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We prove a diagonalisation theorem for the tautological, or generalised Miller–Morita–
Mumford, classes of compact, smooth, simply connected, definite 4–manifolds. Our
result can be thought of as a families version of Donaldson’s diagonalisation theorem.
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for all compact, smooth, simply connected definite 4–manifolds.
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642 David Baraglia

1 Introduction

1.1 Tautological classes

Let X be a compact, simply connected smooth 4–manifold with positive-definite
intersection form. Assume that b2.X/ > 0. Then, by the work of Donaldson [5] and
Freedman [8], X is homeomorphic to the connected sum #nCP2 of n � 1 copies
of CP2, where nD b2.X/.

Let � WE! B be a compact, smooth family with fibres diffeomorphic to X. By this
we mean that E and B are compact, smooth manifolds, � is a proper submersion
and each fibre of � with its induced smooth structure is diffeomorphic to X. Note
that E has a fibrewise orientation which is uniquely determined by the requirement
that the fibres of E are positive-definite 4–manifolds. In this paper, we will use
parametrised Seiberg–Witten theory to study the tautological classes, or generalised
Miller–Morita–Mumford classes, of such families. These are defined as follows. Let
T .E=B/ D Ker.�� W TE ! TB/ denote the vertical tangent bundle. Then, for each
rational characteristic class c 2H�.BSO.4/IQ/, we define the associated tautological
class as

�c.E/D

ˆ
E=B

c.T .E=B// 2H��4.BIQ/;

where
´
E=B denotes integration over the fibres. Let Diff.X/ denote the group of

diffeomorphisms of X with the C1–topology (note that all diffeomorphisms of X
are orientation-preserving since X is positive-definite) and BDiff.X/ the classifying
space. The tautological classes can be constructed for the universal bundle UX D
EDiff.X/�Diff.X/X, giving classes

�c D �c.UX / 2H
�.BDiff.X/IQ/:

The tautological ring of X,

R�.X/�H�.BDiff.X/IQ/;

is defined as the subring of H�.BDiff.X/IQ/ generated by tautological classes �c
for c 2H�.BSO.4/IQ/. Since H�.BSO.4/IQ/ is generated over Q by p1 and e, it
follows that R�.X/ is generated by the classes f�pa

1 e
bga;b�0. Similarly, for any family

E! B, we can define the tautological ring of E,

R�.E/�H�.BIQ/;

to be the subring generated by the tautological classes �c.E/ for c 2H�.BSO.4/IQ/.

Geometry & Topology, Volume 27 (2023)



Tautological classes of definite 4–manifolds 643

Tautological rings have been studied extensively for families of oriented surfaces, eg
by Mumford [18], Miller [15], Looijenga [14], Faber [7] and Morita [16], and there
is a growing literature on tautological classes in higher dimensions due to Galatius,
Grigoriev, Hebestreit, Land, Lück and Randal-Williams [10; 11; 9; 19; 13] and Busta-
mante, Farrell and Jiang [4]. However, as far as we are aware, our paper is the first to
use gauge theory to obtain results on the tautological classes of 4–manifolds.

Let B be a compact smooth manifold. A topological fibre bundleE!B with transition
functions valued in Diff.X/ may be obtained by pullback of the universal family
UX ! BDiff.X/ with respect to a continuous map B! BDiff.X/. As explained by
Baraglia and Konno [2, Section 4.2], it follows from a result of Müller and Wockel [17]
that such a family E! B admits a smooth structure for which � is a submersion and
the fibres of E with their induced smooth structure are diffeomorphic to X. Since E
is smooth, we may use parametrised gauge theory to study the tautological classes
�c.E/ 2H

�.BIQ/. If a relation amongst tautological classes holds in R�.E/ for all
compact, smooth families � WE! B with fibres diffeomorphic to X, then it must also
hold in R�.X/. This is because rational cohomology classes of BDiff.X/ are detected
by continuous maps from compact, smooth manifolds into BDiff.X/. The upshot of
this is that we can use gauge theory to indirectly study the tautological ring of X.

1.2 Main results

In our first main result we determine the tautological rings of CP2 and CP2 # CP2.

Theorem 1.1 The tautological rings of CP2 and CP2 # CP2 are given by:

(1) R�.CP2/DQŒ�p2
1
; �p4

1
�.

(2) R�.CP2 # CP2/DQŒ�p2
1
; �p3

1
�.

Variants R�.X;�/ and R�.X;D4/ of the tautological ring are defined in [11; 9]. Their
definition is recalled in Section 6. We determine these rings for CP2.

Theorem 1.2 We have ring isomorphisms:

(1) R�.CP2;�/ŠQŒp1; e�.

(2) R�.CP2;D4/ŠQ.

The rings R�.CP2/, R�.CP2;�/ and R�.CP2;D4/ were investigated in [19], but
their structure was not fully determined. By computing these rings we have settled
some open problems posed in [19].

Geometry & Topology, Volume 27 (2023)



644 David Baraglia

For each pair of nonnegative integers a and b, we define a two-variable polynomial
�a;b.x; y/ 2 ZŒx; y� as follows: Let

p.z/D z3� xz�y; p0.z/D 3z2� x:

Then we define

�a;b.x; y/D
1

2�i

‰
.p0.z/C 3x/a.p0.z//b

p.z/
dz;

where the contour encloses all zeros of p.z/. From this definition, it follows that �a;b
satisfies the recursive formulas

�aC1;b.x; y/D �a;bC1.x; y/C 3x�a;b.x; y/;

�a;bC3.x; y/D 3x�a;bC2.x; y/C .27y
2
� 4x3/�a;b.x; y/;

which, together with the initial conditions

�0;0.x; y/D 0; �0;1.x; y/D 3; �0;2.x; y/D 3x;

can be used to compute �a;b for all values of a and b. We will make use of the
polynomials �a;b in the computation of tautological classes of families of definite
4–manifolds. We first state the nD 1 case.

Theorem 1.3 Let E!B be a smooth family with fibres diffeomorphic to X, where X
is a smooth , compact , simply connected , positive-definite 4–manifold with b2.X/D 1.
Suppose that the monodromy action of �1.B/ on H 2.X IZ/ is trivial. Then there exist
classes B 2H 4.BIQ/, C 2H 6.BIQ/ such that :

(i) There is an isomorphism of H�.BIQ/–algebras

H�.EIQ/ŠH�.BIQ/Œx�=.x3�Bx�C/:

(ii) The Euler class and first Pontryagin class of T .E=B/ are given by

e D 3x2�B; p1 D 3x
2
C 2B:

(iii) For all a; b � 0,
�pa

1 e
b .E/D �a;b.B; C /:

An interesting consequence of Theorem 1.3 is that the rational cohomology class p1
depends only on the underlying topological structure of the family because p1 is com-
pletely determined by x and B and in turn these classes can be uniquely characterised
in terms of the pushforward map �� W H�.EIQ/! H��4.BIQ/. In fact, a similar
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Tautological classes of definite 4–manifolds 645

result is true more generally for families of definite 4–manifolds. See Remark 5.12. It
follows that the tautological classes �pa

1 e
b .E/ depend only on the underlying topological

structure of the family. This could also be deduced from the fact that the tautological
classes are also defined for topological bundles; see Ebert and Randal-Williams [6,
Theorem B].

Remark 1.4 If E D P .V / is the CP2–bundle associated to a complex rank 3 vec-
tor bundle V ! B with trivial determinant, then B D �c2.V / and C D �c3.V /,
and so �pa

1 e
b .E/ D �a;b.�c2.V /;�c3.V //, which gives the tautological classes as

polynomials in c2.V / and c3.V /.

To state our next result, we need a few definitions. Let ƒn denote a free abelian group
of rank n and let fe1; : : : ; eng be a basis. Equip ƒn with the standard Euclidean inner
product hei ; ej iD ıij . LetWn denote the isometry group ofƒn. ThenWn is isomorphic
to a semidirect product

Wn D Sn Ë Zn2;

where the symmetric group Sn acts by permutation — �.ei /D e�.i/ — and the normal
subgroup Zn2 is generated by �1; : : : ; �n, where �i is the reflection in the hyperplane
orthogonal to ei . Let X denote a smooth, compact, simply connected 4–manifold with
positive-definite intersection form and n D b2.X/ � 1. In Section 2 we construct a
principal Wn–bundle

p W BDiff.X/! BDiff.X/

overBDiff.X/. Sincep is a finite covering, the pullback mapp� WH�.BDiff.X/IQ/!
H�.BDiff.X/IQ/ is injective and the image is precisely the Wn–invariant part of
H�.BDiff.X/IQ/. In particular, we may think of the tautological ring R�.X/ as a
subring of H�.BDiff.X/IQ/.

Theorem 1.5 Let X be a smooth , compact , simply connected , positive-definite
4–manifold with b2.X/D n� 2. Then there exists classes

Dij 2H
2.BDiff.X/IQ/; 1� i; j � n; i ¤ j

with the following properties:

(i) Let D�.X/ �H�.BDiff.X/IQ/ be the subring generated by fDi;j gi¤j . The
group Wn acts on the subring D�.X/ according to

�.Dij /DD�.i/�.j / for � 2 Sn and �k.Dij /D

�
Dij if k ¤ j;
�Dij if k D j:

Geometry & Topology, Volume 27 (2023)



646 David Baraglia

(ii) Let I�.X/ denote the Wn–invariant subring of D�.X/. Then

I�.X/�H�.BDiff.X/IQ/:

(iii) The tautological ringR�.X/ of X is a subring of I�.X/. That is , all tautological
classes of X can be expressed as Wn–invariant polynomials of the Dij .

Theorem 1.5 says that the tautological classes can be written as Wn–invariant polyno-
mials of the Dij . The next theorem addresses the question of how to compute these
invariant polynomials. First we set

I1 D
X
i;j
i¤j

D2ij ; I2 D
X
i;j;k

i;j;k distinct

DikDjk :

Then, for i D 1; : : : ; n, define

Bi D
3

2

X
j
j¤i

D2ij �
n� 5

2n.n� 1/
I1�

1

n�1
I2; Ci D

1

n� 1

X
j
j¤i

.D3ji �BiDj i /:

Theorem 1.6 Let X be a smooth , compact , simply connected , positive-definite
4–manifold with b2.X/D n� 2. Then:

(1) The tautological classes �c with c D pa1e
2b are given by

�pa
1 e

2b D

nX
iD1

�a;2b.Bi ; Ci /:

(2) The tautological classes �c with c D pa1e
2bC1 are given by

�pa
1 e

2bC1 D

nX
iD1

�a;2bC1.Bi ; Ci /� 2
X
j
j¤i

.3D2ij C 2Bj /
a.3D2ij �Bj /

2b:

Theorem 1.6 gives a completely explicit expression for the tautological classes �c as
polynomials in fDij gi¤j once the polynomials �a;b.x; y/ are known. As an application
of Theorem 1.6, we prove the existence of many linear relations amongst tautological
classes.

Theorem 1.7 Let X be a smooth , compact , simply connected , definite 4–manifold
and let d � 1 be given. Then , amongst all tautological classes �pa

1 e
b with aC b D d

and b even , there are at least �
1
2
d
˘
�
�
1
3
.d � 1/

˘
Geometry & Topology, Volume 27 (2023)



Tautological classes of definite 4–manifolds 647

linear relations. More precisely, if c0; c1; : : : ; cbd=2c 2Q are such that

(1-1)
bd=2cX
jD0

cj�d�2j;2j .x; y/D 0;

then we also have
bd=2cX
jD0

cj �pd�2j
1 e2j D 0

and the space of .c0; c1; : : : ; cbd=2c/ satisfying (1-1) has dimension at least�
1
2
d
˘
�
�
1
3
.d � 1/

˘
:

As explained in Section 8, for each d �2, the families signature theorem gives one linear
relation amongst the tautological classes �pa

1 e
b with aCbDd and b even. Theorem 1.7

implies that there are further linear relations whenever
�
1
2
d
˘
�
�
1
3
.d � 1/

˘
> 1. This

is the case if d D 6 or d � 8. The first few such relations (up to d D 12) are

0D 4�p4
1e

2 � 41�p2
1e

4 C 100�e6 ;

0D 36�p6
1e

2 � 461�p4
1e

4 C 1843�p2
1e

6 � 2300�e8 ;

0D 24�p7
1e

2 � 322�p5
1e

4 C 1379�p3
1e

6 � 1900�p1e8 ;

0D 108�p8
1e

2 � 1579�p6
1e

4 C 7902�p4
1e

6 � 15 531�p2
1e

8 C 9100�e10 ;

0D 360�p9
1e

2 � 5606�p7
1e

4 C 30 923�p5
1e

6 � 71 311�p3
1e

8 C 57 100�p1e10 ;

0D 144�p8
1e

4 � 2552�p6
1e

6 C 16 629�p4
1e

8 � 47 400�p2
1e

10 C 50 000�e12 ;

0D 6000�p10
1 e2 � 98 012�p8

1e
4 C 577 796�p6

1e
6 � 1 461 667�p4

1e
8 C 1 338 700�p2

1e
10 :

1.3 Idea behind main results

The inspiration for our main results comes from considering Donaldson theory for
a family of definite 4–manifolds. Let X be a compact, simply connected smooth
4–manifold with positive-definite intersection form. Recall the proof of Donaldson’s
diagonalisation theorem uses the moduli space M of selfdual instantons on an SU.2/–
bundle E!X with c2.E/D�1. Then M is a 5–dimensional oriented manifold with
singularities. The singularities correspond to reducible instantons, which correspond
to elements in � 2 H 2.X IZ/ satisfying �2 D 1, considered modulo � 7! ��. Each
singularity of M takes the form of a cone over CP2. The moduli space M is non-
compact, but it admits a compactification M whose boundary is diffeomorphic to X.

Geometry & Topology, Volume 27 (2023)



648 David Baraglia

Removing from M a neighbourhood of each singularity, we obtain a cobordism M0
from X to a disjoint union of copies of CP2. Cobordism-invariance of the signature
implies that there are nD b2.X/ copies of CP2 and, hence, there are n distinct pairs
of elements˙�1; : : : ;˙�n 2H 2.X IZ/ satisfying �2i D 1. This implies that H 2.X IZ/

is diagonalisable.

