformation diagram of 7j) Denoting the classical blow-
up of 0o x Xo < P1 x P# by M!(X;/P%) gives us the diagram

X, N + BICXI,I(IP’Z) —> 00
lf;]w e
P! x Xy —5 M (Xa/Pl) — P!
/[]—/0 /[_0
cl Jel
Xy P2 +0
where £ denotes the exceptional divisor of the blow-up. We will denote by ;3° the
induced morphism & < M*®(X;/ PY).

Construction 4.5 (classical deformation diagram of i;j) Restricting the deformation
diagram of Construction 4.4 to the open subscheme U C P} gives rise to the diagram

Xy ygo 4 Bly (U) —— o0

jfﬁf"’ i
~o

P! x Xgq—2y M (Xy/U) — P!

.70 .
/]:Jc/l ch(?

Xc] < ld > U > 0
The induced morphism £° <> M(X,/U) is denoted by ;.
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As a special case of Proposition 2.9, we obtain the following result:

Lemma 4.6 The square

C

jOO
g0 2 M(Xy/U)

[k
PWy/u ®0) — 1 M(X/U)

is derived Cartesian. O

4.2 Proof of the algebraic Spivak’s theorem

In this section we prove the algebraic Spivak’s theorem. For simplicity we will call
elements of the form

[V > X]eQd(X) and [V — Spec(4)] € Q*(Spec(A4))
with V' a regular scheme regular cycles. The algebraic Spivak’s theorem will easily
follow from the following result:
Lemmad4.7 Let X be a connected quasismooth and quasiprojective derived A—scheme
of virtual A—dimension d. Then the fundamental class
Lx/a € 4 (X)le™]
is equivalent to a Z[e~'|-linear combination of elements of the form
(0[1 o . ...as)‘ﬂ

with a; € Q*(Spec(A)) and B € QA(X) integral combinations of regular cycles.
Throughout this section, we will use the notation of Section 4.1. Let us start with the
following construction:
Construction 4.8 Choose a desingularization by an e—alteration

W — MY (Xq/Ph)

with & 1= 77 1(€) and W, := JT_I(PZ) snc divisors (here P} is the copy of the
projective space over 0), and denote by

7 W — MY (Xyq/U),
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&£'° and Wy the pullbacks of 7, £ and W along U C IPYf. Note that, since

Wy ——— W° P e s W°
l l and l l
U~—— M(X/U) PWx/u®0) —— M(X/U)

are derived Cartesian, it follows from Lemma 4.2 that
) i'(Ws — U] =5 ([£"° = P(Nx;u @ 0)))
in QA(X).

We then have the following lemmas:

Lemma 4.9 We have that
n
Wy > Ul=e"1y/a+ Y _ ai(c1(Oy(1)) ¢ 1y 4) € Q2.
i=1
where m is a nonnegative integer, Oy (1) is the restriction of O(1) to U, and the
a; € Q7 (Spec(A)) are integral combinations of regular cycles.

Proof By construction, 7: W — M (Xy/ [P%) is surjective and generically finite
of degree ¢ for some m € 7Z nonnegative (and therefore also of relative virtual
dimension 0 over the regular locus of M (X/ P). As M N X/ P7) is regular away
from the fibre over oo, as the inclusion P} — M N X/ IP%}) of the fibre over 0 is a
prime divisor, and as a surjective morphism from an integral scheme to the spectrum of
a discrete valuation ring is necessarily flat, it follows that also the morphism Wy — PJ
is generically finite and of degree e”. As W} is an snc scheme, the claim follows from
Corollary 3.12 and restricting along the inclusion U C P. a

Moreover, the other term of (2) is of the correct form by the following result:

Lemma 4.10 We have that
sH[E"° = Py p @ 0)]) € Q4(X)

is an integral combination of regular cycles.

