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A calculus for bordered Floer homology

JONATHAN HANSELMAN

LIAM WATSON

We consider a class of manifolds with torus boundary admitting bordered Heegaard
Floer homology of a particularly simple form; namely, the type D structure may be
described graphically by a disjoint union of loops. We develop a calculus for studying
bordered invariants of this form and, in particular, provide a complete description
of slopes giving rise to L–space Dehn fillings as well as necessary and sufficient
conditions for L–spaces resulting from identifying two such manifolds along their
boundaries. As an application, we show that Seifert-fibred spaces with torus boundary
fall into this class, leading to a proof that, among graph manifolds containing a single
JSJ torus, the property of being an L–space is equivalent to non-left-orderability of
the fundamental group and to the nonexistence of a coorientable taut foliation.
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1 Introduction

This paper is concerned with developing Heegaard Floer theory with a view to better
understanding the relationship between coorientable taut foliations, left-orderable
fundamental groups and manifolds that do not have simple Heegaard Floer homology.
Recall that manifolds with simplest possible Heegaard Floer homology, calledL–spaces,
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824 Jonathan Hanselman and Liam Watson

are rational homology spheres Y for which dim cHF.Y /D jH1.Y IZ/j (all Heegaard
Floer–theoretic objects in this work will take coefficients in Z=2Z). On the other hand,
a group G is left-orderable if there exists a nonempty set P � G, called a positive
cone, that is a closed subsemigroup of G and gives a partition of the group in the
sense that G D P qf1gqP�1. This auxiliary structure is equivalent to G admitting
an effective action on R by order-preserving homeomorphisms. The work of Boyer,
Rolfsen and Wiest is a good introduction to left-orderable groups in the context of
three-manifold topology, including the interaction with taut foliations [4]; for closed,
orientable, irreducible, three-manifolds it is conjectured that being an L–space is
equivalent to having a non-left-orderable fundamental group; see Boyer, Gordon and
Watson [3]. This conjecture holds for Seifert-fibred spaces and, as a natural extension
of this case, graph manifolds are a key family of interest; see Boileau and Boyer [1],
Boyer and Clay [2], Clay, Lidman and Watson [5], Hanselman [8; 9] and Mauricio [21].
Towards establishing the conjecture for graph manifolds, we prove:

Theorem 1.1 Suppose that Y is a graph manifold with a single JSJ torus; that is , Y is
constructed by identifying two Seifert-fibred manifolds with torus boundary along their
boundaries. Then the following are equivalent :

(i) Y is an L–space.

(ii) �1.Y / is not left-orderable.

(iii) Y does not admit a coorientable taut foliation.

The equivalence between (ii) and (iii) is due to Boyer and Clay [2]; the focus of this
paper is understanding the behaviour of Heegaard Floer homology in this setting. To do
this, we make use of bordered Heegaard Floer homology, a variant of Heegaard Floer
homology adapted to cut-and-paste arguments. Briefly, this theory assigns a differential
graded module over a particular algebra to each manifold with torus boundary. A chain
complex for the Heegaard Floer homology of the associated closed manifold is obtained
from a pairing theorem due to Lipshitz, Ozsváth and Thurston [20].

Our approach to this problem is to work in a more general setting. We consider a
particular class of differential graded modules which we call loop-type (Definition 3.2),
and introduce a calculus for studying loops; the bulk of this paper is devoted to
developing this calculus in detail. Given a three-manifoldM with torus boundary, M is
called loop-type if its associated bordered invariants are loop-type up to homotopy
(Definition 3.13). Recall that a slope in @M is the isotopy class of an essential simple
closed curve in @M, and denote byM./ the closed three manifold resulting from Dehn
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A calculus for bordered Floer homology 825

filling along a slope  . The set of slopes may be (noncanonically) identified with the
extended rationals Q[

˚
1
0

	
. Of central interest is the subset LM consisting of those

slopes giving rise to L–spaces after Dehn filling. We prove:

Theorem 1.2 (detection) Suppose that M is a loop-type rational homology torus.
Then there is a complete , combinatorial description of the set LM in terms of loop
calculus. In particular , LM may be identified with the restriction to Q [

˚
1
0

	
of a

connected interval in R[f1g. Moreover , if M is simple loop-type , this interval has
rational endpoints.

We remark that this is the expected behaviour from the foliations/orderability vantage
point, at least for graph manifolds. It is interesting that the analogous behaviour on
the Heegaard Floer side appears to be intrinsic to the algebraic structures that arise.
Namely, this is a statement that makes sense for loop-type bordered invariants, without
reference to any three-manifold. The introduction of the technical notion of a simple
loop (Definition 4.20) also allows us to state and prove a gluing theorem. Let LıM
denote the interior of LM .

Theorem 1.3 (gluing) Suppose that M1 and M2 are simple loop-type rational homol-
ogy tori and neither is solid torus-like. Then , given a homeomorphism h W @M1! @M2,
the closed manifold M1[hM2 is an L–space if and only if , for every slope  in @M1,
either  2 LıM1

or h./ 2 LıM2
.

Note that Theorem 1.3 does not hold if eitherM1 orM2 is a solid torus. IfM1 is a solid
torus with meridian mD @D2 � fptg, then, according to the definition of an L–space
slope, M1[hM2 is an L–space if and only if h.m/ 2 LM2

; equivalently, the statement
of Theorem 1.3 holds if we use LMi

in place of LıMi
. When both M1 and M2 are solid

tori, this simply amounts to the construction of lens spaces interpreted in our notation.
More generally, however, there are bordered invariants that arise in the loop setting
that behave just like solid tori with respect to gluing. We will need to deal with these
explicitly; this amounts to defining a class of manifolds and loops which are referred
to as solid torus-like (Definition 3.20).

Theorems 1.2 and 1.3 follow from working with loops in the abstract. Towards the
proof of Theorem 1.1, and in the interest of establishing an existence result, a key class
of loop-type manifolds is provided by Seifert-fibred spaces.

Theorem 1.4 Suppose M is a rational homology solid torus admitting a Seifert-fibred
structure. Then M has simple loop-type bordered Heegaard Floer homology.

Geometry & Topology, Volume 27 (2023)



826 Jonathan Hanselman and Liam Watson

Let N denote the twisted I–bundle over the Klein bottle, and recall that the rational
longitude � for this manifold with torus boundary may be identified with a fibre in a
Seifert structure over the Möbius band. As a Seifert-fibred rational homology solid
torus, N is a simple loop-type manifold; compare [3]. The twisted I–bundle over the
Klein bottle allows for an alternative detection statement for L–space slopes.

Theorem 1.5 (detection via the twisted I–bundle over the Klein bottle) Suppose that
M is a loop-type rational homology torus. Then  2 LıM if and only if N [hM is an
L–space , where h.�/D  .

This answers a question of Boyer and Clay in the case of connected boundary; compare
[2, Question 1.8]. In particular, our notion of detection aligns precisely with the
characterization given by Boyer and Clay [2]. Indeed, we prove that, more generally,
the twisted I–bundle over the Klein bottle used in Theorem 1.5 may be replaced with
any simple loop-type manifold for which every nonlongitudinal filling is an L–space;
see Theorem 7.3. There are many examples of these provided by Heegaard Floer
homology solid tori; for more on this class of manifolds, see Hanselman, Rasmussen
and Watson [12, Section 1.5].

Note that the interior of LM , denoted by LıM , is the set of strict L–space slopes. The
complement of LıM , according to Theorem 1.5, corresponds to the set of non-L–space
(NLS) detected slopes in the sense of Boyer and Clay [2, Definition 7.16].

According to Theorem 1.4, the exterior of any torus knot in the three-sphere gives an
example of a simple loop-type manifold (indeed, this follows from work of Lipshitz,
Ozsváth and Thurston [20]). More generally, ifK is a knot in the three-sphere admitting
an L–space surgery (an L–space knot), then S3X�.K/ is a simple loop-type manifold.
In this setting it is well known that LM is (the restriction to the rationals of) Œ2g�1;1�,
where g is the Seifert genus of K, whenever K admits a positive L–space surgery.
Specializing Theorem 1.3 to this setting, we have:

Theorem 1.6 Let Ki be an L–space knot and write Mi D S
3 X �.K/ for i D 1; 2.

Given a homeomorphism h W @M1! @M2, the closed manifoldM1[hM2 is a L–space
if and only if h.LıM1

/[LıM2
ŠQ[

˚
1
0

	
.

Note that this solves [2, Problem 1.11] by resolving (much more generally and in the
affirmative) one direction of [9, Conjecture 1] (a special case of [2, Conjecture 1.10]
or [5, Conjecture 4.3]). It should also be noted that, owing to the existence of hy-
perbolic L–space knots, Theorem 1.6 provides additional food for thought regarding
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A calculus for bordered Floer homology 827

[2, Question 1.12]. Namely, one would like to know if the order-detected/foliation-
detected slopes in the boundary of the exterior of an L–space knot K coincide with
the complement of LıM , where M D S3 X �.K/. For integer homology three-spheres
resulting from surgery on a knot in S3, there has been considerable progress in this
vein; see Li and Roberts for foliations [18], Boileau and Boyer for left-orders [1], and
also Hedden and Levine for splicing results [14].

Related work

Nonsimplicity is somewhat sporadic; however, it can be shown explicitly that nonsimple
graph manifolds exist. On the other hand, it is clear from examples that certain graph
manifolds with torus boundary do not give rise to loop-type bordered invariants, at least
not in any obvious way. These subtleties seem particularly interesting when contrasted
with the behaviour of foliations and orders: for more complicated graph manifolds,
more subtle notions of foliations and orders (relative to the boundary tori) need to
be considered [2]. On the other hand, it is now clear from work of Rasmussen and
Rasmussen [27] that simplicity (for loops) is more than a convenience: the class of
simple loop-type manifolds is equivalent to the class of (exteriors of) Floer-simple knots;
see Hanselman, Rasmussen, Rasmussen and Watson [10, Proposition 6] in particular. As
a result, Theorem 1.3 may be recast in terms of Floer-simple manifolds [10, Theorem 7].
This observation gives rise to an extension of Theorem 1.1 to the case of general graph
manifolds; this is the main result of a joint paper of the authors with Rasmussen
and Rasmussen [10], illustrating a fruitful overlap between these two independent
projects. We note that the methods used by Rasmussen and Rasmussen are different
from those used in our work. They appeal to knot Floer homology instead of bordered
Heegaard Floer homology. This leads to somewhat divergent results and emphasis:
while Rasmussen and Rasmussen give a clear picture of the interval of L–space slopes
in terms of classical invariants, our machinery is better suited to gluing results.

Structure of the paper

Section 2 collects the essentials of bordered Heegaard Floer homology and puts in
place our conventions. In particular, the definitions of L–space and strict L–space
slope are found here.

Section 3 is devoted to defining loops and loop calculus. This represents the key tool;
loop calculus provides a combinatorial framework for studying bordered Heegaard
Floer homology. Note that we define and work in an a priori broader setting of abstract

Geometry & Topology, Volume 27 (2023)



828 Jonathan Hanselman and Liam Watson

loops. It seems likely that many of the loops considered do not represent the type D
structure of any bordered three-manifold. This calculus is applied towards two distinct
ends: detection and gluing.

Section 4 gives characterizations of L–space slopes and strict L–space slopes in the
loop setting. In particular, we prove Theorem 1.2. The proof of the second part of
this result — identifying the set of L–space slopes as the restriction of an interval with
rational endpoints — requires a detailed study of non-L–space slopes. While interesting
in its own right, this fact is essential to the gluing results that follow.

Section 5 proves Theorem 1.3 by first establishing the appropriate gluing statements
for abstract loops. The section concludes with a complete characterization of L–
spaces resulting from generalized splices of L–space knots in the three-sphere, proving
Theorem 1.6.

Section 6 turns to the study of loop-type manifolds. We describe an algorithm for
constructing rational homology sphere graph manifolds by way of three moves, and
determine the effect of these moves on bordered invariants. Using this, we establish
a class of graph manifold rational homology tori, subsuming Seifert-fibred rational
homology tori, for which we now have a complete understanding of gluing in Heegaard
Floer homology according to the material in the preceding two sections.

Section 7 collects all of the forgoing material in order to prove our main results. This
section includes the proofs of Theorems 1.4 and 1.5, and from these results we prove
Theorem 1.1.

Addendum: additional context and further developments

This paper was first posted to arXiv on August 22, 2015. In the intervening years there
have been many closely related developments, depending on or growing directly out of
this project. In hopes that this aids the present-day reader while maintaining the paper
in its original form, we will expand on these here.

As described at the start of the paper, the genesis for this work was an interest in
understanding the so-called L–space conjecture in the presence of an essential torus
[2; 3]. While a comprehensive list of references detailing the support for this conjecture
now seems too long to compile, we point to Dunfield [6] for more recent computational
evidence. Theorem 1.1 provided a first step towards establishing the conjecture for
graph manifolds. Indeed, the synchronous work of Rasmussen and Rasmussen [27]
provided a key result that allowed the “simple loop-type” hypothesis to be replaced by
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“Floer-simple”; then the proof of Theorem 1.1, which is the focus of Section 7, provides
the scaffold used in our four-author project to establish theL–space conjecture for graph
manifolds in full [10]. (Note that S Rasmussen gave a different, independent proof [28].)

One idea that is central to this work, but perhaps somewhat hidden from view, is the
following: given a property of a bordered invariant that is unchanged under Dehn twists,
one obtains a property associated with a three-manifold. This is used in Section 3, where
we establish our class of interest, namely loop-type three-manifolds; see Definition 3.13.

Our strategy, at the beginning of this project, was to ignore the pathology of possible non-
loop-type manifolds — based on empirical evidence that such manifolds never arose.
The result of this, on the one hand, was the presence of an annoying technical assumption,
but, on the other, provided the correct lens through which to view the bordered invariants
for a manifold with torus boundary. Indeed, on completing this project and [10], it
became clear that bordered invariants, subject to the loop-type condition, could be
interpreted as immersed curves in a once-punctured torus. Moreover, gluing could now
be stated in terms of Lagrangian intersection Floer homology in a once-punctured torus,
giving rise to a gluing theorem that was then best-possible: Theorem 1.3 is restated
for Floer-simple manifolds in [10, Theorem 7], and then further upgraded to loop-type
manifolds with no simplicity hypothesis at all in the initial arXiv version of [11].

When viewed in these terms, loop calculus can be extended to general bordered in-
variants, giving rise to a graphical interpretation of the box tensor product in terms of
intersections between train tracks — these latter are immersions of the graphs considered
in this paper into the torus. Combined with new work of Haiden, Katzarkov and
Kontsevich [7], this indicated that in the general setting our curves should carry local
systems, which provides a means of handling graphs that cannot be converted to curves.
So, once interpreted in the bordered setting, the loop-type hypothesis is simply the
restriction to the trivial local system case. This is explained in detail in [12]. Note that
it remains unclear what the role local systems play in general is — we are still not aware
of an explicit example. (It is worth noting that local systems do play a role in Khovanov
homology, which admits an analogous immersed curves description for decompositions
along Conway spheres; see Kotelskiy, Watson and Zibrowius [16].) Nevertheless, these
are easy to manage in practice, and up to minor modifications proofs go through. In
particular, an alternative graphical approach to our work in Sections 4 (compare [11,
Section 5]) and 5 (compare [11, Section 6]) now exists.

Despite these advances, however, it remains the case that, given a bordered invariant,
one needs an algebrocombinatorial tool in order to work with and/or feed it into a
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830 Jonathan Hanselman and Liam Watson

computer. And, indeed, some operations are still only manageable using the tools
described here. This is the case for annular gluing, for example, as this uses the “merge”
described in Section 6, which can be adapted to the non-loop-type setting (that is, to
handle nontrivial local systems). This is explained in more recent work, and, as an
application, we establish a complete description of the effect of cabling on bordered
invariants for knots in S3 in terms of immersed curves in [13]. The proofs depend on
the merge operation and loop calculus in an essential way.

As described in Section 3, then, “loop calculus” is meant to describe the tools needed to
study bordered invariants for manifolds with torus boundary. In particular, we view this
calculus as a toolkit for studying type D structures over the torus algebra in general.
With hindsight, this is a viable algebrocombinatorial machinery for working with
objects in the Fukaya category of the once-punctured torus. This was our attempt to
standardize the seemingly ad hoc techniques that appear in earlier work of the authors;
see [3; 9], for example.
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2 Background and conventions

We begin by briefly recalling the essentials of bordered Heegaard Floer homology; for
details see [20]. We restrict attention to compact, orientable three-manifolds M with
torus boundary. Let F denote the two-element field.

2.1 Bordered structures

A bordered three-manifold, in this setting, is a pair .M;ˆ/ where ˆ W S1 �S1! @M

is a fixed homeomorphism satisfying ˆ.S1 � fptg/ D ˛ and ˆ.fptg � S1/ D ˇ for
slopes ˛ and ˇ in @M satisfying �.˛; ˇ/D 1. Recall that a slope in @M is the isotopy
class of an essential simple closed curve in @M or, equivalently, a primitive class
in H1.@M IZ/=f˙1g. The distance �. � ; � / is measured by considering the minimal
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A calculus for bordered Floer homology 831

geometric intersection between slopes; thus, the requirement that �.˛; ˇ/D 1 ensures
that the pair f˛; ˇg, having chosen orientations, forms a basis for H1.@M IZ/.

As a result, any bordered manifold .M;ˆ/ may be represented by the ordered triple
.M; ˛; ˇ/, with the understanding that .M; ˛; ˇ/ and .M; ˇ; ˛/ differ as bordered
manifolds (that is, these represent different bordered structures on the same underlying
manifold M ). We will adhere to this convention for describing bordered manifolds as
it makes clear that bordered manifolds come with a pair of preferred slopes.

Definition 2.1 For a given bordered manifold .M; ˛; ˇ/, the slope ˛ is referred to as
the standard slope and the slope ˇ is referred to as the dual slope.

2.2 The torus algebra

The torus algebra A is generated (as a vector space over F ) by elements

�0; �1; �1; �2; �3; �12; �23; �123

with multiplication defined by

�1�2 D �12; �2�3 D �23; �1�23 D �123 D �12�3

(all other products �I�J vanish) and

�0�1 D �1 D �1�1; �1�2 D �2 D �2�0; �0�3 D �3 D �3�1;

so that �0C �1 is a unit. Denote by I the subring of idempotents in A generated by
�0 and �1. This algebra has various geometric interpretations; see [20]. The bordered
Heegaard Floer invariants of .M; ˛; ˇ/ are modules of various types over A, as we now
describe.

2.3 Type D structures

A (left) type D structure over A is an F–vector space N equipped with a left action of
the idempotent subring I so that N D �0N ˚ �1N, together with a map

ı1 WN !A˝I N

satisfying a compatibility condition with the multiplication on A [20]. The compatibility
ensures that the map

@ WA˝I N !A˝I N; a˝ x 7! a � ı1.x/;
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promotes A˝N to a left differential module over A (in particular, @2 D 0), where
a � .b˝ y/ D ab˝ y. While we will generally confuse type D structures and their
associated differential modules, the advantage of the type D structure is in an iterative
definition

ık WN !A˝k˝I N;

where ıkC1 D .idA˝k ˝ı1/ ı ık for k > 1. The type D structure is bounded if all ık

are identically zero for sufficiently large k.

Given a basis for N, this structure may be described graphically. An A–decorated graph
is a directed graph with vertex set labelled by f�; ıg and edge set labelled by elements
of A consistent with the edge orientations. The labelling of the vertices specifies the
splitting of the generating set according to the idempotents, while the edge set encodes
the differential. For example, the A–decorated graph

�

ı ı

�3 �1

�23

encodes the fact that there is a single generator x in the �0–idempotent with ı1.x/D
�1˝uC�3˝v (or @.x/D �1uC�3v). The higher maps in the typeD structure can be
extracted from following directed paths in the graph; for example, in the graph above
we have ı2.x/D �3˝ �23˝u. By convention we drop the label on edges labelled by
the identity element of A.

An A–decorated graph determines a type D structure with respect to a particular basis.
In general we do not have a preferred choice of basis and we care about type D
structures only up to homotopy equivalence, so there are many A–decorated graphs
which we should deem to be equivalent. Choosing a different basis for N leaves the
vertex set unchanged and changes the arrows in a predictable way; for example, the
basis change replacing x with xC y adds an arrow out of the vertex labelled by x for
each arrow out of the vertex labelled by y, and an arrow into the vertex labelled by y
for each arrow into the vertex labelled by x. We can also replace an A–decorated graph
with one for a homotopy equivalent type D structure by using edge reduction (or its
inverse) as described for example by Levine [17, Section 2.6]. Briefly, any segment of
a graph of the form

� ı ı �
�I �J

may be replaced by a single edge

� �
�I�J
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where the edge is simply deleted if the product �I�J vanishes (we have chosen specific
vertex labelling for illustration only). Again, we follow the convention that an unlabelled
edge represents an edge labelled by the identity element of A. Note that, by repeatedly
cancelling such edges, we may always find a graph with no unlabelled edges.

Definition 2.2 An A–decorated graph is reduced if no edge is labelled by the identity
element of A.

It turns out that any two A–decorated graphs for homotopy equivalent typeD structures
can be related by a sequence of basis changes and edge reductions or insertions.

Given a bordered three-manifold .M; ˛; ˇ/, Lipshitz, Ozsváth and Thurston define a
type D structure bCFD.M; ˛; ˇ/ over A that is an invariant of the bordered manifold up
to quasi-isomorphism [20]. As explained above, we will sometimes regard this object
as a differential module over A. This invariant splits over spinc structures of M ; that
is,

bCFD.M; ˛; ˇ/D
M

s2Spinc.M/

bCFD.M; ˛; ˇI s/:

Note that Spinc.M/ can be identified with H 2.M/'H1.M; @M/.

2.4 Type A structures

A (right) type A structure over A is an F–vector space M equipped with a right action
of the idempotent subring I so that M DM�0˚M�1, together with maps

mk�1 WM ˝I A˝k!M

satisfying the A1 relations; see [20]. That is, a type A structure is a right A1–module
over A. A type A structure is bounded if the mk vanish for all sufficiently large k.
Given a bordered three-manifold .M; ˛; ˇ/, Lipshitz, Ozsváth and Thurston define a
type A structure bCFA.M; ˛; ˇ/ over A that is an invariant of the bordered manifold up
to quasi-isomorphism.

There is a similar graphical representation for type A structures. Indeed, owing to a
duality between type D and type A structures for three-manifolds, bCFA.M; ˛; ˇ/ may
be deduced from the graph describing bCFD.M; ˛; ˇ/ by appealing to an algorithm
described by Hedden and Levine [14]. This algorithm takes subscripts 1 7! 3 and
3 7! 1 while fixing 2, with the convention that a conversion of the form 23 7! 21 must
be parsed as 2; 1 (this example is shown below, as it occurs in the conversion of the
sample graph shown previously). In this type A context, sequences of directed edges
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must be concatenated in order to obtain all of the multiplication maps. For example,
labelling the generators as before, the graph

�

ı ı

�1 �3

�2;�1

encodes operations m2.x; �3/D v, m2.x; �1/D u and m3.u; �2; �1/D v, as well as
m3.x; �12; �2/D v.

2.5 Pairing

Consider a closed, orientable three-manifold Y decomposed along a (possibly essential)
torus so that Y DM1[hM2 for some homeomorphism h W @M1! @M2. If h has the
property that h.˛1/Dˇ2 and h.ˇ1/D˛2, then we will write this decomposition as Y D
.M1; ˛1; ˇ1/[ .M2; ˛2; ˇ2/. The reason for this convention is to ensure compatibility
with the paring theorem established by Lipshitz, Ozsváth and Thurston [20]. In
particular, they prove thatcCF.Y /Š bCFA.M1; ˛1; ˇ1/� bCFD.M2; ˛2; ˇ2/;

where cCF.Y / is a chain complex with homology cHF.Y /. As a vector space over F,
this chain complex is generated by tensors (over I 2 A) of the form x˝I y, where
x 2 bCFA.M1; ˛1; ˇ1/ and y 2 bCFD.M2; ˛2; ˇ2/, with differential

@�.x˝I y/D

1X
kD0

.mkC1˝ id/.x˝I ı
k.y//;

which is a finite sum provided at least one of the modules in the pairing is bounded.

As a particular special case, consider the pairing theorem in the context of Dehn filling.
Given a three-manifoldM with torus boundary, writeM.˛/ for the result of Dehn filling
M along the slope ˛; that is, M.˛/D .D2 �S1/[hM, where the homeomorphism h

is determined by h.@D2 � fptg/D ˛. In particular,cCF.M.˛//Š bCFA.D2 �S1; l; m/� bCFD.M; ˛; ˇ/;

where mD @D2 � fptg. In this context, any choice of slopes l dual to m and ˇ dual
to ˛ will do, since the family .D2�S1; lCnm;m/ are all homeomorphic as bordered
manifolds. This is due to the Alexander trick; the Dehn twist along m in @.D2 �S1/
extends to a homeomorphism of D2 �S1.
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Since every bordered manifold is equipped with a preferred choice of slopes, it will be
important to distinguish between the two Dehn fillings along these slopes.

Definition 2.3 Let .M; ˛; ˇ/ be a bordered three-manifold. The standard filling is the
Dehn filling

M.˛/D .D2 �S1; l; m/[ .M; ˛; ˇ/

(that is, m 7! ˛) and the dual filling is the Dehn filling

M.ˇ/D .D2 �S1; m; l/[ .M; ˛; ˇ/

(that is, m 7! ˇ).

It is easy to compute cHF of these two fillings from bCFD.M; ˛; ˇ/. There is a represen-
tative of bCFA.D2 �S1; `;m/ which has a single generator x with idempotent �0 and
operations of the form m3Ci .x; �3; �23; : : : ; �23; �2/D x, where there are i � 0 copies
of �23. It follows that cCF.M.˛// is generated by the �0–generators of bCFD.M; ˛; ˇ/
with a differential coming from any chain of the form

� ı ı ı ı� � � �
�3 �23 �23 �2

Similarly, bCFA.D2 � S1; m; `/ has a representative with a single generator y with
idempotent �1 and operations of the form m3Ci .y; �2; �12; : : : ; �12; �1/ D y, where
there are i �0 copies of �12. It follows that cCF.M.˛// is generated by the �1–generators
of bCFD.M; ˛; ˇ/ with a differential coming from any chain of the form

ı � � � �� � � ı
�2 �12 �12 �1

More generally, given .M; ˛; ˇ/, we would like to compute cHF.M.// for any slope 
expressed in terms of ˛ and ˇ. In particular, we will always make a choice of orientations
so that ˛ �ˇDC1, resulting in slopes of the form  D˙.p˛Cqˇ/2H1.@M IZ/=f˙1g.
As is familiar, the fixed choice f˛; ˇg gives rise to an identification of the set of slopes
and the extended rational numbers yQ WDQ[

˚
1
0

	
. Our convention is that the slope

p˛C qˇ is identified with p=q 2 yQ. We will return to a detailed description of the
pairing theorem for an arbitrary Dehn filling in the next section, since the following
definition will be of central importance:

Definition 2.4 An L–space is a rational homology sphere Y for which dim cHF.Y /D
jH1.Y IZ/j. An L–space slope is a slope  in @M for which the result of Dehn filling
M./ is an L–space. For anyM with torus boundary, let LM denote the set of L–space
slopes in @M.
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We will need to distinguish certain L–space slopes. To do this, consider the natural
inclusion

yQ ,! yRDR[
˚
1
0

	
arising from orienting the basis slopes so that ˛ � ˇ D C1, and endow yQ with the
subspace topology. With this identification, LM � yQ.

Definition 2.5 The set of strict L–space slopes, denoted by LıM , is the interior of the
subset LM .

Recall that, if a; b 2 yQ, then the subsets .a; b/ \ yQ and Œa; b� \ yQ are open and
closed, respectively, in yQ. By abuse, we will write simply .a; b/ and Œa; b� with the
understanding that these describe subsets of yQ.