Now suppose that E ! B is a smooth family with fibres diffeomorphic to X and
suppose for simplicity that the monodromy action of �1.B/ on H 2.X IZ/ is trivial.
Considering the moduli space of selfdual instantons with c2.E/D �1 on each fibre
of E, we obtain a families moduli space ME ! B. Note that ME is typically not a
fibre bundle since the topology of the fibres of ME can vary as we move in B. We
would expect that, for a sufficiently generic family of metrics on E, we can arrange that
ME is smooth away from reducible solutions and that the structure of ME around the
reducibles is given by taking fibrewise cones on n CP2–bundles E1; : : : ; En over B.
We would further expect that ME can be compactified by adding a boundary which is
diffeomorphic to the family E. Removing a neighbourhood of the reducible solutions,
we would expect to obtain a cobordism � 0 WM0E !B relative B, between E!B and
the disjoint union of CP2–bundles E1; : : : ; En. Consider the virtual vector bundle
V D TM0E � .� 0/�.TB/. Clearly V jE D T .E=B/ and V jEi

D T .Ei=B/ for each i ;
hence, the Pontryagin classes of V restrict to the Pontryagin classes of E and Ei on the
boundary. Applying Stokes’ theorem, we expect to obtain a kind of “diagonalisation
theorem” for the tautological classes:

(1-2) �pa
1 e

2b .E/D

nX
iD1

�pa
1 e

2b .Ei /:

Note that we need to take even powers of e because e is unstable whereas e2 D p2 is
stable.

There are some technical challenges for carrying out this argument rigorously. Most
notably, it seems difficult to arrange unobstructedness of the families moduli space
around the reducible solutions. It is well known that this can be done for a single
moduli space by choosing a sufficiently generic metric, but extending this to families
appears challenging. Nevertheless, the intuition provided by Donaldson theory turns
out to be essentially correct. Theorem 1.6 provides a rigorous version of (1-2), where
�a;b.Bi ; Ci / plays the role of �pa

1 ;e
b .Ei /. Note, by Remark 1.4, that, if �Bi and �Ci

are the Chern classes of a rank 3 vector bundle Vi ! B with trivial determinant, then
�a;b.Bi ; Ci / D �pa

1 e
b .Ei /, where Ei is the CP2–bundle Ei D P .Vi /. The natural

Geometry & Topology, Volume 27 (2023)



Tautological classes of definite 4–manifolds 649

candidate for Vi is the families index of the instanton deformation complex around
the corresponding reducible, except that we only know this exists as a virtual vector
bundle.

We will prove the main results using families Seiberg–Witten theory, or, more pre-
cisely, the Bauer–Furuta cohomotopy refinement of Seiberg–Witten theory. The main
advantage of this approach is that it allows us to avoid various transversality issues
that typically arise in the construction of moduli spaces. It is quite surprising that
Seiberg–Witten theory works here. The issue is that the families Seiberg–Witten moduli
space is compact and there is no obvious relation between the families moduli space
and the family E. What happens instead is that Seiberg–Witten theory gives constraints
on the topology of the families index associated to families of Dirac operators on E. We
use this to indirectly obtain a series of constraints on the cohomology ring H�.EIQ/
of the family E and in turn this gives constraints on the tautological classes.

Outline of the paper

In Section 2, we establish some basic results concerning families of definite 4–manifolds.
In Section 3, we consider the Bauer–Furuta refinement of Seiberg–Witten theory for a
family of definite 4–manifolds. The main result is Theorem 3.1. The rest of the section
is concerned with understanding some of the implications of this theorem. In Section 4,
we study in great detail the structure of the cohomology rings H�.EIQ/ of families
of definite 4–manifolds and in Section 5 we prove our main results concerning the
tautological classes of such families. Sections 6 and 7 are concerned with the special
cases of CP2 and CP2 # CP2 and finally, in Section 8, we study linear relations in
the tautological rings of definite 4–manifolds.

Acknowledgements We thank Oscar Randal-Williams for helpful comments on the
paper and for suggesting a simpler proof of Lemma 3.2. The author was financially
supported by the Australian Research Council Discovery Project DP170101054.

2 Families of definite 4–manifolds

Throughout, X denotes a smooth, compact, simply connected 4–manifold with positive-
definite intersection form and nD b2.X/� 1. The intersection pairing h ; i on H 2.X/

is a symmetric, unimodular bilinear form. By Donaldson’s diagonalisation theorem [5],
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the intersection form on H 2.X IZ/ is diagonal and so there exists an orthonormal
basis f�1; : : : ; �ng for H 2.X IZ/. An orthonormal basis for H 2.X IZ/ will be called
a framing of H 2.X IZ/. Let ƒn denote the free abelian group Zn of rank n and let
fe1; : : : ; eng be the standard basis. Equipƒn with the standard Euclidean inner product.
Then a framing f�1; : : : ; �ng of H 2.X IZ/ determines an isometry � Wƒn!H 2.X IZ/

given by �.ei /D �i . Let Wn D Aut.ƒn/ denote the symmetry group of ƒn equipped
with its intersection form. Since the only classes of norm 1 are ˙e1; : : : ;˙en, it is
easy to see that Wn is isomorphic to a semidirect product

Wn D Sn Ë Zn2;

where the symmetric group Sn acts by permutation — �.ei /D e�.i/ — and the normal
subgroup Zn2 is generated by f�1; : : : ; �ng, where �i is the reflection in the hyperplane
orthogonal to ei :

�i .ej /D

�
ej if j ¤ i;
�ej if j D i:

Wn is also the Weyl group of the root systems Bn and Cn. Clearly, Wn is a subgroup of
the isometry group ofƒn. For the reverse inclusion, note that any isometry must permute
the vectors of unit length, which are ˙e1;˙e2; : : : ;˙en. Hence, any isometry of ƒn
is given by a permutation of fe1; : : : ; eng, followed by some sign changes ei 7! �ei .

Let Diff.X/ denote the group of orientation-preserving diffeomorphisms of X with the
C1–topology and Diff0.X/ the subgroup acting trivially on H 2.X IZ/. Equivalently,
Diff0.X/ is the subgroup of Diff.X/ preserving a framing of H 2.X IZ/. By definition,
we have a short exact sequence

1! Diff0.X/! Diff.X/!K.X/! 1;

where K.X/ is the image of the map Diff.X/ ! Aut.H 2.X IZ// which sends a
diffeomorphism f WX!X to the induced map .f �1/� WH 2.X IZ/!H 2.X IZ/. Note
that, if X D #nCP2, then K.X/DAut.H 2.X IZ/. One sees this as follows: There is
an orientation-preserving diffeomorphism of CP2 which acts as �1 on H 2.CP2IZ/,
namely complex conjugation. Such a diffeomorphism can be isotoped so as to act as the
identity on a disc in CP2, and hence can be extended to the connected sum #nCP2.
Since we can do this for each summand, we see that �1; : : : ; �n 2K.X/. To see that
Sn �K.X/, regard X as S4 with CP2 attached at n points. Since these n points can
be permuted by diffeomorphisms of S4, it follows that Sn �K.X/.

Fixing a framing �1; : : : ; �n ofH 2.X IZ/, we can identifyK.X/with a subgroup ofWn.
Since Wn is finite, so is K.X/. Taking classifying spaces, we see that BDiff0.X/ has

Geometry & Topology, Volume 27 (2023)



Tautological classes of definite 4–manifolds 651

the structure of a principal K.X/–bundle over BDiff.X/. We now define

BDiff.X/D BDiff0.X/�K.X/Wn:

So BDiff.X/ is a principal Wn–bundle over BDiff.X/. Let p WBDiff.X/!BDiff.X/
be the covering map. Since p is a finite covering, it follows that the pullback map
p� W H�.BDiff.X/IQ/! H�.BDiff.X/IQ/ is injective and that the image is pre-
cisely the Wn–invariant part of H�.BDiff.X/IQ/. Therefore, we may identify the
tautological ring R�.X/ with a subring of H�.BDiff.X/IQ/:

R�.X/�H�.BDiff.X/IQ/�H�.BDiff.X/IQ/:

Remark 2.1 Since BDiff.X/D BDiff0.X/�K.X/Wn, we have a fibration

BDiff0.X/! BDiff.X/!Wn=K.X/:

But Wn=K.X/ is a finite discrete set, so BDiff.X/ is just the disjoint union of
jWn=K.X/j copies of BDiff0.X/. For this reason it makes little difference whether
we work with BDiff0.X/ or BDiff.X/. We prefer to use BDiff.X/ because the whole
isometry group Wn acts on this space. Note also that, for X D #nCP2, we have
K.X/DWn and so BDiff.X/D BDiff0.X/ in this case.

Let � WE! B be a family with fibres diffeomorphic to X. Then E admits a reduction
of structure to Diff0.X/ if and only if the monodromy action of �1.B/ on H 2 of the
fibres is trivial. In such a case, if we choose a framing f�1; : : : ; �ng of a single fibre and
parallel translate, we obtain a framing f�1.b/; : : : ; �n.b/g ofH 2.XbIZ/ for each b 2B
such that the framing varies continuously with b. Henceforth we will restrict attention
to families � WE! B equipped with a reduction of structure group to Diff0.X/. We
assume further that a framing has been chosen.

Proposition 2.2 Let � WE! B be a family with structure group Diff0.X/. Then the
Leray–Serre spectral sequence for H�.EIQ/ degenerates at E2.

Proof It suffices to prove the result when B is connected. Let e 2H 4.EIQ/ denote
the Euler class of the vertical tangent bundle. For each b 2 B, we have that ejXb

is
2Cn times a generator of H 4.XbIQ/. It follows that all the differentials of the form
dr WE

0;4
r !E

r;5�r
r are zero. Moreover, the differentials for r odd are all zero because

H�.X IQ/ is nonzero only in even degrees. Next, note that E0;22 ŠH
2.X IQ/ (since
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B is connected). Thus, we can identify �1; : : : ; �n with classes in E0;22 . Now �2j 2E
0;4
2 ,

so
0D d3.�

2
j /D 2�jd3.�j / 2E

3;2
3 ŠH

2.X IQ/˝H 3.BIQ/:

Hence, d3.�j /D 0. It follows that there exist classes x1; : : : xn 2H 2.EIQ/ such that
xj jXb

D �j .b/. Now the result follows by the Leray–Hirsch theorem.

As seen in the proof of Proposition 2.2, there exist classes x1; : : : xn 2 H 2.EIQ/

such that xj jXb
D �j .b/ (note that in general the classes xj can’t be taken to lie in

H 2.EIZ/). The xi are not unique because, if a 2H 2.BIQ/, then xj C��.a/ also
restricts to �j .b/ on Xb . From the Leray–Serre spectral sequence it is clear that the xj
are unique up to such shifts.

Let ˆ
E=B

WHk.EIQ/!Hk�4.BIQ/

denote fibre integration. We clearly haveˆ
E=B

xj D 0;

ˆ
E=B

x2j D 1;

ˆ
E=B

xixj D 0

for all i and j with j ¤ i . Let e2H 4.EIQ/ denote the Euler class and pj 2H 4j .EIQ/

the Pontryagin classes of the vertical tangent bundle. Since the fibres are 4–dimensional,
we have pj D 0 for j > 2 and p2 D e2. So all rational characteristic classes of the
vertical tangent bundle can be expressed in terms of p1 and e. From the Gauss–Bonnet
and signature theorems, we haveˆ

E=B

e D �.X/D nC 2;

ˆ
E=B

p1 D 3�.X/D 3n:

Proposition 2.3 Let � WE!B be a family with structure group Diff0.X/ and framing
�1; : : : ; �n. Then there exist uniquely determined classes x1; : : : xn 2H 2.EIQ/ and
� 2H 4.EIQ/ such that :

(1) xj jXb
D �j .b/ for j D 1; : : : n.

(2)
´
E=B x

3
j D 0 for j D 1; : : : n.

(3)
´
E=B � D 1.

(4)
´
E=B xj � D 0 for j D 1; : : : n.

(5)
´
E=B �

2 D 0.
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Proof We already saw that there exist classes y1; : : : ; yn 2 H 2.EIQ/ such that
yj jXb

D �j .b/. Now set

xj D yj �
1
3
��
�ˆ

E=B

y3j

�
:

Then it is straightforward that the xj satisfy (1) and (2). Now let �0D x21 2H
4.EIQ/.

This satisfies (3). Now set

�1 D �0�

nX
jD1

��
�ˆ

E=B

xj �0

�
xj :

Then �1 clearly satisfies (3) and (4). Moreover, any other class satisfying (3) and (4)
must be of the form �1C�

�.a/ for some a 2H 4.BIQ/. Set

� D �1�
1
2
��
�ˆ

E=B

�21

�
:

Then � satisfies (3)–(5). Uniqueness of � and the xi is straightforward.

In summary, H�.EIQ/ is a free H�.BIQ/–module with a uniquely determined basis
1; x1; : : : ; xn; � satisfying:

(1)
´
E=B 1D 0.

(2)
´
E=B xj D 0 for j D 1; : : : n.

(3)
´
E=B x

2
j D 1 for j D 1; : : : n.

(4)
´
E=B xixj D 0 for i; j D 1; : : : n with i ¤ j.

(5)
´
E=B x

3
j D 0 for j D 1; : : : n.

(6)
´
E=B � D 1.

(7)
´
E=B xj � D 0 for j D 1; : : : n.

(8)
´
E=B �

2 D 0.

The cup product on H�.EIQ/ will be completely determined by the products

xixj for i ¤ j; x2i ; xi�; �2:

By (1)–(8) above, these products must have the form

xixj D
X
k

DkijxkCEij ; x2i D �C
X
j

Fijxj CGi ;

xi� D
X
j

Iijxj CJi ; �2 D
X
j

Kjxj C!

for some classes Dkij ; Fij 2H
2.BIQ/, Eij ; Gi ; Iij 2H 4.BIQ/, Ji ; Ki 2H 6.BIQ/

and ! 2H 8.BIQ/. We can assume also that Dkij is symmetric in i and j. Note that
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the classes Dkij ; : : : ; Ki are uniquely determined because f1; x1; : : : ; xn; �g is a basis
for H�.EIQ/ as an H�.BIQ/–module.

