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Prime-localized Weinstein subdomains

OLEG LAZAREV

ZACHARY SYLVAN

For any high-dimensional Weinstein domain and finite collection of primes, we
construct a Weinstein subdomain whose wrapped Fukaya category is a localization
of the original wrapped Fukaya category away from the given primes. When the
original domain is a cotangent bundle, these subdomains form a decreasing lattice
whose order cannot be reversed.

Furthermore, we classify the possible wrapped Fukaya categories of Weinstein sub-
domains of a cotangent bundle of a simply connected, spin manifold, showing that
they all coincide with one of these prime localizations. In the process, we describe
which twisted complexes in the wrapped Fukaya category of a cotangent bundle of a
sphere are isomorphic to genuine Lagrangians.

53D37, 57R17

1 Introduction

1.1 Main results

One of the main problems in symplectic topology is to understand the set of Lagrangians
L in a symplectic manifold X . For example, Arnold’s nearby Lagrangian conjecture
states that any closed exact Lagrangian L in T �M n

std is Hamiltonian isotopic to the
zero section M � T �Mstd; by work of Abouzaid [3], Fukaya, Seidel and Smith [16]
and Kragh [25] on this conjecture, all such Lagrangians are homotopy equivalent
to M n. Each closed exact Lagrangian L�X gives a Liouville subdomain T �L of X ,
and the skeleton of T �L, the stable set of its Liouville vector field, is precisely L.
More generally, any Weinstein domain V deformation retracts to a possibly singular
Lagrangian skeleton. Therefore a Weinstein subdomain V � X can be considered
a singular Lagrangian in X . In this paper, we consider the problem of constructing
and classifying Weinstein subdomains of a fixed Weinstein domain, as well as the
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700 Oleg Lazarev and Zachary Sylvan

wrapped Fukaya categories W.V IR/ of such subdomains (here, R is a commutative
coefficient ring). We will only consider Weinstein subdomains V �X with the stronger
property that XnV is also a Weinstein cobordism, ie V is the sublevel set of an ambient
Weinstein Morse function on X ; see Cieliebak and Eliashberg [10] for background on
the geometry of Weinstein domains.

There is a (cohomologically) fully faithful embedding of W.X IR/ into TwW.X IR/,
the category of twisted complexes on W.X IR/. Since TwW.X IR/ is a formal algebraic
enlargement of a geometric category, this functor is usually not a quasi-equivalence.
To understand which A1–categories actually arise from Weinstein subdomains, it
turns out we will have to understand which twisted complexes come from actual
geometric Lagrangians. In other words, we will largely be concerned with understand-
ing the image of this embedding. We give examples when this functor is a quasi-
equivalence (Proposition 2.2) and describe its image when X D T �Snstd (Example 1.9);
see Section 1.2. This type of question about the geometricity of twisted complexes
has previously been studied by Auroux and Smith [8] and Haiden, Katzarkov and
Kontsevich [22].

Given a small A1–category C over Z and set of objects A of C, one can form the
quotient A1–category C=A, which comes with a localization functor C! C=A; see
Lyubashenko and Manzyuk [30] and Lyubashenko and Ovsienko [31]. In particular,
given a collection of prime numbers P � Z, one can form

(1-1) C
h
1

P

i
WD C=fcone.p � IdL/ j p 2 P;L 2 Cg;

the localization of C away from the primes P . Quotienting by cone.p � IdL/ kills the
object cone.p � IdL/, which has the effect of making the morphism p � IdL a quasi-
isomorphism, ie inverting p. Hence if hom�C .L;K/ is a cochain complex of free Abelian
groups, then hom�CŒ1=P �.L;K/ is quasi-isomorphic to hom�C .L;K/˝Z ZŒ1=P �, which
explains our notation CŒ1=P �. We will also allow P to be empty or contain 0, in which
case CŒ1=P � is the original category C or the trivial category, respectively.

Our first result is that any high-dimensional Weinstein domain has Weinstein sub-
domains whose Fukaya categories are localizations away from any finite collection
of primes P . Furthermore, these subdomains are almost symplectomorphic, ie their
symplectic forms are homotopic through nondegenerate 2–forms, and hence indistin-
guishable from the point of view of classical smooth topology. We note that by Gromov’s
h-principle [21] for open symplectic manifolds, any two almost symplectomorphic
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Prime-localized Weinstein subdomains 701

Weinstein domains are actually homotopic through symplectic structures (but may not
be symplectomorphic).

Theorem 1.1 For any Weinstein domain X2n with n� 5 and finite collection of prime
numbers P , which is possibly empty or contains 0, there is a Weinstein subdomain
XP �X such that TwW.XP IZ/ŠTwW.X IZ/Œ1=P � and the Viterbo transfer functor

V W TwW.X IZ/! TwW.XP IZ/

is localization away from P . In particular , TwW.XP IFp/D 0 if p 2 P or 0 2 P , and
TwW.XP IFp/Š TwW.X IFp/ otherwise. Furthermore , we can arrange that :

(1) The Weinstein cobordism XnXP is smoothly trivial , and hence XP is almost
symplectomorphic to X .

(2) If Q � P or 0 2 P , we can exhibit a Weinstein embedding 'P;Q W XP ,! XQ

with the property that if R �Q � P , then 'P;Q ı'Q;R is Weinstein homotopic
to 'Q;R.

(3) If P is empty, then XP is X . If 0 2 P , then XP is Weinstein homotopic to the
flexibilization Xflex of X defined in [10].

Remark 1.2 For us, the objects of W.X IR/ are graded exact spin Lagrangian sub-
manifolds (branes) in X that are closed or have conical Legendrian boundary in a collar
of @X . We will usually not specify what type of grading data our Lagrangian should
have, except when X is a cotangent bundle and we will use the canonical Z–grading.
The result does not hold without using twisted complexes since, for example, the
Viterbo transfer functor is only defined on the Fukaya category of twisted complexes;
for example, see Proposition 1.29 of Ganatra, Pardon and Shende [19].

More precisely, there is a Weinstein homotopy of the Weinstein structure on X to a
different structure X 0 such that XP is a sublevel set of the Weinstein Morse function
on X 0. That is, XP is itself a Weinstein domain and X 0nXP is a Weinstein cobordism.
We also note that Theorem 1.1 holds for any grading of X (and the induced grading on
its subdomains).

Our construction is related to a result of Abouzaid and Seidel [5], who also showed that
any Weinstein domain X2n with n� 6 can be modified to a produce a new Weinstein
domain X 0P , almost symplectomorphic to X , with the property that SH�.XP IFq/Š
SH�.X IFq/ if q …P and SH.XP IFq/D 0 otherwise. Theorem 1.1 proves this property
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702 Oleg Lazarev and Zachary Sylvan

on the level of Fukaya categories, which implies the result on the level of symplectic
cohomology due to the isomorphism between Hochschild homology and symplectic
cohomology due to Ganatra [17]; for example, by [17],

SH.XP IFq/Š HH.TwW.XP /˝FqIFq/;

and if q 2 P , then

TwW.XP /˝Fq Š TwW.X/˝Z
h
1

P

i
˝Fq D 0;

so that HH.TwW.XP /˝ FqIFq/ Š 0. The other main difference between our do-
main XP and the domain X 0P produced by Abouzaid and Seidel in [5] is that XP
is manifestly a subdomain of X while X 0P is an abstract Weinstein domain. The
construction of Abouzaid and Seidel involves modifying a Lefschetz fibration for X
by enlarging the fiber and adding new vanishing cycles, and there is no obvious map
between X and X 0P . Our construction involves removing a certain regular Lagrangian
disk (which also appears in Abouzaid and Seidel’s work) so that XP is automatically a
subdomain of X ; constructing these regular disks requires n� 5, hence the restriction
on n in Theorem 1.1. Both our construction and that of Abouzaid and Seidel require
many choices, but we conjecture that one can make these choices so that the resulting
Weinstein domains XP and X 0P agree.

Remark 1.3 An analog of Theorem 1.1 is true for Weinstein domains with Weinstein
stops. For example, in Theorem 2.3 we prove that there is a Legendrian sphere
ƒP � @B

2n
std such that

TwW.B2nstd ; ƒP /Š TwW.B2nstd ; ƒ¿/
h
1

P

i
Š Tw Z

h
1

P

i
;

where ƒ¿ is the Legendrian unknot, and there is a smoothly trivial Lagrangian cobor-
dism L� @B2nstd � Œ0; 1� whose positive and negative ends @˙L coincide with ƒ¿

and ƒP , respectively. .B2nstd ; ƒ¿/ is the standard Weinstein handle of index n; we call
.B2nstd ; ƒP / a Weinstein P –handle of index n. The construction of the Weinstein sub-
domain XP in Theorem 1.1 can be viewed as replacing all standard Weinstein handles
of index n with Weinstein P –handles. This is similar to the classical rationalization
of a CW complex, in which all standard cells are replaced with “rational” cells.

Next we consider Weinstein subdomains of the cotangent bundle T �Mstd of a smooth
manifold M . Using Theorem 1.1 and the additional fact that TwW.T �MstdIFp/ is
nontrivial for any p, we show that T �Mstd has many infinitely different Weinstein
subdomains.
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Corollary 1.4 If n� 5, then for any finite collection P of primes numbers , possibly
empty or containing zero , there is a Weinstein subdomain T �M n

P � T
�M n

std almost
symplectomorphic to T �Mstd such that TwW.T �MP IZ/ Š TwW.T �M IZ/Œ1=P �.
Furthermore , we can arrange for T �MP to be a Weinstein subdomain of T �MQ if and
only if Q � P or 0 2 P , ie the product of primes in P divides the product of those
in Q.

The claim here is stronger than in Theorem 1.1: here T �MP is a Weinstein subdomain
of T �MQ if and only if Q � P , or 0 2 P (in fact, “Weinstein” subdomain can be
replaced with “Liouville” subdomain). The proof of Corollary 1.4 carries over to any
Weinstein domain X for which W.X IFp/ is nontrivial for all p, eg if X has a closed
exact Lagrangian. Furthermore, by the “only if” part of the claim, our subdomains
form a decreasing lattice whose order cannot be reversed. For example, there is an
infinite decreasing sequence

T �Mstd © T �M2 © T �M2;3 © T �M2;3;5 © � � �© T �MPk
© � � �© T �M0D T

�Mflex;

where Pk is the set of the first k primes; the other subdomains T �MP where P ¤ Pk ,
eg T �M7;13, contain T �MPk

for sufficiently large k. In particular, T �Mstd has many
singular Lagrangians given by the skeleta of T �MP . These skeleta are not Hamiltonian
isotopic since otherwise we could find a Liouville embedding of T �MQ into T �MP

for P �Q. We contrast this with the nearby Lagrangian conjecture, which claims that
all closed exact smooth Lagrangians of T �Mstd are Hamiltonian isotopic. Finally, we
note that T �MP has no closed exact smooth Lagrangians if P is nonempty, since its
Fukaya category over Fp vanishes.

Our second main result about subdomains of T �Mstd is a converse to Corollary 1.4:
the Fukaya category of any Weinstein subdomain of T �Mstd is a localization of
TwW.T �MstdIZ/ away from some finite collection of primes. Here we use the
Z–grading on T �Mstd and its subdomains induced by the Lagrangian fibration by
cotangent fibers.

Theorem 1.5 IfM n is a closed , simply connected , spin manifold and i WX ,! T �Mstd

is a Weinstein subdomain , then TwW.X IZ/ŠTwW.T �MstdIZ/Œ1=P � for some finite
collection of primes P , which is possibly empty or contains 0, and is unique (unless P
contains 0). Under this equivalence , the Viterbo transfer functor TwW.T �M IZ/!