A key example to consider is that of the exterior of a nontrivial knot K in S3, with
M D S3 X �K. In this case it is well known that, if M admits a nontrivial L–space
filling, then LM is either Œ2g � 1;1� or Œ1; 1 � 2g� relative to the preferred basis
consisting of the knot meridian � (corresponding to 1=0) and the Seifert longitude �
(corresponding to 0), where g denotes the Seifert genus of K. Notice that � and
.2g� 1/�C� are nonstrict L–space slopes by definition. On the other hand, if K is
the trivial knot then M ŠD2�S1 and LM D LıM D yQXf0g since these are precisely
the fillings that give lens spaces.

Every bordered manifold comes with a preferred identification of the set of slopes
with yQ; in particular, the notation p=q 2 L.M; ˛; ˇ/ should be understood to mean
the slope ˙.p˛ C qˇ/ 2 LM . We will adhere to this convention, and use the two
interchangeably where there is no potential for confusion.

2.6 Gluing via change of framing

In the interest of determining the set LM we will need a means of describing any
slope  in @M in terms of a fixed basis of slopes f˛; ˇg. Suppose .M; ˛; ˇ/ is given;
we would like to calculate cHF.M.p˛C qˇ//. Then, according to the pairing theorem,cCF.M.p˛C qˇ//Š bCFA.D2 �S1; m; l/� bCFD.M; r˛C sˇ; p˛C qˇ/;

where
�
q p
s r

�
2 SL2.Z/. Notice that pD 0 recovers a chain complex for the dual filling.

Fixing a basis so that
�
1
0

�
represents the standard slope and

�
0
1

�
represents the dual

slope, notice that the Dehn twist along ˛ carrying ˇ 7! ˛Cˇ is encoded by the matrix�
1 1
0 1

�
. Call this the standard Dehn twist and denote it by Tst. Similarly, the Dehn twist

along ˇ carrying ˛ 7! ˛Cˇ is encoded by the matrix
�
1 0
1 1

�
. Call this the (negative)
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dual Dehn twist and denote it by T �1du . Associated with each Dehn twist is a mapping
cylinder and to this Lipshitz, Ozsváth and Thurston assign a bimodule. Bimodules are
defined similarly to type D and type A structures, except that there are two separate
actions which may each be either type D or type A, so that bimodules can have type
DD, DA, AD or AA; see [19]. For the Dehn twists T˙1st and T˙1du , we use yT˙1st

and yT˙1du to denote the corresponding type DA bimodules.1

We can take box tensor products of bimodules or of a module and a bimodule by
pairing one type D action with one type A action. The convention is that type D
actions are always left actions while type A actions are always right actions, and since
the sidedness of the actions is unambiguous we will use the ordering of modules in
a product to indicate which actions are involved. That is, for (bi)modules N and M
we will understand N �M to mean the result of pairing the last action on N with the
first action on M, even if the former is a left action and the latter is a right action. In
practice this will be clear from the context.

Given an odd-length continued fraction expansion p=q D Œa1; a2; : : : ; an�, we obtain a
decomposition according to Dehn twists,�

q p

s r

�
D

�
1 1

0 1

�an

� � �

�
1 0

1 1

�a2
�
1 1

0 1

�a1

:

The bordered manifold .M; r˛Csˇ; p˛Cqˇ/ is obtained from .M; ˛; ˇ/ by attaching
the mapping cylinder of a homeomorphism h with representative h� D

�
q p
s r

�
, and so

bCFD.M; r˛C sˇ; p˛C qˇ/Š yT an
st � � � �� yT �a2

du � yT a1
st � bCFD.M; ˛; ˇ/;

where yT nst D
yTst � � � �� yTst„ ƒ‚ …

n

.

More generally, given bordered manifolds .M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/, we can
calculate

bCFA.M; ˛1; ˇ1/� bCFD.M; r˛2C sˇ2; p˛2C qˇ2/

by considering a homeomorphism h as above. This gives a complex computing cHF.Y /,
where

Y ŠM1[hM2 Š .M1; ˛1; ˇ1/[ .M2; r˛2C sˇ2; p˛2C qˇ2/

and h W @M1! @M2 is specified by

˛1 7! r˛2C sˇ2; ˇ1 7! p˛2C qˇ2:

1In the notation of [19, Section 10], we have yTst D1CFDA.�m/ and yTdu D1CFDA.��1
`
/.
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With these gluing conventions in place, we make an observation that will be of use in
the sequel:

Proposition 2.6 Given type D modules N1 and N2, let N 01 D yT
n

st �N1 and N 02 D
yT �ndu �N2 for some n 2 Z. There is a homotopy equivalence

N1� 1CFAA.I/�N2 ŠN
0
1� 1CFAA.I/�N 02;

where 1CFAA.I/ is the type AA identity bimodule.

Remark 2.7 The type AA identity bimodule is defined in [19] and, in particular,
gives rise to bCFA.M; ˛; ˇ/Š1CFAA.I/� bCFD.M; ˛; ˇ/. This observation leads to the
algorithm described in Section 2.4.

Proof of Proposition 2.6 The right-hand side of the claimed equivalence can be
written as

. yT nst �N1/� 1CFAA.I/� yT �ndu �N2:

The DA–bimodule yTst is homotopy equivalent to the AD–bimodule

1CFAA.I/� yTdu � 1CFDD.I/:

To see this, note that the Heegaard diagram for Tst D �m in [19, Figure 25] can be
obtained from the Heegaard diagram for Tdu D �l by rotating 180 degrees. Thus the
right side above simplifies to

N1� .1CFAA.I/� yTdu � 1CFDD.I//n� 1CFAA.I/� yT �ndu �N2

ŠN1� 1CFAA.I/� yT ndu � yT �ndu �N2

ŠN1� 1CFAA.I/�N2:

Remark 2.8 If N1 D bCFD.M1; ˛1; ˇ1/ and N2 D bCFD.M2; ˛2; ˇ2/, the homotopy
equivalence above corresponds to the fact that, with the gluing conventions described
above,

.M1; ˛1; ˇ1/[ .M2; ˛2; ˇ2/Š .M1; ˛1; ˇ1Cn˛1/[ .M2; ˛2Cnˇ2; ˇ2/

for any n 2 Z.

2.7 Grading

We conclude this discussion with a description of the relative .Z=2Z/–grading on the
bordered invariants, summarizing the discussion in [9, Section 2.2]. For more details
and developments, see [15; 26]
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The torus algebra A may be promoted to a graded algebra by defining gr.�1/ D
gr.�3/D 0 and gr.�2/D 1, and extending according to gr.�I�J /� gr.�I /C gr.�J /
reduced modulo 2 (we will always drop this reduction from the notation). In particular,
the grading is 1 on all the remaining nonzero products �12, �23 and �123.

The relative .Z=2Z/–grading on elements x of a type D structure is determined by

gr.�I � x/� gr.�I /C gr.x/ and gr.@x/� gr.x/C 1:

In particular, given a connected A–decorated graph this relative grading is determined
by choosing the grading on a given vertex, and then noting that only edges labelled by
�1, �3 or the identity element of A alter the grading.

The relative .Z=2Z/–grading on elements x of a type A structure is determined by

gr.mkC1.x; �I1
; : : : ; �Ik

//� k� 1� gr.x/C
kX

jD1

gr.�Ij /:

Notice that, given a typeD structure with a choice of relative grading, a relative grading
on the associated typeA structure is obtained by switching the grading of each generator
with idempotent �0.

If Y Š .M1; ˛1; ˇ2/[.M2; ˛2; ˇ2/, choices of relative .Z=2Z/–gradings on each of the
objects bCFA.M1; ˛1; ˇ2/ and bCFD.M2; ˛2; ˇ2/ give rise to a relative grading on cCF.Y /
via the pairing theorem and the rule gr.x˝y/Dgr.x/Cgr.y/. This agrees with the usual
relative .Z=2Z/–grading on cCF.Y /, so that, in particular, j�.cCF.Y //j� jH1.Y IZ/j for
any rational homology sphere Y. At the level of homology, it follows immediately that
Y is an L–space if and only if every generator of cHF.Y / has the same grading. More
generally, the rule gr.x˝y/D gr.x/C gr.y/ determines the relative .Z=2Z/–grading
on tensor products involving bimodules.

Where required, we will make use of an additional marking on the vertices of an A–
decorated graph by f�C; ��; ıC; ı�g to indicate a choice of relative .Z=2Z/–grading
on the underlying differential module. In addition, given a type D structure N with a
choice of relative .Z=2Z/–grading, we define the idempotent Euler characteristics

��.N /D �.�0N/ and �ı.N /D �.�1N/:

Note that �� and �ı are well defined on homotopy classes of type D structures, since
changing the basis of N leaves the vertex set of the corresponding graph unchanged
and edge reduction removes a pair of �–vertices or a pair of ı–generators with opposite
gradings.
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The following lemma records how �� and �ı change under reparametrization of the
boundary:

Lemma 2.9 Let
�
q p
s r

�
2 SL2.Z/. Then

˙�� bCFD.M; r˛C sˇ; p˛C qˇ/D r�� bCFD.M; ˛; ˇ/C s�ıbCFD.M; ˛; ˇ/;

˙�ıbCFD.M; r˛C sˇ; p˛C qˇ/D p�� bCFD.M; ˛; ˇ/C q�ıbCFD.M; ˛; ˇ/:

Here the˙ choice depends on the choice of absolute .Z=2Z/–grading on bCFD.M; ˛; ˇ/
and bCFD.M; r˛C sˇ; p˛C qˇ/.

Proof This is true when r D q D 1 and s D p D 0. Assuming the claim is true for
given r , s, p and q, we check that it is true when p and q are replaced by pC r and
qC s by examining the effect of the standard Dehn twist. The relevant bimodule yTst is
pictured in Figure 2. It has three generators: one pairs with �0–generators to produce
�0–generators, one pairs with �1–generators to produce �1–generators, and one pairs
with �0–generators to produce �1–generators. All three generators have the same relative
.Z=2Z/–grading; we will assume they have grading 0. It follows that

�� bCFD.M; r˛Csˇ; .pCr/˛C.qCs/ˇ/D ��. yTst � bCFD.M; r˛Csˇ; p˛Cqˇ//

D �� bCFD.M; r˛Csˇ; p˛Cqˇ/

D r�� bCFD.M; ˛; ˇ/Cs�ıbCFD.M; ˛; ˇ/;

�ıbCFD.M; r˛Csˇ; .pCr/˛C.qCs/ˇ/

D �ı. yTst � bCFD.M; r˛Csˇ; p˛Cqˇ//

D �ıbCFD.M; r˛Csˇ; p˛Cqˇ/C�� bCFD.M; r˛Csˇ; p˛Cqˇ/

D .pCr/�� bCFD.M; ˛; ˇ/C.qCs/�ıbCFD.M; ˛; ˇ/:

Similarly, we check the claim for when r and s are replaced with r �p and s� q by
considering the dual Dehn twist bimodule yTdu (pictured in Figure 4). This bimodule
has three generators with relative .Z=2Z/–gradings 0, 0 and 1: the first pairs with
�0–generators to produce �0–generators, the second pairs with �1–generators to produce
�1–generators, and the third pairs with �1–generators to produce �0–generators. It
follows that

�� bCFD.M; .r�p/˛C.s�q/ˇ; p˛Cqˇ/

D��. yTdu � bCFD.M; r˛Csˇ; p˛Cqˇ//

D�� bCFD.M; r˛Csˇ; p˛Cqˇ/��ıbCFD.M; r˛Csˇ; p˛Cqˇ/

D .r�p/�� bCFD.M; ˛; ˇ/C.s�q/�ıbCFD.M; ˛; ˇ/;
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�ıbCFD.M; .r�p/˛C.s�q/ˇ; p˛Cqˇ/D�ı. yTdu � bCFD.M; r˛Csˇ; p˛Cqˇ//

D�ıbCFD.M; r˛Csˇ; p˛Cqˇ/

Dp�ıbCFD.M; ˛; ˇ/Cq�ıbCFD.M; ˛; ˇ/:

The argument extends easily to multiples and inverses of Dehn twists. The claim
follows by decomposing an arbitrary element of SL2.Z/ into Dehn twists.

For rational homology spheres, we will be interested in a distinguished slope, referred
to as the rational longitude. Given a bordered structure .˛; ˇ/ for M, this slope
 D p˛C qˇ is characterized by the property that some collection of like-oriented
copies of  bounds a surface in M. This slope is recorded by the fraction p=q, and the
.Z=2Z/–grading allows us to recover this data from bCFD.M; ˛; ˇ/ as follows:

Proposition 2.10 Fix a spinc–structure s on a bordered manifold .M; ˛; ˇ/, and
let �� and �ı denote the Euler characteristics of bCFD.M; ˛; ˇI s/ in the appropriate
idempotent. If �� D �ı D 0, then M is not a rational homology solid torus. Otherwise ,
M is a rational homology solid torus , the nullhomologous curves in @M are the
multiples of �ı˛���ˇ, and , in particular , the rational longitude is ��ı=��.

Proof Let s0 be a spinc–structure on M.p˛C qˇ/ that restricts to s on M. The Euler
characteristic �cHF.M.p˛Cqˇ/I s0/ is nonzero if and only ifM.p˛Cqˇ/ is a rational
homology sphere [24, Proposition 5.1]. The closed manifold M.p˛C qˇ/ is the dual
filling of .M; r˛C sˇ; p˛C qˇ/ for any r and s with rq�ps D 1. Thus, up to sign,
�cHF.M.p˛C qˇ/I s0/ is

�ıbCFD.M; r˛C sˇ; p˛C qˇI s0/D p��C q�ı

by applying Lemma 2.9. Note that if �� and �ı are both zero, then M.p˛Cqˇ/ is not
a rational homology sphere for any p=q and hence M is not a rational homology solid
torus. Otherwise,M.p˛Cqˇ/ is a rational homology sphere unless p=qD��ı=��2 yQ.
It follows that when M is a rational homology solid torus the slope of the rational
longitude is ��ı=��.

For the remainder of the proof, let p=q D��ı=��, where p and q are relatively prime.
The multicurve np˛C nqˇ is nullhomologous in M for some n > 0. To determine
the smallest such n consider the standard filling of .M; r˛C sˇ; p˛C qˇ/ for some r
and s with rq �ps D 1. This manifold is obtained from M by adding a solid torus
identifying the longitude l with p˛Cqˇ; the resulting first homology group is a direct
sum of H1.M; @M/ and H1.D2�S1/ (which is generated by the longitude l) with the
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relation nl D np˛Cnqˇ D 0. Since H1.M; @M/ indexes the spinc–structures on M,
for each spinc structure s on M, there are n elements of H1.M.r˛C sˇ//. It follows
that �cHF.M.r˛C sˇ/I s0/D n for each s0. By Lemma 2.9, we have

nD �� bCFD.M; r˛C sˇ; p˛C qˇI s0/D r��C s�ı;

which may be combined with the fact that nD nqr �nps. So, up to sign, .��; �ı/D
.nq;�np/ and hence the minimal nullhomologous multicurve in @M is �ı˛���ˇ, as
claimed.

Remark 2.11 The minimal integer n appearing in this proof, multiplied by the number
of spinc structures, corresponds to the constant cM associated with M described in
[29, Section 3.1].

3 Loop calculus

A focus of this work is the development of a calculus for studying bordered invariants.
This will be achieved by restricting to a class of manifolds whose bordered invariants
can be represented by certain valence two A–decorated graphs, which we will call loops.

3.1 Loops and loop-type manifolds

Towards defining loops, consider the following arrows which may appear in an A–
decorated graph:

�

�

�

�123

�12

�1

I�

�

�

�

�12

�2

�3

II�

ı

ı

ı

�1

�23

�2

Iı

ı

ı

ı

�123

�23

�3

IIı

We will be interested in valence two A–decorated graphs subject to the following
restriction:

(?) Each �0–vertex is adjacent to an edge of type I� and an edge of type II�, and
each �1–vertex is adjacent to an edge of type Iı and an edge of type IIı.

Definition 3.1 A loop is a connected valence two A–decorated graph satisfying .?/.

Since any loop describes a differential module over A, a loop may be promoted to a
graded loop via the .Z=2Z/–grading described in Section 2.7. In particular, where
needed, the vertex set will be extended to f�C; ��; ıC; ı�g.
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As abstract combinatorial objects loops provide a tractable structure to work with; this
section develops a calculus for doing so. The results derived from this calculus apply
to the following class of bordered invariants:

Definition 3.2 The bordered invariant bCFD.M; ˛; ˇ/ is said to be of loop-type if, up
to homotopy, it may be represented by a collection of loops, that is, by a (possibly
disconnected) A–decorated valence two graph satisfying .?/. For simplicity, in this
paper we will make the additional assumption that the number of connected components
of the valence two graph describing bCFD.M; ˛; ˇ/ coincides with jSpinc.M/j.

We will refer to the bordered manifold .M; ˛; ˇ/ being of loop-type when the associated
bordered invariant has this property. Some motivation for this definition is provided by
the following:

Proposition 3.3 Let H be a bordered Heegaard diagram describing .M; ˛; ˇ/ and
suppose bCFD.M; ˛; ˇ/ D bCFD.H/ is reduced and represented by a valence two A–
decorated graph having a single connected component per spinc–structure. Then
bCFD.M; ˛; ˇ/ is loop-type.

Proof The hypothesis bCFD.M; ˛; ˇ/D bCFD.H/ allows us to use the notion of gener-
alized coefficient maps developed in [20, Section 11.6], which force restrictions on the
type D modules that can occur as invariants of manifolds with torus boundary. Briefly,
generalized coefficient maps are extra differentials obtained by counting holomorphic
curves that run over the basepoint. The torus algebra is extended with additional Reeb
chords: �0, �01, �30, �012, �301, �230, �0123, �3012, �2301 and �1230. With these
additional differentials, @2 D 0 is no longer satisfied. However, we have instead that

@2.x/D �1230xC �3012x for any x in �0 bCFD.M; ˛; ˇ/;

@2.x/D �2301xC �1230x for any x in �1 bCFD.M; ˛; ˇ/:

Let x be a generator with idempotent �0. Since @2.x/ contains the term �1230x, @.x/ con-
tains the term �I1

y and @.y/ contains the term �I2
x for some y 2 bCFD.M; ˛; ˇ/

and some (generalized) Reeb chords �I1
and �I2

such that �I1
�I2
D �1230. Since

we assumed that bCFD.M; ˛; ˇ/ is reduced, I1 and I2 are not ∅. It follows that
I1 2 f1; 12; 123g and, in the graphical representation, the vertex corresponding to x
has an incident edge of type I�.

Since @2.x/ contains the term �3012x, @.x/ contains the term �I1
y and @.y/ contains

the term �I2
x for some y 2 bCFD.M; ˛; ˇ/ and some (generalized) Reeb chords �I1

and �I2
such that �I1

�I2
D �3012. It follows that either I1 D 3 or I2 2 f2; 12g and,
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in the graphical representation, the vertex corresponding to x has an incident edge of
type II�. Since any vertex has valence two by assumption, the vertex corresponding
to x must have exactly one edge from each of I� and II�.

The argument when x has idempotent �1 is similar. Since @2.x/ contains the term
�2301x, it follows that the vertex corresponding to x is adjacent an edge of type Iı;
and since @2.x/ contains the term �0123x, it follows that the corresponding vertex is
adjacent to an edge of type IIı.

Remark 3.4 While this argument required a particular choice of Heegaard diagram,
it seems likely that this hypothesis is not a necessary. However, for the purposes of this
work the more general statement will not be required — we simply restrict to the graphs
satisfying .?/ by definition — and leave developing the necessary algebra to future work.

It is important to note that loops in the abstract need not be related to three-manifolds: it
is not necessarily true that every loop (or disjoint union of loops) arises as the bordered
invariant of some three-manifold with torus boundary. This section concludes with an
explicit example for illustration.

3.2 Standard and dual notation

It is natural to decompose a loop into pieces by breaking along vertices corresponding
to one of the two idempotents; the constraint .?/ suggests that the pieces resulting
from such a decomposition are quite limited. Indeed, breaking along generators with
idempotent �0, five essentially different chains are possible and these possibilities are
listed in Figure 1, left. Since .?/ also puts restrictions on how these segments can be
concatenated, each piece is depicted with puzzle-piece ends. For instance, a type a
piece can be followed by a type b piece, but not by a type c piece. Any given piece
may also appear backwards; we denote this with a bar.

Segments of type a and b behave differently from the other segment types in several
ways. We will call type a and b segments stable chains and type c, d and e segments
unstable chains. This terminology comes from [20, Theorem 11.26], where the notion
of unstable chains was introduced in order to describe a procedure for extracting the
bordered invariants from knot Floer homology. Three types of unstable chains were
described, which correspond precisely to our type c, d and e segments. Type a and b
segments also appeared as the segments coming from horizontal arrows and vertical
arrows, respectively, in knot Floer homology. The motivation for this terminology is
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� ı ı �
�3 �23 �2ak „ ƒ‚ …

k

� �
�3 �12 �123a�

k „ ƒ‚ …
k

ı ı
�123 �23 �1bk „ ƒ‚ …

k

ı � � ı
�2 �12 �1b�

k „ ƒ‚ …
k

� ı ı
�3 �23 �1ck „ ƒ‚ …

k

� � ı
�3 �12 �1c�

k „ ƒ‚ …
k

ı ı �
�123 �23 �2dk „ ƒ‚ …

k

ı � �
�2 �12 �123d�

k „ ƒ‚ …
k

�
�12eDd0 ı

�23e�Dd�0

Figure 1: Possible segments: Standard notation (left) is obtained by breaking
a loop along �0 idempotents (�–vertices) and dual notation (right) is obtained
by breaking a loop along �1 idempotents (ı–vertices). Note that the integer k
records the number of interior vertices, so that the �23 (for standard notation)
or �12 (for dual notation) appears k� 1 times.

that, as we will see in Section 3.4, stable chains are preserved by certain Dehn twists
while unstable chains are not.

Denote the standard alphabet by

AD fai ; bi ; cj ; dj g;

where i 2 ZX f0g and j 2 Z. The letters in the standard alphabet correspond directly
to the segments depicted in Figure 1, with the relationships

a�i D Nai and b�i D Nbi
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for i > 0 as well as
c�j D Ndj and d�j D Ncj

for j � 0 with d0 D e D Nc0 and Nd0 D Ne D c0. Throughout this paper we will always
assume these shorthand relationships and, by abuse, we will often not distinguish
between segments and letters. For instance, the symbols d0 and e will be used inter-
changeably and may refer either to a letter in the standard alphabet or the corresponding
A–decorated graph segment. As a result of this equivalence, the notation Ns makes sense
for any standard letter s, with the understanding that NNs D s.

We will be interested in the set of cyclic words WA on the alphabet A that are consistent
with the puzzle-piece notation of Figure 1, which encodes the restriction .?/. Thus,
for example, the cyclic word c1 is an element of WA while the cyclic word a1 is not.
Another immediate restriction is that an element of WA must contain an equal number
of a–type letters and b–type letters.

Proposition 3.5 A loop ` with at least one �0–generator may be represented as a cyclic
word w` in WA. Moreover , this representation is unique up to overall reversal of the
word w` , that is , writing w` with the opposite cyclic ordering and replacing each letter
s with Ns.

Proof This is immediate from the definitions.

As a result, we will be interested in the equivalence class that identifies w` and xw` ,
where xw` denotes the reversal of w` . Denote this equivalence class of cyclic words
by .w` /; by abuse we will continue referring to .w` / as a cyclic word. By Proposition
3.5, this sets up a one-to-one correspondence `$ .w` / between loops with at least
one �0–decorated vertex and (equivalence classes of) cyclic words in WA.

Definition 3.6 When ` is represented by a cyclic word .w` / using the standard
alphabet, we say ` is written in standard notation.

A loop cannot be written in standard notation if it does not contain an �0–decorated
vertex. This suggests it will sometimes be useful to break a loop along �1–decorated
vertices. There are again five types of chains possible, as listed in Figure 1, right. As
before, the first two types will be referred to as stable chains and the rest as unstable
chains. Denote the dual alphabet by

A� D fa�i ; b
�
i ; c
�
j ; d

�
j g
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(i 2 ZXf0g and j 2 Z), where, as before, a�
�i D Na

�
i , b�
�i D

Nb�i (for i > 0), c�
�j D

Nd�j ,
d�
�j D Nc

�
j (for j � 0) and d�0 D e

� D Nc�0 . Proceeding as before, let WA� denote the set
of cyclic words in the alphabet A� which are consistent with the puzzle-piece notation.

Proposition 3.7 A loop ` with at least one �1–generator may be represented as a cyclic
word w�

`
in WA� . Moreover , this representation is unique up to overall reversal of the

word w�
`

.

Proof This is immediate from the definitions.

Again, we denote by .w�
`
/ the equivalence class identifying w�

`
and xw�

`
, and remark

that this gives rise to a second one-to-one correspondence `$ .w�
`
/ for loops ` with

at least one �1–decorated vertex.

Definition 3.8 When ` is represented by a cyclic word .w�
`
/ using the dual alphabet,

we say ` is written in dual notation.

Collecting these observations, notice that, whenever ` contains instances of both
idempotents, the pair of correspondences .w�

`
/$ ` $ .w` / sets up a natural map

between the standard representation and the dual representation. In particular, this
allows us to set .w` /

� D .w�
`
/ in a well-defined way; we refer to .w` /

� as the dual
of .w` / and remark that .w` /

�� D .w` /.

This description of loops as cyclic words is the essential starting point for loop calculus.
A typical loop will have vertices in both idempotents, so it is expressible in both
standard and dual notation; switching between the two will be a key part of the loop
calculus. We now make this process explicit.

First notice that, given .w` / representing a loop ` in standard notation, there is a
natural normal form .w` /D .u1v1u2v2 : : :unvn/, where

(N1) the subword ui is a standard letter with subscript ki ¤ 0; and

(N2) the subword vi is ni � 0 consecutive copies of either d0 or c0 (here ni may be
zero).

This normal form makes sense for any w` that does not consist only of d0 D e or
c0 D Ne letters; we may safely ignore these sporadic examples since, in these cases, `

has no �1–decorated vertices and cannot be expressed in dual notation.

Now the dual word w�
`

is obtained as follows:
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(D1) Replace each vi by a dual letter with subscript ni C 1 and type2 determined by
(the types of) the ordered pair fui ;uiC1g (written uiuiC1 for brevity) from the
subword uiviuiC1 according to the rules

Nab; Nad; Ncb; Ncd ! a�; Nba; Nbc; Nda; Ndc! Na�;

a Nb; a Nc; d Nb; d Nc! b�; b Na; b Nd; c Na; c Nd ! Nb�;

Na Nb; Na Nc; Nc Nb; Nc Nc! c�; ba; bc; ca; cc! Nc�;

ab; ad; db; dd ! d�; Nb Na; Nb Nd; Nd Na; Nd Nd ! Nd�:

Note that indices are taken mod n, so unC1 is identified with u1.

(D2) Replace each ui with the subword consisting of ki � 1 consecutive d�0 letters if
ki > 0 or 1� ki consecutive c�0 letters if ki < 0.

To convert from dual notation to standard notation, we use exactly the same proce-
dure (interchanging the words standard and dual and adding/removing stars where
appropriate in the discussion above). Note that letters in dual (resp. standard) notation
correspond to consecutive pairs of letters in standard (resp. dual) notation after we ignore
letters with subscript 0. We make the following observation about this correspondence:

Observation 3.9 Stable chains in dual (resp. standard ) notation correspond precisely
to consecutive pairs of letters in standard (resp. dual ) notation , ignoring letters with
subscript 0, whose subscripts have opposite signs.

With the forgoing in place we will not distinguish between loops in standard or in dual
notation; for a given loop ` containing (vertices decorated by) both idempotents, it is
always possible to choose a representative for ` in either of the alphabets A or A�. In
summary: We will regard a loop as both a graph-theoretic object and as an equivalence
class of words .w` / and .w�

`
/ modulo dualizing. In particular, we will adopt the abuse

of notation that ` is such an equivalence class of words, where convenient, and think
of loops as graph-theoretic objects and word-theoretic objects interchangeably. In
particular, we will let the notation ` stand in for a choice of cyclic word representative
(in either alphabet).