Proposition 2.4 We have the identities

Fij DD
i
ij for i ¤ j;

Fi i D 0;

Iij DEij for i ¤ j;

Ii i DGi ;
Ki D Ji :

Proof We have ˆ
E=B

x2i xj D

ˆ
E=B

xi

�X
k

DkijxkCEij

�
DDiij :

On the other hand,ˆ
E=B

x2i xj D

ˆ
E=B

xj

�
�C

X
k

FikxkCGi

�
D Fij :

Equating these gives Fij DDiij for i ¤ j. Similarly, from
´
E=B x

3
i D 0, we get Fi i D 0.

Evaluating
´
E=B xixj � two different ways gives Iij D Eij for i ¤ j, evaluating´

E=B x
2
i � in two different ways gives Ii i D Gi , and evaluating

´
E=B xi�

2 in two
different ways gives Ki D Ji .

After making the simplifications given by Proposition 2.4, we have

xixj D
X
k

DkijxkCEij ;(2-1)

x2i D �C
X
j
j¤i

Diijxj CGi ;(2-2)

xi� DGixi C
X
j
j¤i

Eijxj CJi ;(2-3)

�2 D
X
j

Jjxj C!:(2-4)

3 Families Bauer–Furuta theory

Let X be a compact, oriented, smooth 4–manifold with b1.X/D 0. Let s be a spinc–
structure on X with characteristic c D c1.s/ 2H 2.X IZ/. Let d D 1

8
.c2� �.X// be

the index of the associated spinc Dirac operator.
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Let S1 act on C by scalar multiplication and trivially on R. As shown by Bauer and
Furuta [3], one can take a finite-dimensional approximation of the Seiberg–Witten
equations for .X; s/ to obtain an S1–equivariant map

f W .Ca
˚Rb/C! .Ca0

˚Rb
0

/C

for some a; b; a0; b0 � 0, where a� a0 D d and b0 � b D bC.X/. Here TC denotes
the one-point compactification of T. By construction, f sends the point at infinity in
.Ca˚Rb/C to the point at infinity in .Ca0 ˚Rb

0

/C. Additionally, f can be chosen
so that its restriction f j.Rb/C W .R

b/C! .Rb
0

/C is the map induced by an inclusion of
vector spaces Rb �Rb

0

. For the purposes of this paper, it is more convenient to look
at the Seiberg–Witten equations on X with the opposite orientation. Once again we
obtain an S1–equivariant map of the form

(3-1) f W .Ca
˚Rb/C! .Ca0

˚Rb
0

/C;

but now a, a0, b and b0 satisfy a0� aD d and b0� b D b�.X/.

The process of taking a finite-dimensional approximation of the Seiberg–Witten equa-
tions can be carried out in families [20; 2]. Let B be a compact, smooth manifold.
Consider a smooth family � W E ! B with fibres diffeomorphic to X and suppose
that there is a spinc–structure sE=B on T .E=B/ which restricts to s on the fibres
of E. Taking a finite-dimensional approximation of the Seiberg–Witten equations for
the family E (with the opposite orientation on X), we obtain a family of maps of
the form (3-1). More precisely, we obtain complex vector bundles V and V 0 over B
of ranks a and a0, real vector bundles U and U 0 over B of ranks b and b0, and an
S1–equivariant map of sphere bundles

f W SV;U ! SV 0;U 0

covering the identity on B. Here SV;U and SV 0;U 0 denote the fibrewise one-point
compactifications of V ˚U and V 0˚U 0. The group S1 acts on V and V 0 by scalar
multiplication and trivially on U and U 0. The action of S1 on the direct sums V ˚U
and V 0˚U 0 extends continuously to the fibrewise one-point compactifications SV;U
and SV 0;U 0 . Moreover, we have, in K0.B/ and KO0.B/, respectively,

V 0�V DD; U 0�U DH�.X/;

where D 2K0.B/ is the families index of the family of spinc Dirac operators on E
determined by sE=B andH�.X/ is the vector bundle onB whose fibre over b2B is the
space of harmonic antiselfdual 2–forms on the fibre of E over b (with respect to some
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smoothly varying fibrewise metric on E). By stabilising the map f, we can assume that
V and U are trivial vector bundles. As shown in [2], the map f may be constructed
so as to satisfy two further properties. First, we may assume that U 0 Š U ˚H�.X/
and that the restriction f jSU

W SU ! SU 0 is the map induced by the inclusion U ! U 0.
Second, we may assume that f sends the point at infinity in each fibre of SV;U to the
point at infinity of the corresponding fibre of SV 0;U 0 . Let BV;U � SV;U denote the
section at infinity and similarly define BV 0;U 0 � SV 0;U 0 . Then f sends BV;U to BV 0;U 0 .
Hence, f defines an S1–equivariant map of pairs

f W .SV;U ; BV;U /! .SV 0;U 0 ; BV 0;U 0/:

Theorem 3.1 Suppose that � W E ! B is a smooth family of simply connected ,
positive-definite 4–manifolds over a compact base B and that T .E=B/ admits a spinc–
structure sE=B . LetD 2K0.B/ denote the index of the family of spinc–Dirac operators
associated to sE=B . Then cj .D/D 0 for j > d , where d is the virtual rank of D.

Proof This result is a variant of [1, Theorem 1.1]. We give a streamlined proof. As
explained above, taking a finite-dimensional approximation of the Seiberg–Witten equa-
tions for the family E (with opposite orientation on X ), we obtain an S1–equivariant
monopole map f W SV;U ! SV 0;U 0 . Since X is positive-definite, H�.X/ D 0 and
U 0 D U. So f takes the form

f W SV;U ! SV 0;U ;

with the property that f jSU
is the identity SU!SU . We also have that V 0�V DD. Let

�V;U and �V 0;U denote the S1–equivariant Thom classes of SV;U and SV 0;U . Consider
the commutative diagram

.SV;U ; BV;U /
f
// .SV 0;U ; BV;U /

.SU ; BU /

j

OO

id
// .SU ; BU /

j 0

OO

By the Thom isomorphism in equivariant cohomology, we must have

f �.�V 0;U /D ˇ�V;U

for some ˇ2H 2d
S1 .BIZ/. On the other hand, j �.�V;U/DeS1.V /�U and .j 0/�.�V 0;U /D

eS1.V 0/�U , where eS1.V / and eS1.V 0/ denote the S1–equivariant Euler classes of V
and V 0 and �U is the S1–equivariant Thom class of U. Therefore,

ˇeS1.V /�U D j
�.ˇ�V;U /D j

�f �.�V 0;U /D .j
0/�.�V 0;U /D eS1.V 0/�U :
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Hence,

(3-2) eS1.V 0/D ˇeS1.V /

for some ˇ2H 2d
S1 .BIZ/. Note that, since S1 acts trivially onB, we haveH�

S1.BIZ/Š

H�.BIZ/Œx�, where H�
S1.pt IZ/D ZŒx�. Using a splitting principle argument, it is

easy to see that, if S1 acts on a complex rankm vector bundleW by scalar multiplication,
then

eS1.W /D xmC xm�1c1.W /C � � �C cm.W /:

Now, by stabilisation, we may assume that V is a trivial bundle, V ŠCa. Then V 0 has
the same Chern classes as D. So

eS1.V 0/D xa
0

C xa
0�1c1.D/C � � �C ca0.D/; eS1.V /D xa:

Then, writing
ˇ D ˇ0x

d
Cˇ1x

d�1
C � � �Cˇd ;

equation (3-2) becomes

xa
0

C xa
0�1c1.D/C � � �C ca0.D/D ˇ0x

dCa
Cˇ1x

dCa�1
C � � �Cˇdx

a:

Then, since d C aD a0, it follows that ǰ D cj .D/ for 0� j � d and that cj .D/D 0
for j > d .

Lemma 3.2 Let P ! B be a principal PU.m/–bundle and � WE! B the associated
CPm�1–bundle. Then the pullback ��.P / of P to the total space of E admits a lift of
structure group to U.m/.

Proof Let G � PU.m/ be the subgroup of PU.m/ fixing a point in CPm�1. Then
clearly ��.P / admits a reduction of structure to G. On the other hand it is easy to see
that G ' U.m� 1/ and that the inclusion G! PU.m/ factors through the projection
U.m/! PU.m/. Therefore, ��.P / admits a lift of the structure group to U.m/.

Lemma 3.3 There exists a fibre bundle � W F ! B such that :

(1) �� WH�.BIQ/!H�.F IQ/ is injective.

(2) For i D 1; : : : ; n, there exist classes �i 2H 2.��.E/IZ/ such that �i restricted
to the fibres of ��.E/ equals �i .

The point of this lemma is that the �i are integral cohomology classes whereas the xi
defined earlier are only rational.
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Proof Consider the Leray–Serre spectral sequence Ep;qr for � W E ! B. Note that
E
p;q
2 D E

p;q
3 . We have seen that d3.�j / is zero rationally, but it need not be zero

over Z. Therefore, gj D d3.�j / 2 E
3;0
3 DH

3.BIZ/ for j D 1; : : : ; n are all torsion
classes. By a result of Serre [12], every torsion class in H 3.BIZ/ is represented by
the lifting obstruction for some principal PU.m/–bundle, where the rank m is allowed
to vary. Thus, for i D 1; : : : ; n, we can find an mi and a principal PU.mi /–bundle
Pi!B such that gi is the lifting obstruction for Pi . Let �i WEi!B be the associated
CPmi�1–bundle. By Lemma 3.2, the pullback of gi to Ei must vanish.

Let F DE1�BE2�B � � ��BEn and let � WF !B be the projection. By induction on n,
it is straightforward to see that �� WH�.BIQ/!H�.F IQ/ is injective. Moreover,
��.gi /D 0 for all i . Hence, the Leray–Serre spectral sequence for ��.E/! B degen-
erates over Z at E2. Hence, for i D 1; : : : ; n, there exist classes �i 2H 2.��.E/IZ/

such that �i restricted to the fibres of ��.E/ equals �i .

Theorem 3.4 Let � WE! B be a family with structure group Diff0.X/. Thenˆ
E=B

e.�1x1C���C�nxn/=2 yA.T .E=B//D 0

for all �1; : : : ; �n 2 f1;�1g.

Proof Let � W F ! B be as in the statement of Lemma 3.3. Since �� WH�.BIQ/!
H�.F IQ/ is injective, to show thatˆ

E=B

e.�1x1C���C�nxn/=2 yA.T .E=B//

is zero, it suffices to show that it pulls back to zero under �. Therefore, we may restrict
to families with the property that there exists classes �1; : : : ; �n 2H 2.EIZ/ such that
�i restricted to the fibres of E equals �i . Let

c D �1�1C �1�2C � � �C �n�n 2H
2.EIZ/:

Then c is a characteristic for T .E=B/ in the sense that the mod 2 reduction of c is
w2.T .E=B//. Therefore, the third integral Stiefel–Whitney class of T .E=B/ vanishes
and so T .E=B/ admits some spinc–structure s0. Let c0 D c1.s0/ 2H 2.EIZ/. Then,
since c0 is a characteristic for T .E=B/, we must have

c0 D

nX
iD1

ki�i C�
�.�/

for some odd integers k1; : : : ; kn and some � 2H 2.BIZ/. For each i , let Li !E be
the line bundle with c1.Li /D �i . The set of spinc–structures for T .E=B/ is a torsor
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over the group of line bundles on E. So we may consider the spinc–structure

sD La1

1 ˝L
a2

2 ˝ � � �˝L
an
n ˝ s0;

where ai D 1
2
.�i �ki /. It follows that c1.s/D cC��.�/. Now we apply Theorem 3.1

to the family E ! B equipped with the spinc–structure s. Let D 2 K0.B/ be the
families index of this spinc–structure. Since

c1.s/jX D .cC�
�.�//jX D �1�1C � � �C �n�n;

we find (by the Atiyah–Singer index theorem) that the virtual rank of D is given by

d D 1
8
..�1�1C � � �C �n�n/

2
�n/D 1

8
.n�n/D 0:

Therefore, Theorem 3.1 says that cj .D/D 02H 2j .BIQ/ for all j >0. So Ch.D/D 0.
Now, by the families index theorem,

Ch.D/D 0D
ˆ
E=B

ec1.s/=2 yA.T .E=B//D 0:

To finish, we observe that, since xi jX D �i D �i jX, it follows that �i D xi C��.�i /
for some �i 2H 2.BIQ/. Therefore,

c1.s/D �1x1C �2x2C � � � �nxnC�
�.�C �1�1C � � �C �n�n/

and hence

Ch.D/D 0D
ˆ
E=B

e.�1x1C�2x2C����nxnC�
�.�C�1�1C���C�n�n//=2 yA.T .E=B//

D e�
�.�C�1�1C���C�n�n/=2

ˆ
E=B

e.�1x1C�2x2C����nxn/=2 yA.T .E=B//:

Multiplying through by e��
�.�C�1�1C���C�n�n/=2, we obtain the theorem.

Theorem 3.5 Let � W E ! B be a family with structure group Diff0.X/. Fix i 2
f1; : : : ; ng and , for each j ¤ i with 1� j � n, let �j 2 f1;�1g be given. Set

c D 3xi C
X
j
j¤i

�jxj :

Then ˆ
E=B

ec=2 yA.T .E=B//D eu;

where u 2H 2.BIQ/ is given by

uD

ˆ
E=B

1
48
c3� 1

48
p1c:
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Proof As in the proof of Theorem 3.4, it suffices to prove the result for families with
the property that there exist classes �1; : : : ; �n 2H 2.EIZ/ such that �i restricted to
the fibres of E equals �i . Let

c D 3xi C
X
j
j¤i

�jxj :

Arguing as in the proof of Theorem 3.4, there exists a spinc–structure s such that
c1.s/ D c C ��.�/ for some � 2 H 2.BIQ/. We apply Theorem 3.1 to the family
E! B equipped with the spinc–structure s. Let D 2K0.B/ be the families index of
this spinc–structure. Since

c1.s/jX D 3�1C
X
j
j¤i

�j �j ;

we find that the virtual rank of D is given by

d D 1
8
..3�i C

X
j
j¤i

�j �j /
2
�n/D 1

8
.9C .n� 1/�n/D 8

8
D 1:

Therefore, Theorem 3.1 says that cj .D/D 0 2H 2j .BIQ/ for all j > 1. Using the
Newton identities and the fact that D has virtual rank 1, we find that

Ch.D/D ec1.D/:

Now, by the families index theorem,

Ch.D/D ec1.D/ D

ˆ
E=B

ec1.s/=2 yA.T .E=B//D

ˆ
E=B

e.cC�
�.�//=2 yA.T .E=B//:

Therefore,

(3-3)
ˆ
E=B

ec=2 yA.T .E=B//D eu;

where uD c1.D/� 1
2
��.�/. Equating degree 2 components in (3-3), we find that

uD

ˆ
E=B

1
48
c3� 1

48
p1c:

4 Cohomology rings of families

In this section we apply Theorems 3.4 3.5 to obtain constrains on the structure of
the cohomology ring H�.EIQ/ and on the characteristic classes p1 and e. These
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constrains will then be used in Section 5 to deduce various properties of the tautological
classes of E.