Proof By Lemma 4.3,
sY([E"° = P(WNx/u @ 0)]) = px(cr Ny (1) o [€7° — PNy @ 0)]) € QA(X).
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where p is the canonical projection P(Ny,y @ O) — X. Moreover, denoting by
EL..... & the prime components of £’°, letting 1y, ..., n, > 0 be such that

E°=mé&’+ - +n&°

as effective Cartier divisors on W °, and denoting for each I C [r] the natural inclusion
EF = Nier &° = £'°, the snc relations imply that

crWNy u(1))elgr; 4

1C[r]

= Z L(erWxyu (1)) o FF2" (e (O(Dy)), - . ., c1(O(Dy))) » 15;°/A)
I1C[r]

in Q4(£7°), so the claim follows from Proposition 3.6 and pushing forward to X. 0O

We are now ready to prove the main lemma needed for the proof of the algebraic
Spivak’s theorem.

Proof of Lemma 4.7 We will proceed by induction on the Krull dimension of X, the
base case of an empty scheme being trivial. Suppose that X has Krull dimension d
and the result has been proven for derived quasiprojective and quasismooth derived A4
schemes of Krull dimension at most d — 1. Denoting by wx the structure morphism
X — Spec(4) and by Oy (1) the restriction of O(1) to X, and combining (2) with
Lemmas 4.9 and 4.10, we see that

B—Y i i (c1(Ox (1) »1x/4)

em

e Qd(X)le™!],

lx/4a=

where B € QA(X)[e~!] and ; € Q7 (Spec(A)) are integral combinations of regular
cycles. By Lemma 4.11 the classes

1 (Ox (1) e lx/4

for i > 0 are equivalent to an L.—linear combination of pushforwards of fundamental
classes of derived schemes of Krull dimension at most ¢ — 1, and therefore these classes
can be dealt with inductively. We can therefore express 1y, 4 in the desired form,
proving the claim. a

We used the following lemma in the above proof:
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Lemma 4.11 Let X be a quasiprojective derived A—scheme of Krull dimension d,
and let £ be a line bundle on X. Then
N
c1(£) =Y aj[V; = X] € Q' (X).
ji=1

where aj € I and V; are derived schemes of Krull dimension at most d — 1.

Proof It is enough to prove the claim for i = 1: if

N
(L) =) ajlV; > XTeQ'(X)
ji=1

is the desired expression, then

N
c1(£) =Y qj[V] > X]e Q'(X),
j=1
where Vj’ is the derived vanishing locus of the zero section of . on V;. Suppose
first that .# is a very ample line bundle. Then, for all > 0, the line bundle .#®"
has a global section s whose vanishing locus does not contain any of the irreducible

|€9i—1
4

components of X;. In particular, we can find coprime integers p and ¢ and global
sections s, € ['(X; 2®P) and s, € T (X; £®7) whose derived vanishing loci [Z] < X
and [Z, < X] have Krull dimension at most d — 1, and therefore Lemma 3.1 implies
that

o0
(L) = (1X + Zb,-cl(.z)i) o (a[Z) = X]+b[Z, — X]) e Q' (X)
i=1
for a and b integers and b; € .. Hence the claim follows for .Z very ample. As a
general line bundle .# is equivalent to .%; ® .ZZV with .4, and %, very ample, the
general case follows using the formal group law. O

It is now easy to prove the algebraic Spivak’s theorem.

Theorem 4.12 (algebraic Spivak’s theorem) Let A be a field or an excellent Henselian
discrete valuation ring with a perfect residue field «, and let e be the residual character-
istic exponent of A. Then the algebraic cobordism ring Q* (Spec(A))[e™!] is generated
as a Z[e~']-algebra by regular projective A—schemes. Moreover, for all quasiprojective
derived A-schemes X, Q,(X)[e™!] is generated as an *(Spec(A))[e™!]-module by
classes of regular schemes mapping projectively to X.
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Proof Suppose X is a quasiprojective derived A—scheme. Then Q,(X)[e~!] is by
definition generated as a Z[e~']-module by cycles of the form

v L X = fullyz)

with f projective and V' a derived complete intersection scheme, and the claim follows
from Lemma 4.7 under the natural isomorphism —e 14,7 : Qf(X) =5 Q.(X). O

This result has several immediate corollaries. Let us start with the following:

Corollary 4.13 Suppose A is as in Theorem 4.12. Then, for all quasiprojective derived
A-schemes X, Q.(X)[e™"] is generated as a Z[e~']-module by cycles of the form

[V — X]

with V' a classical complete intersection scheme, and the structure morphism V —
Spec(A) is either flat or factors through the unique closed point of Spec(A4).