We will often refer to a subword w of a given loop ` , so the notation .w/ indicating
the cyclic closure of a word (when it exists) will be used to distinguish subwords from

2Recall that a letter of type a, b, c or d with negative subscript can also be written as a letter of type Na,
Nb, Nd or Nc with positive subscript. Here the type of a standard letter (other than d0 and c0) refers to the
element of fa; Na; b; Nb; c; Nc; d; Ndg corresponding to the representation with positive subscript. Similarly, a
dual letter other than d�0 and c�0 has a well-defined type in fa�; Na�; b�; Nb�; c�; Nc�; d�; Nd�g.
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(equivalence classes of) cyclic words. The length of a subword is the number of pieces
(or letters) in the word.

To conclude with a particular example, let M denote the complement of the left-hand
trefoil and consider the bordered manifold .M;�; �/, where � is the knot meridian
and � is the Seifert longitude. Following [20, Chapter 11], bCFD.M;�; �/ is described
by a loop, as shown in

�ı�

ı

� ı

ı

�3�2

�123

�1

�2

�23

�123

We may express this in standard notation as .a1b1 Nd2/ or in dual notation as .a�1e
�b�1
Nd�1 /.

In particular, according to the discussion above, this pair of words is a represen-
tative of the same equivalence specifying the loop ` shown. That is, we regard
` � .a1b1 Nd2/ � .a

�
1e
�b�1
Nd�1 /. More generally, the homotopy type of the invariant

bCFD.M;�; �� .2C n/�/ is represented by the loop .a1b1cn/ for n 2 Z, following
the convention that c0 D Ne and cn D Nd�n when n < 0.

3.3 Operations on loops

We now define two abstract operations on loops: T and H. These operations are easy to
describe for loops in terms of standard and dual notation, respectively, and we will see
in the next subsection that they correspond to important bordered Floer operations.

If a loop ` cannot be written in standard notation (that is, it is a collection of only e�

segments), then T.`/D ` . Otherwise, express ` in standard notation and consider the
operation T determined on individual letters via

T.ai /D ai ; T.bi /D bi ; T.cj /D cj�1; T.dj /D djC1

for any i 2 ZX f0g and j 2 Z. For collections of loops, we also define T.f ìg
n
iD1/D

fT. ì /g
n
iD1. The operation T is invertible; denote the inverse by T�1.

Note that the letters ai and bi are fixed by T. As a result, these are sometimes referred to
as stable chains (or standard stable chains). The (standard) unstable chains are the letters
cj and dj . This is consistent with the notion of stable and unstable chains from [20].
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The operator H is defined similarly, but with respect to dual notation. If a loop ` cannot
be written in dual notation, then H.`/D ` . Otherwise, express ` in dual notation and
consider the operation H on ` defined on individual dual letters via

H.a�i /D a
�
i ; H.b�i /D b

�
i ; H.c�j /D c

�
j�1; H.d�j /D d

�
jC1

for any i 2 ZX f0g and j 2 Z. For collections of loops, we also define H.f ìg
n
iD1/D

fH. ì /g
n
iD1. As with T, H is an invertible operation with inverse H�1.

Note that a�i and b�i are fixed by H. When we have need for it, a�– and b�–type letters
will be referred to as dual stable chains, while c�– and d�–type letters will be referred
to as dual unstable chains.

The operation T is easy to define for loops in standard notation, but it would be difficult
to describe purely in terms of dual letters. Similarly, the operation H is simple to define
in dual notation, but would be complicated in terms of standard letters. This suggests
the need to comfortably switch between the two; in particular, given a loop ` expressed
in standard notation, finding H.`/ in standard notation is a three-step process: dualize,
apply H and dualize again.

We will often need to apply combinations of the operations T and H to a loop. The
composition T ı H�1 ı T, in particular, appears often; it will be convenient to regard
this composition as another loop operation, which we call E. The following lemma
describes the effect of E on a cyclic word in standard notation; this provides a convenient
shortcut compared with computing the operations T, H�1 and T individually. We state
the lemma for general loops, but we will only prove it in a special case.

Lemma 3.10 If ` is written in standard notation , then E.`/ is determined by the
following action of E on standard letters:

E.ak/D a
�
�k; E.bk/D b

�
�k; E.ck/D c

�
�k; E.dk/D d

�
�k :

Proof We give the proof in the special case that ` consists only of dk segments with
k � 0. The general proof is left to the reader.

Let ` D .dk1
dk2

: : : dkn
/, with ki � 0. Then T.`/D .dk1C1 : : : dknC1/. Writing this

in dual notation and applying H�1, we have

T.`/D .d�1 d
�
0 : : : d

�
0„ ƒ‚ …

k1

d�1 d
�
0 : : : d

�
0„ ƒ‚ …

k2

: : : d�1 d
�
0 : : : d

�
0„ ƒ‚ …

kn

/;

H�1 ı T.`/D .d�0 d
�
�1 : : : d

�
�1„ ƒ‚ …

k1

d�0 d
�
�1 : : : d

�
�1„ ƒ‚ …

k2

: : : d�0 d
�
�1 : : : d

�
�1„ ƒ‚ …

kn

/:
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Dualizing and twisting again gives

H�1 ı T.`/D .c2 c1 : : : c1„ ƒ‚ …
k1�1

c2 c1 : : : c1„ ƒ‚ …
k2�1

: : : c2 c1 : : : c1„ ƒ‚ …
kn�1

/;

T ı H�1 ı T.`/D .c1 c0 : : : c0„ ƒ‚ …
k1�1

c1 c0 : : : c0„ ƒ‚ …
k2�1

: : : c1 c0 : : : c0„ ƒ‚ …
kn�1

/;

T ı H�1 ı T.`/D .d�
�k1

d�
�k2

: : : d�
�kn

/:

As suggested by the example of the left-hand trefoil exterior given at the end of the
last subsection, expressing loops as cyclic words gives rise to clean way of describing
a type D structure. This extends to reparametrization: consulting [20, Chapter 11],
whenM is the exterior of the left-hand trefoil, bCFD.M;�; ��.2Cn/�/ is represented
by the loop .a1b1cn/ for n 2 Z. Motivating the next subsection, this loop may be
expressed as T�n.`/, where ` D .a1b1c0/.

3.4 Dehn twists

The operators T and H naturally encode the effect of a Dehn twist on a loop representing
the type D structure of a bordered manifold. Recall that

yT˙1st � bCFD.M; ˛; ˇ/Š bCFD.M; ˛; ˇ˙˛/

and, more generally, for any type D structure N over A the pair of type D structures
yT˙1st �N are well defined.

Proposition 3.11 If ` is a loop with corresponding type D structure N` , then N˙
`
D

yT˙1st �N` is a loop-type module represented by the loop T˙.`/.

Proof We compute the box tensor product yTst �N` by considering the effect on one
segment at a time in a standard representative for ` .

Recall from [19, Section 10] (see Figure 2) that the type DA bimodule yTst has three
generators p, q and r (denoted by �, ı and �, respectively, in Figure 2) with idempotents
determined by p D �0p�0, q D �1q�1 and r D �1r�0. Thus each generator x 2 �1N`

gives rise to a single generator q˝ x 2 yTst �N` , and each generator x 2 �0N` gives
rise to two generators p˝x and r˝x in the box tensor product. There is always a �2
arrow from r ˝ x to p˝ x; that is, @.r ˝ x/ has a summand �2 � .p˝ x/.

If generators x; y 2 �0N` are connected by a single segment s (in the loop `), we will
consider the portion of a loop representing NC

`
between p˝ x and p˝ y and show
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�

� ı

�23˝�23�1˝�1C�123˝�123C�3˝.�3;�23/

�2˝1

�123˝�12

C�3˝.�3;�2/

1˝�3

�23˝�2

�

� ı

�12˝.�123˝�2/ �23˝�23�1˝�1C�123˝�123

�2˝.�23;�2/

�2˝.�3;�2/

�3˝1C�1˝�12

�23˝�3

1˝�2

Figure 2: Graphical representations of the Dehn twist bimodules yTst (left)
and yT �1st (right), following [19, Section 10].

that (up to homotopy equivalence) it is the segment T.s/. To talk about the portion
between, we need a (cyclic) ordering on the elements of NC

`
. This is inherited from a

choice of cyclic ordering on the elements of ` , together with a specified order of p˝x
and r ˝ x for each x 2 �0N` . If there is a segment s from x to y, we say that r ˝ x is
between p˝ x and p˝y if the puzzle piece shape of s on the x end agrees with the
shape of ak , that is, if s is ak , Nak , ck , Ndk or Ne.

Consider first a segment ak from x to y, where x and y are generators of �0N` . The
cases of k D 1 and k � 2 are slightly different; both are pictured in Figure 3. In either
case, the effect of tensoring the segment with yTst is pictured. There is a differential
starting at r ˝ x; after cancelling this differential, the result is a segment of type
ak D T.ak/ from p˝ x to p˝y.

Consider next a segment bk from x to y. Tensoring the segment with yTst, we see that
the portion between p˝ x and p˝y is simply a segment of type bk D T.bk/. Note
that the generators r˝x and r˝y are not included in this new segment; they must be
included in the segments on either side.

If x and y are connected by a segment ck , then there is a differential starting at r ˝ x.
If k > 1, then cancelling this differential leaves a segment from p˝x to p˝y of type
ck�1 D T.ck/. If k D 1, then cancelling the differential produces a new �12 arrow, and
thus there is a segment Ne D T.c1/ from p˝ x to p˝y. If x and y are connected by
segments dk or e, we see in Figure 3 that the portion of NC

`
from x˝p to y˝p is a

segment dkC1 D T.dk/ or d1 D T.e/, respectively.

Segments with the opposite orientation behave the same way. A segment of Ns from
x to y is the same as a segment s from y to x. In the tensor product, this produces a
segment T.s/ from p˝y to p˝ x, or a segment T.s/D T.Ns/ from p˝ x to p˝y.
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Figure 3: Illustrating the proof of Proposition 3.11: The effect of box tensor-
ing with yTst on each of the possible segments occurring in a loop expressed
in standard notation. Unmarked edges, which are eliminated using edge
reduction described in Section 2.3, are highlighted.

It remains to check that a loop consisting only of e� segments represents a type D
structure N that is fixed by the action of the standard Dehn twist. This is easy to see,
since in this case the only relevant operation in yTst is

m2.q; �23/D �23 � q:

Geometry & Topology, Volume 27 (2023)



854 Jonathan Hanselman and Liam Watson

�

ı �

�12˝�12�3˝�3C�123˝�123C�1˝.�12;�1/

�2˝1

�123˝�23

C�1˝.�2;�1/

1˝�1

�12˝�2

�

ı �

�23˝.�2˝�123/ �12˝�12�3˝�3C�123˝�123

�2˝.�2;�12/

�2˝.�2;�1/

�1˝1C�3˝�23

�12˝�1

1˝�2

Figure 4: Graphical representations of the Dehn twist bimodules yT �1du (left)
and yTdu (right), following [19, Section 10].

Each generator of �1N D N gives rise to one generator of NC and each �23 arrow
in N gives a �23 arrow in NC.

The case of yT �1st can be deduced from the case of yTst. Let N 0 be a type D module
represented by the loop T�1.`/. We have just shown

yTst �N 0 ŠN

and it follows that
yT �1st �N Š yT �1st � yTst �N 0 ŠN 0

since yT �1st � yTst is homotopy equivalent to the identity bimodule.

Proposition 3.12 If ` is a loop with corresponding type D structure N` , then N�
`
D

yT�1du �N` is a loop-type module represented by the loop H˙.`/.

Proof The proof is similar, with the relevant bimodules yTdu and yT �1du shown in Figure 4.
The result of tensoring yTdu with each type of dual segment is shown in Figure 5. We
see that a� and b� segments are fixed, c�

k
segments become c�

kC1
segments, and d�

k

segments become d�
k�1

segments. In other words, tensoring yTdu with a dual segment s�

gives H�1.s�/. Thus, for a loop ` , yTdu �` is the loop H�1.`/. Since yT �1du is the inverse
of yTdu, we conclude that yT �1du � ` is the loop H.`/.

We conclude this discussion by observing that the notion of a manifold M (with
torus boundary) being of loop-type is now well defined. In particular, since any
reparametrization of a loop gives rise to a loop, it follows that the property of loop-type
(or having loop-type bordered invariants) is independent of the bordered structure and
hence a property of the underlying (unbordered) manifold. Indeed:

Definition 3.13 A compact, orientable, connected three-manifoldM with torus bound-
ary is loop-type if bCFD.M; ˛; ˇ/ is of loop-type for any choice of basis slopes ˛ and ˇ.
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Figure 5: Illustrating the proof of Proposition 3.12: The effect of the Dehn
twist yTdu on each of the possible segments occurring in a loop expressed in
dual notation. Unmarked edges, which are eliminated using edge reduction
described in Section 2.3, are highlighted.

3.5 Solid tori

As a simple example of the loop operations described above, we now describe the
computation of bCFD of a solid torus with arbitrary framing. By a p=q–framed solid
torus, we will mean a bordered solid torus .D2 �S1; ˛; ˇ/ such that the meridian is
p˛C qˇ. Recall that for the standard (0–framed) and dual (1–framed) solid tori we
have

bCFD.D2 �S1; l; m/D .e/; bCFD.D2 �S1; m; l/D .e�/:

The bordered invariants for solid tori with other framings can be computed by applying
Dehn twists as described in Section 2.6.
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Example 3.14 We compute bCFD of the 7
2

–framed solid torus using the continued
fraction expansion �2

7
D Œ�1; 2;�2; 3�:

bCFD.D2�S1; l; m/ W .e/

+T3

bCFD.D2�S1; l; mC3l/ W .d3/ � .d�1 d
�
0 d
�
0 /

+H�2

bCFD.D2�S1;�2m�5l;mC3l/ W .c1c1c0c1c0/ � .d��1d
�
�2d

�
�2/

+T2

bCFD.D2�S1;�2m�5l;�3m�7l/ W .c�1c�1c�2c�1c�2/� .c��1c
�
�1c
�
�1c
�
0 c
�
�1c
�
�1c
�
0 /

+H�1

bCFD.D2�S1; mC2l;�3m�7l/ W .d�4d�3/ � .c�0 c
�
0 c
�
0 c
�
1 c
�
0 c
�
0 c
�
1 /

It is easy to check mD 7.mC2l/C2.�3m�7l/, and so .D2�S1; mC2l;�3m�7l/
is a 7

2
–framed solid torus. Note that given bCFD of a solid torus we can also check the

framing by using Proposition 2.10. If we choose the .Z=2Z/–grading so that endpoints
of dk chains in standard notation have grading 0 and endpoints of ck chains have
grading 1, it is not difficult to see that the Euler characteristic �� of a loop in standard
notation is the number of dk segments minus the number of ck segments and �ı is
given by the sum of the subscripts. Thus .D2 � S1; mC 2l;�3m� 7l/ has rational
longitude ��ı=�� D��72 .

bCFD for arbitrarily framed solid tori can be computed by a similar procedure. The
result is always a loop of a particularly simple form.

Lemma 3.15 If q ¤ 0, then bCFD.D2�S1; pmCql; rmC sl/ can be represented by
a single loop ` D .dk1

dk2
: : : dkm

/. Moreover , the difference between maxfkig and
minfkig is at most 1.

Proof If p D 0 (this implies that q D r D 1) then

bCFD.D2 �S1; l; mC sl/D yT sst � bCFD.D2 �S1; l; m/� Ts..e//D .ds/:

Otherwise, let Œa1; : : : ; a2n� be an even length continued fraction for q=p and choose
a2nC1 so that Œa1; : : : ; a2nC1� is a continued fraction for s=r . Then

bCFD.D2 �S1; pmC ql; rmC sl/Š yT a2nC1

st � � � �� yT �a2

du � yT a1
st � bCFD.M; l;m/

� Ta2nC1 ı Ha2n ı � � � ı Ha2 ı Ta1..d0//:
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If p=q is positive, we may assume that ai > 0 for all 1 � i � 2n. We will show by
induction on n that Ha2n ı � � � ıHa2 ı Ta1..d0// is a loop in standard notation consisting
only of d0 and d1 chains. The base case of n D 0 is immediate. Assuming that
Ha2n�2 ı � � � ı Ha2 ı Ta1..d0// is a loop in standard notation consisting only of d0 and
d1 chains, applying the twist Ta2n�1 produces a loop consisting of dk chains with only
positive subscripts. In dual notation, such a loop involves only d�0 and d�1 segments.
Applying the twist Ha2n produces a loop consisting of d�

k
segments with positive

subscripts. Switching to standard notation, this loop contains only d0 and d1 segments.
Similarly, if p=q is negative, we assume that ai < 0 for 1 � i � n and observe by
induction that Ha2n ı � � � ıHa2 ı Ta1..d0// is a loop in standard notation consisting only
of d0 and d�1 chains.

Finally, applying the twist Ta2nC1 preserves the fact that the loop consists of type dk
unstable chains. It also preserves the relative differences of the subscripts, so the
difference between the maximum and minimum subscript remains at most one.

3.6 Abstract fillings and abstract slopes

Recall that a loop ` represents a type D structure, which by slight abuse of notation we
denote by ` . Since ` is reduced, there is an associated type A structure as described in
Section 2.4, which we denote by `A. As a result, given loops 1̀ and 2̀ we can represent
the chain complex produced by the box tensor product of the associated modules by
`A1 � 2̀. Since loops are connected A–decorated graphs, the type D and type A struc-
tures associated to a loop have a well-defined relative .Z=2Z/–grading, as described in
Section 2.7. The gradings on `A1 and 2̀ induce a relative .Z=2Z/–grading on `A1 � 2̀.

Consider the loops
�̀
D .e/ and ı̀ D .e

�/. Given any loop ` , we have a pair of chain
complexes

C`

�
1
0

�
D `A
�

� ` and C` .0/D `Aı � ` ;

which, noting that
�̀

and ı̀ represent type D structures of the standard and dual
(bordered) solid torus, respectively, might be regarded as abstract standard and dual
Dehn filings of ` , respectively.

Remark 3.16 We do not need to assume ` is bounded, since, if it is not, it is homotopy
equivalent to a modified loop which is bounded and has the same box tensor product
with `A

�
. Such a modified loop can be obtained by replacing either a �12 arrow with

the homotopy equivalent (but not reduced) sequence

� ı ı �
�1 �2
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or a �123 arrow with
� ı ı �
�1 �23

If ` cannot be written in standard notation — that is, it is a collection of e� segments —
then H�.`A� � `/ must have two generators of opposite grading. To see this, replace
one e� segment with

ı � � ı
�2 �3

to produce a bounded modified loop.

The standard filling picks out the �–idempotent, in practice, and adds a differential for
each type ak chain. The dual filling picks out the ı–idempotent and adds a differential
for each b�

k
chain. For instance, when M is the exterior of the left-hand trefoil and

bCFD.M;�; �/ is represented by ` � .a1b1 Nd2/� .a
�
1e
�b�1
Nd�1 /, the resulting complexescCF.S3/Š cCF.M.�//Š `A

�
� ` and cCF.M.�//Š `Aı � ` are

�ı�

ı

� ı

ı

�3�2

�123

�1

�2

�23

�123

��

�

ı

ı

ı

ı

We regard the chain complexes C`

�
1
0

�
and C` .0/ as the result of abstract Dehn fillings

along a pair of abstract slopes in ` , which we identify with1D 1
0

(corresponding to
the standard filling) and 0 (corresponding to the dual filling). In fact, a given loop `

gives rise to a natural yQ–family of chain complexes: choosing an even-length continued
fraction p=q D Œa1; a2; : : : ; an�, let `p=q D Han ı � � � ı Ta3 ı Ha2 ı Ta1.`/ and define

C`

�
p

q

�
D `A
�

� `p=q:

We will regard the complex C` .p=q/ as an abstract Dehn filling of the loop ` along
the abstract slope p=q 2 yQ.

The reason for this definition is illustrated as follows:

Proposition 3.17 If a given loop ` represents bCFD.M; ˛; ˇ/ for some bordered man-
ifold .M; ˛; ˇ/, the chain complex C` .p=q/ is (homotopy equivalent to) the chain
complex cCF.M.p˛C qˇ//. That is , abstract filling along abstract slopes corresponds
to Dehn filling along slopes whenever ` describes the type D structure of a bordered
three-manifold.
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Proof This follows immediately from the definitions; note that p̀=q represents
bCFD.M; p˛Cqˇ; r˛Csˇ/, where p=qD Œa1; a2; : : : ; an� is an even length continued

fraction and r=s D Œa1; a2; : : : ; an�1�.

Fixing a relative .Z=2Z/–grading for a loop ` , consider the idempotent Euler character-
istics ��.`/ and �ı.`/. If ��.`/ and �ı.`/ are not both 0, then ` has a preferred slope
��ı.`/=��.`/; we call this slope the abstract rational longitude. By Proposition 2.10,
if ` represents bCFD.M; ˛; ˇ/ for a rational homology solid torus .M; ˛; ˇ/, then the
abstract rational longitude for ` is the rational longitude for .M; ˛; ˇ/.

Recall that a slope p=q is an L–space slope for a bordered manifold .M; ˛; ˇ/ if Dehn
filling along the curve p˛C qˇ yields an L–space. We end this section by defining a
similar notion of L–space slopes for loops.

Definition 3.18 Given a loop ` , we say an abstract slope p=q in yQ is an L–space
slope for ` if the relatively .Z=2Z/–graded chain complex C` .p=q/ is an L–space
chain complex in the sense that dimH�.C` .p=q//D j�.C` .p=q//j ¤ 0.

Remark 3.19 With these notions in place, we will now drop the modifier abstract
when treating loops despite the fact that a given loop may or may not describe the
type D structure of a three-manifold. In particular, we will not make a distinction
between slopes and abstract slopes in the sequel.

By considering loops in the abstract, a particular class of loops is singled out.

Definition 3.20 A loop ` is solid torus-like if it may be obtained from the loop
.ee � � � e/ via applications of T˙1 and H˙1.

Note that ��.ee � � � e/ counts the number of e segments appearing and �ı.ee � � � e/D 0
identifies the rational longitude of a solid torus-like loop. In particular,

�̀
(representing

bCFD.D2 �S1; l; m/) is solid torus-like. Justifying the chosen terminology, we have
the following behaviour:

Proposition 3.21 If ` is solid torus-like with �ı.`/D0, then `A�`0Š
L
��.`/

`A
�

�`0

for any loop `0.

Proof Recall that `A
�

has a single generator x and operations

m3Ci .x; �3; �23; : : : ; �23„ ƒ‚ …
i times

; �2/D x;
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so that, for generators x˝ u; x˝ v 2 `A
�

� `0, with x˝ v a summand of @.x˝ u/,
there must be

ıiC2.u/D �3˝ �23˝ � � �˝ �23„ ƒ‚ …
i times

˝�2˝ v

in the type D structure for `0. Now consider the type A structure described by `A.
This has nD ��.`/–generators x0; : : : ; xn�1 and operations

m3Ci .xj ; �3; �23; : : : ; �23„ ƒ‚ …
i times

; �2/D xiCjC1;

where the subscripts are understood to be reduced modulo n. (Note that the cyclic
ordering on the generators is determined by m3.xj ; �3; �2/D xjC1.) So, given gener-
ators u and v in the type D structure for `0 as above, xiCjC1˝ v is in the image of
@.xj ˝u/ for each j 2 f0; : : : ; n� 1g. This achieves the desired splitting.

Corollary 3.22 Suppose ` is solid torus-like with �ı.`/ D 0. Then `A � `0 is an
L–space complex if and only if 1 is an L–space slope for the loop `0.

As a result, with respect to gluing, solid torus-like loops will need to be treated like
solid tori. Consequently, manifolds with solid torus-like invariants (should they exist)
will need to be singled out.

Definition 3.23 A loop-type manifold M is solid torus-like if it is a rational homology
solid torus and every loop in the representation of bCFD.M; ˛; ˇ/ is solid torus-like.

We conclude this section with an explicit example, demonstrating that not every abstract
loops arises as the type D structure of a bordered three-manifold. Consider the loop ` ,
described by the cyclic word .a1b1 Na1 Nb1/,

�ı�

ı

� ı

ı

�

�3�2

�123

�1

�2 �3

�1

�123

Suppose that ` describes the invariant bCFD.M; ˛; ˇ/ for some orientable three-manifold
with torus boundary M. Then the abstract Dehn filling `A

�
�` yields the chain complexcCF.M.˛//. However, observe that H�.`A� � `/ D 0 (in particular, this slope is not

an L–space slope according to Definition 3.18). This shows that no such M exists:
in general, for a closed orientable three-manifold Y, cHF.Y / does not vanish [24].

Geometry & Topology, Volume 27 (2023)



A calculus for bordered Floer homology 861

However, we remark that this particular loop arises as a component of the graph
describing bCFD.M;�; �/, where M D S3 X �.K/ and K is any thin knot in S3 that
does not admit L–space surgeries; see [25].

4 Characterizing slopes

We now turn to an application of the loop calculus developed above. For a given
loop ` we give an explicit description of the L–space and non-L–space slopes. As a
consequence, we will prove the following:

Theorem 4.1 Given a loop ` , the set of non-L–space slopes is an interval in yQ, that
is , the restriction of a connected subset in yR. As a result , if M is a loop-type manifold
then there is a decomposition yRD U [ V into disjoint , connected subsets U; V 2 yR
such that LM D U \ yQ and LcM D V \ yQ.

Remark 4.2 The subset U determining LM in this statement may be empty.

4.1 L–space slopes

A loop ` has two preferred slopes, 0 and1; we begin by giving explicit conditions on
the loop ` (in terms of its representatives in standard or dual notation) under which
these are L–space slopes.

Proposition 4.3 Given a loop ` ,1 is an L–space slope if and only if ` can be written
in standard notation with at least one dk letter and no ck letters (where k can be any
integer). Similarly, 0 is anL–space slope if and only if ` can be written in dual notation
with at least one d�

k
letter and no c�

k
letters. Moreover , by reversing the orientation of ` ,

the statements hold with the roles of dk and ck (or the roles of d�
k

and c�
k

) reversed.

Proof The slope1 is an L–space slope if C
�
1
0

�
D `A
�

� ` is an L–space complex,
that is, if H�

�
C
�
1
0

��
is nontrivial and each generator of H�

�
C
�
1
0

��
has the same

(Z=2Z)–grading.

Recall that `A
�

has a single generator x with idempotent �0 and operations

m3Ci .x; �3; �23; : : : ; �23„ ƒ‚ …
i times

; �2/D x

for each i � 0. The box tensor product of this module with ` is easy to describe if
` is written in standard notation. There is one generator x˝ y for each �–vertex y
in ` (by abuse y is both the vertex in the loop ` and the corresponding generator
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in the type D structure corresponding to `). Given a cyclic word representing ` in
standard notation, each letter represents a chain between adjacent �–vertices; for each
type ak chain from y1 to y2 there is a differential from x ˝ y1 to x ˝ y2. Since
sequential occurrences of type a chains are impossible in any loop, the differentials
on C

�
1
0

�
are isomorphisms mapping single generators to single generators. Therefore,

the contribution to H�.`A� � `/ (with relative (Z=2Z)–grading) is simply given by the
�–vertices of ` which are not an endpoint of a type a segment.

The (Z=2Z)–grading on C
�
1
0

�
can be recovered as follows: the generators correspond-

ing to two adjacent �–vertices in ` have the same grading if the vertices are connected
by an unstable chain and opposite gradings if the vertices are connected by a stable
chain. It follows that endpoints of chains of type dk all have the same grading and
endpoints of chains of type ck all have the opposite grading. This is because dk
segments must be separated from each other by an even number of stable chains, and
from ck segments by an odd number of stable chains.

Suppose ` can be written in standard notation with at least one dk and no ck . Every
generator of C

�
1
0

�
either comes from an endpoint of a dk or from the common endpoint

of two stable chains. The latter generators vanish in homology, since one of the two
stable chains must be type a, and the former generators all have the same (Z=2Z)–
grading. Thus, in this case, C

�
1
0

�
is an L–space complex.

Suppose now that ` contains both dk and ck segments. For any unstable chain, at
least one of the two endpoints must correspond to a generator of C

�
1
0

�
that survives in

homology, since an unstable chain can be adjacent to a type a chain on at most one
side. Since endpoints of type dk and type ck unstable chains produce generators of
opposite grading, it follows that C

�
1
0

�
has generators of both gradings that survive in

homology, and thus C
�
1
0

�
is not an L–space complex.