Proposition 4.1 Let � W E ! B be a family with structure group Diff0.X/. The
following identities hold :

0D

ˆ
E=B

xixjxi .for distinct i; j; k/;(4-1)

0D

ˆ
E=B

�
x3i C 3

X
j
j¤i

xix
2
j �p1xi

�
.for each i/;(4-2)

0D

ˆ
E=B

�
xix

3
j C x

3
i xj C 3

X
k

k¤i;j

xixjx
2
k �p1xixj

�
.for distinct i; j /;(4-3)

0D

ˆ
E=B

�X
i

x4i C 6
X
i;j
i<j

x2i x
2
j C 3e

2
� 2p1

X
i

x2i

�
:(4-4)

Proof Theorem 3.4 givesˆ
E=B

e.�1x1C���C�nxn/=2 yA.T .E=B//D 0:

Expanding the exponential and integrating, we see that the degree 2m component of
the left-hand side has the form X

jI j�mC2

�I˛m;I

for some cohomology classes ˛m;I 2H 2m.BIQ/, where the sum is over subsets of
f1; 2; : : : ; ng of size �mC 2 and

�I D
Y
i2I

�i :

Each �I can be thought of as a function �I W f1;�1gn!Q. Thought of this way, the
f�I gI are linearly independent. Indeed they are the characters of Zn2; namely, �I is the
character of the 1–dimensional representation in which the i th generator of Zn2 acts as
�1 if i 2 I and as C1 if i … I. By linear independence of the �I , it follows that, ifˆ

E=B

e.�1x1C���C�nxn/=2 yA.T .E=B//D 0
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for all �1; : : : ; �n 2 f1;�1g, then each class ˛m;I must be zero. In degree 2mD 2, we
get

0D

ˆ
E=B

xixjxi .for distinct i; j; k/;

which comes from ˛1;fi;j;kg D 0 and

0D

ˆ
E=B

�
x3i C 3

X
j
j¤i

xix
2
j �p1xi

�
.for each i/;

which comes from ˛1;figD 0. Notice that ˛1;∅D 0 and ˛1;fi;j gD 0 hold automatically.
In general it is clear that ˛m;I D 0 holds automatically whenever jI j ¤m mod 2. In
degree 2mD 4, we get

0D

ˆ
E=B

�
xix

3
j C x

3
i xj C 3

X
k

k¤i;j

xixjx
2
k �p1xixj

�
.for distinct i; j /;

0D

ˆ
E=B

�X
i

x4i C 6
X
i;j
i<j

x2i x
2
j C 3e

2
� 2p1

X
i

x2i

�
;

which come from ˛2;fi;j g D 0 and ˛2;∅ D 0, respectively.

There is also an equation corresponding to ˛2;fi;j;k;lg D 0, but it turns out that this
follows from (4-1), so doesn’t give any further constraints.

Recall that, by Proposition 2.4, the cohomology ring of E is given by (2-1)–(2-4). We
now use Proposition 4.1 to deduce further simplifications.

Proposition 4.2 We have that

Dkij D 0 whenever k ¤ i or j:

Henceforth , we shall denote Diij by Dij (note that Djij DD
j
j i DDj i ). Moreover ,

Eij D�DijDj i for all i ¤ j:

Hence , the cup product on H�.EIQ/ has the form

xixj DDijxi CDj ixj �DijDj i ;(4-5)

x2i D �C
X
j
j¤i

Dijxj CGi ;(4-6)
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xi� DGixi �
X
j
j¤i

DijDj ixj CJi ;(4-7)

�2 D
X
j

Jjxj C!:(4-8)

Proof Since xixj D
P
kD

k
ijxkCEij , equation (4-1) implies that

Dkij D 0 whenever k ¤ i or j:

As stated in the proposition, we will henceforth denote Diij simply by Dij . Next
consider p1 2H 4.EIQ/. Since

´
E=B p1 D 3n, we may write p1 in the form

(4-9) p1 D 3n�C
X
i

�ixi C �

for some �1; : : : �n 2H 2.BIQ/ and � 2H 4.BIQ/. From (4-2), one finds

(4-10) �i D 3
X
j
j¤i

Dj i :

Next, we note that (by (2-1))ˆ
E=B

x3i xj D

ˆ
E=B

x2i .Dijxi CDj ixj CEij /DDijDj i CEij ;

ˆ
E=B

xixjx
2
k D

ˆ
E=B

.Dijxi CDj ixj CEij /x
2
k DDijDki CDj iDkj CEij

for i , j and k distinct, andˆ
E=B

p1xixj D

ˆ
E=B

.3n�C
X
k

�kxkC �/xixj (by (4-9))

D 3nEij CDij�i CDj i�j (by (2-1))

D 3nEij C 6DijDj i C 3
X
k

k¤i;j

.DijDki CDj iDkj / (by (4-10)):

Hence, (4-3) gives

2.DijDj i CEij /C 3
X
k

k¤i;j

.DijDki CDj iDkj CEij /� 3nEij � 6DijDj i

� 3
X
k

k¤i;j

.DijDki CDj iDkj /D 0;
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which simplifies to

2.DijDj i CEij /C 3.n� 2/Eij � 3nEij � 6DijDj i D 0;

or
�4.DijDj i CEij /D 0:

So we have
Eij D�DijDj i :

A surprising consequence of Proposition 4.2 is that the equation for xixj ,

xixj DDijxi CDj ixj �DijDj i ;

can be written more compactly as

.xi �Dj i /.xj �Dij /D 0:

From Proposition 4.2, the cup product on H�.EIQ/ is determined by classes Dij , Gi ,
Ji and !. However there are certain constraints that these classes must satisfy arising
from associativity of the cup product.

Proposition 4.3 The classes Dij , Gi , Ji and ! satisfy

.Dij �Dkj /.Dik�Djk/D 0 .for distinct i; j; k/;(4-11)

GiCGj C
X
k

k¤i;j

DikDjk DD
2
ij CD

2
ji .for distinct i; j /;(4-12)

Jj CDijGj �
X
k

k¤i;j

DikDjkDkj DDijGi �DijD
2
ji .for distinct i; j /;(4-13)

X
j
j¤i

JjDij C! DG
2
i C

X
j
j¤i

D2ijD
2
ji .for all i/:(4-14)

Proof Recall the cup product on H�.EIQ/ is given in Proposition 4.2. Associativity
of this product gives constraints on Dij ; Gi ; Ji ; !. Let i , j and k be distinct. From

.xixj /xk D xi .xjxk/

we obtain (4-11). From
.x2i /xj D xi .xixj /

we obtain (4-12). From
.x2i /� D xi .xi�/
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we obtain (4-13), and from
xi .�

2/D .xi�/�

we obtain (4-14).

Conversely, it can be checked that (4-11)–(4-14) imply associativity of the product
given in Proposition 4.2, so there are no further equations that can be obtained from
associativity alone.

Proposition 4.4 For each i D 1; : : : ; n,

x3i D Bixi CCi ;

where

Bi D 2Gi C
X
j
j¤i

D2ij ;(4-15)

Ci D Ji �
X
j
j¤i

D2ijDj i :(4-16)

Proof We have
x2i D �C

X
j
j¤i

Dijxj CGi :

Multiplying both sides by xi and using xi� DGixi �
P
j jj¤i DijDj ixj CJi , we get

x3i D xi�C
X
j
j¤i

Dij .xixj /CGixi

D 2Gixi �
X
j
j¤i

DijDj ixj CJi C
X
j
j¤i

Dij .Dijxi CDj ixj �DijDj i /

D .2Gi C
X
j
j¤i

D2ij /xi CJi �
X
j
j¤i

D2ijDj i

D Bixi CCi :

Proposition 4.5 For distinct i and j,

D3ji D BiDj i CCi :

In other words , Dj i satisfies the same cubic equation as xi .
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Proof Recall that xixj DDijxi CDj ixj �DijDj i . Therefore,

xi .xj �Dij /DDj i .xj �Dij /:

By repeated application of this identity, we see that xki .xj �Dij /DD
k
ji .xj �Dij /

for any k � 0. Using this and Proposition 4.4, we have

D3ji .xj �Dij /D x
3
ij .xj �Dij /D .BixiCCi /.xj �Dij /D .BiDj iCCi /.xj �Dij /:

Multiplying both sides by xj and integrating over the fibres gives

D3ji D BiDj i CCi :

In order to compute tautological classes E, we need to determine p1 and e as elements
of H 4.EIQ/. This is carried out in the next few propositions. First we consider p1.

Proposition 4.6 There exists a class � 2H 4.BIQ/ such that

p1 D 3.x
2
1 C � � �C x

2
n/C�:

Proof By the signature theorem,
´
E=B p1 D 3n. Therefore,

p1 D 3.x
2
1 C � � �C x

2
n/C

nX
iD1

dixi C�

for some di 2 H 2.BIQ/ and some � 2 H 4.BIQ/. Then, using (4-2), we find that
di D 0 for all i and hence

p1 D 3.x
2
1 C � � �C x

2
n/C�:

Proposition 4.7 For each i ,

�2Bi C 3
X
j
j¤i

D2ij C�D 0:

Proof We use Theorem 3.5. For j ¤ i , let �j 2 f1;�1g and set

c D 3xi C
X
j
j¤i

�jxj :

Then

(4-17)
ˆ
E=B

ec=2 yA.T .E=B//D eu;

where
uD

ˆ
E=B

1
48
c3� 1

48
p1c:
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Since u is cubic in c, it can be expanded in the form

uD u0C
X
j
j¤i

�juj C
X
j;k

i;j;k distinct

�j �kujkC
X
j;k;l

i;j;k;l distinct

�j �k�lujkl

for some u0; uj ; ujk; ujkl 2H 2.BIQ/. From Proposition 4.6, we find that

uD
1

48

ˆ
E=B

�
.3xi C

X
j
j¤i

�jxj /
3
� .3xi C

X
j
j¤i

�jxj /.3.x
2
1 C � � �C x

2
n/C�/

�
:

Expanding this, we find

u0 D
1

48

ˆ
E=B

�
27x3i C 9xi

X
j
j¤i

x2j � 9x
3
i � 9xi

X
j
j¤i

x2j

�
D
3

8

ˆ
E=B

x3i D 0;

uj D
1

48

ˆ
E=B

�
27x2i xj C x

3
j C 3xj

X
k

k¤i;j

x2k � 3x
3
j � 3xj

X
k
k¤j

x2k

�

D
1

48

ˆ
E=B

�
27x2i xj C 3xj

X
k

k¤i;j

x2k � 3xj
X
k

k¤i;j

x2k � 3xjx
2
i

�

D
1

48

ˆ
E=B

24x2i xj

D
1

2

ˆ
E=B

x2i xj D
1
2
Dij :

We also have

uij D
1

48

ˆ
E=B

18xixjxk D 0 and uijk D
1

48

ˆ
E=B

6xixjxk D 0:

So
uD

1

2

X
j
j¤i

�jDij :

It follows that

(4-18) 1
2
u2 D 1

8

�X
j
j¤i

D2ij C 2
X
j;k

i;j;k distinct

�j �kDijDik

�
:

Equating degree 4 components of (4-17), we get

(4-19) 1
2
u2 D

ˆ
E=B

�
1
384
c4� 1

192
c2p1C

1
5760

.7p21 � 4e
2/
�
:
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Observe that
c � 2xi D xi C

X
j
j¤i

�jxj :

Therefore, Theorem 3.4 givesˆ
E=B

e.c�2xi /=2 yA.T .E=B//D 0:

Extracting the degree 4 terms, we find

(4-20)
ˆ
E=B

�
1
384
.c � 2xi /

4
�

1
192
.c � 2xi /

2p1C
1

5760
.7p21 � 4e

2/
�
D 0:

Combining (4-19) and (4-20) gives

1
2
u2 D

ˆ
E=B

�
1
384
Œc4� .c � 2xi /

4�� 1
192
Œc2� .c � 2xi /

2�p1
�
:

The right-hand side can be expanded in the form
P
I �IvI for some vI 2H 4.BIQ/.

We will be interested in the constant term v∅ (here “constant” means independent of
the �j ). Comparing with (4-18), we have

v∅ D
1

8

X
j
j¤i

D2ij :

Using Proposition 4.6, we find

�
1

192

ˆ
E=B

Œc2� .c � 2xi /
2�p1

D�
1

48

ˆ
E=B

��
3xi C

X
j
j¤i

�jxj

�
xi � x

2
i

�
.3.x21 C � � �C x

2
n/C�/:

The constant term in this expression is

(4-21) �
1

48

ˆ
E=B

.3x2i � x
2
i /.3.x

2
1 C � � �C x

2
n/C�/

D�
1

24

ˆ
E=B

�
3x4i C 3x

2
i

X
j
j¤i

x2j C�

�

D�
1

8
Bi �

1

8

X
j
j¤i

ˆ
E=B

x2i x
2
j �

1

24
�:
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Also,

1

384

ˆ
E=B

.c4� .c � 2xi /
4/D

1

48

ˆ
E=B

.c3xi � 3c
2x2i C 4cx

3
i � 2x

4
i /:

The constant term in this expression is

(4-22) 1

48

�
�2BiC12Bi �27Bi �3

X
j
j¤i

ˆ
E=B

x2i x
2
j C27BiC9

X
j
j¤i

ˆ
E=B

x2i x
2
j

�

D
1

48

�
10Bi C 6

X
j
j¤i

ˆ
E=B

x2i x
2
j

�

D
5

24
Bi C

1

8

X
j
j¤i

ˆ
E=B

x2i x
2
j :

Combining the constant terms from (4-21) and (4-22) and equating this to v∅, we
obtain

1

8

X
j
j¤i

D2ij D�
1

8
Bi �

1

8

X
j
j¤i

ˆ
E=B

x2i x
2
j �

1

24
�C

5

24
Bi C

1

8

X
j
j¤i

ˆ
E=B

x2i x
2
j

D
1

12
Bi �

1

24
�:

Hence,

3
X
j
j¤i

D2ij D 2Bi ��:

We now consider the Euler class e. To determine e we will make use of the following
result [19, Lemma 2.3]:

Lemma 4.8 For any ˛ 2H ev.EIQ/,
ˆ
E=B

˛e D Trace.˛ WH ev.EIQ/!H ev.EIQ//;

where we view H ev.EIQ/ as a finite-dimensional free module over H ev.BIQ/.