TwW.X IZ/ is localization away from P . Furthermore , either the restriction map
i� WHn.T �M nIZ/!Hn.X IZ/ is an isomorphism , or W.X IZ/Š 0 (or both ).
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704 Oleg Lazarev and Zachary Sylvan

For n� 5, Theorem 1.5 combined with Corollary 1.4 completely classify which cate-
gories appear as Fukaya categories (with integer coefficients) of Weinstein subdomains
of cotangent bundles of closed, simply connected, spin manifolds. For n � 4, the
question remains open whether the categories TwW.T �M n

stdIZ/Œ1=P � actually appear
as Fukaya categories of subdomains. Indeed, in the nD 1 case, the only subdomains
of T �S1std are T �S1std or B2std, which algebraically correspond to the cases P D ¿
and P D 0. We note that the condition on the map i� shows that any Weinstein ball
†� T �Mstd has trivial W.†/. There are no restrictions on i� in degrees less than n,
as in the case of T �Mstd[H

n�1 � T �Mstd. Finally, we note that the “both” case does
occur in the case of T �M n

flex � T
�M n

std.

We emphasize that Theorem 1.5 classifies Weinstein subdomains of X � T �Mstd;
namely, X is itself a Weinstein domain and T �MstdnX is a Weinstein cobordism (after
Weinstein homotopy of T �Mstd). We do not know if our result holds for more general
Liouville subdomains X � T �Mstd, for which either X is not a Weinstein domain or
T �MstdnX is not a Weinstein cobordism. However, in the only known examples of
subdomains X � T �Mstd for which T �MstdnX is not a Weinstein cobordism, X is a
flexible domain (see Eliashberg and Murphy [15]) and hence has trivial Fukaya category.
Furthermore, our classification is quite special to cotangent bundles: for a general
Weinstein domain X , there are subdomains X0 for which TwW.X0/ is different from
TwW.X/Œ1=P � for any collection of primes P . For example, the boundary connected
sum T �Mstd\T

�Nstd of two cotangent bundles T �M and T �N has a natural collection
of subdomains indexed by pairs of collections of primes P;Q, namely T �MP \T

�NQ.

1.2 Outline of proofs

We now outline the proofs of our two main results: Theorems 1.1 and 1.5. We focus
primarily on the latter result, whose proof involves describing which twisted complexes
in TwW.T �Mstd/ are quasi-isomorphic to actual Lagrangians, ie the image of the
functor W.T �Mstd/ ,! TwW.T �Mstd/.

To see the connection, consider a Weinstein subdomain X2n0 �X
2n. The Weinstein

cobordism X nX0 has index n Lagrangian cocore disks D1; : : : ;Dk , which are objects
of W.X/. Ganatra, Pardon and Shende [19, Proposition 8.15] proved that

TwW.X0/Š TwW.X/=.D1; : : : ;Dk/;

and the localization functor

TwW.X/! TwW.X0/

Geometry & Topology, Volume 27 (2023)



Prime-localized Weinstein subdomains 705

has a geometric interpretation and is called the Viterbo transfer functor. See Sylvan [38]
for results when X;X0 are both Weinstein but XnX0 is not necessarily a Weinstein
cobordism. So to describe TwW.X0/, it suffices to describe the quasi-isomorphism
classes of the Lagrangian disks D1; : : : ;Dk in TwW.X/. To prove Theorem 1.1,
we construct a disjoint collection of disks D1; : : : ;Dk � X2n with n � 5 so that
TwW.X IZ/=.D1; : : : ;Dk/ Š TwW.X IZ/Œ1=P �. By removing the Weinstein han-
dles associated to these disks, we get the subdomain XP with the desired property
TwW.XP IZ/Š TwW.X IZ/=.D1; : : : ;Dk/Š TwW.X IZ/Œ1=P �.

Remark 1.6 In fact, the localization C=A by some objects A� C depends only on the
split-closure of A in C, see Corollary 3.14 of Ganatra, Pardon and Shende [20], which
is the kernel of the localization C! C=A. A subcategory C0 � C is split-closed if for
any two objects A;B of C for which A˚B is an object of C0, it holds that A and B
are also objects of C0. More generally, there is a correspondence between localizing
functors C! D and split-closed subcategories of C.

Any Weinstein domain X � T �Mstd has TwW.X/Š TwW.T �Mstd/=.D1; : : : ;Dk/

for some collection of Lagrangian disksD1; : : : ;Dk in T �Mstd, so to prove Theorem 1.5
we need to classify the objects of TwW.T �Mstd/ that are quasi-isomorphic to embedded
Lagrangian disks. By work of Abouzaid [1], any object of TwW.T �Mstd/ is quasi-
isomorphic to a twisted complex of the cotangent fibers T �qM ; after taking boundary
connected sums of these cotangent fibers along isotropic arcs, we can replace this
twisted complex with a single embedded Lagrangian disk equipped with a bounding
cochain. However for Theorem 1.5, we need to consider Lagrangian disks without
bounding cochains and as we will see in Theorem 1.7 below, not every twisted complex
in TwW.T �Mstd/ is quasi-isomorphic to such a disk.

In the following key result, we characterize those twisted complexes in TwW.T �Mstd/

that are quasi-isomorphic to Lagrangian disks. To make this precise, we fix some
notation. Let A be an object of some pretriangulated A1–category C over Z. A
homotopy unit e 2 endC.A/ of A gives an A1 homomorphism Z! endC.A/, which
induces a functor Tw Z! Tw endC.A/. Applying this to C D TwW.T �MstdIZ/ and
AD T �qM , we get the composition of functors

(1-2) ˝T �qM W Tw Z! Tw end.T �qM/ ��! TwW.T �MstdIZ/:

Note here that Tw Z is the category of finite cochain complexes, ie those Z–cochain
complexes whose underlying graded Abelian group is free and finitely generated. The
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706 Oleg Lazarev and Zachary Sylvan

functor ˝T �qM sends such a twisted complex on Z to the corresponding twisted
complex on T �qM . In particular, the differential consists entirely of morphisms that
are all integer multiples of the unit. By Abouzaid’s theorems [4; 1], the second functor
is actually a quasi-equivalence, meaning that every object of TwW.T �MstdIZ/ is a
twisted complex of T �qM with differential given by arbitrary elements of end.T �qM/.
As we will see, the composite functor ˝T �qM is not essentially surjective, but for
nice M every Lagrangian disk is contained in its essential image. More generally, we
have the following result.

Theorem 1.7 ForM n a closed , simply connected , spin manifold , let i WLn ,!T �M n
std

be an exact Lagrangian brane. If i W Ln ,! T �M n
std is null-homotopic as a continuous

map , then L is in the image of ˝T �qM . More precisely, L is quasi-isomorphic to

CW�.M;LIZ/˝T �qM

in TwW.T �MstdIZ/, where the cochain complex CW�.M;LIZ/ is considered an
object of Tw Z.

Combining this result with the construction of the Lagrangian disks in the Theorem 1.1,
we have the following description of the image of ˝T �qM .

Corollary 1.8 If M n is a closed , simply connected , spin manifold and L� T �Mstd

is a Lagrangian disk , then L is in the essential image of˝T �qM . If n� 5, then every
object of TwW.T �Mstd/ in the image of ˝T �qM is quasi-isomorphic to a Lagrangian
disk.

Theorem 1.7 translates the purely topological condition that the Lagrangian is null-
homotopic into the Floer-theoretic condition on its quasi-isomorphism class in the
Fukaya category. The proof of Theorem 1.7 actually shows that this topological
condition can be weakened to the algebraic condition that the restriction homomorphism
i� W C �.T �M IZ/! C �.LIZ/ on singular cochain algebras is homotopic as an A1
homomorphism to a map that factors through Z. In Proposition 3.3, we prove a
generalization of Theorem 1.7 for arbitrary Lagrangians i W L ,! T �Mstd that are not
necessarily null-homotopic: we prove that the CW�.M;M/–module CW�.M;L/ is in
the image of the composition

ModC�.L/
i_
�!ModC�.T �M/ ŠModCW�.M;M/;

where i_ is the pullback functor on modules induced by the restriction homomorphism
i� W C �.T �M/! C �.L/.
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The proof of Corollary 1.8 uses the Koszul duality between the wrapped Floer cochains
of a cotangent fiber and those of the zero section of a cotangent bundle, the fact that
the zero section M is homotopy equivalent to the ambient manifold T �Mstd, and a
certain commutativity property of the closed–open map that holds for arbitrary Liouville
domains; see Proposition 3.3 and Remark 3.5. Consequently, Corollary 1.8 is quite
special to cotangent bundles and analogous results do not hold for general Weinstein
domains. Even if X2n has a single index n handle with cocore Dn, then it is not
true that any Lagrangian disk L � X is isomorphic to C � ˝D for some cochain
complex C � over Z (but since D is a generator of TwW.X/, L is isomorphic to a
twisted complex of D whose differential has arbitrary morphisms). For example, this
is the case if X2n is one of the exotic cotangent bundles constructed in [28] that have
many closed regular Lagrangians with different topology.

In the following example, we illustrate the above results whenM DSn. We describe the
image of the functor W.T �Snstd/ ,! TwW.T �Snstd/ and give examples of Lagrangians
that are not in image of the functor ˝T �q S

n W Tw Z! TwW.T �Snstd/.

Example 1.9 We first Floer-theoretically classify all exact Lagrangian branes in T �Snstd.
If L � T �Sn is closed, then it is quasi-isomorphic to the zero section Sn � T �Sn

by [16]; if Ln � T �Sn has nonempty boundary, any embedding i WLn ,! T �Sn is au-
tomatically null-homotopic and so in the image of˝T �qM WTw Z!TwW.T �SnstdIZ/;
this implies that L is quasi-isomorphic to a disk if n � 5. However, there are many
exact Lagrangians L� T �Snstd that are not homotopy equivalent to a disk or n–sphere:
any smooth n–manifold L with nonempty boundary and trivial complexified tangent
bundle has an exact Lagrangian embedding into T �Sn for n� 3; see [14; 27]. Using
the above classification, one can check that for any Lagrangian L � T �Snstd with
nonempty boundary, the wrapped Floer cohomology HW�.L;L/ is either trivial or
infinite-dimensional (over some field Fp). This implies the following new case of the
Arnold chord conjecture: any Legendrianƒ�ST �Snstd that bounds an exact Lagrangian
brane (so graded, spin) in T �Snstd has at least one Reeb chord for any contact for any
contact form; see [24; 35; 32] for existing results.

Although all Lagrangians with nonempty boundary are in the image of the functor
˝T �q S

n, we now show that the zero section Sn � T �Sn is not; this is compatible with
the fact that i W Sn ,! T �Sn is not null-homotopic. Indeed, any Lagrangian L that is
in the image of

˝T �qM W Tw Z! TwW.T �Snstd/

Geometry & Topology, Volume 27 (2023)
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represents something in the image of the pullback functor i_ WModZ!ModC�.S/ and
so has the property that the product

CW�.Sn; L/˝CWn.Sn; Sn/! CW�Cn.Sn; L/

must vanish on cohomology (since it factors through the restriction map CW�.Sn; Sn/Š
C �.Sn/! Z, which vanishes in degree n).

Since this product does not vanish for L D Sn, this Lagrangian is not in the image
of ˝T �q S

n. However, since T �q S
n generates TwW.T �Snstd/, the zero section Sn is

still some twisted complex of T �q S
n. It turns out that Sn is quasi-isomorphic to

T �q S
nŒn�


�! T �q S

n, where  is the generator of

CW1.T �q S
nŒn�; T �q S

n/D CW1�n.T �q S
n; T �q S

n/Š Cn�1.�S
n/Š Z:

Note that  is not a multiple of the unit.