If ` has no unstable chains when written in standard notation, then it has only stable
chains, which alternate between types a and b. In this case every �–vertex is the
endpoint of a type a chain. Thus H�

�
C
�
1
0

��
is trivial, and C

�
1
0

�
is not an L–space

complex. Finally, if ` cannot be written in standard notation, then it consists only of
e� segments. H�.`A� � `/ has two generators with opposite gradings; it follows that
1 is not an L–space slope.

The proof for 0–filling is almost identical: `Aı has a single generator x with idempo-
tent �1 and operations

m3Ci .x; �2; �12; : : : ; �12„ ƒ‚ …
i times

; �1/D x
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for each i � 0. The box tensor product of this module with ` has one generator for each
generator y of ` with idempotent �1 (that is, each ı–vertex) and a differential for each
type a� segment. Expressing ` in dual notation, the contribution to H�.`Aı � `/ (with
relative (Z=2Z)–grading) is given by the �0–generators of ` which do not lie at the end
of a type a� segment. If bCFD.Y; s/ is a loop that cannot be written in dual notation —
that is, it is a collection of e segments — then the contribution to H�.`Aı � `D/ is two
generators of opposite grading.

Since a� and b� segments change the (Z=2Z)–grading while c� and d� segments do
not, the rest of the proof is completely analogous to the proof for the1–filling.

Combining the two conditions in Proposition 4.3 gives a stronger condition on the loop.

Proposition 4.4 Given a loop ` , both1 and 0 are L–space slopes if and only if the
following equivalent conditions hold :

(i) ` can be written in standard notation with at least one dk letter and no ck letters
(with k 2 Z/, and ` contains a subword from exactly one of the sets

ACDfbiaj ; aie
nbj ; aie

ndj ; die
nbj ; die

ndj ; d`; a`; b` j i; j �1; n�0; `�2g;

A�Dfbiaj ; aie
nbj ; aie

ndj ; die
nbj ; die

ndj ; d`; a`; b` j i; j �1; n�0; `�2g:

We will say that ` satisfies condition .i/˙ if it satisfies condition (i) with a
subword in A˙.

(ii) ` can be written in dual notation with at least one d�
k

letter and no c�
k

letters
(with k 2 Z/, and ` contains a subword from exactly one of the sets

A�C D
˚
b�i a
�
j ; a
�
i .e
�/nb�j ; a

�
i .e
�/nd�j ; d

�
i .e
�/nb�j ; d

�
i .e
�/nd�j ; d

�
` ; a
�
` ; b
�
`

j i; j � 1; n� 0; `� 2
	
;

A�� D
˚
b�i a
�
j ; a
�
i .e
�/nb�j ; a

�
i .e
�/nd�j ; d

�
i .e
�/nb�j ; d

�
i .e
�/nd�j ; d

�
` ; a
�
` ; b
�
`

j i; j � 1; n� 0; `� 2
	
:

We will say that ` satisfies condition .ii/˙ if it satisfies condition (ii) with a
subword in A�

˙
.

Moreover , condition .i/C is equivalent to condition .ii/C and condition .i/� is equiva-
lent to condition .ii/�.

Proof By Proposition 4.3, 0 and1 are both L–space slopes for ` if and only if `

contains either dk segments or ck segments in standard notation, but not both, and `

contains either d�
k

segments or c�
k

segments in dual notation, but not both. Reading
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a loop with the opposite orientation takes type d segments to type c segments, so,
possibly after switching the orientation on ` , we may assume such a loop contains
dk segments and not ck segments in standard notation. Similarly, up to switching the
orientation on ` , we could arrange that there are d�

k
segments and no c�

k
segments in

dual notation. Note however that we cannot ensure both of these simultaneously, as it
will be convenient to choose standard notation and dual notation representatives for `

with respect to the same orientation on the loop.

First assume that ` contains standard unstable chains of type dk but not ck . Under this
assumption, the set AC is precisely the subwords in standard notation that dualize to
give a d�

k
chain. This follows from the discussion on dualizing in Section 3.2. A d�nC1

segment with n � 0 arises from a subword aienbj , aiendj , dienbj or diendj with
i; j � 1. A segment d�

�n�1 arises from a subword bi Nenaj , bi Nencj , ci Nenaj or ci Nencj
with i; j �1; since we assume that ` contains no ck segments, including NeDc0, the only
relevant case is biaj . Finally, a d�0 D e

� segment arises from a standard letter of type
a`, b`, c`, or d` with subscript ` > 1; we can ignore the case of c` by assumption. By
similar reasoning, we can check that, under the assumption that ` contains no ck letters,
the set A� is precisely the subwords in standard notation that dualize to give c�

k
chains.

If we instead assume that ` contains dual unstable chains of type d�
k

but not c�
k

, the
argument is similar. Note that the sets A�

˙
are the same as the sets A˙ with stars added

to each letter, and the process for switching from dual to standard notation is the same
as the process for switching from standard to dual (up to adding/removing stars from
letters). We have immediately that A�

C
is the set of subwords in that dualize to give a

dk letter, and A�� is the set of subwords that dualize to give a ck letter.

We have shown that conditions (i) and (ii) are both equivalent to ` containing an
unstable chain of exactly one of the two types in both standard notation and dual
notation, and this is equivalent to both 0 and1 being L–space slopes. Finally, if `

satisfies condition .i/C then ` contains both a dk segment and a d�
k

segment (with
respect to the same orientation of the loop). It follows that ` satisfies condition .ii/C.
If ` satisfies condition .i/� then it contains both a dk segment and a c�

k
segment. After

reversing the orientation of ` , it contains a ck segment and a d�
k

segment; thus `

satisfies condition .ii/�.

Corollary 4.5 If 0 and 1 are L–space slopes for a loop ` , then the set of L–space
slopes for ` contains either all positive slopes (that is , the interval Œ0;1�) or all negative
slopes (that is , the interval Œ�1; 0�).
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Proof Let LC be the set of loops satisfying condition .i/C and .ii/C in Proposition 4.4,
and let L� be the set of loops satisfying conditions .i/� and .ii/�. It is not difficult
to see that condition .i/C is preserved by the operation T since, for any w 2 AC,
T.w/ is in AC or contains an element of AC as a subword. Similarly, condition .ii/C
is preserved by the operation H. Therefore the set LC is preserved by T and H. In the
same way, the set L� is preserved by T�1 and H�1.

If p=q > 0, let Œa1; : : : ; an� be a continued fraction for p=q of even length with all
positive terms. To see if p=q is an L–space slope, we reparametrize by

Han ı � � � ı Ta3 ı Ha2 ı Ta1

taking the slope p=q to the slope 1. It follows that, if a loop is in LC, then any
p=q > 0 is an L–space slope, since the reparametrized loop is also in LC.

If p=q < 0, let Œ�a1; : : : ;�an� be a continued fraction for p=q of even length with all
negative terms. To see if p=q is an L–space slope, we reparametrize by

H�an ı � � � ı T�a3 ı H�a2 ı T�a1

taking the slope p=q to the slope1. It follows that if a loop is in L�, then any p=q <0
is an L–space slope.

4.2 Non-L–space slopes

The goal of this section is to establish easily checked conditions certifying that the
standard and dual slope of a given loop are non-L–space slopes. Our focus will be on
the following result:

Proposition 4.6 Suppose that ` is a loop for which both standard and dual fillings
give rise to non-L–spaces. Then the standard and dual slopes bound an interval of
non-L–space slopes in LcM . That is , one of Œ0;1� or Œ�1; 0� consists entirely of
non-L–space slopes.

The proof of this result is similar to the proof of Corollary 4.5 but is more technical
and will therefore be built up in a series of lemmas.

To begin, note that Proposition 4.3 can be restated in terms of non-L–space slopes:

Proposition 4.7 The slope1 is a non-L–space slope for a loop ` if and only if either

(i) ` contains both ck and dk unstable chains in standard notation ,

(ii) ` contains no unstable chains in standard notation , or

(iii) ` cannot be written in standard notation.
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The slope 0 is a non-L–space slope if and only if either

(i) ` contains both c�
k

and d�
k

unstable chains in dual notation ,

(ii) ` contains no unstable chains in dual notation , or

(iii) ` cannot be written in dual notation.

It will be helpful to give conditions in standard notation under which 0 is a non-L–space
slope. Consider the sets

A1 D fak; bk; ck; cic
n
0cj ; cic

n
0aj ; bic

n
0cj ; bic

n
0aj g;

A2 D fa�k; b�k; d�k; d�id
n
0 d�j ; d�id

n
0 b�j ; a�id

n
0 d�j ; a�id

n
0 b�j g;

A3 D fak; bk; dk; did
n
0 dj ; did

n
0 bj ; aid

n
0 dj ; aid

n
0 bj g;

A4 D fa�k; b�k; c�k; c�ic
n
0c�j ; c�ic

n
0a�j ; b�ic

n
0c�j ; b�ic

n
0a�j g;

where the indices and exponents run over all integers satisfying k > 1, i; j > 0 and
n� 0. These four sets may be interpreted as follows:

Lemma 4.8 A loop ` written in standard notation contains a word in A1[A3 if and
only if it contains d�n in dual notation for some integer n. It contains a word in A2[A4
if and only if it contains c�n in dual notation for some integer n.

Proof We prove the first statement and leave the second to the reader.

First notice that if k > 1 then any letter ak , bk , ck or dk contains at least one instance
ofı ı

�23 , which, in dual notation, gives an e� D d�0 . If i; j > 0 then each word of
the form cic

n
0cj , cicn0aj , bicn0cj or bicn0aj gives an instance of

ı � � ı
�1 �12 �3

which, in dual notation, gives Nc�nC1D d
�
�n�1. Similarly, each word of the form did

n
0 dj ,

did
n
0 bj , aidn0 dj or aidn0 bj gives an instance of

ı � � ı
�2 �12 �123

which, in dual notation, gives d�nC1. For the converse, observe that the segments d�0 ,
d�nC1 and d�

�n�1 with n� 0 in dual notation can only arise from the words mentioned
above in standard notation.

Corollary 4.9 The slope 0 is not an L–space slope for ` if and only if either

(i) ` contains a subword from A1[A3 and a subword from A2[A4,

(ii) ` does not contain a subword from any Ai , or

(iii) ` cannot be written in dual notation.
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Proof This follows immediately from Proposition 4.7 and Lemma 4.8.

Based on this observation, the proof of Proposition 4.6 will reduce to several cases,
which are treated in the following lemmas.

Lemma 4.10 If ` is a loop containing a subword from the set A1 then T�1.`/ and
H�1.`/ also contain a subword from A1. If ` contains a subword from the set A2 then
T�1.`/ and H�1.`/ also contain a subword from A2.

Proof First consider T�1.w/ for any subword w 2 A1. We have T�1.ak/ D ak ,
T�1.bk/Dbk , T�1.ck/DckC1, T�1.ci Ne

ncj /DciC1c
n
1cjC1, T�1.ci Ne

naj /DciC1c
n
1aj ,

T�1.bi Ne
ncj /D bic

n
1cjC1 and T�1.bi Ne

naj /D bic
n
1aj . In each case, T�1.w/ is in A1

or contains a subword in A1. Thus the operation T�1 preserves the property that `

contains a word from A1. On the other hand, revisiting the proof of Lemma 4.8, we
see that each of ak , bk and ck produces at least one e� when dualized, while each
of ci Nencj , ci Nenaj , bi Nencj and bi Nenaj produces a Nc�nC1. Since H�1.e�/ D Nc�1 and
H�1. Nc�nC1/D Nc

�
nC2, it is enough to observe that

fci Ne
ncj ; ci Ne

naj ; bi Ne
ncj ; bi Ne

naj g � A1

is the set of subwords that give rise to a Nc�nC1 under dualizing (where n� 0 and i; j >0).
It follows that the operation H�1 preserves the property that ` contains a word from A1.

Next consider T�1.w/ for any w 2 A2. Proceeding as above, observe that T�1.w/ is
in the set

f Nak; Nbk; NckC1; NciC1 Nc
n
1 NcjC1; NciC1 Nc

n
1
Nbj ; Nai Nc

n
1 NcjC1; Nai Nc

n
1
Nbj g:

Each of these words is inA2 or contains a subword inA2, so the operation T�1 preserves
the property that ` contains a word from A2. Each of Nak , Nbk and Nck produces at least
one Ne� when dualized, while each of Ncien Ncj , Ncien Nbj , Naien Ncj and Naien Nbj produces
a c�nC1. Since T�1. Ne�/D c�1 and T�1.c�nC1/D c

�
nC2, it is enough to observe that

f Ncie
n
Ncj ; Ncie

n Nbj ; Naie
n
Ncj ; Naie

n Nbj g � A2

is the set of subwords that give rise to a c�nC1 under dualizing (where n � 0 and
i; j > 0). It follows that the operation H�1 preserves the property that ` contains a
word from A2.

Lemma 4.11 If ` is a loop containing a subword from the set A3 then T.`/ and H.`/

also contain a subword from A3. If ` contains a subword from the set A4, then T.`/

and H.`/ also contain a subword from A4.

Proof This is analogous to the proof of Lemma 4.10 and left to the reader.
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We next consider the case that ` contains a subword from each of A1 and A4 but does
not contain a subword from A2 or A3. While this third case is ultimately similar to the
two cases we have already treated, it is more technical owing in part to three subcases.

Lemma 4.12 Suppose ` is a loop containing a subword from each of the sets A1
and A4 but that ` does not contain a subword from either of the sets A2 or A3. If `

contains a Nc1 then the loop T�1.`/ contains a subword from each of A1 and A2, while
the loop H�1.`/ either

(i) contains a subword from each of A1 and A2, or

(ii) contains a Nc1 and a subword from each of the sets A1 and A4 but does not contain
a subword from A2 or from A3.

Proof First notice that T�1. Nc1/ D Nc2 2 A2. Since the set A1 is closed under T�1

(compare Lemma 4.10), it follows that T�1.`/ contains a subword from bothA1 andA2.

Turning now to the behaviour under H�1: Since ` does not contain a word from A2,
any occurrence of Nc1 can be preceded only by a1ei or d1ei (for i � 0), and can be
followed only by ej b1 or ejd1 (for j � 0). (Note that instances of ak or bk for k > 1
are ruled out since ` does not contain a word from A3.) Regardless of which arises,
this ensures that a Nc1 is part of a segment in ` of the form

ı � � ı � � ı
�2 �12 �1 �3 �12 �123

and hence a subword b�iC1a
�
jC1 when ` is expressed in dual notation. It follows that

the property that ` contains a Nc1 is closed under H�1, under the assumption that ` does
not contain a subword from A2 or A3.

Now observe that the set A1 is closed under H�1 by Lemma 4.10, so it must be the
case that H�1.`/ contains subwords from A1 and A2 or, if this is not the case, from
A1 and A4. In the latter case, suppose that H�1.`/ contains a word from A3. Then
H.H�1.`//D ` contains a word from A3 also, which is a contradiction.

Lemma 4.13 Suppose ` is a loop containing a subword from each of the sets A1
and A4 but that ` does not contain a subword from either of the sets A2 or A3. If `

contains a d1 then the loop T.`/ contains a subword from each of A3 and A4, while
the loop H.`/ either

(i) contains a subword from each of A3 and A4, or

(ii) contains a d1 and a subword from each of the setsA1 andA4 but does not contain
a subword from A2 or from A3.
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Proof This is similar to the proof of Lemma 4.12. The key observation is that the
instance of d1 is part of a segment in ` of the form

ı � � ı � � ı
�3 �12 �123 �2 �12 �1

which, in dual form, gives a�jC1b
�
iC1. Thus the property that ` contains a d1 implies

that H.`/ contains a d1.

Lemma 4.14 Suppose ` is a loop containing a subword from each of the sets A1
and A4 but that ` does not contain a subword from either of the sets A2 or A3, and
suppose that 1 is a non-L–space filling for ` . If ` contains neither a Nc1 D d�1 nor a
d1 then two cases arise: either ` contains the subword w1 D a1d

n
0
Nb1 or ` contains the

subword w2 D Na1d
n
0 b1 for some n� 1. Regardless of which occurs ,

(i) T.`/ contains subwords from both A3 and A4,

(ii) T�1.`/ contains subwords from both A1 and A2,

(iii) H.`/ either contains subwords A3 and A4 or it contains subwords from A1 and
A4 and contains w1 or w2, and

(iv) H�1.`/ either contains subwords from A1 and A2 or it contains subwords from
A1 and A4 and contains w1 or w2.

Proof Suppose ` contains subwords from A1 and A4 but not from A2 or A3, and
` contains neither d1 nor d�1. By Proposition 4.7, if ` has a non-L–space standard
filling, then either ` contains no standard unstable chains or ` contains both ck and dk
unstable chains. In the former case ` consists of alternating ak and bk segments; in the
latter case, ` must contain a sequence of d0 segments preceded by an a˙1 segment and
followed by a b˙1 segment (since ak , bk and dk are in A2 or A3 for jkj> 1, and by
assumption ` also contains no d˙1 segments). In either case, we see that the subscripts
on the type a and b stable chains must have opposite signs (since aidn0 bj is in A3 and
a�id

n
0 b�j is in A2), and thus that ` contains w1 D a1d

n
0
Nb1 or w2 D Na1d

n
0 b1.

Note then that T.w1/D a1d
n
1
Nb1, which gives a word in A3; T�1.w1/D a1 Nc

n
1
Nb1, which

gives a word in A2; T.w2/ D Na1d
n
1 b1, which gives a word in A3; and T�1.w2/ D

Na1 Nc
n
1b1, which gives a word in A2. Since T preserves the property that there is a

subword from A4 (Lemma 4.11) and T�1 preserves the property that there is a subword
from A1 (Lemma 4.10), we have shown that conclusions (i) and (ii) hold.

Consider the subword w1 D a1d
n
0
Nb1. If a loop ` contains w1, then the graph for `

contains the segment
� ı � � ı �
�3 �2 �12 �1 �123
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It follows that in dual notation ` contains a b�nC1. Moreover, this b�nC1 is preceded by
a segment ending with a �3 arrow (that is, a segment of type Na� or Nc�) and followed by
a segment beginning with a backwards �123 arrow (that is, a segment of type Na� or Nd�).
Thus ` contains w1 in standard notation if and only if it contains one of the following in
dual notation: Na�i b

�
nC1 Na

�
j , Na�i b

�
nC1
Nd�j , Nc�i b

�
nC1 Na

�
j or Nc�i b

�
nC1
Nd�j , where i; j > 0. Note

that the set of such words is closed under the action of H, except for the last two words
if the index i is 1 since then H replaces the Nc1 with Nc0 D e D d0. Thus, if ` contains
one of these subwords, then H.`/ also contains one of these subwords (and thus the
subword w1 in standard notation) or it contains d�0 b

�
nC1. In the latter case, ` contains

a �23 arrow followed by a �2 arrow. This means that ` contains an ak or dk segment
with k > 1, each of which are in A3. Similarly, H�1.`/ either contains w1 in standard
notation or it contains b�nC1 Nd

�
0 , which implies that ` contains a subword in A2.

The details of a similar argument for the subword w2 D Na1d
n
0
Nb1 are left to the reader.

We similarly find that, if ` contains w2, then H.`/ contains either w2 or a subword
in A3 and H�1.`/ contains either w2 or a subword in A2.

Since by assumption ` contains subwords from A1 and A4, H.`/ contains a subword
from A4 and from either A1 or A3 (Lemma 4.13). Since ` also contains a subword w1

or w2, the discussion above implies that H.`/ contains w1, w2 or a subword in A3;
that is, (iii) is satisfied. Similarly, (iv) is satisfied since H�1.`/ contains a subword
in A2 and a subword in either A1 or A3 (Lemma 4.12), and a subword w1 or w2 if
there is no subword from A1.

Lemma 4.15 Suppose ` contains no subwords in any Ai and that ` contains both
a dk segment and a ck segment. Then T�1.`/ contains a subword from each of A1
and A2 and T.`/ contains a subword from each of A3 and A4.

Proof The assumption that ` contains no words from any of the sets Ai implies that
in standard notation ` consists of the segments a˙1, b˙1, c˙1, d˙1, c0 and d0, and
the nonzero subscripts alternate between C1 and �1. By assumption, ` must contain
at least one d1, d0 or d�1 segment. If ` contains d1 then T.`/ contains d2 2 A3.
Moreover, d1 must be preceded by d0, d�1 or a�1 and followed by d0, d�1 or b�1.
It follows that T�1.`/ contains a d0 preceded by a d�1; d�2 or a�1 and followed by
a d�1; d�2 or b�1; thus T�1.`/ contains a subword in A2. Similarly if ` contains d�1
then T�1.`/ contains d�2 2 A2, and, since d�1 must be preceded by d0, d1 or a1 and
followed by d0, d1 or b1, T.`/ contains a subword in A3. Finally, suppose ` contains
a d0 segment but no d1 or d�1. If the d0 segment is adjacent to another d0 segment,
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then T.`/ contains d1d1 2 A3 and T�1.`/ contains d�1d�1 2 A2. Otherwise, ` must
contain either a�1d0b1 or a1d0b�1. It is easy to check that T.`/ contains either d1b1 or
a1d1, both elements of A3, and that T�1.`/ contains either a�1d�1 or d�1b�1 in A2.

A similar argument shows that, if ` contains c1, c0 or c�1, then T.`/ contains a subword
in A4 and T�1.`/ contains a subword in A1. This can also be deduced by reversing
the orientation on ` , which takes dk segments to c�k segments and takes the sets A2
and A3 to A1 and A4.

Proof of Proposition 4.6 Let ` be a loop for which both standard and dual filling gives
a non-L–space. According to Corollary 4.9, the fact that dual filling is a non-L–space
implies that either ` contains a word from A1 or A3 and from A2 or A4, ` contains no
words from any Ai , or ` cannot be written in dual notation. In the last case, ` consists
only of type e segments and it is clear that standard filling is an L–space. Thus we
have the following cases to consider:

(1) ` contains a subword from A1 and from A2.

(2) ` contains a subword from A3 and from A4.

(3) ` contains a subword from A1 and from A4, but not A2 or A3.

(4) ` does not contain a subword from any Ai .

Note that, a priori, there is another case similar to (3) in which ` contains subwords in
A2 and A3; however, this is equivalent to (3) after reversing orientation on ` .

In case .1/, Lemma 4.10 implies that applying any combination of T�1 and H�1 to `

gives rise to a loop `0 which contains a subword in each of A1 and A2, and thus has non-
L–space dual filling. The p=q filling on ` is given by dual filling Tan ı� � �ıHa2 ıTa1.`/,
where Œa1; : : : ; an� is an odd length continued fraction for p=q. For any�1<p=q <0,
we can choose a continued fraction with each ai � 0, and so p=q is not an L–space
slope for ` . Similarly, in case (2) we choose a continued fraction with positive terms
and use Lemma 4.11 to see that any 0 < p=q <1 is a non-L–space.

Case .3/ has three subcases, depending on whether ` contains a Nc1, a d1 or neither. If
` contains a Nc1, then, by Lemmas 4.12 and 4.10, applying any combination of T�1

and H�1 to ` with at least one application of T�1 produces a loop `0 with a subword
in A1 and A2. Given any �1 < p=q < 0 we can choose an odd length continued
fraction Œa1; : : : ; an� for which each ai is strictly negative except that a1 may be 0,
and if a1 D 0 then n� 3. It follows that p=q is a non-L–space slope for ` . Similarly,
if ` contains a d1, then Lemmas 4.13 and 4.11 imply that any 0 < p=q < 1 is a
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non-L–space slope. If ` contains neither a d1 nor a Nc1, then any p=q is a non-L–space
slope by Lemma 4.14.

In case (4), ` has no dual unstable chains. Since dual stable chains are fixed by H˙1,
we have immediately that H.`/ D H�1.`/ D ` . Since 1 is a non-L–space slope,
` must have either no standard unstable chains or unstable chains of both type ck and
type dk . If ` has no standard unstable chains then T.`/D T�1.`/D` ; it follows that any
combination of Dehn twists preserves ` , and so any slopep=q is a non-L–space slope (in
fact in this case any filling of ` has trivial homology). If ` has standard unstable chains
of both types, then Lemma 4.15 implies that any slope p=q is a non-L–space slope.

4.3 Proof of Theorem 4.1

We are now ready to prove that the set of L–space slopes for a loop ` is a (possibly
empty) interval in yQ. We will use the fact that applying T and H to a loop ` changes
the set of L–space slopes in a controlled way: the slope p=q for ` is equivalent to the
slope .p�nq/=q for Tn.`/ and the slope p=.q�np/ for Hn.`/. These transformations
preserve the cyclic ordering on yQ, and thus preserve the connectedness of the set of
L–space slopes.

Remark 4.16 In particular, while Corollary 4.5 and Proposition 4.6 are stated in terms
of the 0 and 1 slopes, analogous statements hold for any two slopes of distance 1
since such pair of slopes can be taken to 0 and1 by a combination of T˙1 and H˙1.
More precisely, for any two slopes of distance 1, if both are L–space slopes then one
of the two intervals between them consists entirely of L–space slopes, and if both are
non-L–space slopes then one of the two intervals between them consists entirely of
non-L–space slopes.

In addition to Corollary 4.5 and Proposition 4.6, we will need the following lemma:

Lemma 4.17 For any loop ` , there do not exist integers n1 < n2 < n3 < n4 such that
n1 and n3 are L–space slopes and n2 and n4 are not L–space slopes , or vice versa.

Proof An integer n is an L–space slope for ` if and only if 0 is an L–space slope
for Tn.`/. By Lemma 4.8, this happens when Tn.`/ contains a word from the set
A1[A3 or from the set A2[A4, but not both. Recall from the proof of Lemmas 4.10
and 4.11 that A1 and A2 are closed under T�1 and A3 and A4 are closed under T.

Suppose that n1 < n2 < n3, where n2 is an L–space slope for ` while n1 and n3 are
non-L–space slopes; we will show that all n < n1 and all n > n3 are non-L–space
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slopes. Up to reversing the loop, we can assume Tn2.`/ contains a word in A1[A3
and not in A2[A4. We consider the case that Tn2.`/ contains a word in A1; the case
that it contains a word in A3 is similar and left to the reader.

By the closure property mentioned above (Lemma 4.10), Tn1.`/ contains a word in A1.
Since n1 is a non-L–space slope, Tn1.`/ must contain a word from A2[A4. It does
not contain a word in A4, since Tn2.`/ does not and the property of containing a word
in A4 is preserved by T (Lemma 4.11), and so it must contain a word in A2. It follows
that, for any n < n1, Tn.`/ contains words in A1 and A2 and thus n is a non-L–space
slope for ` .

Since the property of containing a word in A2 is preserved by T�1 (Lemma 4.10), we
know that Tn3.`/ does not contain a word in A2. We would like to show that Tn3.`/

contains a word in A3, since this would imply it also contains a word in A4; it would
follow that for all n> n3 the loop Tn.`/ contains words from both A3 and A4 and thus
n is a non-L–space slope for ` . Suppose, to the contrary, that Tn3.`/ does not contain
a word in A3. Then we see immediately that Tn2 does not contain a word in A3. It also
does not contain a word in A2, so it must consist only of the segments

fa1; a�1; b1; b�1; d1; d0; d�1; ckg;

where k can be any integer. Moreover, since n2C 1� n3, Tn2C1.`/ does not contain
a word in A3. In particular this implies that Tn2.`/ does not contain d1. Any d�1
cannot be preceded by d�1 or a�1 or followed by a d�1 or b�1, since this would give
a word in A2. The alternative, that d�1 is preceded by a d0 or a1 and followed by a
d0 or b1, is also ruled out since this would produce a word in A3 in Tn2C1.`/; thus
Tn2.`/ does not contain d�1. If Tn2.`/ contains d0, then it contains either a1dm0 b1,
a�1d

m
0 b1, a1dm0 b�1 or a�1dm0 b1. None of these are possible; the first two are words

in A3 and A2, respectively, and the last two give rise to words in A3 in Tn2C1.`/.
We have now shown that Tn2.`/ does not contain any dk segments, but, since it also
does not contain a�1b�1 2 A2 this contradicts the fact that Tn1.`/ has a word in A2.
Therefore, Tn3.`/ contains a word in A3 and a word in A4, and n is a non-L–space
slope for all n > n3.