Proposition 4.9 e D 2�C x21 C � � �C x
2
n:
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Proof From Lemma 4.8,ˆ
E=B

exi D Trace.xi WH ev.EIQ/!H ev.EIQ//:

We compute the trace of xi using the basis f1; x1; : : : ; xn; �g. From (4-5), the coefficient
of xj in xixj for i ¤ j is Dj i . From (4-6), the coefficient of xi in x2i is zero and,
from (4-7), the coefficient of � in xi� is zero. Hence,ˆ

E=B

exi D
X
j
j¤i

Dj i :

Similarly, we compute the trace of � using the basis f1; x1; : : : ; xn; �g. From (4-7) the
coefficient of xi in �xi is Gi and, from (4-8), the coefficient of � in �2 is zero. Hence,

ˆ
E=B

e� D

nX
iD1

Gi :

From
´
E=B e D �.X/D 2Cn, it follows that

e D 2�C x21 C � � �C xnC

nX
iD1

vixi Cw

for some vi 2H 2.BIQ/ and some w 2H 4.BIQ/. By direct computation, one finds
that ˆ

E=B

exi D vi C
X
j
j¤i

Dj i and
ˆ
E=B

e� D

nX
iD1

Gi Cw:

Therefore, vi D 0 for all i and w D 0, so that

e D 2�C x21 C � � �C x
2
n:

5 Tautological classes

In this section we use the results from Section 4 on the structure of the cohomology
ring of E in order to compute tautological classes. The computation involves many
complicated fibre integrals and hence we find it useful to first prove a general result
about such integrals. The following result may be thought of as a kind of diagonalisation
theorem for fibre integrals:
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Proposition 5.1 (integration formula) Let f .t1; : : : ; tn/ be a polynomial in t1; : : : ; tn
with coefficients in H ev.BIQ/. Then

(5-1)
ˆ
E=B

f .x1; : : : ; xn/D

nX
jD1

ˆ
E=B

fj .xj /;

where
fj .xj /D f .Dj1; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djn/:

Proof We prove this by induction. Let m � n. Suppose we have shown that (5-1)
holds whenever f is a polynomial in m or fewer of the variables t1; : : : ; tm. The
base case m D 1 is trivially true. Suppose the result holds for 1 � m < n. To
prove the mC 1 case in general, it is enough to prove it for polynomials of the form
taj f .ti1 ; : : : ; tim/ for some j, i1; : : : ; im and some a � 1. Without loss of generality,
it is enough to prove it for polynomials of the form tamC1f .t1; : : : ; tm/, since we can
get the result for taj f .ti1 ; : : : ; tim/ from this by reordering the indices. Note that, from
xmC1x1 DD.mC1/1xmC1D1.mC1/x1�D.mC1/1D1.mC1/, we get that

xmC1.x1�D.mC1/1/DD1.mC1/.x1�D.mC1/1/:

Next, by the division algorithm, we can write

f .x1; : : : ; xm/D f .D.mC1/1; x2; : : : ; xm/C .x1�D.mC1/1/g.x1; : : : ; xm/

for some polynomial g.x1; : : : ; xm/. Thenˆ
E=B

xamC1f .x1; : : : ; xm/

D

ˆ
E=B

xamC1.f .D.mC1/1; x2; : : : ; xm/C .x1�D.mC1/1/g.x1; : : : ; xm//

D

ˆ
E=B

xamC1f .D.mC1/1; x2; : : : ; xm//CD
a
1.mC1/.x1�D.mC1/1/g.x1; : : : ; xm/:

Both terms involve at most m variables, so by induction we getˆ
E=B

xamC1f .D.mC1/1; x2; : : : ; xm/

D

ˆ
E=B

xamC1f .D.mC1/1;D.mC1/2; : : : ;D.mC1/m/

C

ˆ
E=B

mX
jD1

Daj.mC1/f .D.mC1/1;Dj2; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djm/
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andˆ
E=B

Da1.mC1/.x1�D.mC1/1/g.x1; : : : ; xm/

D

ˆ
E=B

mX
jD1

Da1.mC1/.Dj1�D.mC1/1/g.Dj1; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djm/

D

ˆ
E=B

mX
jD1

Daj.mC1/.Dj1�D.mC1/1/g.Dj1; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djm/:

To get the last line we used the special case of (4-11),

.D1.mC1/�Dj.mC1//.Dj1�D.mC1/1/D 0;

to deduce that

D1.mC1/.Dj1�D.mC1/1/DDj.mC1/.Dj1�D.mC1/1/

and hence, by repeated application of this identity, that

Da1.mC1/.Dj1�D.mC1/1/DD
a
j.mC1/.Dj1�D.mC1/1/:

Adding these two equalities, we getˆ
E=B

xamC1f .x1; : : : ; xm/

D

ˆ
E=B

xamC1f .D.mC1/1;D.mC1/2; : : : ;D.mC1/m/

C

ˆ
E=B

mX
jD1

Daj.mC1/f .D.mC1/1;Dj2; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djm/

C

ˆ
E=B

mX
jD1

DajmC1.Dj1�D.mC1/1/g.Dj1; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djm/

D

ˆ
E=B

xamC1f .D.mC1/1;D.mC1/2; : : : ;D.mC1/m/

C

ˆ
E=B

mX
jD1

Daj.mC1/f .Dj1; : : : ;Dj.j�1/; xj ;Dj.jC1/; : : : ;Djm/:

This proves the inductive step and so we are done.

The computation of the tautological classes �pa
1 e

b is best handled by considering
separately the cases where b is even or odd. Because of this, we wish to have an
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expression for e2 in terms of x1; : : : ; xn in which there are no cross terms xixj with
i ¤ j. The following proposition gives such an expression:

Proposition 5.2 We have

e2 D

nX
iD1

.3x2i �Bi /
2
C�;

where � satisfies
�D�

X
j
j¤i

.3D2ij �Bj /
2

for all i .

Proof Throughout this proof we will make repeated use of (4-5)–(4-8) to compute
cup products. We will also use Proposition 4.4 to express third and higher powers of
xi in terms of xi and x2i . In particular,

x4i D Bix
2
i CCixi :

We will also use (4-15) and (4-16) to rewrite any instances of Gi or Ji that appear in
the calculation in terms of Bi , Ci , Dij and Dj i .

From Proposition 4.9, we have

e D 2�C x21 C � � �C x
2
n:

Squaring both sides and simplifying, we find

e2 D 3
X
i

Bix
2
i C 9

X
i

Cixi C 3
X
i;j
i¤j

D2ijD
2
ji C 4! D

nX
iD1

.3x2i �Bi /
2
C�;

where
�D 3

X
i;j
i¤j

D2ijD
2
ji C 4! �

X
i

B2i :

It remains to show that �D�
P
j jj¤i .3D

2
ij �Bj /

2. To show this, we will calculate´
E=B e

2x2i in two different ways. First, a direct computation givesˆ
E=B

e2x2i D

ˆ
E=B

.2�Cx21C� � �Cx
2
n/
2x2i

D

ˆ
E=B

4�2x2i C4

ˆ
E=B

�.x21C� � �Cx
2
n/x

2
i C

ˆ
E=B

.x21C� � �Cx
2
n/
2x2i :
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Nowˆ
E=B

�2x2i D

ˆ
E=B

.�xi /
2
D

ˆ
E=B

�
Gixi�

X
j
j¤i

DijDj ixjCJi

�2
DG2i C

X
j
j¤i

D2ijD
2
ji

andˆ
E=B

�.x21 C � � �C x
2
n/x

2
i

D

ˆ
E=B

�x4i C
X
j
j¤i

ˆ
E=B

�x2j x
2
i

D

ˆ
E=B

�.Bix
2
i CCixi /C

X
j
j¤i

ˆ
E=B

�.Dijxi CDj ixj �DijDj i /
2

D BiGi C
X
j
j¤i

.D2ijGi CD
2
jiGj �D

2
ijD

2
ji /:

Also, from Proposition 5.1, we haveˆ
E=B

.x21 C � � �C x
2
n/
2x2i

D

ˆ
E=B

x2i

�
x2i C

X
j
j¤i

D2ij

�2
C

X
j
j¤i

D2ji

ˆ
E=B

�
x2j C

X
k
k¤j

D2jk

�2

D B2i C 2Bi
X
j
j¤i

D2ij C

�X
j
j¤i

D2ij

�2
C

X
j
j¤i

D2ji

�
Bj C 2

X
k
k¤j

D2jk

�
;

where we used
´
E=B x

4
i D Bi and

´
E=B x

6
i D B

2
i to get the last line. Putting these

together, we findˆ
E=B

e2x2i

D

ˆ
E=B

4�2x2i C 4

ˆ
E=B

�.x21 C � � �C x
2
n/x

2
i C

ˆ
E=B

.x21 C � � �C x
2
n/
2x2i

D 4G2i C 4
X
j
j¤i

D2ijD
2
ji C 4BiGi C

X
j
j¤i

.4D2ijGi C 4D
2
jiGj � 4D

2
ijD

2
ji /CB

2
i

C 2Bi
X
j
j¤i

D2ij C

�X
j
j¤i

D2ij

�2
C

X
j
j¤i

D2jiBj C 2
X
j;k

i;j;k distinct

D2jiD
2
jkC 2

X
j
j¤i

D4ji
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D

�
Bi �

X
j
j¤i

D2ij

�2
C 4

X
j
j¤i

D2ijD
2
ji C 2B

2
i � 2Bi

X
j
j¤i

D2ij C 2
X
j
j¤i

D2ijBi

� 2
X
j
j¤i

�X
k
k¤i

D2ijD
2
ik

�
C 2

X
j
j¤i

D2jiBj � 2
X
j
j¤i

�X
k
k¤j

D2jiD
2
jk

�
� 4

X
j
j¤i

D2ijD
2
ji

CB2i C2Bi
X
j
j¤i

D2ijC

�X
j
j¤i

D2ij

�2
C

X
j
j¤i

D2jiBjC2
X
j;k

i;j;k distinct

D2jiD
2
jkC2

X
j
j¤i

D4ji

D

�
Bi �

X
j
j¤i

D2ij

�2
C 4

X
j
j¤i

D2ijD
2
ji C 3B

2
i � 2

X
j
j¤i

�X
k
k¤i

D2ijD
2
ik

�
C 3

X
j
j¤i

D2jiBj

� 2
X
j
j¤i

�X
k
k¤j

D2jiD
2
jk

�
� 4

X
j
j¤i

D2ijD
2
ji C 2Bi

X
j
j¤i

D2ij C

�X
j
j¤i

D2ij

�2

C 2
X
j;k

i;j;k distinct

D2jiD
2
jkC 2

X
j
j¤i

D4ji

D 4B2i C 3
X
j
j¤i

D2jiBj C 2

�X
j
j¤i

D2ij

�2
C 4

X
j
j¤i

D2ijD
2
ji � 2

X
j
j¤i

�X
k
k¤i

D2ijD
2
ik

�

� 2
X
j
j¤i

�X
k
k¤j

D2jiD
2
jk

�
� 4

X
j
j¤i

D2ijD
2
ji C 2

X
j;k

i;j;k distinct

D2jiD
2
jkC 2

X
j
j¤i

D4ji

D 4B2i C 3
X
j
j¤i

D2jiBj C 2
X
j;k

i;j;k distinct

D2ijD
2
ikC 2

X
j
j¤i

D4ij � 2
X
j;k

i;j;k distinct

D2ijD
2
ik

�2
X
j
j¤i

D4ij �2
X
j;k

i;j;k distinct

D2jiD
2
jk�2

X
j
j¤i

D4jiC2
X
j;k

i;j;k distinct

D2jiD
2
jkC2

X
j
j¤i

D4ji

D 4B2i C 3
X
j
j¤i

D2jiBj :

So we have shown

(5-2)
ˆ
E=B

e2x2i D 4B
2
i C 3

X
j
j¤i

D2jiBj :
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Next, take the equality

e2 D

nX
jD1

.3x2j �Bj /
2
C�D 3

X
j

Bjx
2
j C 9

X
j

Cjxj C
X
j

B2j C�;

multiply both sides by x2i and integrate to obtain
ˆ
E=B

e2x2i D 3

ˆ
E=B

Bix
4
i C3

X
j
j¤i

ˆ
E=B

Bjx
2
i x
2
jC9

X
j
j¤i

CjDijC
X
j
j¤i

B2j CB
2
i C�

D 4B2i C3
X
j
j¤i

Bj

ˆ
E=B

x2i x
2
jC9

X
j
j¤i

CjDijC
X
j
j¤i

B2j C�:

From Proposition 5.1, we find
ˆ
E=B

x2i x
2
j DD

2
ij CD

2
ji ;

so ˆ
E=B

e2x2i D 4B
2
i C

X
j
j¤i

.3BjD
2
ij C 3BjD

2
ji C 9CjDij CB

2
j /C�

D 4B2i C
X
j
j¤i

.3BjD
2
ij C 3BjD

2
ji C 9D

4
ij � 9D

2
ijBj CB

2
j /C�

D 4B2i C
X
j
j¤i

.9D4ij � 6D
2
ijBj CB

2
j C 3BjD

2
ji /C�

D 4B2i C 3
X
j
j¤i

BjD
2
ji C

�X
j
j¤i

.3D2ij �Bj /
2
C�

�
;

where we made use of Proposition 4.5 to replace Cj by D3ij �DijBj . Comparing
with (5-2), it follows that

�D�
X
j
j¤i

.3D2ij �Bj /
2:

The next result says that the tautological classes with even powers of e can be written
as a sum of n terms, where the i th term only involves xi .
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Proposition 5.3 For i D 1; : : : ; n, we set

p1.i/D 3x
2
i C 2Bi ; e.i/D 3x2i �Bi :

Then , for all a; b � 0,

�pa
1 e

2b D

ˆ
E=B

pa1e
2b
D

nX
iD1

ˆ
E=B

p1.i/
ae.i/2b:

Proof Consider the polynomials

P1.t1; : : : ; tn/D 3.t
2
1 C � � �C t

2
n/C� and P2.t1; : : : ; tn/D

nX
iD1

.3t2i �Bi /
2
C�:

Then
p1 D P1.x1; : : : ; xn/

by Proposition 4.6, and
e2 D P2.x1; : : : ; xn/

by Proposition 5.2. Therefore,

�pa
1 e

2b D

ˆ
E=B

pa1e
2b
D

ˆ
E=B

P1.x1; : : : ; xn/
aP2.x1; : : : ; xn/

b:

Next we find that

.P1/i .xi /D P1.Di1; : : : ;Di.i�1/; xi ;Di.iC1/; : : : ;Din/

D 3x2i C 3
X
j
j¤i

D2ij C�D 3x
2
i C 2Bi D p1.i/;

where the second-to-last equality was obtained using Proposition 4.7.

