Download this article
Download this article For screen
For printing
Recent Issues

Volume 29, 1 issue Volume 29, 1 issue

Volume 28, 9 issues

Volume 27, 9 issues

Volume 26, 8 issues

Volume 25, 7 issues

Volume 24, 7 issues

Volume 23, 7 issues

Volume 22, 7 issues

Volume 21, 6 issues

Volume 20, 6 issues

Volume 19, 6 issues

Volume 18, 5 issues

Volume 17, 5 issues

Volume 16, 4 issues

Volume 15, 4 issues

Volume 14, 5 issues

Volume 13, 5 issues

Volume 12, 5 issues

Volume 11, 4 issues

Volume 10, 4 issues

Volume 9, 4 issues

Volume 8, 3 issues

Volume 7, 2 issues

Volume 6, 2 issues

Volume 5, 2 issues

Volume 4, 1 issue

Volume 3, 1 issue

Volume 2, 1 issue

Volume 1, 1 issue

The Journal
About the Journal
Editorial Board
Editorial Procedure
Subscriptions
 
Submission Guidelines
Submission Page
Policies for Authors
Ethics Statement
 
ISSN 1364-0380 (online)
ISSN 1465-3060 (print)
Author Index
To Appear
 
Other MSP Journals
On cubulated relatively hyperbolic groups

Eduardo Reyes

Geometry & Topology 27 (2023) 575–640
Abstract

We show that properly and cocompactly cubulated relatively hyperbolic groups are virtually special, provided the peripheral subgroups are virtually special in a way that is compatible with the cubulation. This extends Agol’s result for cubulated hyperbolic groups, and applies to a wide range of peripheral subgroups. In particular, we deduce virtual specialness for properly and cocompactly cubulated groups that are hyperbolic relative to virtually abelian groups. As another consequence, by using a theorem of Martin and Steenbock we obtain virtual specialness for groups obtained as a quotient of a free product of finitely many virtually compact special groups by a finite set of relators satisfying the classical C(1 6)–small cancellation condition.

Keywords
CAT(0) cube complexes, relatively hyperbolic groups, virtual specialness
Mathematical Subject Classification
Primary: 20F65
Secondary: 20F67, 57M07
References
Publication
Received: 2 June 2020
Revised: 1 March 2021
Accepted: 16 November 2021
Published: 16 May 2023
Proposed: Martin R Bridson
Seconded: Mladen Bestvina, David Fisher
Authors
Eduardo Reyes
Department of Mathematics
University of California at Berkeley
Berkeley, CA
United States

Open Access made possible by participating institutions via Subscribe to Open.