Proof of Theorem 4.1 Any two distinct slopes r=s and p=q determine two intervals
in yQ; we need to show that if r=s and p=q are L–space slopes then one of these
intervals lies entirely in the set of L–space slopes for ` . By reparametrizing with T and
H as discussed above, we may assume that r=s D 0. We will assume p=q > 0 below;
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similar arguments apply when p=q < 0. If p=qD1, the result holds by Corollary 4.5,
so we will assume p=q <1.

Suppose that 0 and p=q are L–space slopes and there exist non-L–space slopes u 2
.0; p=q/ and v 2 Œ0; p=q�c . To reach a contradiction, we choose a continued fraction
Œa1; : : : ; an� for p=q with a1 � 0 and ai > 0 for i > 1 and proceed by induction on
the length n. In the base case of nD 1, p=q D a1 is an integer. We claim that there
is an integer u0 2 .0; a1/ that is a non-L–space slope. To see this, if u is not an integer,
consider the slopes buc and due. These slopes are distance 1 and both intervals between
them contain non-L–space slopes (u 2 .buc; due/ and v 2 Œbuc; due�c). Thus, by
Corollary 4.5 (taking into account Remark 4.16), at least one of them is a non-L–space
slope. Similarly, if v ¤1 then either bvc or dve is a non-L–space slope. If v D1 is
a non-L–space slope, note that by Proposition 4.3 either ` contains no unstable chains
or both types of unstable chains in standard notation or ` cannot be written in standard
notation. If ` cannot be written in standard notation (in which case it is a collection of
e� segments) or if ` contains no unstable chains in standard notation, then ` is fixed
by T˙1. It follows that all integer slopes behave the same, but this contradicts the fact
that 0 is an L–space slope and u0 is not. Thus ` must contain both types of unstable
chains in standard notation. Applying Tm form sufficiently large produces a loop where
all unstable chains are of type d or Nd (with large index), and there is at least one of
each type. It follows from Corollary 4.9 that m is a non-L–space slope, since dk 2 A3
and Ndk D c�k 2 A4. Thus we have integers 0 < u0 < a1 and v0 < 0 or v0 > a1 such
that 0 and a1 are L–space slopes and u0 and v0 are not; this contradicts Lemma 4.17.

Suppose the continued fraction Œa1; : : : ; an� for p=q has length n > 1 and a1 D 0. We
consider the loop `0 D Ha2.`/. Note that the slope p=q for ` corresponds to the slope
p0=q0 D p=.q � a2p/ for `0, which has continued fraction Œa3; : : : ; an�. The slope
0 for ` corresponds to 0 for `0, and the slopes u and v for ` correspond to slopes
u0 and v0 for `0. Thus `0 has L–space slopes 0 and p0=q0 and non-L–space slopes
u0 2 .0; p0=q0/ and v0 2 .�1; 0/[ .p0=q0;1�. Since p0=q0 has a continued fraction
of length n� 2, this produces a contradiction by induction.

Suppose p=q has continued fraction Œa1; : : : ; an� of length n> 1 with a1>0. Consider
the distance 1 slopes a1 D bp=qc and a1C 1D dp=qe; both intervals between these
slopes contain L–space slopes (either 0 or p=q), so by Proposition 4.6 one of them
must be an L–space slope. First suppose that a1 is an L–space slope. By the base
case of induction, we cannot have both u 2 .0; a1/ and v 2 Œ0; p=q�c � Œ0; a1�c , and
so we must have u 2 .a1; p=q/. Consider the loop `0 D Ta1.`/. The slopes 0 and
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p0=q0 D p=q� a1 are L–space slopes for `0 while the slopes u0 D u� a2 2 .0; p0=q0/
and v0 D v� a2 2 Œ0; p0=q0�c are non-L–space slopes. A continued fraction for p0=q0

is Œ0; a2; : : : ; an�; as shown above, this produces a contradiction.

Finally, suppose instead that a1 is a non-L–space slope for ` and a1C1 is an L–space
slope. The base case of induction rules out the possibility that v 2 Œ0; a1 C 1�c , so
we must have v 2 .p=q; a1 C 1/. Consider the loop `0 D Ha2�1 ı Ta1C1.`/. The
slope a1 for ` corresponds to the slope 0 for `0, and the slope p=q corresponds to a
slope p0=q0 with continued fraction Œ�1; 1; a3; : : : ; an�� Œ0;�a3; : : : ;�an�. There are
non-L–space slopes for `0 in both intervals between 0 and p0=q0. By induction (using
the analogue of the above cases when p=q < 0), this is a contradiction.

This proves that the set of L–space slopes for a loop ` is an interval. To prove the
statement for bordered manifolds .M; ˛; ˇ/ of loop-type, we simply observe that if
M is a loop-type manifold, M.p˛C qˇ/ is an L–space if and only if p=q is an L–
space slope for each loop ` in bCFD.M; ˛; ˇ/. The set of L–space slopes for M is the
intersection of the intervals of L–space slopes for each loop, and hence an interval.

4.4 Strict L–space slopes

The notion of L–space slope is fairly natural, however, in the context of the theorems
in this paper, it is not quite the right condition. We will be interested primarily in
slopes that are not only L–space slopes but are also surrounded by a neighbourhood of
L–space slopes.

Definition 4.18 A slope in the boundary of a three-manifold M with torus boundary
is a strict L–space slope if it is an L–space slope in the interior of LM . Denote the set
of strict L–space slopes by LıM .

We will give a geometric interpretation of strict L–space slopes in Section 7. For
now, we will use loop notation and the results in this section about L–space slopes to
determine when an L–space slope is strict.

Proposition 4.19 Given a loop ` :

(1) The slope1 is a strict L–space slope for ` if and only if ` can be written in
standard notation using only the subwords

dk; b1a�1 and b�1a1;

where k can be any integer , with at least one dk and such that b1a�1 is never
adjacent to b�1a1.
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(2) The slope 0 is a strict L–space slope for ` if and only if ` can be written in dual
notation using only the subwords

d�k ; b�1a
�
�1 and b��1a

�
1 ;

where k can be any integer , with at least one d�
k

and such that b�1a
�
�1 is never

adjacent to b�
�1a
�
1 .

Proof Suppose1 is a strict L–space slope. In particular, it is an L–space slope, so,
by Proposition 4.3, ` can be written in standard notation with no ck and at least one dk .
Since it does not contain ck , ` can be broken into pieces of the form dk or biaj for
any integer k and nonzero integers i and j, with at least one dk . We also have that
n and �n are L–space slopes for sufficiently large n. Equivalently, 0 is an L–space
slope after we apply Tn or T�n for sufficiently large n. The twist Tn has the effect of
replacing all unstable chains with chains of type dk for k� 0, while the twist T�n

replaces all unstable chains with dk for k� 0.

Consider a loop consisting of the pieces dk with k� 0 and biaj with any nonzero
integers i and j, with at least one dk . Referring to the discussion of dualizing in
Section 3.2, note that the loop certainly contains d�0 D e

�, since it contains dk with
k > 1. Thus, by Proposition 4.3, 0 is an L–space slope if and only if the loop contains
no c�

k
segments. The loop contains c�

k
with k > 0 if and only if it contains aibj with

i; j < 0. It contains c�
k

with k < 0 if and only if it contains biaj with i; j < 0. It
contains c�0 D Ne

� segments if and only if it contains a` or b` with ` < �1.

Similarly, consider a loop consisting of the pieces dk with k� 0 and biaj with any
nonzero integers i and j, with at least one dk . The loop contains c�0 D Ne

�, so 0 is an
L–space slope if and only if the loop contains no d�

k
segments. Moreover, the loop

contains d�
k

if and only if it contains biaj or aibj with i; j > 0 or a` or b` with ` > 1.

Therefore, given a loop for which1 is an L–space slope, n and �n are also L–space
slopes for all sufficiently large n if and only if the loop contains no chains of type ak
or bk with k > 1, a1 segments are never adjacent to b1 segments, and a�1 segments
are never adjacent to b�1 segments.

The proof of part .2/ is completely analogous. Given that 0 is an L–space slope, we
must check that 1=n and �1=n are L–space slopes for sufficiently large n, which is
equivalent to checking that1 is an L–space slope after applying Hn or H�n. These
twists have the effect of replacing unstable chains in dual notation with d�

k
segments

with either k� 0 or k� 0. The rest of the proof is identical to the proof above after
adding/removing stars on each segment.
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4.5 Simple loops

We will often restrict to a special class of loops, which we call simple.

Definition 4.20 A loop ` is simple if there is a loop `0 consisting only of unstable
chains such that ` can be obtained from `0 using the operations T˙1 and H˙1. A
collection of loops f ìg

n
iD1 is said to be simple if, possibly after applying a sequence

of the operations T˙1 and H˙1, every loop consists only of unstable chains.

Remark 4.21 In the above definition, we do not specify whether the unstable chains
are in standard or dual notation. In fact, it does not matter: if ` contains only unstable
chains in standard notation then Tn.`/ contains only unstable chains in dual notation
for sufficiently large n, and if ` contains only dual unstable chains then Hn.`/ contains
only standard unstable chains. Definition 4.20 can be stated in terms of standard
notation only (compare [10, Definition 4]), but it is sometimes convenient to check the
condition in dual notation.

The notion of simple loops gives rise to a refinement of loop-type manifolds: M is
said to be of simple loop-type if it is loop-type and, for some choice of ˛ and ˇ, the
loops representing bCFD.M; ˛; ˇ/ consist only of unstable chains. Equivalently, M is
of simple loop-type if, for any choice of ˛ and ˇ, bCFD.M; ˛; ˇ/ is represented by a
simple collection of loops.

Note that solid torus-like loops (Definition 3.20) are examples of simple loops. Although
we do not give an explicit description of all simple loops, we prove the following useful
property:

Proposition 4.22 If ` is simple then , up to reorienting the loop , ` has no ak or bk
segments with k < 0.

The proof makes use of the following two observations.

Lemma 4.23 If ` contains no ak , bk or dk segments with k < 0, then the same is true
for T.`/ and H.`/.

Proof Recall that an ak segment with k < 0 corresponds to a segment of type Na,
a bk with k < 0 corresponds to type Nb, and a dk with k < 0 corresponds to type Nc.
The statement for T.`/ is obvious, since T fixes ak and bk segments and increases the
subscript on dk segments by one. For the second, we observe that ` contains no a�i , b�i
or c�i segments in dual notation with i > 0. Indeed, an a�i or a c�i contains a backwards
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�3 arrow, which in standard notation implies the presence of a segment of type Na or Nc
(equivalently, a segment of type ak or dk with k < 0), and a b� segment contains a
forward �1 segment, which implies the presence of type Nb or Nc segment (equivalently,
of a bk or dk with k < 0). It is clear that this property is preserved by H, which fixes a�

and b� segments and decreases the index on c� segments. Since H.`/ has no a�i , b�i
or c�i segments with i > 0, it is straightforward to check that H.`/ has no forward �1
arrows or backward �3 arrows, and thus it does not contain any ak , bk or dk segments
with k < 0.

Lemma 4.24 If ` contains no ak , bk or ck segments with k < 0, then the same is true
for T�1.`/ and H�1.`/.

Proof The proof is completely analogous to the previous lemma.

Proof of Proposition 4.22 Since ` is simple, there is some `0 consisting of only
unstable chains such that ` is obtained from `0 by a sequence of Dehn twists. That
sequence of Dehn twists determines an element of the mapping class group, which can
be represented by the matrix

�
p q
r s

�
. Let Œk1; : : : ; k2n� be a continued fraction for p=q

of even length; the element of the mapping class group above can be decomposed as
the sequence of Dehn twists

Tm ı Hk2n ı Tk2n�1 ı � � � ı Hk2 ı Tk1 ;

where m is an integer. Let

`00 D Hk2n ı Tk2n�1 ı � � � ı Hk2 ı Tk1.`/:

First suppose that p=q is positive. We may assume that each ki is positive for 1� i �2n.
Then `0 can be written with no ak , bk or dk segments with k < 0, and, by Lemma 4.23,
this property is closed under all positive twists, so `00 can also be written with no ak ,
bk or dk segments with k < 0. It follows that ` D Tm.`00/ can be written with no ak
or bk segments with k < 0.

If instead p=q is negative, we may chose a continued fraction with each ki negative.
Then `0 can be written with no ak , bk or ck segments with k < 0, and, by Lemma 4.24,
the same is true for `00. It follows that ` D Tm.`00/ can be written with no ak or bk
segments with k < 0.

The argument above can be repeated in dual notation, taking a continued fraction for
r=s instead of p=q, to prove the following:
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Proposition 4.25 If ` is simple then , up to reorienting the loop , ` has no a�
k

or b�
k

segments with k < 0.

The main advantage of restricting to simple loops is that it greatly simplifies the
conditions under which a given slope is a strict L–space slope. Recall that, by
Proposition 4.19,1 is a strict L–space slope for ` if and only if ` can be decomposed
into words of the form dk , b1a�1 or b�1a1. If ` is a simple loop, then the last two
words cannot appear by Proposition 4.22, and 1 is a strict L–space slope if and
only if ` consists only of unstable chains in standard notation. Equivalently (using
Observation 3.9),1 is a strict L–space slope if and only if ` does not contain both
positive and negative subscripts in dual notation. Similarly, 0 is a strict L–space slope
if and only if ` consists only of unstable chains in dual notation, which is equivalent to
` having only nonnegative or only nonpositive subscripts in standard notation.

We conclude this section by refining Theorem 4.1 in the case of simple loops. Theorem
4.1 states that set of L–space slopes for a loop ` is a (possibly empty) interval in yQ;
the endpoints of this interval could be irrational, a priori, but we find that only rational
endpoints are possible.

Proposition 4.26 Let ` be a simple loop. The set of L–space slopes for ` is either

(i) identified with Q (in practice , every slope other than the rational longitude); or

(ii) the restriction to yQ of a closed interval U in yR with rational endpoints.

Proof Note that applying the twist operations T and H to a loop preserves the cyclic
ordering on abstract slopes, and so properties (i) and (ii) are preserved under these
operations. Given an arbitrary simple loop ` , we will describe an algorithm for applying
twists to produce a loop `0 with one of the following properties:

(1) `0 contains only d0 segments;

(2) `0 contains only d1, d0 and d�1 segments, with d1 and d�1 segments alternating
(ignoring d0 segments); or

(3) `0 contains only dk segments with k � �1, including at least one d�1 segment,
such that each d�1 is followed by .d0/jdk for some j � 0 and k > 0, and `0

does not satisfy .2/.

By definition, some sequence of twists produces a loop 1̀ which can be written in
standard notation using only type dk segments. We may assume that the minimum
subscript for the dk segments in 1̀ is 0. Given ì (starting with i D 1), the algorithm
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proceeds as follows: If the subscripts in ì are all 0, then ì satisfies .1/ and the algorithm
stops. Otherwise, consider the loop T�1. ì /; this loop consists of dk segments with
k � �1 including at least one d�1. If T�1. 1̀/ satisfies .2/ or .3/, the algorithm stops.
Otherwise, consider the loop E. ì /, which by Lemma 3.10 contains only d�

k
segments

with k � 0 in dual notation. It follows that E. ì / contains only ck segments with k � 0
in standard notation; reversing the loop, we have that E. ì / can be written with only dk
segments with k � 0 in standard notation. Let mi denote the minimum subscript for a
dk segment in E. ì /, and define ìC1 to be T�mi ı E. ì /. Note that ìC1 consists of dk
segments with k� 0, including at least one d0. We now repeat the algorithm using ìC1.

To see that this algorithm terminates, let �i denote the number of d0 segments in the
loop ì . Observe that d0 segments in ìC1 come from minimal subscripts in E. ì /,
which come from maximal sequences of d0’s in ì ; in particular, there is at least one
d0 in ì for each d0 in ìC1, and so �iC1 � �i . Moreover, the inequality is strict unless

ì has no consecutive d0 segments. If T�1. ì / satisfies .2/ or .3/ then the algorithm
terminates; otherwise, ì must contain d0.d1/jd0 for some j � 0. Let �i denote the
minimal such j. As observed above, if �i D 0 then �iC1 < �i . If �i > 0, then the
subword d0.d1/�id0 in ì gives rise to the subword d�2.d�1/�i�1d�2 in E. ì / and the
subword d0.d1/�i�1d0 in ìC1. Thus, at each step in the algorithm, either �iC1 < �i
or �iC1 D �i and �iC1 < �i . Since �i and �i are nonnegative integers, the algorithm
must terminate after finitely many steps.

Let `0 be the result of the algorithm above. In cases .1/ and .2/, we can easily check
that condition (i) is satisfied. First note that 1 is an L–space slope for `0 since it
contains only unstable chains in standard notation. Moreover, for any n 2 Z, 1=n is an
L–space slope for `0 if and only if1 is an L–space slope for Hn.`0/. But Hn.`0/D `0

since `0 either cannot be written in dual notation (case .1/) or contains only stable
chains in dual notation (case .2/). Since the set of L–space slopes is an interval and it
contains slopes arbitrarily close to 0 on both sides, it must be all of yQnf0g. In case .3/,
note that writing `0 in dual notation produces stable chains, but each b� segment is
immediately followed by an a� segment. Moreover, since `0 does not satisfy .2/, it
has at least one unstable chain in dual notation. It follows from Propositions 4.3 and
4.19 that 0 is an L–space slope for `0 but not a strict L–space slope. Thus 0 must be a
boundary of the interval of L–space slopes. Since `0 was obtained from ` by applying
a finite number of twists, the slope 0 for `0 can be expressed as a rational slope for ` .

In case .3/, we have found one rational boundary of the interval of L–space slopes. In
fact, we can check that it is the left boundary. In this case �ı.`0/ and ��.`0/ have the
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same sign, and so the slope of the rational longitude ��ı=�� is negative. By Corollary
4.5 it follows that the set of L–space slopes for `0 contains Œ0;1�, and so 0 must be the
left boundary of the interval ofL–space slopes for `0. A similar algorithm, with opposite
signs for subscripts in property .3/, shows that the right endpoint is also rational.

The proof of Theorem 1.2 is now complete: it follows from (and is made more precise
by) Theorem 4.1 in combination with Proposition 4.26

5 Gluing results

This section is devoted to proving Theorem 1.3. We first prove the analogous result on
the level of abstract loops, and then deduce the gluing theorem for simple loop-type
manifolds. We end the section with an application to generalized splicing of L–space
knot complements and give the proof of Theorem 1.6.

5.1 A gluing result for abstract loops

We will say that two loops 1̀ and 2̀ are L–space aligned if, for every slope r=s 2 yQ,
either r=s is a strict L–space slope for 1̀ or s=r is a strict L–space slope for 2̀. This
section is devoted to proving the following proposition:

Proposition 5.1 If 1̀ and 2̀ are simple loops which are not solid-torus-like , then
`A1 � 2̀ is an L–space chain complex if and only if 1̀ and 2̀ are L–space aligned.

An essential observation is that 1̀ and 2̀ are L–space aligned if and only if T. 1̀/

and H. 2̀/ are L–space aligned, since T takes the slope r=s to .r C s/=s while H

takes the slope s=r to s=.r C s/. More generally, we can apply a sequence of
twists fTk1 ; Hk2 ; : : : ; Tk2n�1 ; Hk2ng to 1̀ and a corresponding sequence of twists
fHk1 ; Tk2 ; : : : ; Hk2n�1 ; Tk2ng to 2̀ without changing whether or not the pair of loops
is L–space aligned. By Proposition 2.6, the quasi-isomorphism type of `A1 � 2̀ is also
unchanged. Thus, in proving Proposition 5.1, we may first reparametrize the pair of
loops to get a more convenient form.

Proof of Proposition 5.1, “only if” direction Suppose 1̀ and 2̀ are not L–space
aligned; that is, there exists a slope p=q that is not a strict L–space slope for 1̀ and
q=p is not a strict L–space slope for 2̀. In fact, we may assume that p=q D1; if not,
we reparametrize as described above, replacing 1̀ with

`01 D Hk2n ı Tk2n�1 ı � � � ı Hk2 ı Tk1. 1̀/
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so that the slope p=q for 1̀ becomes the slope1 for `01, and replacing 2̀ with

`02 D Tk2n ı Hk2n�1 ı � � � ı Tk2 ı Hk1. 2̀/:

Furthermore, we may assume that 1̀ contains no segments of type dk , Ndk , e or Ne, and
that 2̀ contains no segments of type d�

k
, Nd�
k

, e� or Ne�; if necessary, we replace 1̀ with
T�n. 1̀/ and 2̀ with H�n. 2̀/ for sufficiently large n.

Since1 is not a strict L–space slope for 1̀, the loop 1̀ must contain stable chains in
standard notation (note that, since 1̀ is not solid torus-like, it can be written in standard
notation). In particular, after possibly reversing the loop, 1̀ contains a bk segment.
The corresponding segment in `A1 is

� ı ı �
x1 y1 yk x2

�3;�2;�1 �2;�1 �3

Since 0 is not a strict L–space slope for 2̀, this loop must contain stable chains in dual
notation. In particular it contains an a�

`
segment; we label the corresponding generators

ı � � ı
w1 z1 z` w2

�3 �12 �123

Consider the generator yk in `A1 , which has no outgoing A1 operations. To determine
the possible incoming operations, note that the segment bk must be followed by either
a type c segment or a type a segment. This is because we assumed that 1̀ contains no
Ne or Ndj segments, and 1̀ cannot contain both bk and Naj segments since it is simple. In
either case, x2 has an outgoing �3 labelled arrow in `A1 and no incoming arrows. It
follows that yk has only the incoming A1 operations

m2.x2; �3/D yk;

m2Ci .yk�i ; �2; �12; : : : ; �12; �1/D yk for 1� i < k;

m3Ck.x1; �3; �2; �12; : : : ; �12; �1/D yk;

and possibly more operations whose inputs end with �2; �12; : : : ; �12; �1.

Consider the generator w2 in 2̀. Note that a�
`

must be followed by either a b� segment
or a Nc� segment. It follows that the only incoming sequences of arrows consist of a
�123 or �1 arrow preceded by some number of �12 arrows. Comparing this with the
A1 operations terminating at yk described above, it is clear that the generator yk˝w2
in `A1 � 2̀ has no incoming differentials. It also has no outgoing differentials, since
yk has no outgoing A1 operations. Thus yk˝w2 survives in homology.
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Similarly, consider the generator x1 in `A1 and z1 in 2̀. The generator z1 has no
incoming sequences of arrows, and the only outgoing sequences consist of a single �3
arrow or begin with some number of �12 arrows followed by a �123. Here we use the
fact that the segment a�

`
in the simple loop 2̀ can only be preceded by a b� segment or

a c� segment, so the outgoing �3 arrow cannot be followed by another outgoing arrow.
In `A1 , the segment bk must be preceded by an a segment or a Nc segment. It follows
that, for any nontrivial operation mnC1.x1; �I1

; : : : ; �In
/, we have

� �I1
¤ �123;

� if �I1
D �12, then �Ii

D �12 for 1� i � n� 1 and �In
D �1;

� if �I1
D �3, then n > 1.

We see that no A1 operations starting at x1 match with the ın maps starting at z1.
Thus the generator x1˝ z1 in `A1 � 2̀ has no incoming or outgoing differentials and
survives in homology.

Finally, we observe that gr.z1/Dgr.w2/ since z1 andw2 are connected by only �12 and
�123 arrows, but gr.yk/D gr.y1/D�gr.x1/, since arrows labelled .�2; �1/ preserve
grading but arrows labelled .�3; �2; �1/ flip grading. It follows that yk˝w2 and x1˝z1
have opposite (Z=2Z)–grading. Since both survive in homology, `A1 � 2̀ is not an
L–space complex.

To prove the converse we will use the fact that 1̀ and 2̀ are L–space aligned to put
strong restrictions on the segments that may appear in the loops 1̀ and 2̀. Once again,
we can apply twists to 1̀ and 2̀ to obtain `01 and `02 with convenient parametrizations,
such that `01 and `02 are still L–space aligned and `A1 � 2̀ is homotopy equivalent to
.`01/

A � `02. The set of strict L–space slopes for 2̀ is some nonempty open interval
in yQ. This interval is either all of yQ except the rational longitude or it has distinct
rational endpoints; see Proposition 4.26. In the latter case, we can reparametrize so that
for `02 these boundaries have slope 0 and p=q for some 1 < p=q �1. To see this, take
p > 0 and choose n so that 0� qCnp < p and 1 < p=.qCnp/�1; we can replace
p=q with p=.qCnp/ by applying dual twists, in particular, leaving the slope 0 fixed.
Now the set of strict L–space slopes for `02 is exactly .0; p=q/. The fact that `01 and `02
are L–space aligned then implies that the set of strict L–space slopes for `01 contains
Œ�1; q=p�. If the set of strict L–space slopes for 2̀ is all of yQ except the rational
longitude, then we can choose a parametrization such that the rational longitude of `02
is 0 and such that the set of strict L–space slopes for `01 contains Œ�1; 0�.
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Lemma 5.2 If q=p 2 Œ0; 1/ and ` is a simple loop for which the interval of strict
L–space slopes contains Œ�1; q=p�, then ` consists only of segments c�

k
with 0 �

k � dp=qe.

Proof Since 0 is a strict L–space slope, ` can be written with only dual unstable
chains. Up to reading the loop in reverse order, we can assume the unstable chains are
c�
k

segments. Moreover, the fact that1 is a strict L–space slope implies that ` cannot
contain c�

k
segments with both positive and negative subscripts. Since the rational

longitude is given by ��ı.`/=��.`/ and falls in the interval .q=p;1/, we must have
that �ı.`/ and ��.`/ have opposite signs. This only happens if ` is composed of c�

k

segments with k � 0. Let nD dp=qe. Observe that ` must contain at least one c�
k

with
0� k < n (recall that c0 D Ne�), since otherwise the rational longitude is less than 1=n.
Finally, the fact that 1=n is a strict L–space slope implies that1 is a strict L–space
slope for the loop Hn.`/. Since ` contains Ne� or c�

k
with k < n, Hn.`/ contains at least

one c�
k

with k < 0 and therefore does not contain any c�
k

with k > 0. Therefore ` does
not contain c�

k
with k > n.

Lemma 5.3 If p=q 2 .1;1� and ` is a simple loop that is not solid torus-like for
which the interval of strict L–space slopes contains .0; p=q/, then ` consists only of
ak , bk , ck and dk segments (for k > 0) and e and Nc1 segments. Moreover ,

� ` contains no two Nc1 D d�1 segments separated only by e D d0 segments ,

� ` contains no ck segments with k < dp=qe� 1, and

� if 0 is not a strict L–space slope for ` then there is at least one Nc1 segment.

Proof Since 1 is a strict L–space slope, T.`/ can be written with no Na, Nb, Nc or Nd
segments. It follows that ` can be written with no Na, Nb, Nd or Ne segments and no Nck
segments with k > 1.

Let n D dp=qe. Since n � 1 < p=q is a strict L–space slope, Tn�1.`/ does not
contain both barred and unbarred segments (ignoring e’s). Suppose ` contains ck
with k < n� 1. Then Tn�1.`/ contains at least one Nd segment and cannot contain
any unbarred segments. Any a, b or ck segments with k > n� 1 in ` produces an
unbarred segment in Tn�1.`/, so we must have that ` consists only of ck segments
with k � n � 1. However, in this case it is easy to see that ��.`/ and �ı.`/ have
opposite signs and j�ı.`/j � .n�1/j��.`/j, which contradicts the fact that the rational
longitude ��ı=�� does not fall in the interval .0; p=q/. Thus ` does not contain ck
with k < n� 1.
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Now ` must contain an ak , bk , ck or dk segment with k > 1 or two segments of type
a1, b1, c1 or d1 separated only by e’s. Otherwise, ` would consist of only Nc1, e and d1
segments with at least one Nc1 for each d1; in this case, ��.`/ and �ı.`/ have opposite
signs and j�ı.`/j � j��.`/j, so the rational longitude falls in .0; 1�. It follows that
in dual notation ` contains Nc�

k
, e� or d�

k
, and thus Hm.`/ contains a d� segment for

sufficiently large m. Since 1=m is a strict L–space slope for sufficiently large m, we
must have that Hm.`/ does not contain a Nd� segment. Therefore ` does not contain any
c�
k

segments, and thus in standard notation it does not have two Nc1 segments separated
only by e’s.