Also,

.P2/i .xi /D P1.Di1; : : : ;Di.i�1/; xi ;Di.iC1/; : : : ;Din/

D .3x2i �Bi /
2
C

X
j
j¤i

.3D2ij �Bj /
2
C�D .3x2i �Bi /

2
D e.i/2;

where we used Proposition 5.2. Combining these results with the integration formula
(Proposition 5.1), we get

�pa
1 e

2b D

ˆ
E=B

P1.x1; : : : ; xn/
aP2.x1; : : : ; xn/

b

D

nX
jD1

ˆ
E=B

.P1/
a
j .xi /.P2/

b
j .xi /D

nX
jD1

ˆ
E=B

p1.i/
ae.i/2b:
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Next we would like to consider tautological classes with an odd power of e. Since
Proposition 5.2 lets us write e2 in terms of the xi , we just need to consider integrands
of the form f .x1; : : : ; xn/e, where f is a polynomial. The next proposition gives a
formula for the evaluation of such integrals.

Proposition 5.4 (second integration formula) Let f .t1; : : : ; tn/ be a polynomial in
t1; : : : ; tn with coefficients in H ev.BIQ/. Then , for each i 2 f1; : : : ; ng,

(5-3)
ˆ
E=B

f .x1; : : : ; xn/e D

nX
jD1

ˆ
E=B

fj .xj /e.j /� 2
X
j
j¤i

fj .Dij /:

Proof Fix i 2 f1; : : : ; ng. Then, from

x2i D �C
X
j
j¤i

Dijxj CGi ;

we get
ˆ
E=B

f .x1; : : : ; xn/� D

ˆ
E=B

f .x1; : : : ; xn/

�
x2i �

X
j
j¤i

Dijxj �Gi

�
:

The integrand on the right-hand side is a polynomial in x1; : : : ; xn with coefficients in
H ev.BIQ/, so, from Proposition 5.1, we have

(5-4)
ˆ
E=B

f .x1; : : : ; xn/� D

ˆ
E=B

fi .xi /

�
x2i �

X
j
j¤i

D2ij �Gi

�

C

X
j
j¤i

fj .xj /

�
D2ji�Dijxj�

X
k

k¤i;j

DikDjk�Gi

�
:

Using Proposition 5.1 again, we also have

(5-5)
ˆ
E=B

f .x1; : : : ; xn/.x
2
1 C � � �C x

2
n/

D

ˆ
E=B

fi .xi /

�
x2i C

X
j
j¤i

D2ij

�
C

X
j
j¤i

ˆ
E=B

fj .xj /

�
x2j C

X
k
k¤j

D2jk

�
:
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Now, from Proposition 4.9, we have e D 2� C x21 C � � � C x
2
n. Together with (5-4)

and (5-5), this implies

(5-6)
ˆ
E=B

f .x1; : : : ; xn/e

D

ˆ
E=B

f .x1; : : : ; xn/.2�C x
2
1 C � � �C x

2
n/

D

ˆ
E=B

fi .xi /

�
3x2i � 2Gi �

X
j
j¤i

D2ij

�

C

X
j
j¤i

ˆ
E=B

fj .xj /

�
x2j C3D

2
ji�2Gi�2

X
k

k¤i;j

DikDjkC
X
k

k¤i;j

D2jk

� 2Dijxj

�
:

Note that

(5-7) 3x2i � 2Gi �
X
j
j¤i

D2ij D 3x
2
i �Bi D e.i/:

Also,

(5-8) x2j C 3D
2
ji � 2Gi � 2

X
k

k¤i;j

DikDjkC
X
k

k¤i;j

D2jk � 2Dijxj

D x2j � 2Dijxj C 3D
2
ji �Bi CD

2
ij C

X
k

k¤i;j

.D2ik � 2DikDjkCD
2
jk/:

Combining (4-12) with Bi D 2Gi C
P
j jj¤i D

2
ij , we have

Bi CBj D 3D
2
ij C 3D

2
ji C

X
k

k¤i;j

.D2ik � 2DikDjkCD
2
jk/:

Substituting this into (5-8), we get

(5-9) x2j C 3D
2
ji � 2Gi � 2

X
k

k¤i;j

DikDjkC
X
k

k¤i;j

D2jk � 2Dijxj

D x2j � 2Dijxj � 2D
2
ij CBj

D e.j /� 2.x2j CDijxj CD
2
ij �Bj /:
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Substituting (5-7) and (5-9) into (5-6), we get

(5-10)
ˆ
E=B

f .x1; : : : ; xn/e

D

ˆ
E=B

fi .xi /e.i/C
X
j
j¤i

ˆ
E=B

fj .xj /.e.j /� 2.x
2
j CDijxj CD

2
ij �Bj //

D

nX
jD1

ˆ
E=B

fj .xj /e.j /� 2
X
j
j¤i

ˆ
E=B

fj .xj /.x
2
j CDijxj CD

2
ij �Bj /:

Now we claim that, for any integer m� 0,ˆ
E=B

xmj .x
2
j CDijxj CD

2
ij �Bj /DD

m
ij :

We prove this by induction on m. For mD 0; 1, this is obvious. For mD 2, we haveˆ
E=B

x2j .x
2
j CDijxj CD

2
ij �Bj /D

�ˆ
E=B

x4j

�
CD2ij �Bj DBj CD

2
ij �Bj DD

2
ij :

Now supposem�3 and that the result holds for allm0�m. Then, since x3j DBjxjCCj
and D3ij D BjDij CCj , we findˆ
E=B

xmj .x
2
j CDijxj CDij �Bj /

D

ˆ
E=B

xm�3j .Bjxj CCj /.x
2
j CDijxj CDij �Bj /

D Bj

ˆ
E=B

xm�2j .x2j CDijxjCDij�Bj /CCj

ˆ
E=B

xm�3j .x2j CDijxjCDij�Bj /

D BjD
m�2
ij CCjD

m�3
ij

D .BjDij CCj /D
m�3
ij

DDmij ;

which completes the induction. As a consequence, it follows thatˆ
E=B

fj .xj /.x
2
j CDijxj CD

2
ij �Bj /D fj .Dij /:

Applying this to (5-10), we get
ˆ
E=B

f .x1; : : : ; xn/e D

nX
jD1

ˆ
E=B

fj .xj /e.j /� 2
X
j
j¤i

fj .Dij /:
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The next result is the counterpart of Proposition 5.3 for odd powers of e.

Proposition 5.5 For all a and b,

�pa
1 e

2bC1 D

ˆ
E=B

pa1e
2bC1

D

nX
iD1

ˆ
E=B

p1.i/
ae.i/2b � 2

X
j
j¤i

.3D2ij C 2Bj /
a.3D2ij �Bj /

2b:

Proof As in the proof of Proposition 5.3, we write

p1 D P1.x1; : : : ; xn/ and e2 D P2.x1; : : : ; xn/;

where

P1.t1; : : : ; tn/D 3.t
2
1 C � � �C t

2
n/C� and P2.t1; : : : ; tn/D

nX
iD1

.3t2i �Bi /
2
C�:

Then we apply Proposition 5.4 to f .x1; : : : ; xn/D P1.x1; : : : ; xn/aP2.x1; : : : ; xn/b

to obtainˆ
E=B

pa1e
2bC1

D

ˆ
E=B

f .x1; : : : ; xn/e

D

nX
jD1

ˆ
E=B

p1.j /
ae.j /2bC1�2

X
j
j¤i

pj .Dij /
aej .Dij /

2b

D

nX
jD1

ˆ
E=B

p1.j /
ae.j /2bC1�2

X
j
j¤i

.3D2ijC2Bj /
a.3D2ij�Bj /

2b:

In the next result, we show that � can be written in terms of tautological classes.

Proposition 5.6 We have

�e2 D 3

nX
jD1

Bj and �p1e D
8
3
�e2 C 2�:

Therefore ,

�D 1
2
�p1e �

4
3
�e2 :
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Proof From Proposition 5.3, we have

�e2 D

nX
jD1

ˆ
E=B

.3x2j �Bj /
2
D

nX
jD1

ˆ
E=B

.9x4j � 6Bjx
2
j CB

2
j /

D

nX
jD1

.9Bj � 6Bj /D 3

nX
jD1

Bj :

From Proposition 5.5, we have

�p1e D

nX
jD1

ˆ
E=B

.3x2j C 2Bj /.3x
2
j �Bj /� 2

X
j
j¤i

.3D2ij C 2Bj /

D

nX
jD1

ˆ
E=B

.9x4j C 3Bjx
2
j � 2B

2
j /� 6

X
j
j¤i

D2ij � 4
X
j
j¤i

Bj

D

nX
jD1

12Bj � 4

nX
jD1

Bj C 4Bi � 4Bi C 2�

D 8

nX
jD1

Bj C 2�;

where the second-to-last equality follows from Proposition 4.7. Therefore,

�p1e D 8

nX
jD1

Bj C 2�D
8
3
�e2 C 2�:

Let UX ! BDiff.X/ denote the universal family UX D EDiff.X/ �Diff.X/ X over
BDiff.X/ and let UX D p�.UX / be the pullback of the universal family to BDiff.X/.
Then, as in Section 2, the rational cohomology ring H�.UX IQ/ is generated over
H�.BDiff.X/IQ/ by classes x1; : : : ; xn 2H 2.UX IQ/. By the universal coefficient
theorem, rational cohomology classes of BDiff.X/ are detected by their evaluation on
integral homology classes. By a result of Thom [21], for any integral homology class
x 2Hk.BDiff.X/IZ/, there is a nonzero integer N such that Nx is the pushforward
of the fundamental class of a compact, oriented smooth manifold M of dimension k
under a continuous map f W M ! BDiff.X/. Hence, rational cohomology classes
of BDiff.X/ are detected by continuous maps from compact smooth manifolds into
BDiff.X/. From this it follows that all of the results in Sections 4 and 5 for smooth,
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compact families carry over to UX ! BDiff.X/. In particular, there are classes

Dij 2H
2.BDiff.X/IQ/; Ji 2H

6.BDiff.X/IQ/;

Gi 2H
4.BDiff.X/IQ/; ! 2H 8.BDiff.X/IQ/;

such that

xixj DDijxi CDj ixj �DijDj i ; xi� DGixi �
X
j
j¤i

DijDj ixj CJi ;

x2i D �C
X
j
j¤i

Dijxj CGi ; �2 D
X
j

Jjxj C!:

We also define � 2H 4.BDiff.X/IQ/ to be given by �D 1
2
�p1e �

4
3
�e2 .

We also have
x3i D Bixi CCi ;

where
Bi D 2Gi C

X
j
j¤i

D2ij 2H
2.BDiff.X/IQ/;

Ci D Ji �
X
j
j¤i

D2ijDj i 2H
3.BDiff.X/IQ/:

The classes x1; : : : ; xn (and therefore also the classes Dij , Gi , Ji , !, Bi and Ci )
depend on a choice of framing f�1; : : : ; �ng for the family UX . Recall that the group

Wn D Sn Ë Zn2

acts on the set of framings by permutations and sign changes. The group Wn acts
on BDiff.X/ and UX on the right, inducing left actions on H�.BDiff.X/IQ/ and
H�.UX IQ/. This action corresponds to a change of framing; in particular, it follows
that

�.xi /D x�.i/ for � 2 Sn and �i .xj /D

�
xj if j ¤ i;
�xj if j D i:

It also follows that Wn acts on all of the associated classes Dij , Gi , Ji , !, Bi and Ci .
Noting that

Dij D

ˆ
EX=B

x2i xj ;

one finds that the action of Wn on the Dij is given by

�.Dij /DD�.i/�.j / for � 2 Sn and �k.Dij /D

�
Dij if k ¤ j;
�Dij if k D j:
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Definition 5.7 Let X be a smooth, compact, simply connected, positive-definite 4–
manifold with b2.X/D n� 1. We denote by D�.X/ the subring of H�.BDiff.X/IQ/
generated by the Dij . Note that Wn acts on D�.X/ by ring automorphisms. We let
I�.X/�D�.X/ denote the Wn–invariant subring of D�.X/.

Remark 5.8 Recall (see the comment preceding Remark 2.1) that the Wn–invariant
subring of H�.BDiff.X/IQ/ is H�.BDiff.X/IQ/. Therefore, I�.X/ may be identi-
fied with a subring of H�.BDiff.X/IQ/:

I�.X/�H�.BDiff.X/IQ/:

Lemma 5.9 I k.X/ is nonzero only if k is a multiple of 4. Moreover , I 4.X/ is
spanned by I1 and I2, where

I1 D
X
i;j
i¤j

D2ij ; I2 D
X
i;j;k

i;j;k distinct

DikDjk :

Proof Since the Dij have degree 2, I�.X/ is concentrated in even degrees. Suppose
k D 2m. Any element in I 2m.X/ is a linear combination of monomials

Di1j1
Di2j2

� � �Dimjm
:

The subgroup Zn2 �Wn sends each such monomial to plus or minus itself. Therefore,
any element of D2m.X/ must be a linear combination consisting only of monomials
that are Zn2–invariant. However, it is clear that

�k.Di1j1
Di2j2

� � �Dimjm
/D .�1/�kDi1j1

Di2j2
� � �Dimjm

;

where �k is the number of a 2 f1; : : : ; mg for which ja D k. Clearly,
nX
kD1

�k Dm:

This means that the product �1�2 � � � �m acts onD2m.X/ by .�1/m. Hence, I 2m.X/D
0 for m odd and so I�.X/ is concentrated in degrees divisible by 4.