In all, we have shown that if n � 5, the image of the full and faithful embedding
W.T �Snstd/ ,! TwW.T �Snstd/Š Tw

˚
T �q S

n
	

is quasi-isomorphic to the subcategory

fC �˝T �q S
n
j C � is a cochain complex over Zg[ fT �q S

nŒn�

�! T �q S

n
g:

For more general manifolds M , W.T �M/ has other objects besides the zero section
and Lagrangian disks, eg the surgery of the zero section and a cotangent fiber.

Finally, we use Corollary 1.8 to prove Theorem 1.5 classifying the wrapped Fukaya
categories of subdomains of T �Mstd.

Proof of Theorem 1.5 Let X2n � T �Mstd be a Weinstein subdomain and C 2n WD
T �MstdnX

2n the complementary Weinstein cobordism. Then we have

C D Csub[H
n
1 [ � � � [H

n
k ;

where all handles of Csub are subcritical, ie have index less than n. The Viterbo
restriction induces an equivalence TwW.X[CsubIZ/ŠTwW.X IZ/ on the subcritical
cobordism; see Corollary 1.21 of [19]. Also by Proposition 8.15 of [19],

TwW.X [CsubIZ/Š TwW.T �Mstd n .D1 t � � � tDk/IZ/

Š TwW.T �MstdIZ/=.D1; : : : ;Dk/;

where D1; : : : ;Dk � T �Mstd are the Lagrangian cocores of Hn
1 ; : : : ;H

n
k

; recall that
this quotient category depends just on the subcategory split-generated by these disks by
Remark 1.6. Now by Corollary 1.8, Di Š CW�.M;Di /˝T �qM in TwW.T �M IZ/,
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where CW�.M;Di / is considered as an object of Tw Z, or equivalently a cochain
complex over Z. Any cochain complex of free Abelian groups splits as a direct sum
of twisted complexes of the form ZŒ1� m�! Z for some integer m and free groups Z

(and their shifts); see Exercise 43 in Section 2.2 of [23]. If CW�.M;Di / has a
Z–summand, then Di split-generates and hence TwW.T �MstdIZ/=.D1; : : : ;Dk/

is trivial. Otherwise, let p1; : : : ; pj be the collection of primes dividing m in the
summand ZŒ1� m

�! Z. Then the split-closure of ZŒ1� m
�! Z coincides with that of

the objects ZŒ1�
p1
�! Z; : : : ;ZŒ1�

pj
�! Z. So if P denotes the set of primes obtained

this way over all D1; : : : ;Dk , the split-closure of .D1; : : : ;Dk/ coincides with that
of T �qMŒ1�

p
�! T �qM Š cone.p � IdT �q M /, where p 2 P . Since T �qM generates

TwW.T �MstdIZ/, the subcategory split-generated by .D1; : : : ;Dk/ coincides with
that split-generated by

fcone.p � IdL/ j p 2 P;L 2 TwW.T �MstdIZ/g;

and so TwW.X IZ/ Š TwW.T �MstdIZ/Œ1=P � as desired. Also, P is unique since
W.X IFq/ vanishes if q 2 P , and TwW.X IFq/Š TwW.T �MstdIFq/ is nontrivial if
q … P and 0 … P .

Finally, if i� WHn.T �M IZ/!Hn.X IZ/ is not an isomorphism, then for some Di ,
ŒDi �2H

n.T �M IZ/ŠZ is nonzero, so the algebraic intersection number M �Di 2 Z

is nonzero. Since this intersection number is the Euler characteristic �.CW�.M;Di //
of the Floer cochains CW�.M;Di /, the direct sum decomposition of CW�.M;Di /
discussed above must contain a free group Z, implying that TwW.X IZ/ is trivial.

Remark 1.10 Abouzaid observed that Corollary 1.8, and hence Theorem 1.5, extends
to the case where M has finite fundamental group and spin universal cover. Indeed,
in that case any Lagrangian disk L � T �M lifts to a disk zL � T � zM . Applying
Corollary 1.8 to zL, we obtain an isomorphism

zLŠK�˝T �q
zM

for some complex K� 2 Tw Z. Presenting the upstairs category W.T � zM/ using
pulled-back Floer data, we can push this isomorphism back down to W.T �M/ to
conclude that

LŠK�˝T �qM:

The authors expect the same to hold if �1.M/ is infinite, but that requires extending
Theorem 1.7 to the noncompact case.
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As we have seen, any Weinstein subdomainX�T �Mstd induces a localization (Viterbo)
functor TwW.T �MstdIZ/! TwW.X IZ/, and hence, by Remark 1.6, is associated
to a split-closed subcategory of TwW.T �MstdIZ/. So Theorem 1.5 can be viewed
as a classification of the split-closed subcategories of TwW.T �MstdIZ/ coming from
this geometric setting. The fact that these correspond to subsets of prime integers
stems from the corresponding fact for Tw Z (and the crucial Corollary 1.8). More
generally, Hopkins and Neeman [34] proved that split-closed subcategories ofDbModR
correspond to certain subsets of Spec.R/; in the global setting, Thomason [39] proved
that split-closed subcategories of DbCoh.X/ that are closed under the tensor product
correspond to certain closed subsets of X . Although the wrapped Fukaya category
does not generally have a monoidal structure, we pose the open problem of classifying
Fukaya categories of Weinstein subdomains of arbitrary Weinstein domains as a way
of extending these results to the symplectic setting.

Acknowledgements We would like to thank Mohammed Abouzaid and Paul Seidel
for helpful discussions, particularly concerning Proposition 3.3. Lazarev was partially
supported by an NSF postdoctoral fellowship, award 1705128; Sylvan was partially
supported by the Simons Foundation through grant 385573, the Simons Collaboration
on Homological Mirror Symmetry.

2 Proof of results

2.1 Constructing Lagrangian disks

Our construction of Weinstein subdomains of a Weinstein domain X2n depends on the
existence of certain Lagrangian disks near the index n cocores of X2n. First we note
that a neighborhood of an index n cocore C is the (unit disk) cotangent bundle T �Dn.
More precisely, we view T �Dn as a compact sector in the sense of [20, Example 2.3],
with sectorial boundary T �@Dn � Œ0; 1�, or as the stopped domain .B2n; @Dn/ in
the sense of [37], where B2n is the standard Weinstein ball and @Dn � @B2n is the
Legendrian unknot that is the boundary of Lagrangian unknotDn�B2n. The Liouville
completion of the sector T �Dn is precisely the (completion of the) stopped domain
.B2n; @Dn/, see [20, Section 2.8], and so we will treat these two interchangeably. A
parametrized neighborhood of the cocore gives a proper inclusion of (completions of)
sectors ' W T �Dn!X mapping the cotangent fiber T �0 D

n to the cocore C . Note that
the zero section Dn � T �Dn maps to a subset of the stable core of the critical point
associated to C , not to the cocore C .
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Next, we consider Lagrangians L in the sector T �Dn that are properly embedded,
or in the language of stops, disjoint from the stop @Dn � @B2n. Then the proper
inclusion ' maps such Lagrangians to Lagrangians in X with Legendrian boundary in
the contact boundary @X ofX . So to construct Lagrangians inX , it suffices to construct
Lagrangians in T �Dn. More generally, Section 3 of [20] associates to a sector the
partially wrapped category, whose objects are properly embedded Lagrangians in the
sector with Legendrian boundary (or disjoint from the stop), and morphism spaces are
partially wrapped Floer cochains, which on the cohomology level is a direct limit of
unwrapped Floer cohomology of a cofinal sequence of Lagrangians positively wrapped
via Hamiltonians supported away from the stop. Section 3 of [20] also proves that
proper inclusions of sectors induce a functor on partially wrapped categories.

In our setting, we consider the partially wrapped category W.T �Dn; @DnIZ/ of T �Dn

and also its category of twisted complexes TwW.T �Dn; @DnIZ/; we add the term
@Dn to the notion to emphasize the existence of the stop/sectorial boundary. We use
the canonical Z–grading of T �Dn via the Lagrangian fibration by cotangent fibers.
By [19, Theorem 1.10] and [9], the category TwW.T �Dn; @Dn/ is generated by the
cotangent fiber T �0 D

n � T �Dn at the origin 0 2Dn. Let Dn� � T
�Dn be a negative

perturbation of the zero section Dn, ie the result of applying the negative wrapping
�
P
qi@pi

toDn so that @Dn� is disjoint from the stop @Dn. Note thatDn� is Lagrangian
isotopic to T �0 D

n in the complement of @Dn by further applying the negative wrapping
�
P
qi@pi

; therefore Dn� and T �0 D
n are quasi-isomorphic in TwW.T �Dn; @Dn/.

Furthermore, since Dn� admits a positive wrapping into the stop @Dn, it is already
cofinal with respect to the wrapping in T �Dn and so CW�.Dn�;D

n
�/DCF

�.Dn�;D
n
�/,

the unwrapped Floer cochain complex; see Section 6.7 and Proposition 6.7 of [18],
where Dn� is called a forward stopped Lagrangian. Since D� and its small positive
pushoff intersect transversely in a single point (at the origin), the Floer cochain complex
CF.Dn�;D

n
�/ is just Z. The same argument shows that if L is a Lagrangian in T �Dn,

then CW�.Dn�; L/DCF
�.Dn�; L/; see Proposition 6.17 of [18]. Combining the gener-

ation by T �0 D
n, the quasi-isomorphism between T �0 D

n and Dn�, and the computation
of CW�.Dn�;D

n
�/D Z, there is a cohomologically full and faithful A1–functor

CF �.Dn�; _ / W TwW.T �Dn; @Dn/!ModZ:

Here ModZ denotes the dg-category of right Z–modules. This functor has image Tw Z,
the category of cochain complexes whose underlying graded Abelian group is free and
finitely generated, since CF �.Dn�; L/ is always of this form.
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Next we review certain regular Lagrangian disks in T �Dn introduced by Abouzaid
and Seidel in [5, Section 3b] and study their isomorphism class in TwW.T �Dn; @Dn/.
Let U � Sn�1 be a compact codimension-zero submanifold with smooth boundary.
Let g W Sn�1!R be a C 1–small function so that g is strictly negative in the interior
of U , zero on @U , strictly positive on Sn�1nU , and has zero as a regular value. Next,
we consider Sn�1 as the radius 1

2
sphere Sn�1

1=2
in the unit disk Dn and extend g to

a smooth Morse function f W Dn ! R so that f is C 0–small in the 1
2

–radius disk
and satisfies f .tq/D jt j2g.q/ for q 2 Sn

1=2
and t � 1. Let �.df / be the graph of df

in T �Dn and let DU D �.df /\ T �Dn. Since f is homogeneous for jqj � 1
2

and
0 is a regular value of g, DU has Legendrian boundary (with respect to the standard
radial Liouville vector field on B2n) which is disjoint from @Dn. Furthermore, there
is a Lagrangian isotopy �.d.sf // from DU to the zero section D � T �Dn (which
intersects the stop @D precisely when s D 0). After fixing a grading on D, the isotopy
�.d.sf // induces a preferred grading on DU . In particular, DU with this Z–grading
is an object of TwW.T �Dn; @Dn/.