Finally, if 0 is not a strict L–space slope for ` , then ` must contain both barred and
unbarred segments in standard notation; it follows that ` must contain at least one Nc1.

The two previous lemmas only depend on dp=qe. If p=q is not an integer, it is possible
to give further restrictions on subwords that can appear in the loop. We will prove one
such restriction using two properties for a pair of loops. For an integer r � 0, we will
say that two loops 1̀ and 2̀ satisfy property � (or property � for r � 0) if:

.�1/ 1̀ consists only of c�
k

with 0� k � n, for some n, with at least one c�n .

.�2/ 2̀ consists only of ak , bk (k > 0), dk (k � �1) and cl (l � m) segments for
some m> 0, with at least one cm and at least one Nc1 D d�1.

.�3/ There is an integer N > 0 and subscripts ki 2 fN;N � 1g for 1 � i � r such
that 1̀ contains the subword c�N c

�
k1
: : : c�

kr
c�N and 2̀ contains the subword

cN�1ck1
: : : ckr

cN�1.

The integer r � 0 appearing in condition .�3/ is the complexity of the pair . 1̀; 2̀/
satisfying property �; when we appeal to pairs satisfying property � the aim will be to
decrease this complexity. Similarly, two loops 1̀ and 2̀ satisfy property property ��

(or property �� for r � 0) if:

.��1/ 1̀ consists only of Ndk with 0� k � n, for some n, with at least one Ndn.

.��2/ 2̀ consists only of Na�
k

, Nb�
k

(for k > 0), Nc�
k

(for k > �1) and Nd�
l

(for l � m)
segments for some m, with at least one Nd�m and at least one d�1 D Nc

�
�1.

.��3/ There is an integer N > 0 and subscripts ki 2 fN;N � 1g for 1 � k � r such
that 1̀ contains the subword NdN Ndk1

: : : Ndkr
NdN and 2̀ contains the subword

Nd�N�1
Nd�
k1
: : : Nd�

kr

Nd�N�1.

Lemma 5.4 If two simple loops 1̀ and 2̀ satisfy either property � or property ��,
then 1̀ and 2̀ are not L–space aligned.
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1̀ Ne�c�3 c
�
2 c
�
2 c
�
1 c
�
2

2̀ a1 Nc1b1c1c2c1c1

`01
Nd�2 c
�
1 Ne
� Ne� Nd�1 Ne

�

`02a1d1b1 Nd1 Ne Nd1 Nd1
T2

H2

Figure 6: Loops 1̀ and 2̀ satisfying property � for nD 3 and mD 1. The
relevant subwords, with N D r D 2, have been highlighted. Note that this
illustrates the key step in the proof of Lemma 5.4 when n>mC1: one checks
that 0 is not a strict L–space slope for `01 (this loop contains a Nd� segment)
while the set of strict L–space slopes for `02 does not intersect Œ0;1� thus `01
and `02 (and hence 1̀ and 2̀) are not L–space aligned.

Proof Suppose first that property � is satisfied, where n is the maximum subscript
for c�

k
segments in 1̀ and m is the minimum subscript of ck segments in 2̀. Since

1̀ contains c�N and 2̀ contains cN�1 for some N, we have that n�mC 1. Consider
the reparametrized loops `01 D HmC1. 1̀/ and `02 D TmC1. 2̀/; `01 and `02 are L–space
aligned if and only if 1̀ and 2̀ are. We now have:

� `01 consists only of c�
k

with �m� k� n�m�1 with at least one c�n�m�1 (where,
as usual, c�0 D Ne

�).

� `02 consists only of ak , bk (for k > 0), ck (for k � �1) and dl segments with
l �m, with at least one c�1 D Nd1 and at least one dm.

Note that, for `02, 0 is not a strict L–space slope because the loop contains at least one
barred segment, Nd1, and at least one unbarred segment, dm. Note also that1 is not
a strict L–space slope, since `02 contains unstable chains with both orientations. The
slope �1 is a strict L–space slope, since T�1.`02/ has no barred segments (ignoring e’s).
It follows that `02 has no strict L–space slopes in Œ0;1�.

First consider the case that n >mC1. In this case, `01 contains at least one c�
k

segment
with k > 0. If `01 also contains a c�

k
segment with k < 0, then 0 is not a strict L–space

slope for `01. Since1 is not a strict L–space slope for `02, `01 and `02 are not L–space
aligned. If `01 does not contain a c�

k
segment with k < 0, then it consists only of c�

k

segments with k � 0. It follows that the rational longitude ��ı.`01/=��.`
0
1/ is positive.

Since the rational longitude is not a strict L–space slope, and all positive slopes for `02
are not strict L–space slopes, `01 and `02 are not L–space aligned.

In the case that n D mC 1, we have N D n in the statement of property � (with
complexity r) for 1̀ and 2̀. The shifted loops `01 and `02 satisfy an additional condition:
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� There are subscripts k0i 2 f0; 1g for 1� i � r such that `01 contains the subword
Ne� Nd�

k01
: : : Nd�

k0r
Ne� and `02 contains the subword Nd1 Ndk01 : : :

Ndk0r
Nd1, following (as

usual) the convention that Nd0 D Ne and Nd�0 D Ne
�.

The next step is to write `01 in standard notation and `02 in dual notation. First, `01
consists only of Ne� and Nd� segments, so in standard notation it consists only of Ne and
Nd segments. There is some maximum subscript on the Nd segments; call it n0. Note that

this says that `01 and `02 satisfy condition .��1/ for property ��. Dualizing `02 is slightly
harder. Types of segments in dual notation are determined by adjacent pairs of standard
segments (ignoring e’s and Ne’s); see Section 3.2. The possible pairs of segments in `02
are ab, ad , dd , db, ba, bc, b Nd , ca, cc, c Nd , Nda, Ndc and Nd Nd . These correspond to
dual segments d�, d�, d�, d�, Nc�, Nc�, Nb�, Nc�, Nc�, Nb�, Na�, Na� and Nd�, respectively.
Since `02 has no e segments, the subscripts on the d� segments are at most 1. Since the
only bar segments in `02 in standard notation have subscript 1, there are no Ne� segments
in `02. Thus `02 consists only of Na�

k
, Nb�
k

, Nc�
k

, Nd�
k

(for k > 0), e� and d�1 segments. There
is some minimum subscript on the Nd segments; call it m0. Moreover, since `02 contains
at least one dk segment, it also contains at least one d�1 segment. Note that this says
that `01 and `02 satisfy condition .��2/ of property ��.

If n0>m0C1, then we proceed in a similar fashion to the n>mC1 case for property �.
We replace `01 with `001 D T�m

0�1.`01/ and `02 with `002 D H�m
0�1.`02/. We can observe

that `002 contains at least one c�1 segment and at least one Ncm0 segment; thus 0 and1
are not strict L–space slopes for `002 , and in fact no slope in Œ�1; 0� is a strict L–space
slope. We can also observe that `001 consists of c, Ne and Nd segments with at least one Nd .
Thus either 0 is not a strict L–space slope or the rational longitude is negative. In either
case, `001 and `002 are not L–space aligned.

Now assume that n0 D m0 C 1. Consider the sequence k01; : : : ; k
0
r . This sequence

consists of some number of (possibly empty) strings of 0’s each separated by a single 1;
let l1; : : : ; ls be the sequence of the lengths of these strings of 0’s. Note that s is at
most r C 1. Since `02 contains the word Nd1 Ndk01 : : :

Ndk0r
Nd1, it follows that it contains the

dual word Nd�
l1
Nd�
l2
: : : Nd�

ls�1

Nd�
ls

. Similarly, `01 contains the dual word Ne� Nd�
k01
: : : Nd�

k0r
Ne�,

which must be followed and proceeded by more Nd� segments, possibly with additional
Ne� segments in between. It follows that `01 contains the word Ndl 01

Ndl2 : : :
Ndls�1

Ndl 0s , where
l 01 > l1 and l 0s > ls . Since we have assumed that n0 D m0 C 1, we must have that
l 01 D l1C 1 and l 0s D ls C 1, and moreover that l1 D ls and li 2 fl1; l1C 1g for every
other i . Let N 0 D l1C 1, so that `01 contains the subword NdN 0 Ndl2 : : : Ndls�1

NdN 0 and `02
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contains the subword Nd�N 0�1
Nd�
l1
: : : Nd�

ls�1

Nd�N 0�1. In other words, the property .��3/ of
property �� is satisfied with complexity r 0 D s� 2. Note that r 0 < r , since s � r C 1.
We also have that r 0 � 0, since if s D 1 then each k0i is 0 for each 1� i � r ; it would
follow that `02 contains Nd�rC1 and `01 contains a Nd segment with subscript at least rC 3,
and so n0 >m0C 1.

We have shown that if 1̀ and 2̀ satisfy property � (for some integer r � 0), then
either they are not L–space aligned or they can be modified to `01 and `02 which satisfy
property �� (for some integer r 0 � 0), where 0 � r 0 < r . A similar proof shows that
if 1̀ and 2̀ satisfy property �� then either they are not L–space aligned or they can
be modified to `01 and `02 which satisfy property � with 0� r 0 < r . In both cases, the
complexity is reduced, so, by induction on r , we have that 1̀ and 2̀ are not L–space
aligned if they satisfy either property.

Now that we have placed restrictions on loops 1̀ and 2̀ that are L–space aligned, we
can complete the proof of Proposition 5.1 by analyzing the box tensor product segment
by segment. In the proof, we will determine when certain generators in `A1 � 2̀ cancel
in homology. To aid in this, we introduce the following terminology: we refer to
differentials starting or ending at x˝ y in `A1 � 2̀ as being “on the right” or “on the
left” depending on whether the type D operations in 2̀ that give rise to the differential
in the tensor product are to the right or left of y, relative to the cyclic ordering on 2̀. In

�ı�

ı

� ı

ı

�3�2

�123

�1

�2

�23

�123

��

�

`A
� ��

y x˝y

having fixed the loop .d2 Nb1 Na1/ (that is, reading the loop counterclockwise) the generator
x ˝ y cancels on the right when paired with the standard solid torus. (Recall that
this example may be identified with the trivial surgery on the right-hand trefoil.) This
terminology is motivated by picturing the tensor product on a grid with rows indexed
by generators of `A1 and columns indexed by generators of 2̀; compare Figure 7. With
this terminology in place, we observe:

Lemma 5.5 For any loops 1̀ and 2̀ and any generator x˝ y 2 `A1 � 2̀, there is at
most one differential into or out of x˝y on the right , and at most one on the left.
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Proof This follows from examining the arrows of type I�, II�, Iı and IIı introduced in
Section 3.1 and the corresponding type A arrows. For instance, suppose y has a type I�
arrow on the right. A differential on the right of x˝y must arise from an A1 operation
starting at x with inputs starting with �1, �12 or �123. Such A1 operations correspond
to sequences of arrows in `A1 starting at x in which the first arrow is labelled by �1.
There is at most one such arrow from x in `A1 , since the corresponding vertex in 1̀ is
adjacent to only one arrow of type II�. A directed sequence of arrows in `A1 of length k
beginning with this �1 labelled arrow gives rise to a collection of k A1 operations
with first input �1, �12 or �123, each corresponding to the first i arrows in the sequence
for some i � k. We observe that none of these operations have inputs that are the first
n inputs of another operation in the collection. The reason for this is, when reading off
the inputs for an A1 operation from a sequence of arrows following the conventions
in Section 2.4, the effect of adding one more arrow is to leave all but the last input in
the list unchanged, multiply the last input by something nontrivial and possibly add
more inputs at the end of the list. For example, for a sequence of arrows, in `A1 ,

� ı ı �
x

�1 �2;�1 �2

the first arrow yields a contribution tom2.x; �1/, the first two arrows yield a contribution
to m3.x; �12; �1/ and all three arrows yields a contribution to m3.x; �12; �12/. Thus
at most one operation in the collection can pair with a sequence of arrows on the right
of y in 2̀. It follows that x˝y has at most one differential on the right.

Similar arguments show that there is at most one differential on the right if the arrow
on the right of y is type II�, Iı or IIı, and the same is true on the left.

Thus, all differentials in `A1 � 2̀ appear in linear chains and x ˝ y will cancel in
homology if it has an odd length chain of differentials on either side; we say that x˝y
cancels on the right (resp. left) if there is an odd length chain of differentials on the
right (resp. left). Note that if there is an odd length chain of differentials on one side
of x˝ y, successively applying edge reduction to cancel the outermost differential
on that side eventually results in cancelling x˝ y without using the differentials on
the other side. If there is an even length chain, this chain can be removed using edge
reduction leaving no differentials on that side of x˝ y. If x˝ y does not cancel on
the right or the left, we say x˝y does not cancel in homology, since it, or potentially
a linear combination of it with other generators of the same .Z=2Z/–grading, survives
in homology.
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Proof of Proposition 5.1, “if” direction Suppose 1̀ and 2̀ areL–space aligned. Up to
changing parametrization, we can assume that the interval of strictL–space slopes for 2̀

contains .0; p=q/ for some 1<p=q�1 and does not contain 0 and the interval of strict
L–space slopes for 1̀ contains Œ�1; q=p�. By Lemmas 5.2 and 5.3, 1̀ can be written
with only e� and c�

k
segments and 2̀ consists of ak , bk , ck , dk , e and Nc1 segments. We

will fix the .Z=2Z/–grading on each loop so that every generator of `A1 has grading 0
and all �1–generators in 2̀ have grading 0 except those coming from Nc1 segments.

Consider a generator x˝y in `A1 � 2̀. Then x belongs to a segment s1 in `A1 and y
belongs to a segment s2 in 2̀. We will consider cases depending on the type of the
segments s1 and s2 and in each case show that either x˝y has grading 0 or it cancels
in homology. Therefore `A1 � 2̀ is an L–space complex.

First note that gr.x/ is always 0 by assumption. If s2 is an e, dk or bk segment, then y
also has grading 0 and the grading of x˝y is 0. If s1 is Ne� then x is in idempotent �1
and so y must also have idempotent �1. All �1–generators of 2̀ have grading 0 except
those in Nc1 segments, so x˝y has grading 0 if s1 is Ne� and s2 is not Nc1.

Suppose that s1 is c�
k

and s2 is a` with generators labelled by

s1 D � � � ı
x1 x2 xk xkC1

C C C C
�1 �3;�2 �3;�2 �3

s2 D � ı ı ı �
y0 y1 y2 y` y`C1

� C C C C
�3 �23 �23 �2

Every generator in each segment has grading 0 except for y0, so x˝y has grading 0
unless y D y0 and x D xi for i 2 f1; : : : ; kg. For each i , `A1 has the operation

m2Ck�i .xi ; �3; �23; : : : ; �23/D xkC1:

If k� i < `, it follows that in the tensor product there is a differential from xi ˝y0 to
xkC1˝yk�iC1. It is not difficult to check that xkC1˝yk�iC1 does not cancel from
the right; the arrow in 2̀ to the right of yk�iC1 is outgoing and s1 is followed by a
c� or Ne� segment, so xkC1 has only incoming A1 operations. Therefore, in this case
xi ˝y0 cancels in homology. If instead k� i � ` then `A1 has the operation

m2C`.xi ; �3; �23; : : : ; �23; �2/D xiC`

and there is a differential in the box tensor product from xi˝y0 to xiC`˝y`C1. Again
it is not difficult to see that xiC`˝y`C1 does not cancel from the right, since the arrow
in 2̀ to the right of y`C1 must be an outgoing �1, �12 or �123 arrow and xiC` has
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no outgoing A1 operations with first input �1, �12 or �123. Thus xi ˝y0 cancels in
homology.

Suppose that s1 is c�
k

, with generators labelled as above, and s2 is Nc1 with generators
labelled as follows (note that the generator y0 is not actually part of the segment s2):

s2 D � ı �
C � C

y0 y1 y2

�1 �3

The generator y2 has grading 0 and the generator y1 has grading 1, so x ˝ y only
has grading 1 if x D xkC1 and y D y1. In this setting, xkC1˝ y1 has an incoming
differential on the right which starts from xk˝y2. To ensure that xkC1˝y1 cancels
in homology we need to check that xk˝y2 does not cancel on the right. To the right
of y2 in 2̀ is an outgoing sequence of arrows that starts with some number of �12
arrows followed by a �123 arrow (here we use that a Nc1 segment in 2̀ is not followed
by another Nc1 segment with only e’s in between). If k > 1 then xk has no outgoing
A1 operations except m2.xk; �3/D xkC1. If kD 1, then xk has additional operations,
but, since s1 is preceded by some number of Ne� segments and then a c� segment, the
inputs for these operations can only be some number of �12’s followed by a �1. In
either case, it is clear that xk˝y2 does not cancel on the right.

Suppose that s1 is Ne� and s2 is Nc1. In this case, x is the only generator of Ne�, y is
the only generator of Nc1 with idempotent �1, and x ˝ y has grading 1. In 2̀, s2 is
preceded by some number i of e segments, which are preceded by a bk or dk segment.
Thus to the left of y in 2̀ there is an incoming sequence of arrows that ends with �2,
i �12’s and �1. In `A1 , s1 is followed by some number j of Ne� segments followed by
a c�
k

. If j > i then x has an incoming operation with inputs .�2; �12; : : : ; �12; �1/ with
i �12’s, and if j � i then x has an incoming operation with inputs .�12; : : : ; �12; �1/
with j �12’s. In either case, these operations give rise to a differential in the box tensor
product ending at x˝y. In both cases it is also easy to check that the initial generator
of this differential has no other differentials, and so x˝y cancels in homology.

The only case remaining is the case that s1 is c�
k

and s2 is c`. This case is depicted in
Figure 7 for kD3 and `D2. We label the generators of s1 sequentially as x1; : : : ; xkC1,
and we label the generators of s2 as y0; : : : ; y`. For the remainder of this proof, assume
that s1 is c�

k
, s2 is c`, x˝y has grading 1 and x˝y does not cancel in homology; we

will produce a contradiction, proving the proposition.

Since x˝y has grading 1, y is y0 and x is xi with i 2 f1; : : : ; kg. For each i > k� `,
xi˝y0 has an outgoing differential which ends at xkC1˝yk�iC1. If i >k�`C1, then
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Figure 7: A portion of the chain complex `A1 � 2̀ coming from a segment c�3
in `A1 (left edge) and a segment c2 in 2̀ (top edge). SignsC and � indicate
generators in the box tensor product with grading 0 and 1, respectively.

xkC1˝yk�iC1 does not cancel on the right, since the arrow to the right of yk�iC1 is an
outgoing �23 arrow but xkC1 has only incoming A1 operations. Thus, if i > k�`C1,
xi ˝y0 cancels on the right. By Lemmas 5.2 and 5.3, k � n and `� n� 1; it follows
that k� ` is at most 1 and xi ˝y0 cancels on the right for any i > 2. Thus x must be
either x1 or x2.

If k � ` then x2˝y0 cancels on the right. If k D n and `D n� 1, x2˝y0 potentially
cancels from the right. It has an outgoing differential on the right ending at xkC1˝y`,
so it cancels from the right if and only if xkC1˝ y` does not cancel on the right. Now
xkC1˝y` has a differential on the right only if s1 D c�k is followed by a segment c�

k0
,

in which case the differential starts with the generator x01˝ y
0
0, where x01 is the first

generator of the c�
k0

segment following s1 and y00 is the first generator of the segment
following s2. If x01 ˝ y

0
0 cancels on the right then so does x2 ˝ y0, and x01 ˝ y

0
0

automatically cancels on the right if s2 is followed by a type a segment. Thus, if
xD x2 we must have that s1 is followed by c�

k0
, s2 is followed by c0

`
, and x01˝y

0
0 does

not cancel from the right.

If k < ` then x1˝y0 cancels on the right, and if k > ` then x1˝y0 does not cancel
on the right. If k D `D n or k D `D n� 1, then x1˝ y0 potentially cancels on the
right. By the same reasoning as above, it does not cancel on the right if and only if s1 is
followed by c�

k0
, s2 is followed by c0

`
, and x01˝y

0
0 does not cancel from the right. Now

x1˝y0 may also cancel from the left. It has an outgoing differential on the left ending
at x0˝ y0`0 , where x0 is the last generator in the segment immediately preceding s1
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and y0
`0

is the last generator in the segment preceding s2. If s2 is preceded by b`0 then
it is easy to see that x0˝y0`0 has no differentials on the left, so x1˝y0 cancels from
the left. If instead s2 is preceded by c`0 , x0˝ y0`0 cancels from the left unless s1 is
preceded by c�

k0
and k0 < `0 or k0 D `0 and x01˝y

0
0 cancels from the left.

Suppose that x˝y D x2˝y0 does not cancel in homology (in particular it does not
cancel from the right). Then we have shown that k D n, `D n�1, s1D c�k is followed
by c�

k0
, s2 D c` is followed by c`0 , and the generator x01˝y

0
0 does not cancel from the

right. Furthermore, this last fact implies that either k0D n and `0D n�1 or that k0D `0,
c�
k0

is followed by c�
k00

, c`0 is followed by c`00 , and x001 ˝y
00
0 does not cancel from the

right, where x001 and y000 are the appropriate generators of c�
k00

and c`0 . Repeating this
argument, we see that s1 D c�n is followed by a sequence of c�n and c�n�1 segments
ending with a c�n and s2 D cn�1 is followed by a sequence of cn and cn�1 segments
ending with cn�1 but with indices otherwise the same as the indices in the sequence of
c� segments following s1.

Suppose that x˝y D x1˝y0 does not cancel in homology. The fact that it does not
cancel from the right implies that k D `D n or k D `D n� 1, s1 D c�k is followed
by c�

k0
, s2 D c` is followed by c`0 , and the generator x01˝ y

0
0 does not cancel from

the right. As in the preceding paragraph, this implies that s1 D c�n is followed by a
sequence of c�n and c�n�1 segments ending with a c�n and s2 D cn�1 is followed by
a corresponding sequence of cn and cn�1 segments ending with cn�1. The fact that
x˝y D x1˝y0 does not cancel from the left implies that s1 D c�k is preceded by c�

k0
,

s2D c` is preceded by c`0 , and either k0D n and `0D n�1 or k0D `0 and the generator
x01 ˝ y

0
0 does not cancel from the left. Repeating the argument, we see that s1 is

preceded by a sequence of c�n and c�n�1 segments starting with c�n and s2 is preceded
by a sequence of cn and cn�1 segments with matching sequence of indices except that
the initial segment is cn�1.

Regardless of whether x D x1 or x D x2, we find that there is a sequence of indices
k1; k2; : : : ; kr with ki 2 fn; n� 1g such that `A1 contains c�nc

�
k1
c�
k2
: : : c�

kr
c�n and 2̀

contains cn�1ck1
ck2

: : : ckr
cn�1. It follows that 1̀ and 2̀ satisfy property �. By

Lemma 5.4, this implies that 1̀ and 2̀ are not L–space aligned, a contradiction.

As noted previously, the gluing statement in Proposition 5.1 needs to be modified
if either loop is solid torus-like. Note that for a solid torus-like loop, all slopes are
L–space slopes except the rational longitude. If 1̀ is solid torus-like with rational
longitude r=s and 2̀ is simple, then 1̀ and 2̀ are L–space aligned if and only if s=r
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is a strict L–space slope for 2̀. This is a sufficient, but not a necessary, condition for
`A1 � 2̀ to be an L–space complex.

Proposition 5.6 If 1̀ and 2̀ are simple loops and 1̀ is solid torus-like with rational
longitude r=s, then `A1 � 2̀ is an L–space chain complex if and only if s=r is an
L–space slope for 2̀.

Proof We may choose a framing so that 1̀ is a collection of e segments, that is, so
that the rational longitude is represented by 0. Correspondingly, the slope s=r for 2̀ is
represented by1. The result now follows from Corollary 3.22.

5.2 A gluing result for loop-type manifolds

Returning to loop-type manifolds, we are now in a position to collect the material
proved in this section and, in particular, apply Proposition 5.1 to establish a gluing
theorem.

Theorem 5.7 Let .M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/ be simple loop-type bordered man-
ifolds with torus boundary which are not solid torus-like , and let Y be the closed
manifold .M1; ˛1; ˇ1/[ .M2; ˛2; ˇ2/ (with the gluing map ˛1 7! ˇ2, ˇ1 7! ˛2, as in
Section 2.5). Then Y is an L–space if and only if every essential simple closed curve
on @M1 D @M2 � Y determines a strict L–space slope for either M1 or M2.

Remark 5.8 There is an alternative statement of the conclusion on Theorem 5.7 using
the notation laid out in this paper: the closed manifold M1[M2 is an L–space if and
only if, for each rational p=q, either p=q 2 Lı.M1; ˛1; ˇ1/ or q=p 2 Lı.M2; ˛2; ˇ2/.
Recall that, following the conventions in Section 2.5, p=q 2 Lı.M; ˛; ˇ/ if and only if
˙.p˛C qˇ/ 2 LıM .

Note that Theorem 5.7 implies Theorem 1.3.

Remark 5.9 If either bordered manifold in the statement of Theorem 5.7 is solid
torus-like, then Y is an L–space if and only if every essential simple closed curve
on @M1 D @M2 � Y determines an L–space slope for either M1 or M2. This is an
immediate consequence of Proposition 5.6, and amounts to replacing Lı.Mi ; ˛; ˇ/

by L.Mi ; ˛; ˇ/. Notice that Dehn surgery — by definition of an L–space slope — is a
special case of this version of the gluing result, since the solid torus is solid torus-like,
in the sense of Definition 3.23.
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Proof of Theorem 5.7 Let bCFD.M1;˛1;ˇ1/ be represented by simple loops `11 ; : : : ;`
n
1

and let bCFD.M2; ˛2; ˇ2/ be represented by simple loops `12 ; : : : ; `
m
2 . A given slope

is a (strict) L–space slope for .Mi ; ˛i ; ˇi / if and only if it is a (strict) L–space slope
(abstractly) for each loop `ki . Y is an L–space if and only if `k1 � `

j
2 is and L–space

complex (again, abstractly) for each 1� k � n and 1� j �m.

Suppose there is a slope p=q such that p=q…Lı.M1;˛1;ˇ1/ and q=p…Lı.M2;˛2;ˇ2/.
Then p=q is not a strictL–space slope for `k1 for some k and q=p is not a strictL–space
slope for `

j
2 for some j. We may assume that `k1 is not solid torus-like; if it is solid

torus-like, then p=q must be the rational longitude for .M1; ˛1; ˇ1/ and thus not a
strict L–space slope for any of the loops `11 ; : : : ; `

n
1 . Similarly, we may assume that

`
j
2 is solid torus-like. Since `k1 and `

j
2 are not L–space aligned, `k1 � `

j
2 is not an

L–space complex, and Y is not an L–space.

If every slope is a strict L–space slope for either M1 or M2, then every slope is a strict
L–space slope either for each `k1 or for each `

j
2. It follows that, for every pair .k; j /,

`k1 and `
j
2 are L–space aligned, and thus Y is an L–space.

5.3 L–space knot complements

In light of Theorem 5.7, it is natural to ask which 3–manifolds M with torus boundary
have simple loop-type bordered invariants. We first observe that complements of L–
space knots in S3, that is, those knots admitting an L–space surgery, have this property.

Proposition 5.10 If K is an L–space knot in S3 and M D S3 X �.K/, then for any
choice of parametrizing curves ˛ and ˇ, bCFD.M; ˛; ˇ/ can be represented by a single
simple loop.

Proof We need only show that, for some choice of parametrizing curves, bCFD.M; ˛; ˇ/
is a loop which consists of only unstable chains in either standard notation or dual
notation. Consider then bCFD.M;�; n�C�/, where � is the meridian of the knot K
and � is the Seifert longitude of K. Suppose that jnj is chosen sufficiently large that
the result of Dehn surgery S3n.K/DM.n�C�/ is an L–space.