Any element of D4.X/ is a quadratic polynomial in the Dij . Any invariant element
ofD4.X/must be a linear combination of monomialsDi1j1

Di2j2
that are Zn2–invariant.

Such a monomialDi1j1
Di2j2

is Zn2–invariant if and only if j1D j2. Thus, any element
of I 4.X/ is a linear combination of monomials of the form

D2ij .i ¤ j / or DikDjk .i; j; k distinct/:
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The symmetric group Sn acts on such monomials with precisely two orbits. It follows
that I 4.X/ is spanned by

I1 D
X
i;j
i¤j

D2ij and I2 D
X
i;j;k

i;j;k distinct

DikDjk :

Lemma 5.10 For n� 2,

�D�
n� 5

n.n� 1/
I1�

2

n.n� 1/
I2:

Proof From Proposition 4.7, we have

�2Bi C 3
X
j
j¤i

D2ij C�D 0:

Summing over all i and using Proposition 5.6, we have

(5-11) �
2
3
�e2 C 3I1Cn�D 0:

Next, recall that Bi D 2Gi C
P
j jj¤i D

2
ij . Summing over i , we get

(5-12)
nX
iD1

Gi D
1
6
�e2 �

1
2
I1:

Summing (4-12) over all i ¤ j, we get

(5-13) 2.n� 1/

nX
iD1

Gi C I2 D 2I1:

Combining (5-12) and (5-13), we get

1
3
�e2 D

nC1

n�1
I1�

1

n�1
I2:

Note that we can divide by n� 1 because of the assumption that n� 2. Substituting
this into (5-11), we get

n�D�
n�5

n�1
I1�

2

n�1
I2:

Proposition 5.11 For n� 2,

Bi D
3

2

X
j
j¤i

D2ij �
n� 5

2n.n� 1/
I1�

1

n�1
I2; Ci D

1

n�1

X
j
j¤i

.D3ji �BiDj i /:

Moreover , Bi ; Ci ; Gi 2D�.X/ and ! 2 I 8.X/.
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Proof Proposition 4.7 and Lemma 5.10 together imply that

Bi D
3

2

X
j
j¤i

D2ij �
n� 5

2n.n� 1/
I1�

1

n�1
I2 2D

4.X/:

Proposition 4.5 gives Ci D D3ji �BiDj i for all j ¤ i . Averaging over j for j ¤ i
gives

Ci D
1

n�1

X
j
j¤i

.D3ji �BiDj i / 2D
6.X/:

(It is not necessary to average over j in order to show Ci 2D
6.X/, but this makes the

expression for Ci symmetric). Now, from (4-15) and (4-16), it follows that Gi ; Ji 2
D�.X/. Lastly, if we take (4-14) and average over i , we obtain ! 2 I 8.X/.

Proof of Theorem 1.5 We have already constructed the classes

Dij 2H
2.BDiff.X/IQ/; 1� i; j � n; i ¤ j;

and the group Wn acts on the Dij as specified in part (i) of the theorem. Part (ii)
was explained in Remark 5.8. For part (iii), first note that the tautological classes are
Wn–invariant because they lie in H�.BDiff.X/IQ/, which is the Wn–invariant part of
H�.BDiff.X/IQ/. Thus, it suffices to show that each tautological class �pa

1 e
b belongs

to D�.X/. From Propositions 5.3 and 5.5, it follows that each tautological class �pa
1 e

b

can be written as a polynomial in Dij , Bi and Ci . But, from Proposition 5.11, we have
Bi ; Ci 2D

�.X/, and of course Dij 2D�.X/. Hence, �pa
1 e

b 2D�.X/.

For each pair of nonnegative integers a and b, we define a two-variable polynomial
�a;b.x; y/ 2 ZŒx; y� as follows: Let

p.z/D z3� xz�y; p0.z/D 3z2� x:

Then we define

�a;b.x; y/D
1

2�i

‰
.p0.z/C 3x/a.p0.z//b

p.z/
dz;

where the contour encloses all zeros of p.z/. Since .p0.z/ C 3x/aC1.p0.z//b D
.p0.z/C 3x/ap0.z/bC1C 3x.p0.z//a.p0.z//b ,

(5-14) �aC1;b.x; y/D �a;bC1.x; y/C 3x�a;b.x; y/:

By a direct computation, one finds that

.p0.z//3 D 3x.p0.z//2C .27y2� 4x3/C 27.p.z//2C 54yp.z/:
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Multiplying both sides by .p0.z/C 3x/a.p0.z//b and taking contour integrals, we see
that

�a;bC3.x; y/D 3x�a;bC2.x; y/C .27y
2
� 4x3/�a;b.x; y/

C
1

2�i

‰
.p0.z/C 3x/a.p0.z//b.27p.z/C 54y/ dz:

But the integrand is holomorphic, so the integral is zero, giving the recursive formula

(5-15) �a;bC3.x; y/D 3x�a;bC2.x; y/C .27y
2
� 4x3/�a;b.x; y/:

The recursive relations (5-14)–(5-15) can be used to compute �a;b recursively from
�0;0, �0;1 and �0;2, which we now compute. Since �a;b.x; y/ is a polynomial in x
and y, it suffices to compute the value of �a;b.x; y/ as a function of .x; y/ on an
open subset of C2. Assume that the discriminant 4x3 � 27y2 is nonzero, so that
p.z/ has distinct roots �1, �2 and �3. Then p.z/D .z��1/.z��2/.z��3/, where
�1C�2C�3D 0, �1�2C�1�3C�2�3D�x and �1�2�3D y. Then, by the residue
theorem,

�0;0.x; y/D
1

p0.�1/
C

1

p0.�2/
C

1

p0.�3/

D
1

.�1��2/.�1��3/
C

1

.�2��1/.�2��3/
C

1

.�3��1/.�3��2/

D
1

.�1��2/.�2��3/.�3��1/
..�3��2/C .�1��3/C .�2��1//

D 0:

By the argument principle,
�0;1.x; y/D 3;

and, by the residue theorem again,

�0;2.x; y/D p
0.�1/Cp

0.�2/Cp
0.�3/

D .�1��2/.�1��3/C .�2��1/.�2��3/C .�3��1/.�3��2/

D �21C�
2
2C�

2
3��1�2��1�3��2�3

D .�1C�2C�3/
2
� 3.�1�2C�1�3C�2�3/

D 3x:

Proof of Theorem 1.6 From Propositions 5.3 and 5.5, we have

�pa
1 e

2b D

ˆ
E=B

pa1e
2b
D

nX
iD1

ˆ
E=B

p1.i/
ae.i/2b
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and

�pa
1 e

2bC1 D

ˆ
E=B

pa1e
2bC1

D

nX
iD1

ˆ
E=B

p1.i/
ae.i/2b � 2

X
j
j¤i

.3D2ij C 2Bj /
a.3D2ij �Bj /

2b:

So it remains to show that

(5-16)
ˆ
E=B

p1.i/
ae.i/2b D �a;b.Bi ; Ci /:

To prove (5-16) for all a; b� 0, it suffices to show that both sides of the equation satisfy
the same recursion relations and same initial conditions. For convenience, let us set

�a;b;i D

ˆ
E=B

p1.i/
ae.i/2b D

ˆ
E=B

.3x2i C 2Bi /
a.3x2i �Bi /

b:

Then we need to show that �a;b;i D �a;b.Bi ; Ci / for all a; b � 0 and all i . Clearly,

�0;0;i D 0D �0;0.Bi ; Ci /; �0;1;i D 3D �0;1.Bi ; Ci /

and

�0;2;i D

ˆ
E=B

.3x2i �B/
2
D

ˆ
E=B

.9x4i � 6Bx
2
i CB

2
i /D 3Bi D �0;2.Bi ; Ci /:

So �a;b;i D �a;b.Bi ; Ci / for .a; b/D .0; 0/; .0; 1/; .0; 2/. Next, from .p1/i D eiC3Bi ,
we see that

�aC1;b;i D �a;bC1;i C 3Bi�a;b;i :

Lastly, a short calculation shows that

e.i/3 D 3Bie.i/
2
C 27C 2i � 4B

3
i ;

so that
�a;bC3;i D 3Bi�a;bC2;i C .27C

2
i � 4B

3
i /�a;b;i :

Hence, �a;b;i satisfies the same recursive relations and initial conditions as �a;b.Bi ; Ci /,
so �a;b;i D �a;b.Bi ; Ci / for all a; b � 0 and all i .

Remark 5.12 From Lemma 5.10 and Proposition 4.6, it follows that p1 can be com-
pletely expressed in terms of the classes x1; : : : ; xn and fDij g. Therefore, p1 depends
only on the underlying topological structure of the family � W E ! B, because the
classes x1; : : : ; xn and fDij g are uniquely characterised in terms of the pushforward
map �� WH�.EIQ/!H��4.BIQ/ (the classes x1; : : : ; xn and fDij g also depend on
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a choice of framing, but p1 is clearly Wn–invariant, so does not depend on this choice).
It is also clear that e depends only on the underlying topological structure of the family.
Therefore, the tautological classes �pa

1 e
b .E/ depend only on the topological structure

of the family. As mentioned in the introduction, this also follows from the fact that the
tautological classes are also defined for topological bundles [6, Theorem B].

6 CP 2

In this section we specialise to the case nD 1. Amongst other results, we completely
determine the tautological ring of CP2.

Theorem 6.1 Let E!B be a smooth family with fibres diffeomorphic to X, where X
is a smooth , compact , simply connected , positive-definite 4–manifold with b2.X/D 1.
Suppose that the family has structure group Diff0.X/ and let � 2 H 2.X IZ/ be a
framing. Let x 2H 2.EIQ/ be the unique class such that xjX D � and

´
E=B x

3 D 0.
Then there exist classes B 2H 4.BIQ/, C 2H 6.BIQ/ such that :

(i) There is an isomorphism of H�.BIQ/–algebras

H�.EIQ/ŠH�.BIQ/Œx�=.x3�Bx�C/:

(ii) The Euler class and first Pontryagin classes of T .E=B/ are given by

e D 3x2�B; p1 D 3x
2
C 2B:

(iii) For all a; b � 0,
�pa

1 e
b .E/D �a;b.B; C /:

Proof (i) is immediate from Proposition 4.4. From Proposition 4.7, we have �D 2B.
Then Proposition 4.6 gives

p1 D 3x
2
C�D 3x2C 2B:

From (4-15) and Proposition 4.2, we have

x2 D �CG;

where G D 1
2
B . Then, from Proposition 4.9, we have

e D 2�C x2 D .2x2�B/C x2 D 3x2�B:
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This proves (ii). From (ii), it follows that

�pa
1 e

b .E/D

ˆ
E=B

.3x2C 2B/a.3x2�B/b:

Using the exact same argument as in the proof of Theorem 1.6, we have

�pa
1 e

b .E/D �a;b.B; C /:

Note in particular that

�p2
1
.E/D 21B; �p4

1
.E/D 81C 2C 609B3:

Theorem 6.2 The tautological ring of CP2 is isomorphic to a polynomial ring gener-
ated by �p2

1
and �p4

1
:

R�.CP2/ŠQŒ�p2
1
; �p4

1
�:

Proof As explained in the introduction, if a relation amongst tautological classes
holds in R�.E/ for all smooth compact CP2 families E!B, then it must also hold in
R�.CP2/. Furthermore, since the mapH�.BDiff.CP2/IQ/!H�.BDiff0.CP2/IQ/

is injective, we can further restrict to families with structure group Diff0.CP2/. From
Theorem 6.1, we see that every tautological class �pa

1 e
b .E/ is a polynomial in B and C.

In fact, by comparing degrees, we see that only even powers of C can occur and hence
�pa

1 e
b .E/ is a polynomial in B and C 2. Next, since

�p2
1
.E/D 21B; �p4

1
.E/D 81C 2C 609B3;

we see that B and C 2 can be expressed as

B D 1
21
�p2

1
.E/; C 2 D 1

81
�p4

1
.E/� 203

27

�
1
2
�p2

1
.E/1

�3
:

Hence, every tautological class can be written as a polynomial in �p2
1

and �p4
1
. To

complete the proof it remains to check that there are no relations between �p2
1

and �p4
1
.

To show this, consider families of the form E D P .V /, the bundle of projective spaces
underlying a complex rank 3 vector bundle of the form V D L˚M ˚ .L�M �/ for
two line bundles L;M ! B. If c1.L/D l and c1.M/Dm, then one finds

B D l2Cm2C lm; C D lm.l Cm/:

So �B and �C are the second and third elementary symmetric polynomials in l , m
and �l �m. It follows that there can be no relation between B and C that holds for
all line bundles L and M on all B and hence there can be no relation between �p2

1

and �p4
1
.
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Following [11; 9], we consider variants R�.X;�/ and R�.X;D4/ of the tautological
ring, which are defined as follows. Let Diff.X;�/ be the subgroup of Diff.X/ fixing a
point and Diff.X;D4/ the subgroup which acts as the identity on an open disc D4 �X.
There are obvious inclusions

(6-1) Diff.X;D4/! Diff.X;�/! Diff.X/

and a homomorphism s W Diff.X;�/ ! GLC.4;R/ which sends a diffeomorphism
of X to its derivative at the marked point. For each c 2 H�.BGLC.4;R/IQ/ Š
H�.BSO.4/IQ/, we can take its pullback s�.c/ 2H�.BDiff.X;�/IQ/. We define
R�.X;�/ to be the subring of H�.BDiff.X;�/IQ/ generated by the s�.c/ together
with the pullback to BDiff.X;�/ of all tautological classes �c . We similarly define
R�.X;D4/ to be the subring of H�.BDiff.X;D4/IQ/ generated by the pullback to
BDiff.X;D4/ of all tautological classes �c . The inclusions (6-1) give ring homomor-
phisms

R�.X/
f
�!R�.X;�/

g
�!R�.X;D4/

whose composition is surjective.

Theorem 6.3 We have ring isomorphisms:

(1) R�.CP2;�/ŠQŒp1; e�.

(2) R�.CP2;D4/ŠQ.