We now compute the isomorphism class of DU in TwW.T �Dn; @Dn/, following [5].
Namely, as noted in Lemma 3.3 of [5], we can scale f so that the intersection points
of DnU and Dn� have small action, and then Floer trajectories are in bijection with
trajectories of gradient flow of the function f ; so CF.D�;DU / is quasi-isomorphic to
Morse cochains of f WDn!R. Since Dn is contractible, this is quasi-isomorphic to
zC ��1.U /, reduced Morse cochains on U . Hence, under the equivalence CF �.Dn�; _ /
between TwW.T �Dn; @DIZ/ and Tw Z, the image of the disk DU in ModZ is quasi-
isomorphic to zC ��1.U /. Note that since CF �.T �0 D

n; T �0 D
n/Š Z, the image of the

twisted complex zC ��1.U /˝Dn� under the functor CF �.Dn�; _ / is also zC ��1.U /.
Since the CF �.Dn�; _ / functor is cohomologically full and faithful, the disk DU is
quasi-isomorphic to the twisted complex zC ��1.U /˝D� Š zC ��1.U /˝ T �0 D

n in
TwW.T �Dn; @DIZ/.

Remark 2.1 Our definition of the diskDU agrees with that in Abouzaid and Seidel [5].
However, they make an inconsequential misidentification of the Floer complex with
the Morse complex to obtain zC ��1.U / as CF �.DU ;D/ instead of CF �.D;DU /.

Using the disks DU , we now show that for sufficiently large n any Lagrangian in
T �Dn (or twisted complex of Lagrangians) is quasi-isomorphic to a Lagrangian disk.
Note that this is stronger than the statement that any Lagrangian is a twisted complex
of disks, which follows from the fact that T �0 D

n generates TwW.T �Dn; @DnIZ/.
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Proposition 2.2 If n� 5, every object of TwW.T �Dn; @DnIZ/ is quasi-isomorphic
to an exact Lagrangian disk. In particular ,

W.T �Dn; @DnIZ/! TwW.T �Dn; @DnIZ/

is a quasi-equivalence.

Proof An arbitrary object of TwW.T �Dn; @DnIZ/ can be identified with some
finite-dimensional cochain complex of free Abelian groups via the quasi-equivalence
CW�.T �0 D

n; _ /. Every such cochain complex .C �; @/ splits as a direct sum of twisted
complexes of the form ZŒd C1� m�!ZŒd � for some integer m, or complexes ZŒd � with
no differential. To see this, we use the fact that the short exact sequence

0! ker @n! Cn! im@n! 0

splits since im@n is free; see Exercise 43 in [23, Section 2.2].

Next, we recall that given two exact Lagrangians L;K � X and a framed isotropic
arc between their Legendrian boundaries @L; @K � @X , one can form a new exact
Lagrangian L\K �X , the isotropic boundary connected sum of L and K. If L and K
are Z–graded Lagrangians, then there is a choice of framing for the isotropic arc (the
space of such choices up to homotopy is a Z–torsor) so that L\K also has a Z–grading
that restricts to the Z–grading of L and K and hence L \K is quasi-isomorphic to
LtK Š L˚K in TwW.X/. This follows from Proposition 1.29 of [19] since for an
isotropic connected sum the primitive of the Liouville form is zero on both components
@Lt @K; note that this is false for the more general connected sums along short Reeb
chords considered in Proposition 1.30 of [19]. Whenever we discuss the isotropic
connected sum of two Lagrangians, we mean the sum using any isotropic arc with
this framing. The actual geometric disk will depend on the homotopy class of the arc,
but since we are only concerned with the resulting object of W.X/ we will ignore the
distinction.

Returning to X D T �Dn, we can assume that any two Lagrangians L;K � T �Dn are
disjoint since we can view T �Dn as the result of gluing two copies of T �Dn together,
and place L in one copy andK in the other copy. So in light of the above discussion and
the splitting from the previous paragraph, it suffices to prove that the twisted complexes
ZŒd C1� m�!ZŒd � and ZŒd � are quasi-isomorphic to embedded Lagrangian disks. The
latter complex is quasi-isomorphic to T �0 D

n with the appropriate grading, so it suffices
to prove that ZŒd C 1� m�! ZŒd � is quasi-isomorphic to a disk.
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As noted in Abouzaid and Seidel [6], for n� 5 and any m� 0 there is a codimension-0
Moore space Um � Sn�1 with zC �.Um/Š ZŒ�1� m�! ZŒ�2�. For example, consider
the CW complex V obtained by attaching D2 to S1 along a degree m map S1! S1;
then V embeds into Sn�1 for n� 6 by the Whitney trick, and for nD 5 by the explicit
map D2 ! C2 given by z ! ..1 � jzj2/z; zm/. Let Um be a neighborhood of V
in Sn�1. Then DUm

is quasi-isomorphic to ZŒ�2� m�! ZŒ�3�. Finally, we shift the
grading on DUm

by d C 3 and the resulting disk DUm
Œd C 3� is quasi-isomorphic to

ZŒd C 1� m�! ZŒd �, as desired.

We observe that not every object of TwW.T �Dn; @DnIZ/ is quasi-isomorphic to
a disk DU . This is because CW�.D�;DU / is a cochain complex that is supported
between degrees 0 and n�1 (since U �Sn�1) or a shift thereof (if we shift the grading
on DnU ), while a general cochain complex can have arbitrarily wide support. However,
Proposition 2.2 shows that every object of TwW.T �Dn; @DnIZ/ is quasi-isomorphic
to the boundary connected sum of possibly several differentDU , with possibly different
gradings.

2.2 Constructing subdomains

Now we use the Lagrangian disks from the previous section to construct Weinstein
subdomains of a Weinstein domain X and prove Theorem 1.1. As stated in Remark 1.3,
the construction of subdomains also holds when the ambient Weinstein domains has
stops. The most important case for us is when X D .T �Dn; @Dn/, the stopped domain
considered in the previous section. As we will see, Theorem 1.1 for arbitrary Weinstein
domains follows from this case.

In the following, we say a stopped Weinstein domain .X0; ƒ0/ is a Weinstein subdomain
of .X;ƒ/ ifXDX0[C for some Weinstein cobordismC which is trivial alongƒ0Dƒ.
In particular, there is a smoothly trivial regular Lagrangian cobordism between ƒ0 and
ƒ1 in XnX0 which allows us to identify the linking disk of ƒ0 in X0 with the linking
disk of ƒ in X . We say that this cobordism is flexible if the attaching spheres of the
index n handles are loose in the complement of ƒ0. We also say that two Weinstein
subdomains X0; X1 � X are Weinstein homotopic if the following holds: there is a
homotopy of Weinstein Morse functions ft with 0� t � 1, possibly with birth–death
singularities at isolated moments, on X that have c as a regular level set for all t and
such that X0 and X1 are the c–sublevel sets of f0 and f1, respectively.
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Theorem 2.3 Let n � 5. For any finite collection of prime numbers P , which is
possibly empty or contains 0, there is a Legendrian sphereƒP �@B2nstd formally isotopic
to the standard unknot ƒ¿ so that .B2nstd ; ƒP / embeds as a Weinstein subdomain of
.B2nstd ; ƒ¿/, which has associated sector .T �Dn; @Dn/, with the following properties:

(1) The Viterbo restriction functor

TwW.B2nstd ; ƒ¿IZ/! TwW.B2nstd ; ƒP IZ/

induces an equivalence

TwW.B2nstd ; ƒP IZ/Š TwW.B2nstd ; ƒ¿IZ/
h
1

P

i
Š Tw Z

h
1

P

i
:

(2) .B2nstd ; ƒP / embeds as a Weinstein subdomain of .B2nstd ; ƒQ/ if and only if
Q � P or 0 2 P . In such cases , we can construct such an embedding with the
property that the Weinstein cobordism between unstopped domains is trivial ,
ie @B2n � Œ0; 1�, and if R �Q � P , the composition

.B2nstd ; ƒP /� .B
2n
std ; ƒQ/� .B

2n
std ; ƒR/

is Weinstein homotopic to .B2nstd ; ƒP /� .B
2n
std ; ƒR/ obtained by viewing P �R.

(3) There is a smoothly trivial regular Lagrangian cobordism L � @B2nstd � Œ0; 1�

with @�LDƒP and @CLDƒQ if and only if Q � P or 0 2 P . Furthermore ,
for two disjoint subsets of primes P1 and P2, the Legendrian sphere ƒP1tP2

is
the isotropic connected sum ƒP1

\ƒP2
of ƒP1

and ƒP2
embedded in disjoint

Darboux balls in @B2nstd .

(4) If 0 2 P , then ƒP � @B2nstd is loose.

In particular, we have a sequence of Legendrians

ƒunknot Dƒ¿; ƒ2; ƒ2;3; ƒ2;3;5; ƒ2;3;5;7; : : : ; ƒ0 Dƒloose

in @B2nstd , and Lagrangian cobordisms in @B2nstd � Œ0; 1� connecting consecutive Legendri-
ans interpolating between ƒunknot and ƒloose, analogous to the sequence of subdomains
in Theorem 1.1. We note that such Legendrians do not exist for nD 2 as proven in [11]:
if L2 is a decomposable Lagrangian cobordism (a condition similar to regularity) with
negative end ƒ and positive end ƒ¿, then either ƒ D ƒ¿ or ƒ is stabilized in the
sense of [33], so TwW.B4std; ƒIZ/ Š Tw Z or TwW.B4std; ƒIZ/ Š 0 are the only
possibilities.
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Remark 2.4 The construction of the isotropic connected sum ƒ1 \ƒ2 of two Legen-
drians ƒ1 and ƒ2 in the statement of Theorem 2.3 above is similar to the boundary
connected sum of two Lagrangians discussed in the proof of Proposition 2.2 (the former
happens on the boundary of the latter) and also depends on a framed isotropic arc
between ƒ1 and ƒ2. However if ƒ2 is contained in a Darboux chart of .Y; �/ disjoint
from ƒ1, then the isotropic connected sum ƒ1 \ ƒ2 is actually independent of the
isotropic arc and its framing: this is because we can isotopeƒ2 to a small neighborhood
of ƒ1 via the original isotropic arc and then isotope it back to its original position
using the new isotropic arc.

More precisely, we can identify the Darboux chart containing ƒ2 with the cotangent
bundle of the frame-thickening of the isotropic arc and use this to produce a family of
Darboux charts. If the two arcs have the same framing at the endpoints, the resulting
family of Darboux charts is a loop, which means that ƒ2 returns to itself.

Proof of Theorem 2.3 We prove this theorem in several stages: first we construct ƒp
when p is a single prime and prove that it has the claimed geometric properties, then
we construct ƒP for a general set of primes P , and finally we prove our claims about
the Fukaya category of .B2nstd ; ƒP /.

2.2.1 ƒp for a single prime p We first consider the case when the collection of
primes P consists of a single prime p. As discussed in the previous section, let
Up � S

n�1 be a fixed p–Moore space. Then the Lagrangian disk Dp WD DUp
�

.T �Dn; @Dn/ is isomorphic to T �0 D
nŒ1�

p
�! T �0 D

n in TwW.T �Dn; @DnIZ/. Also,
if p D 0, we set U D Sn�1 (as a full subset of Sn�1) and form D0 WDD

n
Sn�1 , which

is Lagrangian isotopic in .T �Dn; @Dn/ to the cotangent fiber T �0 D
n. If p is the

empty set, we set U to be a ball Bn�1 � Sn�1 and form D¿ WDD
n
Bn�1 , which is a

small Lagrangian disk that is disjoint from the zero section Dn � T �Dn; note that any
two such small Lagrangian disks are isotopic in .T �Dn; @Dn/. In particular, D¿ is
the zero object in TwW.T �Dn; @DnIZ/. To construct .B2nstd ; ƒP /, we will carve out
these Lagrangian disks, as we now explain.