The knot Floer homology CFK�.K/ has a staircase shape of alternating horizontal
and vertical arrows (see [25], for example). By the construction in [20, Section 11.5],
bCFD.M;�; n�C �/ consists of alternating horizontal and vertical chains, with the

ends connected by a single unstable chain. Thus bCFD.M;�; n�C �/ is a loop. In
standard loop notation, the horizontal chains are type a segments, the vertical chains
are type b segments, and the unstable chain is a type d segment if n > 0 and a type c
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segment if n < 0. More precisely,

bCFD.M;�; n�C�/D
�
bk1
ak2

bk3
ak4
� � � bk2r�1

ak2r
dj if n > 0;

ak1
bk2
ak3

bk4
� � � ak2r�1

bk2r
cj if n < 0:

In either case, the loop has no bar segments in standard notation, so when we switch to
dual notation it has no stable chains. Thus, bCFD.M;�; n�C�/ is a simple loop.

Note that the behaviour established in this application of Theorem 5.7 is expected in
general and, in particular, should not require the hypothesis that the knot complement
be a loop-type manifold; see [9, Conjecture 1; 5, Conjecture 4.3].

Conjecture 5.11 For knots K1 and K2 in S3, with Mi D S
3 X �.K/ for i D 1; 2,

the generalized splicing M1 [hM2 is an L–space if and only if either  2 LıM1
or

h./ 2 LıM2
for every slope  .

On the other hand, it is clear that the case where two L–space knot complements
are identified in the generalized splice is the interesting case, and therefore the loop
restriction in this setting is quite natural. In this case, we remark that the question is
now settled.

Corollary 5.12 Conjecture 5.11 holds when the Ki are L–space knots.

Proof This is immediate on combining Theorem 5.7 and Proposition 5.10.

Note that Corollary 5.12 implies Theorem 1.6.

Some authors define L–space knots to be the class of knots for which some positive
surgery yields an L–space. We will not follow this convention because, while this is a
natural definition for knots in S3 in that certain statements become simpler, our interest
is in the more general setting of manifolds with torus boundary admitting L–space
fillings, wherein the distinction seems to be less meaningful. In particular, the next
section is concerned with this more general setting.

6 Graph manifolds

Note that knots in the three-sphere admitting L–space surgeries contain torus knots —
those knots admitting a Seifert structure on their complement — as a strict subset. Our
goal now is to establish another class of loop-type manifolds: Seifert-fibred rational
homology solid tori. This should be viewed as the natural geometric enlargement of the
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class of torus knot exteriors. To do so, we study these as a subset of graph manifolds,
and establish sufficient conditions for a rational homology solid torus admitting a graph
manifold structure to be of loop-type.

6.1 Preliminaries on graph manifolds

We will represent a graph manifold rational homology sphere Y by a plumbing tree,
following the notation developed in [22]. A plumbing tree is an acyclic graph with
integer weights associated to each vertex. Such a graph specifies a graph manifold as
follows: To each vertex vi of weight ei and valence di we assign the Euler number ei
circle bundle over the sphere minus di disks, and for each edge connecting vertices vi
and vj glue the corresponding bundles along a torus boundary component by a gluing
map that takes the fibre of one bundle to a curve in the base surface of the other bundle,
and vice versa.

To allow for graph manifolds with boundary, we associate an additional integer bi � 0
to each vertex. To construct the corresponding manifold, we associate to each vertex a
bundle over S2 minus .di C bi /; di boundary components of this bundle will glue to
bundles corresponding to other vertices, but the remaining bi boundary components
remain unglued. The resulting graph manifold has

P
i bi toroidal boundary components.

In diagrams of plumbing trees, we will indicate the presence of boundary tori by drawing
bi half-edges (dotted lines which do not connect to another vertex) at each vertex vi .

Given a plumbing tree � with a single boundary half-edge, let M� denote the cor-
responding graph manifold. The torus @M� has a natural choice of parametrizing
curves: one corresponds to a fibre in the S1 bundle containing the boundary, and one
corresponds to a curve in the base surface of that bundle (note that these are precisely
the curves used above to specify the gluing maps in the construction based on a given
graph). Call these two slopes ˛ and ˇ, respectively. These slopes do not have a preferred
orientation, but reversing the orientation on the bundle associated to every vertex in the
construction of M� gives a diffeomorphism between .M� ; ˛; ˇ/ and .M� ;�˛;�ˇ/

as bordered manifolds.

Thus .M� ; ˛; ˇ/ is a canonical bordered manifold associated to � . Since we will be
interested in the bordered invariants of such graph manifolds, for ease of notation we
will refer to bCFD.M� ; ˛; ˇ/ simply as bCFD.�/.

We will make use of three important operations on single boundary plumbing trees.
These are summarized in Figure 8, and described as follows:

Geometry & Topology, Volume 27 (2023)



898 Jonathan Hanselman and Liam Watson

� � �

n T ˙

� � �

n˙ 1

� � �

n E

� � �

n

0

� � �

n1

, � � �

n2 M

� � � � � �

n1Cn2

Figure 8: Three operations on graphs for constructing and graph manifold
with torus boundary.

Twist The operation T ˙ adds˙1 to the weight of the vertex containing the boundary
edge.

Extend The operation E inserts a new 0–framed vertex between the boundary vertex
and the boundary edge.

Merge The operation M takes two single boundary plumbing trees and identifies
their boundary vertices, removing one of the two boundary edges to produce
a new single boundary plumbing tree; the weight of the new boundary vertex
is the sum of the weights of the original boundary vertices.

With these operations we can, in particular, construct any single-boundary plumbing
tree.

6.2 Operations on bordered manifolds

The graph operations described above may be thought of as operations on the corre-
sponding (bordered) graph manifolds. In particular, we will abuse notation and write
MT .�/D T .M�/. T .M�/ is obtained fromM� by attaching the mapping cylinder of a
positive (standard) Dehn twist to the boundary of M� . More precisely, by considering
the gluing conventions prescribed by the plumbing tree, the effect on the bordered
manifold is T .M� ; ˛; ˇ/D .M� ; ˛; ˇC˛/.

Similarly, E.M�/DME.�/ is obtained fromM� by attaching the bimodule correspond-
ing to the two-boundary plumbing tree

�
0
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The graph manifold assigned to this plumbing tree is the trivial S1–bundle over the
annulus, or T 2� Œ0; 1�. Recall that the bordered structure on each boundary component
of this manifold is given by the convention that ˛ is an S1 fibre and ˇ lies in the
base surface. One checks that the resulting bordered manifold can be realised as the
mapping cylinder for the diffeomorphism represented by the matrix

�
0 1
�1 0

�
2 SL2.Z/:

The effect on the level of bordered manifolds is E.M� ; ˛; ˇ/D .M� ;�ˇ; ˛/.

Finally, M.M�1
;M�2

/ is the result of attaching the bundle S1 �P , where P is a pair
of pants. The bordered structure on S1 �P (which we suppress from the notation)
is determined as follows: the two “input” boundary components which glue to M�1

and M�2
are parametrized by pairs .˛; ˇ/ with ˇ a fibre and ˛ a curve in the base

surface P , while the third “output” boundary component is parametrized by .˛; ˇ/ with
˛ a fibre and ˇ a curve in P . As usual, the bordered structure on S1 �P determines
the gluing as well as the bordered structure on the resulting three-manifold.

To see that M.M�1
;M�2

/ is indeed the manifold corresponding to M.�1; �2/, note
that S1 �P with the specified bordered structure is the manifold associated with the
three-boundary plumbing tree �M,

0 0

0

�M D

On the other hand, attaching �1 and �2 to the two lower boundary edges of �M produces
a single-boundary plumbing tree that is equivalent to M.�1; �2/ (by equivalent, we
mean that the corresponding manifolds are diffeomorphic; to see this equivalence, use
rule R3 of [22] to contract the 0–framed valence two vertices).

From this discussion, it should be clear that the operations T , E and M may be extended
to natural operations on arbitrary bordered manifolds. We are interested in the effect of
these operations on bordered invariants. Following the conventions laid out, we have
that T ˙.M; ˛; ˇ/D .M; ˛; ˇ˙˛/, so that, at the level of bordered invariants,

(1) bCFD.T ˙.M; ˛; ˇ//Š yT˙1st � bCFD.M; ˛; ˇ/:

Similarly, the action of
�
0 1
�1 0

�
2 SL2.Z/, giving E.M; ˛; ˇ/D .M;�ˇ; ˛/, is realized

by

(2) bCFD.E.M; ˛; ˇ//Š yTst � yTdu � yTst � bCFD.M; ˛; ˇ/

on type D structures.
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2CFDDD.YP/

�

1CFA
A.

I/

yT st

yT du

yT st

�

1CFAA.I/

�

Figure 9: A schematic description of the trimodule 2CFDAA.S1�P/ extracted
from the calculation and conventions in [8].

The most involved is the merge operation: for a pair of bordered manifolds .Mi ; ˛i ; ˇi /

for i D 1; 2, this produces a bordered manifold

M1;2 DM..M1; ˛1ˇ1/; .M2; ˛2; ˇ2//

using S1 �P . As a bordered 3–manifold with three boundary components, S1 �P
gives rise to a trimodule in the bordered theory (the object of study in work of the first
author [8]). More precisely, we consider the type DAA trimodule 2CFDAA.S1 �P/.

We will extract 2CFDAA.S1 �P/ from the trimodule 3CFDDD.YP/ computed in [8].
Note that S1 �P and YP agree as manifolds, but have different bordered structure.
The trimodule 3CFDDD.YP/ has five generators, v, w, x, y and z, and the differential
is given by (cf [8, Figure 10])

@.v/D �3˝ xC �1�3�123˝yC �123�123�123˝yC �3˝ z;

@.w/D �3�12˝ xC �1�3�1˝yC �123�123�1˝y;

@.x/D �2�12˝ vC �2˝wC �1�3˝y;

@.y/D �2�2˝ xC �2�2˝ z;

@.z/D �3�1˝yC �2˝w:
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m2.x; �3/D z

m2.y; �2/D x

m2.y; �23/D z

m2.w; �3/D z

m2.y; �2/D w

m2.y; �23/D z

m2.w; �23/D �23˝w

m2.x; �3/D �23˝y

m2.x; �2/D �2˝ v

m2.x; �23/D �23˝ x

m2.v; �3/D �3˝w

m2.y; �23/D �23˝y

m2.v; �3/D �3˝ x

m2.w; �2/D �2˝ v

m2.z; �2/D �23˝ x

m2.z; �23/D �23˝ z

m3.v; �1; �1/D �1˝y

m3.v; �1; �12/D �1˝ x

m3.v; �1; �123/D �1˝ z

m3.v; �1; �123/D �123˝y

m3.v; �12; �1/D �1˝w

m3.v; �12; �12/D �12˝ v

m3.v; �12; �123/D �123˝w

m3.v; �123; �1/D �1˝ z

m3.v; �123; �12/D �123˝ x

m3.v; �123; �123/D �123˝ z

m5.v; �3; �2; �1; �1/D �1˝ z

m5.v; �3; �2; �1; �1/D �123˝y

m5.v; �3; �2; �12; �1/D �123˝w

m5.v; �3; �2; �123; �1/D �123˝ z

m7.v; �3; �2; �3; �2; �1; �1/D �123˝ z

Table 1: Operations for 2CFDAA.�M/.

Since the trimodule has three commuting actions by three copies of the torus algebra
(one corresponding to each boundary component), we use �, � and � to distinguish
between algebra elements in each copy of A. The �–boundary of YP is parametrized by
a pair .˛; ˇ/ such that ˇ is a fibre of P �S1 and ˛ lies in the base P , while the �– and
�–boundaries have the opposite parametrization. Thus the bordered manifold S1 �P
can be obtained from YP by switching the role of ˛ and ˇ on (say) the �–boundary.

It is now clear how to compute 2CFDAA.S1 �P/ from 3CFDDD.YP/: we change the
parametrization of the �–boundary by applying the bimodule yTst � yTdu � yTst and then
change the �– and �–boundaries to type A by tensoring with 1CFAA.I/ (see Figure 9 for
a schematic description). These are both straightforward computations; the resulting
trimodule has five generators and the operations are listed in Table 1.

With this trimodule in hand, we have

bCFD.M1;2/Š 2CFDAA.S1 �P/� ..M1; ˛1; ˇ1/; .M2; ˛2; ˇ2//;
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where 2CFDAA.S1 �P/� . � ; � /, by convention, tensors against the �–boundary in the
first factor and against the �–boundary in the second factor; compare Figure 9.

6.3 The effect of twist, extend and merge on loops

Restricting to the case of loop-type bordered invariants, the effect of the operations
T ˙1, E and M can be given simpler descriptions. Recall that ED T ıH�1 ı T, and that
E can be easily calculated using Lemma 3.10.

Proposition 6.1 If bCFD.M; ˛; ˇ/ is of loop-type , and represented by the collection
f ìg

n
iD1, then bCFD.T ˙.M;˛;ˇ// is represented by fT˙1. ì/g

n
iD1 and bCFD.E.M;˛;ˇ//

is represented by fE. ì /g
n
iD1.

Proof The proof is immediate from Proposition 3.11 with (1) and Proposition 3.12
with (2).

It follows easily that the operations T ˙ and E preserve the simple loop-type property.

Lemma 6.2 Given a (simple) loop-type bordered three-manifold , the operations T ˙

and E produce (simple) loop-type manifolds.

Proof It is an immediate consequence of Proposition 6.1 that if bCFD.M; ˛; ˇ/ is
represented by a collection of loops then the same is true for bCFD.T .M; ˛; ˇ// and
bCFD.E.M; ˛; ˇ//, since the operations T˙1 and E take loops to loops. Moreover, if

the loops defining bCFD.M; ˛; ˇ/ are simple then the loops resulting from T ˙ and E
are simple, since changing framing by Dehn twists does not, by definition, change
whether or not a loop is simple. It only remains to check that bCFD.T .M; ˛; ˇ// and
bCFD.E.M; ˛; ˇ// have exactly one loop for each spinc–structure on the corresponding

manifolds. This is again clear since it is true for bCFD.M; ˛; ˇ/ and the operations
T ˙1 and E amount to changing the parametrization on the boundary of M ; changing
the parametrization does not change the number of spinc–structures, and the loop
operations T˙1 and E do not change the number of loops.

For the merge operation, we will restrict further to the case that the loop(s) representing
bCFD.M1; ˛1; ˇ1/ can all be written in standard notation with no stable chains. In this

case, bCFD.M1;2/ is also a collection of loops.

Remark 6.3 By contrast, if bCFD.M1; ˛1; ˇ1/ and bCFD.M2; ˛2; ˇ2/ both contain
stable chains in standard notation, bCFD.M1;2/ is not obviously of loop-type. However,
in many cases it can be realized as a collection of loops after a homotopy equivalence.
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It is enough to describe M on individual loops; we use M to denote the corresponding
operation on abstract loops. If bCFD.M1; ˛1; ˇ1/ is represented by a collection of loops
f ìg

n
iD1 and bCFD.M2; ˛2; ˇ2/ is represented by a collection of loops f j̀ g

m
jD1, then

bCFD.M1;2/ is given by
S
1�i�n;1�j�m M. ì ; j̀ /. Determining M. ì ; j̀ / is a direct

calculation using the trimodule and a key application of loop calculus.

Proposition 6.4 Let 1̀ be a loop which can be written in standard notation with only
type dk unstable chains and let 2̀ be any loop. Then M. 1̀; 2̀/ is a collection of loops.
If 2̀ cannot be written in standard notation , then M. 1̀; 2̀/ is one copy of 2̀ for each
segment in 1̀. Otherwise , M. 1̀; 2̀/ is determined as follows: The �0–vertices of the
A–decorated graph correspond to pairs .u; v/, where u is an �0–vertex of 1̀ and v is
an �0–vertex of 2̀, and for each dk segment from u1 to u2 in 1̀ we have:

(1) For each al segment from v1 to v2 in 2̀, there is an al segment from .u2; v1/ to
.u2; v2/.

(2) For each bl segment from v1 to v2 in 2̀, there is n bl segment from .u1; v1/ to
.u1; v2/.

(3) For each cl segment from v1 to v2 in 2̀, there is a cl�k segment from .u2; v1/

to .u1; v2/.

(4) For each dl segment from v1 to v2 in 2̀, there is a dkCl segment from .u1; v1/

to .u2; v2/.

Proof The type D module represented by M. 1̀; 2̀/ is obtained by tensoring the
typeD modules corresponding to 1̀ and 2̀ with the �– and �–boundaries, respectively,
of the trimodule 2CFDAA.YP/. We will denote this tensor by 2CFDAA.YP/� . 1̀; 2̀/.
This trimodule has five generators; the idempotents associated with each generator on
the �–, �– and �–boundaries are as follows:

generator v w x y z

idempotents .�
�
0; �

�
0 ; �

�
0/ .�

�
0; �

�
1 ; �

�
1/ .�

�
1; �

�
0 ; �

�
1/ .�

�
1; �

�
1 ; �

�
1/ .�

�
1; �

�
1 ; �

�
1/

Note that the �0–generators in 2CFDAA.S1 � P/� . 1̀; 2̀/ arise precisely from the
generator v tensored with �0–generators in 1̀ and 2̀.

First suppose that 2̀ is written in standard notation. Note also that, since 1̀ is assumed
to have no ak segments, we may ignore the m5 and m7 operations in Table 1. As
a result, there are no operations in M. 1̀; 2̀/ that arise from more than one segment
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in either loop. This means that to compute M. 1̀; 2̀/ we can feed 1̀ and 2̀ into the
trimodule one segment at a time. For each combination of segment in 1̀ and segment
in 2̀, the resulting portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ is homotopy equivalent to
the segment determined by (1)–(4) in the statement of the proposition. The proof is
essentially contained in Figures 10, 11 and 12; we will describe one case in detail and
leave the details of the other cases to the reader, with the figures as a guide.

Consider a segment dk in 1̀ and a segment al in 2̀ with k; l > 0 (see Figure 10, top
left, for the case of k D l D 2). Let the generators in these two segments be labelled as

dkD
�123
��! ı

x1

�23
�!� � �

�23
�! ı

xk

�2
�! �

u2

! alD �
v1

�3
�! ı

y1

�23
�!� � �

�23
�! ı

yl

�2
�! �

v2

!

Note that the arrow adjacent to u2 on the right is determined by the segment following dk
in 1̀, but, following Section 3.1 it must be an outgoing �1, �12 or �123 arrow. Similarly,
the arrows to the left of v1 and the right of v2 are outgoing �1, �12 or �123 arrows.
The portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming from dk and al has generators

x˝ xi ˝ vj for 1� i � k; j 2 f1; 2g;

y˝ xi ˝yj for 1� i � k; 1� j � l;

z˝ xi ˝yj for 1� i � k; 1� j � l;

v˝u2˝ vj for j 2 f1; 2g;

w˝u2˝yj for 1� j � l:

For each i in f1; : : : ; kg, the trimodule operationsm2.x; �3/,m2.y; �23/ andm2.y; �2/
give rise to the unlabelled edges

x˝ xi ˝ v1! z˝ xi ˝y1 for 1� i � k;

y˝ xi ˝yj ! z˝ xi ˝yjC1 for 1� i � k; 1� j � l � 1;

y˝ xi ˝yl ! x˝ xi ˝ v2 for 1� i � k:

We can cancel these unlabelled edges using the edge reduction algorithm described in
Section 2.3. We cancel them in order of increasing i and, for fixed i , in the order above.
It is not difficult to check that the only additional incoming arrows at z˝ xi ˝yj and
z˝ xi ˝ v2 are given by

z˝ xi ˝yj
�23
�! z˝ xi ˝yjC1 for 1� i � k; 1� j � l � 1;

z˝ xi ˝yl
�23
�! x˝ xi ˝ v2 for 1� i � k;

y˝ xi�1˝yj ! z˝ xi ˝yj for 1� i � k; 1� j � l � 1;

x˝ xi�1˝yl ! x˝ xi ˝ v2 for 1� i � k:
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Figure 10: Each box contains the portion of 2CFDAA.S1�P/�. 1̀; 2̀/ coming
from a d2, d0 or d�2 segment in 1̀ (top, middle and bottom, respectively) and
an a2 or b2 segment in 2̀ (left and right, respectively). Thick unlabelled arrows
can be removed with the edge reduction algorithm; gray indicates generators
and arrows that are eliminated when the differentials are cancelled.

It follows that each time we use the edge reduction algorithm on one of the unlabelled
arrows mentioned above, there are no other incoming arrows at the terminal vertex
that have not already been cancelled, and so cancelling the arrow produces no new
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arrows. After cancelling all of the unlabelled arrows, the only remaining generators
are v˝u2˝ v1, v˝u2˝ v2, and v˝u2˝yj for 1� j � l . Arrows between these
generators arise from trimodule operations involving only the generators v and w and
with no � inputs; there are only three:

m2.v; �3/D �3˝w; m2.w; �23/D �23˝w and m2.w; �2/D �2˝ v:

It follows that the only arrows in the portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming
from the segments dk and al are

v˝u2˝ v1
�3
�! w˝u2˝y1;

w˝u2˝yj
�23
�! w˝u2˝yjC1 for 1� j � l � 1;

w˝u2˝yl
�2
�! v˝u2˝ v2:

That is, the portion of 2CFDAA.S1�P/�. 1̀; 2̀/ coming from the segments dk and al
is an al segment from v˝u2˝ v1 to v˝u2˝ v2.

Finally, note that there can be no arrows connecting w˝u2˝yj to any other portions
of 2CFDAA.S1 �P/� . 1̀; 2̀/ arising from different segments, since the only arrow
connecting u2 to a generator in a different segment of 1̀ is an outgoing �1, �12 or
�123 arrow, and the only trimodule operations involving these inputs also have �1, �12
or �123 as an input. The outgoing arrows from u2 and from v1 and v2 do give rise to
additional arrows out of v˝u2˝ v1 and v˝u2˝ v2; these show up in the portion of
2CFDAA.YP/� . 1̀; 2̀/ coming from the segment following dk in 1̀ and the segment
following or preceding al in 2̀.

For other pairs of segments in 1̀ and 2̀, the proof is similar. Figure 10 depicts the
relevant portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ for d2, d0 or d�2 paired with a2 or b2.
Any dk paired with al or bl behaves like one of these cases, depending on the sign
of k. Note that, if l < 0, we simply take the mirror image of these diagrams, since
a�l D Nal . This proves .1/ and .2/.

.3/ can be deduced from .4/ by observing that a cl segment from v1 to v2 is the same
as a d�l segment from v2 to v1. To prove .4/, consider pairing dk in 1̀ with dl in 2̀.
The behaviour depends on the sign of k and l ; Figures 11 and 12 depict the cases with
k in f2; 0;�2g and l in f3; 0;�3g. If k D 0, it is clear that the result is a segment of
type dl , and similarly, if l D 0, the result is a segment of type dk . The case of k and l
positive behaves like the top left box in Figure 11, and the case of k and l negative
behaves like the bottom box in Figure 12. In each case all generators cancel except for
those along the top and right edges, resulting in a segment of type dkCl .
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Figure 11: The portions of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming from a d2, d0
or d�2 segment in 1̀ and a d3 or d0 segment in 2̀. Thick unlabelled arrows
can be removed with the edge reduction algorithm; gray indicates generators
and arrows that are eliminated when the differentials are cancelled.

The case that k and l have opposite signs is slightly more complicated. Assume first
that k is negative and l is positive. If k � �l , the resulting complex looks like the
bottom left box in Figure 11. Note that starting from the top left corner, there is a path
to the bottom right corner consisting of a �1 arrow, an odd length “zigzag” sequence
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Figure 12: Each box contains the portion of 2CFDAA.S1�P/�. 1̀; 2̀/ coming
from a d2, d0 or d�2 segment in 1̀ and a d�3 segment in 2̀. Thick unlabelled
arrows can be removed with the edge reduction algorithm; gray indicates
generators and arrows that are eliminated when the differentials are cancelled.

of unlabelled arrows, kC l �23 arrows and a �2 arrow. Everything in the diagram not
involved in this sequence can be cancelled without adding new arrows. Cancelling the
remaining unlabelled arrows turns the �1 arrow and the first �23 arrow into a �123 arrow
if kC l > 0, or it turns the �1 arrow and �2 arrow into a �12 arrow if kC l D 0. The
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Figure 13: The portions of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming from a d2, d0
or d�2 segment in 1̀ when 2̀ is a collection of e� segments. The left and right
edges of each box should be identified. Thick unlabelled arrows can be removed
with the edge reduction algorithm; gray indicates generators and arrows that
are eliminated when the differentials are cancelled. The result is a copy of 2̀

for each �0–generator in 1̀.

result is a segment of type dkCl . The case that k < �l is slightly different. It is not
pictured separately, but the main difference is that the zigzag sequence of unlabelled
arrows starting at the end of the �1 arrow has even length and ends on the right side of

Geometry & Topology, Volume 27 (2023)



910 Jonathan Hanselman and Liam Watson

the diagram instead of the bottom. It is then followed by �k � l � 1 backwards �23
arrows and a backwards �3 arrow. Everything not involved in this sequence cancels,
and removing the unlabelled arrows produces a segment of type dkCl from the top left
corner to the bottom right corner.

To complete the proof of (4), consider the case that k is positive and l is negative. If
l <�k, the resulting complex looks like the top box in Figure 12. The complex reduces
to a �1 arrow followed by a chain of unlabelled arrows, �k�l�1 backwards �23 arrows
and a backwards �3 arrow. This further reduces to a chain of type dkCl . If instead
l ��k, the chain of unlabelled arrows following the �1 arrow ends on the right side of
the diagram instead of the bottom. Again, the complex reduces to a chain of type dkCl .

Finally, we must consider the case the case that 2̀ cannot be written in standard notation.
In this case, 2̀ is a collection of e� segments. Note that in this case we can ignore all
operations in Table 1 that involve v, x, or � inputs other than �23 (this only leaves seven
operations). It is easy to see that the complex 2CFDAA.S1 �P/� . 1̀; 2̀/ collapses to
a copy of 2̀ for each dk segment in 1̀ (see Figure 13).

In practice, it is helpful to compute M. 1̀; 2̀/ by creating an i by j grid, where i is the
length of 1̀ and j is the length of 2̀. The .i; j / entry of this grid is a square containing
a single segment connecting two of its corners, as dictated by Proposition 6.4 (see,
for example, Figure 14). The collection of loops M. 1̀; 2̀/ can now be read off the
grid by identifying the top and bottom edges and the left and right edges. Note that
the number of disjoint loops in M. 1̀; 2̀/ is given by gcd.i; j 0/, where i is the number
of dk segments in 1̀ (by assumption, this is the length of 1̀) and j 0 is the number
of dk segments in 2̀ minus the number of ck segments in 2̀ (if j 0 D 0, we use the
convention that gcd.i; 0/D i ; our assumptions rule out the case that i D 0). Note that i
and j 0 can be given in terms of the .Z=2Z/–grading on 1̀ and 2̀: up to sign, we have
i D ��. 1̀/ and j 0 D ��. 2̀/. To see this, observe that, for an appropriate choice of
relative grading, each dk segment contributes 1 to ��, each ck segment contributes �1
and each ak or bk segment contributes 0.

Lemma 6.5 Consider a pair of loop-type , bordered , rational homology solid tori
.M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/. If the loops representing bCFD.M1; ˛1; ˇ1/ contain
only standard unstable chains then

M1;2 DM..M1; ˛1; ˇ1/; .M2; ˛2; ˇ2//

is of loop-type. If , in addition , the loops representing bCFD.M2; ˛2; ˇ2/ contain only
standard unstable chains , then M1;2 is of simple loop-type.
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Figure 14: Computing M. 1̀; 2̀/ for two loops 1̀ D .dk1
dk2

dk3
dk4

/ and

2̀ D .dl1dl2bl3cl4al5dl6/.