Proof First note that we can identify BDiff.CP2;�/! BDiff.CP2/ with the uni-
versal bundle UX ! BDiff.CP2/ because Diff.CP2;�/ is a closed subgroup of
Diff.CP2/, and so

BDiff.CP2;�/DEDiff.CP2/=Diff.CP2;�/

DEDiff.CP2/�Diff.CP2/
.Diff.CP2/=Diff.CP2;�//

DEDiff.CP2/�Diff.CP2/
CP2 D UX :

So we can think of R�.CP2;�/ as the subring of H�.UX IQ/ generated by p1, e and
the pullback of all tautological classes. Note that the pullback

�� WH�.BDiff.CP2/IQ/!H�.UX IQ/

is injective because ˆ
UX=BDiff.CP2/

��.w/e D �.CP2/w D 3w
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for any w 2 H�.BDiff.CP2/IQ/. So the tautological classes pulled back to UX
generate a ring isomorphic to QŒu; v�, where uD �p2

1
and v D �p4

1
, by Theorem 6.2.

From Theorem 6.1, we have that e D p1� 3B D p1� 1
7
�p2

1
. Therefore, R�.CP2;�/

is generated by �p2
1
, �p4

1
and p1. Next, one can check directly from Theorem 6.1 that

(6-2) p31 D
4
7
�p2

1
p21 �

5
49
�p2

1
p1�

17
1029

.�p2
1
/3C 1

3
�p4

1
:

We claim that R�.CP2;�/ is a free R�.CP2/–module with basis f1; p1; p21g. The
fact that R�.CP2;�/ is generated by �p2

1
, �p4

1
and p1 together with (6-2) implies

that R�.CP2;�/ is generated as an R�.CP2/–module by 1, p1 and p2. We need to
check linear independence. Suppose that

(6-3) a.u; v/C b.u; v/p1C c.u; v/p
2
1 D 0

for some a; b; c 2QŒu; v�. Note that

�p2
1
D u; �p3

1
D

13
49
u2; �p4

1
D v:

Integrating over the fibres, we get 3bCucD 0, so bD�1
3
uc. Multiplying (6-3) by p1

and integrating, we get 3a� 1
3
u2cC 13

49
u2c D 0, and hence aD 10

441
u2c. Multiplying

(6-3) by p21 and integrating, we get

0D 10
441
u3c � 13

147
u3cC vc D

�
v� 29

441
u3
�
c:

Hence, c D 0, which also implies aD b D 0, proving the claim that 1, p1 and p21 are
linearly independent over R�.CP2/. Thus,

R�.CP2;�/ŠQŒ�p2
1
; �p4

1
; p1�=

�
p31 �

4
7
�p2

1
p21 C

5
49
�p2

1
p1C

17
1029

.�p2
1
/3� 1

3
�p4

1

�
:

Using the relation (6-2), we can solve for �p4
1

in terms of �p2
1
; hence, R�.CP2;�/Š

QŒ�p2
1
; p1�. Then, using e D p1 � 1

7
�p2

1
, we have that R�.CP2;�/ Š QŒ�p2

1
; p1� Š

QŒp1; e�.

Consider the ring R�.CP2;D4/. Since the composition R�.CP2/!R�.CP2;�/!

R�.CP2;D4/ is surjective, to show R�.CP2;D4/ D Q it suffices to show that
the image of R�.CP2;�/ ! R�.CP2;D4/ is Q. Recall that g W R�.CP2;�/ !

R�.CP2;D4/ is the homomorphism induced by BDiff.CP2;�/!BDiff.CP2;D4/.
It follows that g.p1/D g.e/D 0 because the composition

Diff.CP2;D4/! Diff.CP2;�/! SO.4/

is a constant map. But we have just shown that R�.CP2;�/ŠQŒp1; e�; hence, the
image of R�.CP2;�/!R�.CP2;D4/ is Q, as claimed.

Geometry & Topology, Volume 27 (2023)



Tautological classes of definite 4–manifolds 693

7 CP 2 # CP 2

In this section, we specialise to the case that nD b2.X/D 2 and set D1 DD12 and
D2 DD21.

Lemma 7.1 Each class �pa
1 e

b is a symmetric polynomial in D21 and D22 .

Proof From Proposition 4.4, we have

x31 D B1x1CC1; x32 D B2x2CC2;

where

B1 D 2G1CD
2
1 ; B2 D 2G2CD

2
2 ; C1 D J1�D

2
1D2; C2 D J2�D

2
2D1:

Equation (4-12) gives G1CG2 DD21 CD
2
2 and hence

(7-1) B1CB2 D 3D
2
1 C 3D

2
2 :

Proposition 4.7 gives
2B1� 3D

2
1 D �D 2B2� 3D

2
2

and hence

(7-2) 2.B1�B2/D 3D
2
1 � 3D

2
2 :

Equations (7-1) and (7-2) give

B1 D
9
4
D21 C

3
4
D22 ; B2 D

9
4
D22 C

3
4
D21 :

From Proposition 4.5, we get

C1 DD
3
2 �D2B1 DD

3
2 �

9
4
D21D2�

3
4
D32 D

1
4
D2.D

2
2 � 9D

2
1/:

Similarly,
C2 D

1
4
D1.D

2
1 � 9D

2
2/:

Therefore,

C 21 D
1
16
D22.D

2
2 � 9D

2
1/
2; C 22 D

1
16
D21.D

2
1 � 9D

2
2/
2:

Notice that B1, B2, C 21 and C 22 are all polynomials in D21 and D22 . Then, from
Propositions 5.3 and 5.5, it follows that each tautological class �pa

1 e
b is a polynomial

in D21 and D22 . By averaging if necessary, we have that �pa
1 e

b is given by a symmetric
polynomial in D21 and D22 .
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From Proposition 5.3, we have

�p2
1
D 21.B1CB2/D 63.D

2
1 CD

2
2/:

and
�p3

1
D 117.B21 CB

2
2 /D

1053
8
.5.D21 CD

2
2/� 4D

2
1D

2
2/:

It follows that the tautological ring contains all symmetric polynomials in D21 and D22
and is generated by �p2

1
and �p3

1
.

Theorem 7.2 The tautological ring of CP2 # CP2 is isomorphic to a polynomial ring
generated by �p2

1
and �p3

1
:

R�.CP2 # CP2/ŠQŒ�p2
1
; �p3

1
�:

Proof As in the proof of Theorem 6.2, if a relation amongst tautological classes
holds in R�.E/ for all smooth compact CP2 families E ! B with structure group
Diff0.CP2 # CP2/, then it holds in the tautological ring R�.CP2 # CP2/. We have
already seen that the tautological ring is generated by �p2 and �p3

1
, or equivalently by

D21 CD
2
2 and D21D

2
2 . So it remains to show that there are no relations between D1

and D2.

Consider first a CP2 family of the form E1 D P .V1/, where V1 is a complex rank 3
vector bundle of the form V1 D L˚M ˚C for two line bundles L;M ! B. This
family has an obvious section s1 WB!E1 corresponding to the C summand of V1. The
normal bundle of s1 is L˚M. Similarly, let E2 D P .V2/, where V2 D L˚M �˚C.
Then E2 has an obvious section s2 W B!E2 corresponding to the C summand of V2.
The normal bundle of s2 is L˚M �. Note that the underlying real vector bundles of
L˚M and L˚M � are isomorphic, but inherit opposite orientations from the complex
structures on L and M. Therefore, we can remove tubular neighbourhoods of s1 and s2
from E1 and E2 and identify the boundaries of the resulting spaces by an orientation-
reversing diffeomorphism to obtain the families connected sum E DE1 #B E2. This is
a smooth compact family with fibres diffeomorphic to CP2 # CP2. Let l D c1.L/ and
mD c1.M/. A straightforward calculation shows that D1 and D2 for the family E
are given by

D1 D
1
3
.l �m/; D2 D

1
3
.l Cm/:

It follows that there can be no relation between D1 and D2 that holds for all line
bundles L and M and hence there can be no relation between �p2

1
and �p3

1
.
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8 Linear relations in the tautological ring

Proof of Theorem 1.7 We first note that each of the polynomials �a;b.x; y/ involves
only even powers of y. This is clear from the recursive relations and initial conditions
satisfied by the �a;b . Note also that, if we set deg.x/ D 2 and deg.y/ D 3, then
�a;b.x; y/ is a homogeneous polynomial of degree 2.aC b� 1/. The space of homo-
geneous polynomials in x and y2 of degree 2.d � 1/ has dimension 1C

�
1
3
.d � 1/

˘
.

On the other hand, there are 1C
�
1
2
d
˘

pairs .a; b/ with aC b D d and b even. Hence,
there are at least �

1
2
d
˘
�
�
1
3
.d � 1/

˘
linear relations amongst the polynomials �a;b.x; y/ with aC b D d and b even. Any
such linear relation may be written in the form

bd=2cX
jD0

cj�d�2j;2j .x; y/D 0

for some c0; c1; : : : ; cbd=2c 2Q. Now, from Theorem 1.6, we have

bd=2cX
jD0

cj �pd�2j
1 e2j D

bd=2cX
jD0

cj

nX
iD1

�d�2j;2j .Bi ; Ci /D

nX
iD1

bd=2cX
jD0

cj�d�2j;2j .Bi ; Ci /D0:

Hence, we have at least
�
1
2
d
˘
�
�
1
3
.d � 1/

˘
linear relations amongst the tautological

classes �pa
1 e

b with b even and aC b D d .

Remark 8.1 Since X is positive-definite, H 2.X IR/ Š HC.X/ is a trivial bundle
and H�.X/D 0. So the families signature theorem implies that each component of´
E=B L.T .E=B// of positive degree must vanish, where L denotes the L–polynomial.

Each component of L.T .E=B// is a polynomial in p1 and p2 D e2, and so each
component of

´
E=B L.T .E=B// is a tautological class. Equating these to zero gives

linear relations in the tautological ring. From [19, page 3864], the first few such
relations (up to d D 9) are

0D �
p2

1
� 7�e2 ;

0D 2�
p3

1
� 13�p1e

2 ;

0D 3�
p4

1
� 22�

p2
1
e2 C 19�e4 ;

0D 10�
p5

1
� 83�

p3
1
e2 C 127�p1e

4 ;
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0D 1382�
p6

1
� 12 842�

p4
1
e2 C 27 635�p2

1
e4 � 8718�e6 ;

0D 420�
p7

1
� 4322�

p5
1
e2 C 11 880�p3

1
e4 � 7978�p1e

6 ;

0D 10 851�
p8

1
� 122 508�

p6
1
e2 C 407 726�p4

1
e4 � 423 040�p2

1
e6 C 68 435�e8 ;

0D 438 670�
p9

1
� 5 391 213�

p7
1
e2 C 20 996 751�p5

1
e4 � 29 509 334�p3

1
e6 C 11 098 737�p1e

8 :

In general, for each d � 2, we obtain one linear relation amongst the tautological
classes �pa

1 e
b with aC b D d and b even. Theorem 1.7 implies that there are further

linear relations whenever
�
1
2
d
˘
�
�
1
3
.d � 1/

˘
> 1. This is the case if d D 6 or d � 8.

By a direct computation, we find the first few such relations (up to d D 12) are

0D 4�p4
1e

2 � 41�p2
1e

4 C 100�e6 ;

0D 36�p6
1e

2 � 461�p4
1e

4 C 1843�p2
1e

6 � 2300�e8 ;

0D 24�p7
1e

2 � 322�p5
1e

4 C 1379�p3
1e

6 � 1900�p1e8 ;

0D 108�p8
1e

2 � 1579�p6
1e

4 C 7902�p4
1e

6 � 15 531�p2
1e

8 C 9100�e10 ;

0D 360�p9
1e

2 � 5606�p7
1e

4 C 30 923�p5
1e

6 � 71 311�p3
1e

8 C 57 100�p1e10 ;

0D 144�p8
1e

4 � 2552�p6
1e

6 C 16 629�p4
1e

8 � 47 400�p2
1e

10 C 50 000�e12 ;

0D 6000�p10
1 e2 � 98 012�p8

1e
4 C 577 796�p6

1e
6 � 1 461 667�p4

1e
8 C 1 338 700�p2

1e
10 :

List of symbols

X Smooth, compact, simply connected, definite Section 2
4–manifold.

n nDb2.X/, the second Betti number of X. Section 2
ƒn The lattice Zn with the Euclidean inner product. Section 2
e1; : : : ; en The standard basis of ƒn. Section 2
Wn The isometry group of ƒn, WnŠSnËZn2 . Section 2
�1; : : : ; �n A framing of H 2.X IZ/. Section 2
� WE!B Smooth family with fibres diffeomorphic to X. Section 2
Diff.X/ Diffeomorphism group of X. Section 2
Diff0.X/ Diffeomorphisms of X acting trivially on H 2.X IZ/. Section 2
K.X/ The image of Diff.X/ in Aut.H 2.X IZ//. Section 2
BDiff.X/, BDiff0.X/ The classifying spaces of Diff.X/ and Diff0.X/. Section 2
BDiff.X/ BDiff.X/DBDiff0.X/�K.X/Wn. Section 2
�pa

1
eb 2H�.BDiff.X/IZ/ Tautological classes of X. Section 1

R�.X/ Tautological ring of X. Section 1
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�pa
1
eb .E/2H�.BIQ/ Tautological classes of X evaluated on E. Section 1

p1; e2H
4.EIQ/ First Pontryagin class and Euler class of the vertical Section 2

tangent bundle of E!B .
xi 2H

2.EIQ/ Degree 2 classes determined by Proposition 2.3. Section 2
�2H 4.EIQ/ Degree 4 class determined by Proposition 2.3. Section 2
Dk
ij 2H

2.BIQ/, Cohomology classes in H�.BIQ/ appearing as Section 2
Eij ; Gi 2H

4.BIQ/, structure constants for the cup product on H�.EIQ/;
Ji 2H

6.BIQ/, see (2-1)–(2-4).
!2H 8.BIQ/

Dij Dij DD
i
ij ; see Proposition 4.2. Section 4

Bi 2H
4.BIQ/ Class defined in Proposition 4.4. Section 4

Ci 2H
6.BIQ/ Class defined in Proposition 4.4. Section 4

�2H 4.BIQ/ p1D3.x
2
1C� � �Cx

2
n/C�; see Proposition 4.6. Section 4
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