Proof Let X be a quasiprojective derived A—scheme. Then, by Theorem 4.12, the
algebraic bordism group ,(X) is generated by Z[e~!]-linear combinations of elements
of the form

([Vi — Spec(A)]e--- o[V — Spec(A)]).[W — X]
R R R
=" Xspec(A) " Xspec(d) Vr Xspec(ay W = X1,

where V; and W are regular. If A is a field, then the derived fibre product is classical,
proving the claim for fields.

We are left with proving the first claim for discrete valuation rings. We first observe that
since V; and W are integral, each of them is either flat over A or factors through the
residue field k of A. If all or all but one of the Vi, ..., V, and W are flat over A, the
derived fibre product is classical, so we are left with the case where at least two of them
factor through k. Without loss of generality, we can assume them to be V' = V; and W.
But then one computes that the derived fibre product V' xﬁ)ec( 4) W is the derived vanish-
ing locus of the zero section of the trivial line bundle in V x X W >V Xgpece) W

Spec(k)
and the claim follows from the fact that

v xgpec(A) W — X]= fi(c1(0) * lyxg,w/z) =0 € Qu(X),
where [ is the induced morphism V' Xgpec(e) W — X. ad

Corollary 4.14 If k is a field, then the e—inverted bordism groups Q,(X)[e™!], where
X is a quasiprojective derived k—scheme, are generated as Z[e™']-modules by classes
of regular k—varieties mapping projectively to X.
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Proof If k is perfect, then this is an immediate corollary of Theorem 4.12 because
a quasiprojective derived k—scheme is regular if and only if it is smooth over k, and
smoothness is stable under derived base change.

Suppose k is not perfect and let kP denote its perfection. Then, by the previous case,
for every bordism class [Y — X7, the base change [Yjpet — Xpper] is equivalent to a
linear combination of regular kP*"—varieties mapping projectively to Xypert. Chasing
the coefficients, we see that the same is true for [Yy, — X}], where k' is a finite field
extension of k& of degree e™. Therefore,

[Y —> X] = €_m[Yk/ —> Xk’]

is equivalent to a linear combination of regular k—varieties. O
An immediate corollary of the above is the following vanishing result:

Corollary 4.15 Let X be a quasiprojective A—variety. Then:
(1) If A=k isafield, Qf.‘(X)[e_l] =0 forall i <0.
(2) If A is a discrete valuation ring, Qlf‘l(X)[e_l] =0foralli <—1.

Proof This follows from Corollary 4.13 because Ici A—schemes have relative virtual
dimension at least O when A is a field, and at least —1 when A is a discrete valuation
ring. O

Note that the above bounds are strict as the fundamental class 1,4 of Spec(k), where
k is the residue field of a discrete valuation ring A, lies in degree —1. The above
vanishing result also has the following amusing corollary, which seems to be difficult
to prove directly. Similar results can be proven using virtual fundamental classes in
intersection theory (or graded K—theory) combined with Grothendieck—Riemann—Roch
formulas; see eg [17].

Corollary 4.16 Let k be a field and let X be a quasismooth projective derived k—
scheme with negative virtual dimension. Then

S (1) dimg (H (X 0x)) = 0 € Z.
i€Z

Proof Indeed, the left-hand side is the image of

[X — Spec(k)] € Q«(Spec(k))[e™!]
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under the natural morphism
Q. (Spec(k))le™']— K(Spec(k))e™ '] = Z[e™'],
so the claim follows from Corollary 4.15. O
Let us then turn to the structure of the algebraic cobordism ring of 4. Using birational
geometry of varieties of dimension < 2, we are able to make modest progress towards
Conjecture 1.1.
Corollary 4.17 Let A be as in Theorem 4.12. Then:
(1) Q¥(Spec(A4))[e~!] vanishes fori > 0, and the natural map
Zle ' = L%e™ "] — Q°(Spec(k))le™]

is an isomorphism; in other words, Q2°(Spec(A)) is the free Z[e™!]-module
generated by 14.