In general, given a Liouville domain X2n and an exact Lagrangian disk Dn � X2n

with Legendrian boundary, there is a Liouville subdomain X0 � X (which we say
is obtained by carving out Dn from X) and a Legendrian sphere ƒ � @X0 so that
X DX0[H

n
ƒ and the cocore of Hn

ƒ is Dn; see [14] for details. If X is a Weinstein
domain and Dn �X is a regular Lagrangian, then X0 �X is a Weinstein subdomain.
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The disks Dp � T �Dn we consider are indeed regular; in fact Dp D �.df / is isotopic
through Lagrangians with Legendrian boundary .Dp/s D �.sdf /\T �Dn to the zero
section Dn � T �Dn. Therefore, T �DnnDp is homotopic to the Weinstein domain
T �DnnDn, which is actually the subcritical domain T �.Sn�1�D1/D B2nstd [H

n�1.
SinceDp is disjoint from @Dn, we can consider .T �Dn; @Dn/nDp as T �.Sn�1�D1/
with some stop, namely the image of @Dn.

Since the subdomain T �DnnDp is obtained by carving out Dp , there is a Legendrian
ƒ�@.T �DnnDp/ disjoint from @Dn so that .T �Dn; @Dn/nDp[Hn

ƒD .T
�Dn; @Dn/

and the cocore of Hn
ƒ is Dp. Because n � 5, there is a unique loose Legendrian

ƒloose � @.T
�DnnDp/ that is formally isotopic to ƒ and is loose in the complement

of @Dn; see [33]. Next we form the stopped domain .T �Dn; @Dn/nDp [Hn
flex by

attaching the handle Hn
flex along ƒloose. We note that the ambient Weinstein domain

T �DnnDp [H
n
flex is flexible since T �DnnDp is subcritical and Hn

flex is attached
along a loose Legendrian. Furthermore, it is formally symplectomorphic to the stan-
dard Weinstein ball since ƒloose is formally isotopic to ƒ (and attaching a handle
to ƒ reproduces B2nstd ). Therefore by the h-principle for flexible Weinstein domains
[10, Theorem 14.3], T �DnnDp [Hn

flex is Weinstein homotopic to B2nstd . Under this
identification with B2nstd , the stop @Dn � T �DnnDp [Hn

flex becomes some Legendrian
in @B2nstd , which we call ƒp. That is, we set

.B2nstd ; ƒp/ WD .T
�Dn; @Dn/nDp [H

n
flex:

We will show that .B2nstd ; ƒp/ satisfies the claimed properties.

First we show that .B2nstd ; ƒp/ is a Weinstein subdomain of .T �Dn; @Dn/. Note
that .B2nstd ; ƒ¿/ is precisely .T �Dn; @Dn/. This is because .T �Dn; @Dn/nD¿ D

.T �Dn; @Dn/[Hn�1 and the Legendrian ƒ from the previous paragraph intersects
the belt sphere ofHn�1 exactly once; soHn�1[Hn

flex are canceling handles and hence

.T �Dn; @Dn/nD¿[H
n
flex D .T

�Dn; @Dn/[Hn�1
[Hn

flex D .T
�Dn; @Dn/:

Now we consider the case when p is a (nonzero) prime. Clearly .T �Dn; @Dn/nDp is
a subdomain of .T �Dn; @Dn/ by construction; we claim that it is still a subdomain
even after attaching the flexible handle Hn

flex to .T �Dn; @Dn/nDp. To see this, let C
be the Weinstein cobordism between .T �Dn; @Dn/nDp and .T �Dn; @Dn/ given by
the handle Hn

ƒ (whose cocore is Dp). By [29], we can Weinstein homotope C , in
the complement of @Dn, to a Weinstein cobordism Hn

flex[H
n�1[Hn

ƒ0 , where Hn
flex

is attached along ƒloose and Hn�1[Hn
ƒ0 is a smoothly trivial Weinstein cobordism
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whose attaching spheres are disjoint from @Dn. So, up to Weinstein homotopy, we
have the equalities

.B2nstd ; ƒp/[H
n�1
[Hn

ƒ0 D .T
�Dn; @Dn/nDp [Hflex[H

n�1
[Hn

ƒ0(2-1)

D .T �Dn; @Dn/nDp [C D .T
�Dn; @Dn/;(2-2)

which show that .B2nstd ; ƒp/ is a subdomain of .B2nstd ; ƒ¿/D .T
�Dn; @Dn/. Further-

more, the construction in [29] shows that ƒ0 is loose (but not in the complement of
ƒloose or @Dn) since ƒ is loose (but not in the complement of @Dn). So the Weinstein
cobordism Hn�1[Hn

ƒ0 is flexible (but not in the complement of the stop @Dn) and
therefore is homotopic to @B2nstd � Œ0; 1�.

The attaching spheres ofHn�1;Hn
ƒ0 are disjoint from @Dn, so we can view @Dn�Œ0; 1�

as a trivial Lagrangian cobordism between @Dn in T �DnnDp[Hn
flex and @Dn in T �Dn.

Under our identifications, this produces a smoothly trivial regular Lagrangian cobordism
(regular in that the Liouville vector field can be made tangent to it) betweenƒp andƒ¿

in @B2nstd � Œ0; 1�, as desired. We also observe that ƒp is formally Legendrian isotopic
to ƒ¿ in @B2nstd because the attaching spheres ƒ and ƒloose are formally Legendrian
isotopic in the complement of @Dn. More precisely, note that @Dntƒ and @Dntƒloose

are formally isotopic Legendrian links. Furthermore, there is a genuine Legendrian
isotopy from ƒ to ƒloose (but not in the complement of @Dn) and so this extends
to a Legendrian isotopy from @Dn tƒloose to @Dn tƒ, where @Dn is some other
Legendrian that becomes ƒp after handle attachment to ƒ. Since a genuine Legendrian
isotopy preserves formal Legendrian isotopies, @Dntƒ and @Dntƒ are also formally
Legendrian isotopic links. So when we attach a handle to ƒ to get B2nstd , @Dn and @Dn

are still formally Legendrian isotopic in @B2nstd , which is precisely the statement that
ƒ¿ and ƒp are formally Legendrian isotopic.

Next we consider the case when pD 0. Recall that in this case,D0 is the cotangent fiber
T �0 D

n � T �Dn. Then .T �Dn; @Dn/nDp is .T �.Sn�1�D1/; Sn�1�f0g/. We note
that Sn�1�f0g�@T �.Sn�1�D1/ is loose since this Legendrian crosses the belt sphere
of the index n�1 handle (corresponding to the index n�1Morse critical point of Sn�1)
exactly once; see [10, Lemma 14.12, Type IIb] for this looseness criterion. To construct
.B2nstd ; ƒ0/ from .T �Dn; @Dn/nDp D .T

�.Sn�1 �D1/; Sn�1 � f0g/, we attach an
index n handle Hn

flex along the Legendrian ƒloose, which is loose in the complement
of @Dn D Sn�1 � f0g (and is formally isotopic to the Legendrian ƒ). Since @Dn D
Sn�1�f0g is loose andƒloose is loose in the complement of @Dn, it follows that @DnD
Sn�1�f0g is in fact also loose in the complement of ƒloose, ie @DnD Sn�1�f0g and
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ƒloose form a loose link: to see this, we use the h-principle to Legendrian isotope ƒloose

to be disjoint from the loose chart of @Dn (which is a contractible disk), and by extending
this Legendrian isotopy to an ambient contactomorphism, we see that @Dn must have
a loose chart disjoint from ƒloose. In particular, the loose chart of @Dn persists under
attaching the handle Hn

flex along ƒloose and so @Dn � .T �Dn; @Dn/nDp[Hn
flex is still

loose. By definition, this means that the stop ƒ0 in .B2nstd ; ƒ0/ is loose, as desired. As
in the previous paragraph, .B2nstd ; ƒ0/ is a Weinstein subdomain of .B2nstd ; ƒ¿/. Hence
there is a regular Lagrangian cobordism from a loose Legendrian to the Legendrian
unknot, as originally proven in [15; 27].

This proves all of claims (2), (3) and (4) when P consists of a single element.

2.2.2 ƒP for a collection of primes P Now we construct the Legendrian sphereƒP
when P D fp1; : : : ; pkg is a collection of primes with multiple elements. We consider
disjoint Weinstein balls B2nstd;i so that ƒpi

� @B2nstd;i and do a simultaneous boundary
connected sum to the B2nstd;i and ƒi , as in the construction of regular Lagrangians [14]:

.B2nstd ; ƒP / WD .B
2n
1 ; ƒp1

/ \ � � � \ .B2nk ; ƒpk
/:

Namely, we attach index 1 Weinstein handles to the disjoint union of Weinstein balls

B2nstd;1 t � � � tB
2n
std;k

so that the attaching spheres of these index 1 handles, ie two points, are on different ƒi ;
we simultaneously do Legendrian surgery on the ƒi via isotropic arcs in the 1–handles.
The resulting LegendrianƒP is connected and in fact coincides with the usual isotropic
connected sum of Legendrians ƒp1

; : : : ; ƒpk
embedded in disjoint Darboux balls in a

single @B2nstd . This also shows that up to Legendrian isotopy, ƒP does not depend on
the order of the set P .

Next we show that .B2nstd ; ƒP / is a Weinstein subdomain of .B2nstd ; ƒQ/ if Q � P . Via
our previous identification, .B2nstd ; ƒP / is the same as

(2-3) ..T �Dn; @Dn/nDp1
[Hn

flex/ \ � � � \ ..T
�Dn; @Dn/nDpk

[Hn
flex/;

where we choose points on each @Dn to do the simultaneous boundary connected sum.
So if Q � P , .B2nstd ; ƒP / differs from .B2nstd ; ƒQ/ by a boundary connected sum with

.T �Dn; @Dn/nDp [H
n
flex

for all p 2 P nQ. We saw previously that .T �Dn; @Dn/nDp [Hn
flex is a subdomain

of .T �Dn; @Dn/, and hence .B2nstd ; ƒP / is a subdomain of .B2nstd ; ƒQ/ boundary con-
nected sum with several copies of .T �Dn; @Dn/, one for each p 2 P nQ. Since
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doing boundary connected sum with .T �Dn; @Dn/ does not change the Weinstein
homotopy type, the latter domain is still .B2nstd ; ƒQ/ and so .B2nstd ; ƒP / is a subdomain
of .B2nstd ; ƒQ/, as desired. This also shows that if R�Q�P , the Weinstein cobordism
.B2nstd ; ƒR/ n .B

2n
std ; ƒP / is homotopic to the concatenation of Weinstein cobordisms

.B2nstd ; ƒQ/ n .B
2n
std ; ƒP / and .B2nstd ; ƒR/ n .B

2n
std ; ƒQ/. Since .B2nstd ; ƒP / is a subdo-

main of .B2nstd ; ƒQ/, we have a Lagrangian cobordism in @B2nstd � Œ0; 1� with negative
boundary ƒP and positive boundary ƒQ by definition.

If 0 2 P , then ƒP is loose since it is the isotropic connected sum of ƒPn0 and ƒ0,
which we already saw to be loose. Let Q be another set of primes. Then ƒP and
ƒP[Q are both loose unknots (since P [Q contains 0) and so ƒP and ƒP[Q are
Legendrian isotopic by the h-principle for loose Legendrians [33]. By the previous
discussion, this implies that .B2nstd ; ƒP /D .B

2n
std ; ƒP[Q/ is a subdomain of .B2nstd ; ƒQ/,

since now Q � P [Q.