(2) If A =k is a field, then the natural map
L*[e™ '] — Q*(Spec(k))[e™!]

is an isomorphism in degrees 0, —1 and —2; in other words, Q' (Spec(k)) is
the free Z[e~']-module generated by [IP’,i] and Q% (Spec(k)) is the free Z[e~']-
module generated by [1P’,§]2 and [X; x], where X i is the Hirzebruch surface of
degree 1 over k.

Proof (1) Letus first assume that A =k is a field. The vanishing of Q(Spec(4))[e™!]
for i > 0 follows from Corollary 4.15, and by Theorem 4.12 Q°(Spec(A4))[e~!] is
generated as a Z[e~!]-algebra by classes of field extensions of k. It then follows from
Lemma 3.10 that the natural morphism

Zle ' = L%e™ 1] — Q°(Spec(k))e™]
is surjective, and hence an isomorphism by Proposition 2.23.

Suppose then that A is an excellent Henselian discrete valuation ring with a perfect
residue field k. Then the vanishing of Q’(Spec(4))[e™!] for i > 1 follows from
Corollary 4.15. Moreover, by Corollary 4.13, the Gysin pushforward map

Z[e_l] o~ QO(Spec(K))[e_l] — Ql(Spec(A))[e_l]

is a surjection because syntomic A—schemes cannot have negative relative virtual
dimension. As [Spec(k) < Spec(A4)] = 0, it follows that Q! (Spec(4))[e~!] vanishes.
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We are left to compute Q°(Spec(4))[e™!]. It follows from the previous paragraph
(and Lemma 2.25) that it is generated as a Z[e™!]-algebra by classes of the form
[V — Spec(A)], where V is a 1-dimensional regular and integral projective A-scheme.
If V is flat over A, then [V — Spec(A)] lies in the image of the natural morphism
Loe~!] — Q°(Spec(A4))[e~!] by Lemma 3.10. On the other hand, if V' is not flat
over A, then it is a smooth curve over k. Using the second part of this result,

[V — Spec(k)] = b € Q71 (Spec(k))[e™!],
where b comes from L~ ![e~!], and therefore
[V — Spec(A4)] = b[Spec(x) — Spec(A)] = 0 € Q°(Spec(4))[e™"].
It follows that the natural map
Zle ' = L%e™"] - Q°(Spec(A))le™]
is surjective, and hence an isomorphism by Proposition 2.23.
(2) The proof splits into three cases.

(a) (k is infinite and perfect) We follow the argument of Levine and Morel from [20,
Section 4.3]. Let X be a smooth k—variety of dimension # < 2, and suppose that the
claim is known up to dimension n — 1. It is well known that X admits a finite birational
morphism X — X/, where X’ — IP’,’C""I is a hypersurface; let us denote the degree
of X’ by d. By the embedded resolution of surfaces (see [1, Section 0]), we may find
a morphism

.Y - P/ +l

which is a composition of finitely many blow-ups whose centres are smooth subvarieties
of dimension <n —1 of P}zﬁl such that

XY =X +n1E 4+ nEr

as divisors, where the strict transform X of X' is smooth, &; are the exceptional divisors
(which are projective bundles over smooth varieties of dimension <z — 1) and n; > 0.
As X is the normalization of X’, we obtain a canonical morphism

p:f—>X.