This proves all of claims (2), (3) and (4), except the “only if” part of claims (2) and (3).

2.2.3 Fukaya category of .B2n
std ; ƒP/ Finally, we compute the partially wrapped

Fukaya category of .B2nstd ; ƒP /. By the description in equation (2-3), .B2nstd ; ƒP / is
the result of carving out the disks Dp1

; : : : ;Dpk
from .B2nstd ; ƒ¿/ D .T

�Dn; @Dn/

and then attaching some flexible handles; here the disks are embedded disjointly by
viewing .T �Dn; @Dn/ as the boundary connected sum of several disjoint copies of
.T �Dn; @Dn/. By [19, Proposition 8.15] and [36], there is a geometrically defined
Viterbo transfer functor

TwW.T �Dn; @D/! TwW..T �Dn; @D/nDp/;

which is localization by Dp. That is,

TwW..T �Dn; @D/nDp/Š TwW.T �Dn; @D/=Dp;

and the Viterbo functor is the algebraic localization by the object Dp . By construction,
the Lagrangian Dp of TwW.T �Dn; @DnIZ/ is isomorphic to the twisted complex

T �0 D
nŒ1�

p
�! T �0 D

n
D cone.p � IdT �0 Dn/:

So
TwW..T �Dn; @D/nDp/Š TwW.T �Dn; @D/=cone.p � IdT �0 Dn/:

Furthermore, the localization by a collection of objects depends only on the split-closure
of that collection of objects. Since T �D0 generates TwW.T �Dn; @Dn/, we have
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the equivalence

TwW.T �Dn; @D/=cone.p � IdT �0 Dn/

Š TwW.T �Dn; @D/=fcone.p � IdL/ j L 2 TwW.T �Dn; @Dn/g

DW TwW.T �Dn; @DIZ/
h
1

p

i
:

Combining with the previous equivalence, we have

(2-4) TwW..T �Dn; @D/nDpIZ/Š TwW.T �Dn; @DIZ/
h
1

p

i
:

Similarly, when we carve out multiple disks Dp1
; : : : ;Dpk

, we invert p1; : : : ; pk in
the Fukaya category. Attaching flexible handles does not affect the Fukaya category. To
see this, suppose X DX0[Hn

flex and C �X is the cocore of the flexible handle. Then
the dga of wrapped Floer cochains of C is isomorphic to the Cieliebak–Eliashberg
dga of the attaching sphere by [12], and this dga vanishes for loose Legendrians by
Proposition 4.8 of [13]. So the cocore C is quasi-isomorphic to the trivial object in
the Fukaya category of X ; then by the localization result Proposition 8.15 of [19], we
have TwW.X0/Š TwW.X/=C , and the latter is quasi-equivalent to TwW.X/ since
localizing by the trivial object does not affect the category. Therefore,

(2-5) TwW.B2nstd ; ƒP IZ/Š TwW.T �Dn; @DnIZ/
h
1

P

i
;

as desired. If p is zero, then Dp D T �0 D
n and TwW.T �Dn; @D/=T �0 D

n Š 0, which
is indeed the case for .B2nstd ; ƒ0/ since ƒ0 is loose.

Remark 2.5 The above discussion does not automatically show that the equivalence in
equation (2-5) is given by the Viterbo functor induced by the Weinstein embedding of
.B2nstd ; ƒP / into .B2nstd ; ƒ¿/D .T

�Dn; @Dn/, due to the presence of the extra flexible
handles. However, this is indeed the case. Recall that the Weinstein cobordism between
these two domains is Hn�1 [Hn

ƒ0 , which comes from a construction in [29; 26].
The proof there shows that the cocore of Hn

ƒ0 is Dp \ Dp � .T �Dn; @Dn/ and so
the Viterbo functor between these two domains is localization by Dp \ Dp. Now
Dp \DpŠDp˚DpŒ1� andDp have the same split-closure, so localization byDp \Dp
is the same as localization by Dp, as in equation (2-5).

Finally, we prove the “only if” part of claims (2) and (3). Suppose that .B2nstd ; ƒP /

is a Weinstein subdomain of .B2nstd ; ƒQ/ but Q š P and 0 … P . There would be a
localization functor from the Fukaya category of .B2nstd ; ƒQ/ to that of .B2nstd ; ƒP /
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over any coefficient ring R. However, if we take RD Fq for any q 2QnP , we have
Dq Š cone.0T �0 Dn/Š T �0 D

nŒ1�˚ T �0 D
n in TwW.B2nstd ; ƒ¿IFq/ since q � 0 in Fq .

This object split-generates TwW.B2nstd ; ƒ¿IFq/ and so

TwW.B2nstd ; ƒQIFq/Š TwW.B2nstd ; ƒ¿IFq/=Dq Š 0:

On the other hand, all p 2 P are invertible in Fq because q 2QnP by assumption and
p ¤ 0. Therefore Dp Š cone.p � IdT �0 Dn/Š 0 in TwW.B2nstd ; ƒ¿IFp/ for all p 2 P ,
and so

TwW.B2nstd ; ƒP IFq/Š TwW.B2nstd ; ƒ¿IFq/=0Š TwW.B2nstd ; ƒ¿IFq/Š Tw Fq;

which is nontrivial. Since there cannot be a localization functor from the trivial
category to Tw Fq , .B2nstd ; ƒP / cannot be a Weinstein subdomain of .B2nstd ; ƒQ/. This
proves the “only if” part of claim (2). If there is a smoothly trivial regular Lagrangian
cobordism from ƒP to ƒQ in @B2nstd � Œ0; 1�, then .B2nstd ; ƒP / is a Weinstein subdomain
of .B2nstd ; ƒQ/ and so the “only if” part of claim (3) follows from that for claim (2).

Now we show that Theorem 2.3 implies Theorem 1.1 concerning Weinstein subdomains
of an arbitrary Weinstein domain. Recall that an index n Weinstein handle can be
viewed as the stopped domain .T �Dn; @Dn/ D .B2nstd ; ƒ¿/. We will consider the
stopped domains .B2nstd ; ƒP / in Theorem 2.3 as generalized Weinstein handles.

Definition 2.6 A P –Weinstein handle of index n is the stopped domain .B2nstd ; ƒP /.

Here our model for the P –Weinstein handle uses explicit embeddings of Moore spaces
into Sn�1 and hence is well-defined. When attaching Weinstein handles, one implicitly
uses the canonical parametrization of @Dn � T �Dn. Via the construction in the
proof of Theorem 2.3, this parametrization gives the Legendrians ƒP � @B2n a
parametrization as well. Therefore, given a parametrized Legendrian sphere ƒ in a
contact manifold .Y; �/, we can attach a P –Weinstein handle .B2nstd ; ƒP / to it and
produce a Weinstein cobordism, just like we do for usual Weinstein handles. To prove
Theorem 1.1, we replace all standard Weinstein n–handles .B2nstd ; ƒ¿/ with Weinstein
P –handles .B2nstd ; ƒP /.

Proof of Theorem 1.1 Let X2n be a Weinstein domain with n� 5 and C n1 ; : : : ; C
n
k
�

X2n the Lagrangian cocore disks of its index n handles Hn
1 ; : : : ;H

n
k

. Hence there is
a subcritical Weinstein domain X0 � X and Legendrian spheres ƒ1; : : : ; ƒk � @X0
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such that X DX0[Hn
ƒ1
[ � � � [Hn

ƒ1
and the cocore of Hn

ƒi
is Ci �X . That is, X0

is obtained from X by carving out the Lagrangian disks C1; : : : ; Ck . This gives the
decomposition

(2-6) X D .X0; ƒ1; : : : ; ƒk/[ƒ1Dƒ¿ .B
2n
std ; ƒ¿/[ � � � [ƒkDƒ¿ .B

2n
std ; ƒ¿/

of X , where the i th copy of .B2nstd ; ƒ¿/ is glued to X0 by identifying ƒ¿ with ƒi .
Now we define XP to be the Weinstein domain

(2-7) XP WD .X0; ƒ1; : : : ; ƒk/[ƒ1DƒP
.B2nstd ; ƒP /[ � � � [ƒkDƒP

.B2nstd ; ƒP /:

Namely, we replace each standard Weinstein n–handle .B2nstd ; ƒ¿/ by a P –Weinstein
handle .B2nstd ; ƒP /.

Remark 2.7 Attaching P –Weinstein handles .B2nstd ; ƒP / to .X0; ƒ1; : : : ; ƒk/ is the
same as attaching standard Weinstein handles .B2nstd ; ƒ¿/ to X0 with some modified
attaching Legendrian ƒPi � @X0. In fact, ƒPi is the isotropic connected sum ƒi \ƒP

of ƒi � @X0 and ƒP � @B2nstd , which we place into a Darboux chart in @X0 disjoint
from ƒi . To see this, note that gluing .B2nstd ; ƒP / to .X0; ƒi / by identifying ƒP with
ƒi � @X0 is the same as gluing a cylinder T �.Sn�1�D1/ to .X0; ƒi /t.B2nstd ; ƒP / by
identifying Sn�1�0 with ƒi and Sn�1�1 with ƒP . The cylinder can be decomposed
into a standard Weinstein index 1 handle and a standard Weinstein index n handle. So
we first do simultaneous index 1 handle attachment to .X0; ƒi / and .B2nstd ; ƒP /, with
attaching sphere a point in ƒi and a point in ƒP , to produce .X0 \B2nstd ; ƒi \ƒP /. If
we identify X0 \B2n with X0, then ƒP becomes a Legendrian in @X0 (in a Darboux
chart disjoint from ƒi ) and ƒi \ƒP is precisely the isotropic connected sum of ƒi and
ƒP in @X0. Then we attach the (standard) index n Weinstein handle of the cylinder
T �.Sn�1�D1/ along ƒi \ƒP . Thus, the decomposition of XP in equation (2-7) can
alternatively be described as

(2-8) .X0; ƒ1 \ƒP ; : : : ; ƒk \ƒP /[ƒ1\ƒPDƒ¿ .B
2n
std ; ƒ¿/[ � � �

[ƒk\ƒPDƒ¿ .B
2n
std ; ƒ¿/:

In particular, the attaching spheres for the (standard) index n handles for X and XP
differ by a purely local modification, namely an isotropic connected sum with ƒP .

Now claims (1)–(3) in Theorem 1.1 follow from the analogous claims in Theorem 2.3.
For example,X¿DX since .B2nstd ; ƒ¿/ is the standard Weinstein handle .T �Dn; @Dn/.
Also, .B2nstd ; ƒP / is a Weinstein subdomain of .B2nstd ; ƒQ/ for Q � P , so XP is a
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Weinstein subdomain of XQ and this Weinstein embedding is also functorial with
respect to inclusions of various subsets of primes. If 0 2 P , then XP is flexible. To see
this, recall that ƒP � @B2nstd is loose by Theorem 2.3; this implies that the attaching
spheres ƒPi � @X0 for XP are also loose since by Remark 2.7, ƒPi is the isotropic
connected sum of ƒi with ƒP , which is a loose Legendrian loosely embedded in a
Darboux chart disjoint from ƒi . If 0 2Q � P , then the cobordism between XP and
XQ is flexible since the cobordism between .B2nstd ; ƒP /, and .B2nstd ; ƒQ/ is also flexible
(in the complement of ƒP ).

Finally, we compute TwW.XP IZ/. Since XP is a Weinstein subdomain of X , there
is a Viterbo transfer functor

TwW.X IZ/! TwW.XP IZ/:

As in the proof of Theorem 2.3, this functor is localization by Dp � .T �Dn; @Dn/—
or equivalently, by Dp \ Dp — and Dp Š cone.p � IdT �0 Dn/. On the other hand,
T �0 D

n � .T �Dn; @Dn/ D .B2nstd ; ƒ¿/ is precisely the cocore C ni of Hn
ƒi

under the
decomposition of X in equation (2-6) and so Dp is isomorphic to cone.p � IdCn

i
/. By

[19, Theorem 1.10] and [9], the cocores C ni of all the Hn
ƒi

generate TwW.X/. So
localizing by cone.p � IdCn

i
/ for all i is the same as localizing by cone.p � IdL/ for all

L 2 TwW.X IZ/. That is, TwW.XP IZ/Š TwW.X IZ/Œ1=P �, as desired.

We observe that our construction of XP depends on many choices. For example, it
depends on the choice of initial Weinstein presentation for X . There are Weinstein
homotopic presentations for X with different numbers of index n handles; hence in
this case, our construction would involve carving out different numbers of Lagrangian
disks (and then attaching the appropriate flexible cobordism). There are also choices
to be made in constructing the P –handles .B2nstd ; ƒP /. We fixed a p–Moore space
U � Sn�1 so that zC �.U /D ZŒ�2�

p
�! ZŒ�3�, and used this to construct Dp WDDU

and then form .B2nstd ; ƒP /. In fact, we could have taken any U � Sn�1 so that zC �.U /
is quasi-isomorphic to

L
i .ZŒkiC1�

p
�!ZŒki �/ for any ki . Repeating the construction

for such U , we would have TwW.B2nstd ; ƒP IZ/Š TwW.B2nstd ; ƒ¿IZ/Œ1=P � as well.

Now that we have described the subdomains XP of X , we can explain the difference
between our construction and that of Abouzaid and Seidel [6] more precisely. Abouzaid
and Seidel [6] start with a Lefschetz fibration for X2n whose fiber is a Weinstein
domain F 2n�2. They then embed the Lagrangian disks Dn�1p into F 2n�2 so that they
are in a neighborhood of the cocores C n�1i of the critical index n� 1 handles Hn�1

i
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of F 2n�2; using these disks, they build a larger fiber F 0 (which has F as a Weinstein
subdomain) and add new vanishing cycles to create a new Lefschetz fibration, which is
their spaceX 0P . On the other hand, the construction in Theorem 1.1 embeds the disksDnp
into the total space X2n so that they are in a neighborhood of the cocores C ni of the
critical index n handles Hn

i of X2n; we then carve out these disks. The construction of
Abouzaid and Seidel holds only for n� 6. Because we work near the index n handles
instead of the index n� 1 handles, our construction improves this to hold for n� 5.

Next we complete the proof of Corollary 1.4 concerning subdomains of T �Mstd.

Proof of Corollary 1.4 The only extra feature of this result over Theorem 1.1 is
the “only if” part of the statement: T �MP � T

�MQ if and only if Q � P or 0 2 P .
To prove this, we repeat the proof in Theorem 2.3 that .B2nstd ; ƒP / is a subdomain
of .B2nstd ; ƒQ/ if and only if Q � P . Namely, suppose that T �MP � T

�MQ is a
Weinstein subdomain but Q š P and 0 … P . Then there is a Viterbo localization
functor on Fukaya categories over Fq for q 2QnP . However, TwW.T �SnQIFq/Š 0

but TwW.T �SnP IFq/Š TwW.T �SnIFq/Š TwC�.�SnIFq/ is nontrivial, so there
cannot be such a localization functor.

Remark 2.8 A similar argument using the fact that the Viterbo map on symplectic
cohomology is a unital ring map shows that T �SnP cannot be a Liouville subdomain of
T �SnQ if Q š P and 0 … P .

3 Classifying Lagrangian disks

In this section we prove Theorem 1.7: if M is simply connected and spin, and the map
i WL ,! T �M is null-homotopic, then LŠ CW�.M;L/˝T �qM

n in TwW.T �M IZ/.
To do this, we will apply Koszul duality to characterize objects of TwW.T �M IZ/ as
modules over the A1 algebra CW�.M;M/Š C �.M/. Here it is crucial that we work
with the Z–graded wrapped Fukaya category, where the Z–grading comes from the
Lagrangian fibration by cotangent fibers. Any Lagrangian disk, since it is contractible,
can be Z–graded; the zero section M � T �Mstd can also be Z–graded for this grading.
Hence these Lagrangians define objects of the Z–graded Fukaya category.

3.1 C�.X/–modules

We begin with a general discussion of how to view Floer complexes as modules
over Morse cochain algebras. The outcome is Proposition 3.3, which says that the
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module structures are unexpectedly topological. This is what will allow us to draw
Floer-theoretic conclusions from the topological assumption of null-homotopy.

For now, we will work in a general Liouville domain X . Given two Lagrangian branes
K;L�X , we can endow CW�.K;L/ with the structure of a right C �.X/–module in
a number of ways. In each case, we model the A1 structure on our cochain algebras
C �.X/, C �.K/ andC �.L/with Morse complexes and perturbed gradient flow trees [2]
associated to exhausting Morse functions fX , fK and fL.

Let us fix some notation. The moduli space of domains controlling the A1 operations
is the space

T dC1

RdC1

of metric ribbon trees with dC1 infinite leaves and no finite leaves, labeled x0; : : : ; xd
in counterclockwise order. More explicitly, a point p 2 RdC1 is an isomorphism
class ŒTp�, where Tp is a noncompact tree with

� d C 1 ends and no mono- or bivalent vertices,
� a ribbon structure, which for a tree is the same as a homotopy class of planar

embeddings,
� an edge metric, meaning that we can measure the distance between any two

points of Tp (not necessarily vertices), and
� a labeling of the ends by x0; : : : ; xd in counterclockwise order with respect to

the ribbon structure.

The fibration T dC1!RdC1 is the tautological one, which over each p is a represen-
tative Tp. In what follows, we will imagine x0 as the bottom of Tp and the other xi
as the top, which will allow us to use the prepositions “below” or “above” to mean
“closer to x0” or “closer to some other xi”, respectively.

The restriction homomorphisms i�K W C
�.X/! C �.K/ and i�L W C

�.X/! C �.L/ are
controlled by the space

GdC1

SdC1

of grafted trees, which are metric ribbon trees T as above with the additional data of a
(necessarily finite) subset D � T which separates x0 from the other leaves and whose
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elements are equidistant from x0. For d � 2, SdC1 has a natural R–action which
translates D, and the quotient is canonically identified with RdC1 (for d D 1, S1C1 is
a single point). However, the natural compactification RdC1 models the associahedron,
while SdC1 models the multiplihedron. The restriction homomorphism

fF d j d D 1; : : : ;1gW C �.X/! ŒC �.K/ or C �.L/�

is then given by counting isolated perturbed gradient flow trees of shape Tq for some
q 2 SdC1, where the portion of Tq above (resp. below) D maps into X (resp. K or L).
Note that, because we work with a perturbed gradient flow, we do not need to require
fX to restrict to fK or fL. Of course, if we wanted to we could arrange that fX restrict
to one of these Morse functions, but generally it would impossible to achieve both.
Fortunately, all the resulting homomorphisms are homotopic.

To make Floer complexes into C �.X/–modules, we need chain-level PSS-type struc-
tures, which are built from short trees or short grafted trees. A short tree with d inputs is
a rooted metric ribbon tree with d infinite leaves and no finite leaves (except possibly the
root). The root is labeled y, while the leaves are labeled x1; : : : ; xd in counterclockwise
order. A short grafted tree is a short tree equipped with the additional data of a dividing
set D as above, either separating y from the xi , or equal to fyg. We will denote the
spaces of short trees and short grafted trees by RdC1s and SdC1s , respectively. There
are canonical piecewise smooth homeomorphisms

RdC1s ŠRdC1 �R�0 for d � 2;(3-1)

SdC1s ŠRdC1s �R�0 for d � 1;(3-2)

ie all d . In (3-1), the R�0 factor measures the distance between the root y and the first
vertex, while in (3-2), it measures the distance between y and the dividing set.

The PSS-type structures in question all come from moduli spaces of strips with some
number of short Morse trees attached at marked points.

Definition 3.1 A hedge comprises

(1) a smooth function f WR! Œ0; 1�,

(2) a collection of k points z1; : : : ; zk on the graph �.f /�R� Œ0; 1� with strictly
increasing R components, and

(3) for each zi , a short tree Ti .

Identifying zi with the root yi of the tree Ti induces a total lexicographic order of the
leaves xij of the trees Ti , namely xi;j <xi 0j 0 if either i < i 0 or both i D i 0 and j < j 0.
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Figure 1: The space H3c . The boundary consists of Floer breaking (lower
boundary in the diagram) and Morse breaking (upper boundary).

Fix a number c 2 Œ0; 1�. The space Hdc of hedges with d leaves xij and f .s/D c comes
a priori as a disjoint union of components indexed by partitions of the leaves into trees Ti .
However, there is a natural way to glue the various components to build a connected
moduli space. To see this, note that the boundary strata (before compactification) come
from one or more roots yi becoming multivalent, or in horticultural terms from some
tree Ti becoming maximally short. Such configurations can also be achieved by having
multiple smaller short trees attached to distinct marked points collide. The result is that
we can make Hdc into a connected, smoothly stratified, topological manifold without
boundary; see Figure 1. This is good enough to construct operations in Floer theory.

Hdc has a natural compactification Hd , where the codimension-1 boundary strata come
in two types. The first is associated with Morse breaking, where a single short tree
will break into a short tree and a (long) tree. The second is a type of Floer breaking
associated with the marked points zi moving apart, so that the limiting configuration is
made up of two hedges.

An X–valued perturbation datum for a hedge H amounts to a perturbation datum for
each short tree Ti , which is just an "–parametrized family of vector fields on X for
each edge " of Ti which vanishes outside a compact subset of ". Given a Morse–Smale
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pair on X and a Floer datum for the pair .K;L/, we can define a hedge map out of H

to be a tuple .u; �1; : : : ; �k/, where

� u is a Floer trajectory with boundary on .K;L/,

� �i is a perturbed gradient flow tree in X parametrized by Ti , and

� �i .yi /D u.zi /.

If H 2Hd0 , we can analogously define a K–valued perturbation datum for H to be a
family of vector fields on K, and a hedge map to involve gradient flow trees in K; if
H 2Hd1 , we can do the same with L.

For generic Morse-Smale pairs, smooth, boundary-consistent, translation-invariant
families of perturbation data on Hdc , and Floer data on X , the spaces of d–leaved
hedge maps are smoothly stratified topological manifolds of the expected dimension.
Counting such maps which are isolated up to translation makes CW�.K;L/ into a right
C �.X/–module, which we’ll denote by CW�.K;L/X;c . Similarly, when c D 0 or 1,
we can make CW�.K;L/ into a right C �.K/– or C �.L/–module CW�.K;L/K;0 or
CW�.K;L/L;1, respectively.

Remark 3.2 Morse cochains form an E1 algebra, so we could use this same data to
define left module structures, or even E1–module structures, but it will be convenient
to use right modules so that we can use the standard Yoneda embedding instead of the
co-Yoneda embedding. See Remark 3.5 for a discussion of the alternative.

The key holomorphic curve ingredient of our story is that these modules are all homotopy
equivalent (and therefore quasi-isomorphic) when pulled back to C �.X/:

Proposition 3.3 For c1; c2 2 Œ0; 1�, there is a homotopy

(3-3) CW�.K;L/X;c1
' CW�.K;L/X;c2

of right C �.X IZ/–modules.