Notice that, if n = 1, then p is an isomorphism, and if n = 2, then p is a composition
of blow-ups at closed points (see eg [7, Tag OC5R]). It follows from Lemma 2.27 that
[X] lies in the image of L*[e™!] if and only if [X] does.
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Note that it follows from Lemma 2.27 and Corollary 4.14 that

m
c1(O@d)o[Y > P =X - PIH+ > ai[vi > P,

i=1
where a; € L* and V; are smooth varieties of dimension < n — 1, and, as [X”] lies in
the image of LL*[¢~!] (this follows from the formal group law and the fact that [IP’,i]
are in the image of IL*), it follows that [z —'(X”)] lies in the image of L*[e~!]. On the
other hand, by Lemma 2.26, [£;] lie in the image of LL.*[e™!], and therefore, computing
the class of [~ !(X’) < Y] using the formal group law, we see that also [)? ] lies in
the image of L*[e~!]. But, as we already noted, this implies that [X] lies in the image
of L*[e™1], so we are done.

(b) (k is not perfect) Let X be a regular k—variety of dimension n < 2, and let kP
be the perfection of k. It follows from (a) that [Xjper] lies in the image of L*[e™!].
Moreover, by chasing coefficients we see that this is true for some finite intermediate
field extension

k C k' C kP,
and therefore

[X]=e™"[Xp]

lies in the image of L*[e~!], where ™ = [k’ : k].

(¢) (k is finite) The problem with the strategy of (a) in this case is that a smooth
projective k—variety V might not admit a finite birational projection to a hypersurface.
But this is easy to fix: clearly every such a variety admits such a projection for all large
enough finite extensions of k, so in particular we can find extensions k£’ and k" of
coprime degrees p and ¢ such that X and X~ admit the desired projections over k’
and k", respectively. Therefore, we can run the argument of part (a) for X3 and X,
and therefore
a[ Xy, — Spec(k)] + b[ X» — Spec(k)] = a[ Xy, — Spec(k)] + b[Xy» — Spec(k)]
= (ap + bq)[X — Spec(k)]
= [X — Spec(k)]

lies in the image of L*[e~!] — Q*(Spec(k))[e~!], where a,b € Z are such that
ap +bg = 1. ad

Let us also record the following result, concerning the generators of the cobordism ring
of a discrete valuation ring:
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Proposition 4.18 Let A be an excellent Henselian discrete valuation ring with a perfect
residue field «. Then:

(1) Q7 1(Spec(A4))[e~'] is generated as a Z[e~']-module by regular and flat projec-
tive A—schemes.

(2) If « has characteristic 0, then Q*(Spec(A)) is generated as an abelian group by
the classes of syntomic projective A—schemes.

Proof In both cases the proof is essentially the same. By Corollary 4.13, we see
that Q' (Spec(4))[e~'] is generated by cycles of the form [V — Spec(A4)] with V a
complete intersection scheme that is either flat over A or factors through Spec(k), and
we have to show that nonflat cycles vanish at least in certain degrees. Note that, if V' is
not flat, then

[V — Spec(x)] € Q_d(Spec(K))[e_l]

lies in the image of the natural morphism L~4[e~!] — Q=9 (Spec(k))[e~ '] if d is at
most 2 or if k has characteristic 0 [20, Theorem 4.3.7], and therefore
[V — Spec(A)] = b[Spec(i) < Spec(4)] =0 € Q'74(4)

for some b € L™[e™!]. Hence ¥ (Spec(4)) is generated by classes of syntomic
projective A—schemes if i is at most 1 or if k has characteristic 0. Moreover, as
Zle™ 1= Q°(Spec(4))[e™!], it follows from Theorem 4.12 that Q! (Spec(4))[e™!]
is generated as a Z[e~!]-module by regular cycles, proving the first claim. a

4.3 Proof of the extension theorem

The goal of this section is to prove the following result:

Theorem 4.19 (extension theorem) Let A be a field or an excellent Henselian discrete
valuation ring with a perfect residue field «, and let j : X < X be an open embedding
of quasiprojective derived A—schemes. Then the pullback morphism

Je®e™ - (e

is surjective.
As j'is Q*(Spec(A))[e!]-linear, it is enough by Theorem 4.12 to show that an

element
[V — X]eQi(X)
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with V' a regular scheme lies in the image of j L Letting V be the scheme-theoretic
closure of V' in some locally closed embedding

Ve P"x Xy CP"x Xy

which clearly maps projectively to X, it is enough to extend the fundamental class of V/
to an element of QA (V)[e™!]. As all quasiprojective A—schemes admit a projective
compactification, Theorem 4.19 follows from an easy inductive argument combined
with the following lemma and Corollary 4.15.

Lemma 4.20 Let X be a projective A—scheme and let j: X — X be an open em-
bedding with X a regular scheme of virtual A—dimension d. If the Gysin pullback
morphism

Jhef e - e ()]

is surjective fori < d — 1, then there exists a class a € Q;}‘(A_’)[e_l] with j'(a) = Ix/4.

Proof Note that we can find a (derived) Cartesian square
X5 X
I
U—— PJ
where the vertical arrows are closed embeddings and the horizontal arrows are open

embeddings. Since 7 is a (derived) regular embedding, we can apply Construction 4.8,
and conclude that, in the notation of Section 4.1 and Construction 4.8, the equality

i'(Wy — U) =s'(£° > P(Wyu @ 0)]) € 24(X)
holds. By Lemma 4.9,
sHIE° = PWx u ®@O)]) — X1 ai(c1(Ox (1))« 1y 4)

em

Lx/a = € QX))
where Ox (1) is the restriction of O(1) on X, and o; € Q7 (Spec(A4)). As
c1(Ox (1)) * Ly/4 € Q7 (X)le™ "],

we have reduced the problem to showing that

s'([E° = PNy u @ 0)))
extends. By Lemma 4.3,

sH([E° — PWx u @ 0)]) = ps(er Ny (1) o [€° — PNy u @ 0)]) € QA(X),
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where p is the projection P (Ny,yy @ O) — X, and we can find the desired extension by
applying Lemma 4.21 to the open immersion £° < £’ and pushing forward to X. O

We needed the following lemma in the above proof:

Lemma 4.21 Let j: D° < D be an open immersion of snc schemes admitting an
ample line bundle, and let E be a vector bundle on D°. Then, for all i > 0, there exists
aclass o € Q,(D) such that

JH @) = ci(E) e 1pojz € Q.(D°).

Proof Let Dy,..., D, be the prime components of D, and denote for each I C [r]
by ! the closed embedding

Dy:=(\Di— D.
iel
By the snc relations,

Ipjz =) tlar) € (D),
1C[r]

and, moreover, if J contains all / such that D; meets the image of j, then

1pejz = j!(Zli(Oll)) € Q.(D°).

Ied
For each I € J choose a coherent sheaf 77 on Dy extending E|j—1(D1)- As Dy is
regular, Fy is a perfect complex, and therefore has well-defined Chern classes. By the
naturality of Chern classes, it follows that

ci(E)*lpejz = j!(zli(ci(fl) 'Oll)) € Q.(D°),

I€3

which is exactly what we wanted. |

Combining the extension theorem with the projective bundle formula, we obtain the
following Al—invariance statement:

Corollary 4.22 (homotopy invariance) Let A be as in Theorem 4.19, let X be a
quasiprojective derived A—scheme and let p: E — X be a vector bundle of rank r on X.
Then the pullback map

P — QL (E)e™ ]

is an isomorphism.
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Proof As p admits a section, p' is at least an injection. On the other hand, by the

projective bundle formula, the morphism

@9* rriMe™ > QA PE S 0)e™],

where the i morphism is defined as

c1(O(1)) « p(-),

is an isomorphism, where p is the natural projection P(E @ O) — X. As O(1) has a

global section with derived vanishing locus P (E) whose complement in P(E & O)

is the open immersion j: E — P(E & 0), it follows that all classes of the form

¢1(O(1))" » p! () vanish when pulled back along j. As jlis surjective by the extension

theorem, we can conclude that p! is a surjection, which finishes the proof. O
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