Similarly, for any c, there are homotopies

CW�.K;L/X;c ' i_KCW�.K;L/K;0;(3-4)

CW�.K;L/X;c ' i_LCW�.K;L/L;1;(3-5)

where
i_K WModC�.KIZ/!ModC�.X IZ/

is the pullback functor under the restriction homomorphism i�K W C
�.X/! C �.K/ of

cochains , and similarly for i_L .
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Remark 3.4 The key takeaway of Proposition 3.3 is not just that CW�.K;L/ has a
canonically defined C �.X/–module structure, but that this module structure is deter-
mined by either the C �.K/– or the C �.L/–module structure.

Proof Pick a smooth function f W R! Œ0; 1� interpolating between f .s/ D c1 for
s near C1 and f .s/ D c2 for s near �1. Write Hd

f
for the space of hedges with

marked points zi on the graph of f . Counting isolated (no longer up to translation)
hedge maps parametrized by Hd

f
defines the homotopy (3-3).

For the second part, we prove (3-4), since the proof of (3-5) is identical. For this,
we may apply the first part to assume c D 0, so we need only produce a homotopy
between CW�.K;L/X;0 and i_KCW�.K;L/K;0. We do this by generalizing the notion
of a hedge to that of a grafted hedge. This is the same as Definition 3.1, except f � 0
and the short trees Ti are replaced by short grafted trees. When the inputs of the short
tree are in X and the root is forced to be in K (by attaching it to the boundary of a
holomorphic curve with boundary in K), these models result in the same hedge maps.
A (ordinary) hedge can thus be viewed as a special case of a grafted hedge, where
all the dividing points are at the root yi . Using this identification, we can extend the
definition of the spaces Hdc to negative values of c. Concretely, we declare Hdc to be
the space of d–leaved grafted hedges, where each tree is attached to the strip at t D 0
and has dividing set at distance jcj from the root. For negative c, Hdc continues to have
a natural compactification Hdc , and there is a canonical diffeomorphism Hdc ŠHdc0 for
any c; c0 2 .�1; 1�.

For H a grafted hedge, a hedge map out of H is a tuple .u; �1; : : : ; �k/, where

� u is a Floer trajectory with boundary on .K;L/,

� �i is a perturbed grafted gradient flow tree with leaves in X and root in K
parametrized by Ti , and

� �i .yi /D u.zi /.

Now the diffeomorphism Hdc ŠHdc0 is compatible with both the internal stratification
and the boundary decompositions, so it follows that hedge maps parametrized by Hdc
continue to define C �.X/–module structures CW�.K;L/X;c for c < 0. Moreover, the
same argument as for nonnegative c shows that these module structures are homotopic —
just interpolate the dividing sets rather than the attaching points.

To conclude, observe that the pullback module i�KCW�.K;L/K;0 is what we get by
sending the dividing set to infinity. While it is delicate to do that directly, it is enough
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to move the dividing set close to infinity: below any given action bound, gluing theory
establishes a bijection of spaces of hedge maps. This ensures first that the module
structure maps stabilize to the pulled-back ones, and second that the homotopies
eventually become trivial.

Remark 3.5 A version of Proposition 3.3 remains true with C �.X/ replaced by sym-
plectic cochains SC �.X/, C �.K or L/ replaced by CW�.K or L/, and the restriction
maps replaced by closed–open maps. In that case, one is forced to use left CW�.L/–
modules. While we expect all of the resulting homotopies to be intertwined by the
relevant A1 algebra homomorphisms, sticking to Morse cochains allows us to avoid a
good deal of combinatorial messiness.

Recall that for a Weinstein domain X , SC�.X/ is quasi-isomorphic to the Hochschild
cochains CC�.W.X// of W.X/ [17]. Using this quasi-isomorphism, we note that
Proposition 3.3 has a purely categorical analog. For any A1 category A, there is an
A1 homomorphism CC�.A/! hom�.X;X/ and hence a pullback map on modules,

�X WModend�.X/!ModCC�.A/:

Since CC�.A/ is an E2 algebra, there is also an A1 homomorphism CC�.A/ !
hom�.X;X/op and hence a similar pullback functor

x�X WModend�.X/op !ModCC�.A/:

For any two objects X; Y 2A, composition of morphisms in A makes hom.X; Y / an
object of Modend.X/ and also of Modend.Y /op . the categorical analog of Proposition 3.3 is
that the objects �X hom.X; Y / and x�Y hom.X; Y / are quasi-isomorphic in ModCC�.A/.

For the actual statement in Proposition 3.3, we work with C �.X/, the low-action part
of CC�.W.X//, and need to identify CC�.W.X//! hom�.L;L/ with the restriction
map C �.X/! C �.L/ on Morse cochains. Here it is essential that our Lagrangian L
is not equipped with a bounding cochain, which destroys the action filtration on Floer
cochains and hence our access to the low-energy, topological subcomplex.

While so far we have considered general A1 presentations of our Morse cochain com-
plexes, the above constructions work just as well for their strict unitalizations C �s .�/.
Indeed, suppose X is connected, and pick a positive exhausting Morse function f
on X with a unique degree 0 critical point. Define

C �s .X/ WD CM�1.f /˚Z � 1
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with the restricted A1 structure on CM�1.f /— which is well-defined because �k

increases reduced degree, which is nonnegative by assumption — and for which 1 is a
strict unit. Any A1 homomorphism

C �.X/!A
for A a strictly unital A1 algebra induces a strictly unital homomorphism

C �s .X/!A:
Because modules are just functors to the strictly unital dg-category Ch, we conclude:

Corollary 3.6 If X , K and L are connected , then Proposition 3.3 continues to hold in
the realm of strictly unital modules with C �.X/ replaced with C �s .X/, and similarly
with K and L.

Corollary 3.7 Let M be a closed connected manifold. If the restriction A1 homo-
morphism i� W C �.T �M IZ/! C �.L/ factors up to homotopy through the canonical
augmentation ,

C �.T �M IZ/ C �.LIZ/

Z

i�

"can �

then CW�.M;L/M;0 is isomorphic to a module in the image of

Tw Z�ModZ
"can
��!ModC�.M IZ/:

Proof Replacing C �.�/ by C �s .�/, we may assume all algebras and maps are strictly
unital. In particular, the pullback functor

�� WModC�.LIZ/!ModZ

preserves strict unitality of modules. Since a strictly unital Z–module is just a
chain complex, the Z–module ��.CW.M;L/L;1/ coincides with its underlying chain
complex, which lies in Tw Z because M is compact.

The result now follows from Corollary 3.6 (on each connected component ofL), together
with the observation that the restriction C �.T �M/! C �.M/ is an isomorphism.

3.2 Disks in cotangent bundles

In the previous section, we studied properties of Floer modules CW�.K;L/ over
various Morse cochain algebras. In this section, we restrict to the case of T �M , where
M is a simply connected, spin manifold. We use Koszul duality to show that the
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module structure over C �.M/ knows everything about the Fukaya category, and prove
Theorem 1.7.

We first construct a presentation of the wrapped Fukaya category which is well-adapted
to talking about modules over C �.M/. First, write C for the semiorthogonally glued
category

hMMorse;W.T �M/i;

where end�.MMorse/ D C �s .M/, and hom�C .M
Morse; L/ D CW�.M;L/. The mixed

A1 operations count generalized hedges, ie usual perturbed holomorphic disks whose
first boundary lies geometrically on M , together with short perturbed gradient flow
trees in M attached at boundary marked points. We will obtain our desired presentation
by localizing C:

Lemma 3.8 Suppose that e 2 hom0.MMorse;M/ is a cocycle representing the unit in
CW�.M;M/. Define

(3-6) WMorse.T �M/ WD C=cone.e/;

so that we have tautological functors

W.T �M/
iW
�!WMorse.T �M/

iM
 � end�C .M

Morse/D C �s .M/:

Then iW is a quasi-equivalence and iM is fully faithful.

Proof For any object X 2W.T �M/, precomposition with the cocycle e induces a
quasi-isomorphism

hom�C .M;X/Š hom�C .M
Morse; X/:

This means that cone.e/ is left-orthogonal to every X 2W.T �M/, which implies that
iW is fully faithful. Because iW.M/ is isomorphic to MMorse in WMorse.T �M/, iW is
also essentially surjective, which means it’s an equivalence.

The proof for iM is identical, except cone.e/ is right-orthogonal to MMorse by the
classical Lagrangian PSS isomorphism.

The benefit of WMorse.T �M/ is that it allows for direct Koszul duality between the
Morse cochain algebra on the zero section and the wrapped Fukaya algebra of the fiber.
In particular, we do not have to transfer Corollary 3.7 through Floer’s isomorphism.
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Proposition 3.9 If M is a simply connected , spin manifold , then the restricted Yoneda
functor

Y WWMorse.T �M/
Yoneda
���!ModWMorse.T �M/

i�M�!ModC�.M/

is fully faithful.

Remark 3.10 We have used the full-faithfulness of iM from Lemma 3.8 to write
C �.M/ rather than end�.MMorse/. At the level of objects, Y sendsL to CW�.M;L/M;0.

Proof Lemma 3.8 and Abouzaid’s theorems [4; 1] give us a chain of quasi-equivalences

TwWMorse.T �M/ TwW.T �M/ Tw .end�.T �qM// Tw .C��.�M//:
Š

F

Š Š

The resulting functor F sends the cotangent fiber T �qM to the rank 1 free module.

Let us study what happens to MMorse. We know CW�.MMorse; T �qM/Š Z, since the
zero section and fiber have just one intersection point. This means that F.MMorse/ is
an augmentation, and in fact it is the canonical augmentation of C��.�M/. Indeed, all
C��.�M/–modules whose cohomology is Z are quasi-isomorphic. To see this, use the
homological perturbation lemma to replaceC��.�M/with its cohomologyH��.�M/.
This is supported in nonpositive degrees and, because M is simply connected, has
H0.�M/Š Z. Since the A1–module operation

�kj1 WH��.�M/˝k˝Z! Z

has degree 1�k andH��.�M/ is supported in nonpositive degrees, the only nontrivial
A1 operation is the product �1j1 WH0.�M/˝Z! Z; this is the identity operation.

By [7], the standard augmentation Z and the rank 1 free module of C��.�M/ are
Koszul dual if M is simply connected, ie C��.�M/ is quasi-isomorphic to hom�

of the augmentation hom�ModC.�M/
.Z; C��.�M// of C �.M/Š hom�ModC.�M/

.Z;Z/,
and hence the restricted Yoneda functor hom�ModC.�M/

.Z;�/ is a quasi-embedding. By
our above identifications of MMorse with the standard augmentation and T �qM with
the rank 1 free module, the result follows.

Remark 3.11 Simple connectedness and Z–grading are standard essential ingredients
for Koszul duality. The spin condition also seems essential in our proof, but we do not
have an example showing that Proposition 3.9 fails without it.

We now have the necessary ingredients to prove Theorem 1.7.
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Proof of Theorem 1.7 We now turn to the Lagrangian L� T �M . The hypothesis that
L is null-homotopic in T �M implies that the hypothesis of Corollary 3.7 is satisfied.
This means that, up to isomorphism, Y.L/ is the finite-dimensional cochain complex
CW�.M;L/, ie a complex of standard augmentations. On the other hand, the same
reasoning (or a direct appeal to Corollary 3.6) shows that Y.T �qM/ is itself a standard
augmentation and hence Y.CW�.M;L/˝T �qM/ is also the finite-dimensional cochain
complex CW�.M;L/. Since Y is full and faithful by Proposition 3.9, L is quasi-
isomorphic to CW�.M;L/˝T �qM , as desired.
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