Proof If bCFD.M1; ˛1; ˇ1/ and bCFD.M2; ˛2; ˇ2/ are collections of loops and the
loops in bCFD.M1; ˛1; ˇ1/ contain only standard unstable chains, then, by Proposition
6.4, bCFD.M1;2/ is a collection of loops. Moreover, if the loops in bCFD.M2; ˛2; ˇ2/

also contain only standard unstable chains, Proposition 6.4 implies that the resulting
loops in bCFD.M1;2/ contain only standard unstable chains, and in particular are simple.
It only remains to check that bCFD.M1;2/ has exactly one loop for each spinc–structure
on M1;2.

Recall that the operation M corresponds to gluing two bordered manifolds to two of
the three boundary components of P �S1, where P is S2 with three disks removed.
Thus @.S1 �P/ has three connected components; denote the i th connected component
by @.S1 �P/i . For each i 2 f1; 2; 3g let fi denote a curve in @.S1 �P/i which is a
fibre fptg �S1 and let bi denote the relevant component of @P � fptg. According to
the conventions introduced in Section 6.1, applying the operation M to two bordered
manifolds .M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/ corresponds to gluing M1 and M2 to P�S1

by identifying ˛1 with f1, ˇ1 with b1, ˛2 with f2 and ˇ2 with b2. The result is the
manifold M3 DM1;2.

We consider homology groups with coefficients in Z. The spinc–structures on a
3–manifold M with boundary are indexed by H 2.M/ Š H1.M; @M/. Using the
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appropriate Mayer–Vietoris sequences, we have that H1.M3; @M3/ is homomorphic to
the quotient

H1.S
1
�P; @.S1�P/3/˚H1.M1/˚H1.M2/=f˛1�f1; ˇ1� b1; ˛2�f2; ˇ2� b2g:

Note that H1.S1 �P; @.S1 �P/3/ is generated by fi and bi for i 2 f1; 2; 3g with the
relations f1 D f2 D f3 and b1C b2 D b3 D 0. For i D 1; 2, since Mi is a rational
solid torus there is a unique (possibly disconnected) curve in @Mi that bounds a surface
in Mi , to which we associate pi=qi (where pi and qi may not be relatively prime), so
that pi˛i C qiˇi generates the kernel of the inclusion of H1.@Mi / into H1.Mi /. The
long exact sequence for relative homology gives

H1.Mi /ŠH1.Mi ; @Mi /˚H1.@Mi /=hpi˛i C qiˇi i:

In H1.M3; @M3/, the relation pi˛i C qiˇi D 0 translates to pifi C qibi D qibi D 0.
It follows that

H1.M3; @M3/ŠH1.M1; @M1/˚H1.M2; @M2/˚hb1i=.q1b1 D q2b1 D 0/:

Thus, for each spinc–structure on M1 and each spinc–structure on M2, there are
gcd.q1; q2/ spinc–structures on M3. Note that q2 may be 0; in this case we use the
convention that gcd.q; 0/D q. The assumption that bCFD.M1; ˛1; ˇ1/ contains only
standard unstable chains implies that q1 ¤ 0.

Recall that the rational longitude of a rational homology solid torus can be read off of
the bordered invariants. More precisely, by Proposition 2.10, the curves in @Mi which
are nullhomologous in Mi are integer multiples of

�ı.bCFD.Mi ; ˛i ; ˇi I si //˛i C��.bCFD.Mi ; ˛i ; ˇi I si //ˇi ;

where si is any spinc–structure on Mi . Thus qi D ��.bCFD.Mi ; ˛i ; ˇi I si //. By
assumption, bCFD.Mi ; ˛i ; ˇi I si / is a loop for each si . It was observed above that,
given two loops 1̀ and 2̀ with 1̀ consisting only of standard unstable chains, M. 1̀; 2̀/

is a collection of gcd.��. 1̀/; ��. 2̀// loops. Thus, for each loop in bCFD.M1; ˛1; ˇ1/

and for each loop in bCFD.M2; ˛2; ˇ2/, there are gcd.q1; q2/ loops in bCFD.M1;2/. It
follows that bCFD.M1;2/ has exactly one loop for each spinc–structure on M3 (where
M1;2 Š .M3; ˛3; ˇ3/ as bordered manifolds).

6.4 Bordered invariants of graph manifolds

With this description of T , E and M on bordered invariants in hand, we may now
return our focus to graph manifolds. The first author has described (and implemented)
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an algorithm for computing the (bordered) Heegaard Floer invariants of graph mani-
folds [8]; we will now outline a version of this algorithm for graph manifolds with a
single boundary component and adapt it to the loops setup. Recall that, given a graph �
with associated bordered manifold .M� ; ˛; ˇ/ (as described in Section 6.1), we write
bCFD.�/ for bCFD.M� ; ˛; ˇ/.

In order to compute bCFD.�/, we inductively build up the plumbing tree � using the
three plumbing tree operations T ˙1, E and M depicted in Figure 8, starting from the
plumbing tree

��0 D
0

Note that M�0
is a solid torus, with bordered structure .M�0

; ˛; ˇ/, where ˛ is a fibre
of the S1–bundle over D2 (ie a longitude of the solid torus) and ˇ is a curve in the
base surface (ie a meridian of the solid torus, identified by @D2�fptg). Thus bCFD.�0/
is represented by the loop

�̀
� .d0/. As we apply the operations T , E and M, we

keep track of the bordered invariants of the relevant manifolds. Let �1 and �2 be
single-boundary plumbing trees. As shown in the previous section,

bCFD.T .�1//Š yTst � bCFD.�1/;

bCFD.E.�1//Š yTst � yTdu � yTst � bCFD.�1/;

bCFD.M.�1; �2//Š 2CFDAA.�M/� .bCFD.�1/; bCFD.�2//:

Specializing Lemmas 6.2 and 6.5 to graph manifold leads to the following observation:

Lemma 6.6 Let � be a single boundary plumbing tree constructed as described above
from copies of �0 using the operations T ˙, E , and M. bCFD.�/ has simple loop-type
as long as , each time the operation M is applied , the two input plumbing trees have
simple loop-type bordered invariants with only unstable chains in standard notation.

Proof This follows from Lemma 6.2, which says that T ˙ and E take simple loop-type
manifolds to simple loop-type manifolds, and Lemma 6.5, which says that M takes
two simple loop-type manifolds to a simple loop-type manifold provided the simple
loops corresponding to both inputs consist only of unstable chains.

With this observation, we can describe a large family of simple loop-type manifolds.

For each vertex v of a plumbing tree � , let w.v/ denote the Euler weight associated
to v and let nC.v/ and n�.v/ denote the number of neighbouring vertices v0 for
which w.v0/ � 0 and w.v0/ � 0, respectively. We will say that v is a bad vertex if
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�n�.v/ < w.v/ < nC.v/, and otherwise v is a good vertex (this should be viewed as a
generalization of the notion of bad vertices defined for negative definite plumbing trees
in [23]).

Proposition 6.7 Let � be a plumbing tree with a single boundary edge at the vertex v0,
and suppose that every vertex other than v0 is good. Then bCFD.�/ is a collection of
loops consisting only of standard unstable chains; up to reversal we can assume these
unstable chains are of type dk . Moreover , if w.v0/ is (strictly) greater than nC.v0/,
then these unstable chains all have subscripts (strictly) greater than 0. If w.v0/ is
(strictly) less than n�.v0/ then the unstable chains all have subscript (strictly) less
than 0.

Proof We proceed by induction on the number of vertices of � . The base case, where
� has only one vertex v0, is trivial; bCFD.�/ in this case is given by the loop .dw.v0//.

For the inductive step, first suppose the boundary vertex v0 of � has valence two
(including the boundary edge). That is, � has the form

�� D � 0
w0

wherew0Dw.v0/. Let v1 be the boundary vertex of � 0, and letw1 be the corresponding
weight. Let n˙.v1/ denote the counts of neighbouring vertices defined above for v1 as
a vertex in � , and let n0

˙
.v1/ denote these counts for v1 as a vertex in � 0 (ie ignoring

the vertex v0). Since v1 is a good vertex, we have one of the following two cases:

(1) w1 � �n�.v1/� �n
0
�.v1/� 0.

(2) w1 � nC.v1/� n
0
C
.v1/� 0.

Note that � D T w0.E.� 0//, and so bCFD.�/ is given by Tw0
�

E.bCFD.� 0//
�
. Further-

more, we assume by induction that the proposition holds for � 0.

In case (1), we have that bCFD.� 0/ consists of dk segments with nonpositive sub-
scripts. Thus in dual notation E.bCFD.� 0// is a loop consisting of d�

k
segments

with nonnegative subscripts, and in standard notation E.bCFD.� 0// consists of dk
segments with nonnegative subscripts. Moreover, if w0 � 0, then w1 is strictly less
than �n0�.v1/D�n�.v1/C 1, so the dk segments in bCFD.�/ have strictly negative
subscripts, the d�

k
segments in E.bCFD.� 0// have strictly positive subscripts, and in

standard notation E.bCFD.� 0// consists only of d0 and d1 segments. It follows that

Geometry & Topology, Volume 27 (2023)



A calculus for bordered Floer homology 915

bCFD.�/ is a collection of loops consisting of dk segments with subscripts satisfying
k < 0 if w0 <�n�.v0/D�1, k � 0 if w0D n�.v0/D�1, k � 0 if w0D nC.v0/� 0
and k > 0 if w0 > nC.v0/� 0. Thus the proposition holds for � .

In case (2), bCFD.� 0/ consists of dk segments with nonnegative subscripts. Thus
E.bCFD.� 0// consists of d�

k
with nonpositive subscripts in dual notation and of dk with

nonpositive subscripts in standard notation. Moreover, ifw0� 0 then nC.v1/>n0C.v1/,
so the dk segments in bCFD.� 0/ have strictly positive subscripts, the d�

k
segments in

E.bCFD.� 0// have strictly negative subscripts and the dk segments in E.bCFD.� 0//
have subscripts in f0;�1g. It follows that bCFD.�/ is a collection of loops consisting
of dk segments with subscripts satisfying k < 0 if w0 < �n�.v0/ � 0, k � 0 if
w0 D n�.v0/ � 0, k � 0 if w0 D nC.v0/D 1 and k > 0 if w0 > nC.v0/D 1. Thus
the proposition holds for � .

Now suppose that v0 has valence higher than two. This means that � can be obtained as
M.�1; �2/, where �1 and �2 have fewer vertices than � . By induction, the proposition
holds for �1 and �2, and so bCFD.�1/ and bCFD.�2/ may be represented by a collection
of loops consisting only of standard type dk chains. By Proposition 6.4, merging two
(collections of) loops with only dk chains produces a new collection of loops with only
dk chains. Moreover, each chain in the bCFD.�/ is of the form dkCl for some chains dk
in bCFD.�1/ and dl in bCFD.�2/, so the maximum (resp. minimum) subscript in bCFD.�/
is the sum of the maximum (resp. minimum) subscripts in bCFD.�1/ and bCFD.�2/.

For i 2 f0; 1g, let vi be the boundary vertex of �i and let wi D w.vi / be the cor-
responding weight. We can choose any values for wi provided w1 Cw2 D w0. If
w0�nC.v0/DnC.v1/CnC.v2/, then we can choose w1DnC.v1/ and w2�nC.v2/.
By the inductive assumption, bCFD.�1/ and bCFD.�2/ both have only nonnegative
subscripts, so the same is true of bCFD.�2/. Furthermore, if w0 > 0 then w2 > nC.v2/,
so bCFD.�2/ has only strictly positive subscripts and the same follows for bCFD.�/.
Similarly, if w0 is (strictly) less than n�.v0/ D n�.v1/C n�.v2/, we can choose
w1 D n�.v1/ and w2 (strictly) less than n�.v2/ and conclude that bCFD.�/ only has
subscripts (strictly) less than 0.

Note that if � is a plumbing tree with at most one bad vertex, we can compute cHF.M�/

by taking the dual filling of bCFD.� 0/, where � 0 is obtained from � by adding a
boundary edge to the bad vertex, or to any vertex if there are no bad vertices. bCFD.� 0/,
which has simple loop-type by Proposition 6.7, can be computed using the operations
T˙1; E and M. In particular, we have the following generalization of [23, Lemma 2.6]:
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Corollary 6.8 If � is a closed plumbing tree with no bad vertices , then the manifold
M� is an L–space.

Proof Add a boundary edge to any vertex of � to produce a single boundary plumbing
tree � 0. By Proposition 6.7, bCFD.� 0/ is a collection of loops consisting only of type dk
segments with either all subscripts greater than or equal to zero or all subscripts less
than or equal to zero. By Observation 3.9, it follows that in dual notation the loops
representing bCFD.� 0/ have no stable chains. M� is obtained from M� 0 by dual filling,
and dual filling is an L–space if there are no stable chains in dual notation.

Recall that in the context of Theorem 1.3 it is important to distinguish solid torus-like
manifolds from other manifolds of simple loop-type. Toward that end, we check the
following:

Proposition 6.9 Let � be a plumbing tree with a single boundary edge at the vertex v0,
and suppose that every vertex other than v0 is good. Then M� is solid torus-like if and
only if it is a solid torus.

Proof We proceed by induction on the size of � as in the proof of Proposition 6.7.
Applying Dehn twists does not change whether or not a manifold is a solid torus, nor
does it change whether or not the corresponding bordered invariants are solid torus-like.
It follows that the proposition holds for T ˙.�/ and E.�/ if it holds for � . We only
need to check that it holds for M.�1; �2/, assuming by induction that it holds for �1
and �2. By Proposition 6.7, we may assume that the loops representing bCFD.�1/ and
bCFD.�2/ consist only of dk chains.

Suppose bCFD.M.�1; �2// is solid torus-like. Recall that, by the appropriate gener-
alization of Lemma 3.15, the loops representing bCFD.M.�1; �2// consist only of
dk segments such that the maximum and minimum subscripts appearing differ by at
most one. Note also that the difference between maximum and minimum subscripts is
additive under M. It follows that either �1 or �2 must have bordered invariant consisting
only of dn segments for a fixed n 2 Z; say �2 has this property. M�2

is solid torus-
like; by induction, M�2

is a solid torus, and bCFD.�2/ is given by the single loop .dn/.
Proposition 6.4 then implies that bCFD.M.�1; �2// is obtained from bCFD.�1/ by adding
n to the subscript of each segment. In other words, bCFD.M.�1; �2//Š bCFD.T n.�1//.

This equivalence does not only hold on the level of bordered invariants. Indeed,
M.�1; �2/ is equivalent to T n.�1/ up to the graph moves in [22]; in particular, the
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corresponding graph manifolds are diffeomorphic. To see this, note that �2 must be
equivalent to the plumbing tree

�
n

since bCFD of this tree is .dn/, and it is clear from Figure 8 that merging with this tree
has the same effect as applying T n. Since bCFD.T n.�1// is solid torus-like, bCFD.�1/
is solid torus-like and, by the inductive hypothesis, M�1

is a solid torus. It follows that
MM.�1;�2/ DMT n.�1/ D T n.M�1

/ is a solid torus.

6.5 An explicit example: the Poincaré homology sphere

As an example of the algorithm and loop operations described above, we will computecHF of the Poincaré homology sphere using the plumbing tree

�

�

�

�

� D �1

�3

�2

�5

We start with the loop .d0/ representing bCFD.�0/. For this example, by abuse of
notation, we will equate the bordered invariants with their loop representatives; thus,
bCFD.�0/D .d0/. We use the twist and extend operations to compute invariants for the

plumbing trees

��1 D
�2

�
0

��2 D
�3

�
0

��3 D
�5

�
0

Note that �1 D E.T �2.�0//, so

bCFD.�1/D E
�

T�2..d0//
�
D E..d�2//D .d

�
2 /� .d1d0/:

Similarly, we find that

bCFD.�2/D E
�

T�3..d0//
�
D E..d�3//D .d

�
3 /� .d1d0d0/;

bCFD.�3/D E
�

T�5..d0//
�
D E..d�5//D .d

�
5 /� .d1d0d0d0d0/:

Now let

�

� �

�4 D 0

�2 �3

�

� � �

�5 D 0

�2 �3 �5

�

� � �

�6 D �1

�2 �3 �5
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We have that �4 D M.�1; �2/, �5 D M.�4; �3/ and �6 D T �1.�5/. Reading di-
agonally from the first grid below, we see that bCFD.�4/ D M..d1d0/; .d1d0d0// D

.d2d0d1d1d1d0/:

d1 d0 d0

d1 d2 d1 d1
d0 d1 d0 d0

d1 d0 d0 d0 d0

d2 d3 d2 d2 d2 d2
d0 d1 d0 d0 d0 d0
d1 d2 d1 d1 d1 d1
d1 d2 d1 d1 d1 d1
d1 d2 d1 d1 d1 d1
d0 d1 d0 d0 d0 d0

The second grid tells us that

bCFD.�5/D

.d3d0d1d1d1d1d2d0d1d1d2d0d2d0d1d2d1d0d2d0d2d1d1d0d2d1d1d1d1d0/:

Applying the operation T�1, we find that

bCFD.�6/D
�
d2d�1d0d0d0d0d1d�1d0d0d1d�1d1d�1d0d1d0d�1d1d�1d1d0d0

d�1d1d0d0d0d0d�1
�
:

Finally, to compute cCF of the closed manifold M� we must fill in the boundary of
.M�6

; ˛; ˇ/ with a D2 � S1 such that the meridian @D2 � fptg glues to ˇ and the
longitude fptg �S1 glues to ˛. In other words, M� is the 0–filling of .M�6

; ˛; ˇ/, socCF.M�/ is obtained from bCFD.�6/ by tensoring with `Aı . To do this, we first write
bCFD.�6/ in dual notation (using the procedure described in Section 3.2),

bCFD.�6/D .d�0 b
�
1a
�
5b
�
1a
�
3b
�
1a
�
1b
�
1a
�
2b
�
2a
�
1b
�
1a
�
1b
�
3a
�
1b
�
5a
�
1/:

Tensoring with ı̀ produces one generator for each segment in dual notation, but also
one differential for each type a� segment. Since bCFD.�6/ has 17 dual segments and 8
a� segments, all but one generator in `Aı � bCFD.�6/Š cCF.M�/ cancels in homology.
Thus cHF.M�/ has dimension 1, as is now well known (this was first calculated in [24,
Section 3.2]).

Remark 6.10 While computer computation is not our primary motivation, it is worth
pointing out that using loop calculus as described in this section instead of taking box
tensor products of modules, bimodules and trimodules greatly improves the efficiency
of the algorithm in [8] for rational homology sphere graph manifolds. This is illustrated
by the fact that the example above can easily be done by hand, while computing the
relevant tensor products would be tedious without a computer. The largest computation
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in [8] (for which the dimension of cHF is 213 312) took roughly 12 hours; when the
computer implementation is adapted to use loop calculus, the same computation runs in
30 seconds.3 The caveat is that the purely loop calculus algorithm may not work for all
rational homology sphere graph manifolds, since there may be graph manifold rational
homology solid tori that are not of loop-type, but in practice it works for most examples.

7 L–spaces and non-left-orderability

We conclude by proving the remaining results quoted in the introduction: Theorem 1.4,
Theorem 1.5 and, finally, Theorem 1.1.

To begin, we observe that Seifert-fibred rational homology tori have simple loop-type
bordered invariants. Any Seifert-fibred space over S2 can be given a star-shaped
plumbing tree in which all vertices of valence one or two have weight at most �2; in
particular, there are no bad vertices except for the central vertex. Adding a boundary
edge to the central vertex corresponds to removing a neighbourhood of a regular fibre,
creating a Seifert-fibred space over D2. By Proposition 6.7, such a plumbing tree has
simple loop-type bCFD. Moreover, by Proposition 6.9, such a plumbing tree is nonsolid
torus-like unless the corresponding manifold is a solid torus.

The only other option to consider is a Seifert-fibred space over the Möbius band, since
a Seifert-fibred space over any other base orbifold has b1 > 0. Such a manifold can
be obtained from a Seifert-fibred space over D2 by removing a neighbourhood of a
regular fibre and gluing in the Euler number 0 bundle over the Möbius band, fibre to
fibre and base to base. On the plumbing tree, this corresponds to adding

�

�

�

0
2

�2

to the central vertex, or equivalently to merging with the plumbing tree

� �

�

�

�N D
0 0

2

�2

Proposition 7.1 bCFD for the plumbing tree �N above consists of two loops , one
.a1b1/� .d

�
1 d
�
�1/ and the other .e�e�/.

3An implementation is available from the authors upon request.
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Proof Using the loop operations described in the preceding section, this is a simple
computation. Note that�N DE

�
M
�
E.T 2.�0//; E.T �2.�0//

��
. Thus bCFD.�N / is given

by
E
�

M
�

E
�

T2..d0//
�
; E
�

T�2..d0//
���
D E

�
M
�

E..d2//; E..d�2//
��

D E
�

M..d�1d0/; .d1d0//
�

D E..d0d0/q .d1d�1//

D .d�0 d
�
0 /q .d

�
1 d
�
�1/:

Remark 7.2 This result was first established by a direct calculation by Boyer, Gordon
and Watson [3]; this calculation is greatly simplified by appealing to loop calculus.

We now complete the proof that Seifert-fibred rational homology tori have simple
loop-type.

Proof of Theorem 1.4 As observed above, the case of Seifert-fibred manifolds overD2

is a special case of Proposition 6.7. For a Seifert-fibred manifold over the Möbius
band, a plumbing tree � is given by M.� 0; �N /, where � 0 is a star shaped plumbing
tree for a Seifert-fibred manifold over D2. By Proposition 6.7, the loops in bCFD.� 0/
contain only unstable chains in standard notation. By Propositions 6.4 and 7.1, we
find that bCFD.�/ is a collection of disjoint copies of bCFD.�N /, and in particular is
a collection of simple loops. Moreover, by Lemma 6.5 there is one loop for each
spinc–structure, and so bCFD.�/ is of simple loop-type. Finally, with the foregoing in
place (in particular Proposition 6.9) one checks that the only solid torus-like manifold
in this class is the solid torus itself.

We are now in a position to assemble the pieces and give the proof of Theorem 1.1. A
key observation is the following consequence of our gluing theorem, which provides
some alternative characterizations of the set of strict L–space slopes of a given simple
loop-type manifold:

Theorem 7.3 Let M be a simple loop-type manifold that is not solid torus-like. The
following are equivalent :

(i)  is a strict L–space slope for M, that is ,  2 LıM .

(ii) M[hM
0 is anL–space , where h./D� andM 0 is a nonsolid torus-like , simple ,

loop-type manifold with rational longitude � for which LM 0 includes every slope
other than �.

(iii) M [hN is an L–space , where h./D � and N is the twisted I–bundle over the
Klein bottle with rational longitude �.
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Proof Given  2 LıM and a simple, loop-type manifold M 0 for which LM 0 includes
every slope other than �, Theorem 5.7 ensures that M [hM 0 is an L–space. Indeed,
for any  0 ¤  we have that �¤ h. 0/ 2 LıM 0 . This proves that (i) implies (ii).

To see that (ii) implies (iii), is suffices to observe that N./ is an L–space for all 
other than the rational longitude; this is indeed the case, as observed, for example, in
[3, Proposition 5] (alternatively, this fact is an exercise in loop calculus).

Finally, suppose thatM[hN is an L–space and consider the slope  in @M determined
by h�1.�/. Since N.�/ is not an L–space, by Theorem 5.7 it must be that  2 LıM , as
required, so that (iii) implies (i).

Boyer and Clay consider a collection of Seifert-fibred rational homology solid tori
fNtg for integers t > 1. In this collection, N2 D N, the twisted I–bundle over the
Klein bottle. More generally, the Nt are examples of Heegaard Floer homology solid
tori (see [12, Section 1.5] for a expanded discussion on this class of manifolds). These
manifolds are easily described by the plumbing tree

� �

�

�

0 0
t

�t

Translated into loop notation, the invariant bCFD.Nt ; '; �/ is simple, described by

.d�0 /
t
q

� t�1a
iD1

.d�i d
�
i�t /

�
:

This calculation is similar to that of Proposition 7.1; these are members of a much
larger class of manifolds that are interesting in their own right. Note, in particular,
that Nt ./ is an L–space for all  other than the rational longitude; see Section 4 but
compare also [3]. Therefore, the Nt satisfy the conditions of (ii) in Theorem 7.3 and
we have the following:

Corollary 7.4 Let M be a simple loop-type manifold that is not solid torus-like. The
following are equivalent :

(i)  is a strict L–space slope for M, that is ,  2 LıM .

(ii) M[hNt is anL–space , where h./D� is the rational longitude , for any integer
t > 1.

(iii) M [hN2 is an L–space , where h./D � is the rational longitude.
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Note that Theorem 1.5 follows from the equivalence between (i) and (iii) in Corollary 7.4.
This answers [2, Question 1.8] and considerably simplifies [2, Theorem 1.6] when
restricting to Seifert-fibred rational homology solid tori. Indeed, we have shown:

Theorem 7.5 Suppose M ©D2�S1 is a Seifert-fibred rational homology solid torus.
The following are equivalent :

(i)  2 .LıM /
c .

(ii)  is detected by a left-order (in the sense of Boyer and Clay [2]).

(iii)  is detected by a taut foliation (in the sense of Boyer and Clay [2]).

Proof This follows immediately from [2, Theorem 1.6] combined with Corollary 7.4.

Proof of Theorem 1.1 The equivalence between (ii) and (iii) is due to Boyer and
Clay [2]. To see that (i) is equivalent to either of these we first note that, if M is
one of the two Seifert-fibred pieces in Y, then, according to Theorem 4.1, the set of
all slopes yQ is divided into (the restriction to yQ of) two disconnected intervals LıM
and .LıM /

c . The latter is precisely the set of NLS detected slopes in the sense of Boyer
and Clay [2, Definition 7.16], according to Theorem 7.5. (In particular, this observation
should be compared with [2, Theorem 8.1].) Thus the desired equivalence follows from
Theorem 1.3, on comparison with [2, Theorem 1.7] restricted to rational homology
solid tori.
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Cabling in terms of immersed curves
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In joint work with J Rasmussen (Proc. Lond. Math. Soc. (3) 125 (2022) 879–967), we
gave an interpretation of Heegaard Floer homology for manifolds with torus boundary
in terms of immersed curves in a punctured torus. In particular, knot Floer homology
is captured by this invariant (arXiv 1810.10355). Appealing to earlier work of the
authors on bordered Floer homology (Geom. Topol. 27 (2023) 823–924), we give a
formula for the behaviour of these immersed curves under cabling.

57M25, 57M27

Knot Floer homology, as introduced by Ozsváth and Szabó [18] and Rasmussen [20],
provides a categorification: Given a knot K in the three-sphere, this invariant is a
bigraded vector space

L
a;m2Z

bHFKm.K; a/ with the property thatX
a;m

.�1/m dim. bHFKm.K; a//t
a

recovers the (symmetrized) Alexander polynomial. This polynomial knot invariant
satisfies natural properties associated with operations on knots; for instance, it is well
behaved under cabling. Understanding how this particular property manifests at the
categorified level drove some of the early calculations of knot Floer homology; see in
particular work of Hedden [7; 8; 9].

Bordered Floer homology provides an essential tool for studying decompositions of
three-manifolds along essential tori; see Lipshitz, Ozsváth and Thurston [15]. They laid
out a framework of bimodules, of relevance to satellite operations, in [14]. The work of
Levine [13], Hom [11], and Petkova [19], for example, puts this to use in an essential
way. In the setting of manifolds with a single toroidal boundary component, the relevant
bordered invariants have been recast in terms of immersed curves in the once-punctured
torus; see Hanselman, Rasmussen and Watson [4; 5]. For the purpose of this note, the
examples of interest will be provided by the complement of a knot in the three-sphere;
our aim is to establish formulas for how these invariants behave under cabling. Namely,
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.2;�1/ .2; 1/

Figure 1: The Heegaard Floer homology for the .2;�1/– and .2; 1/–cables of
the right-hand trefoil; the invariant for the trefoil complement is shown in grey.

for a knot K in S3, let Kp;q denote the .p; q/–cable of K, and denote the respective
knot complements by M D S3 n �.K/ and Mp;q D S3 n �.Kp;q/; given the immersed
multicurve cHF.M /, we wish to describe cHF.Mp;q/ explicitly. For example, immersed
curves for two cables of the right-hand trefoil are illustrated in Figure 1; the expert
reader already familiar with the passage from bHFK.K/ to bHFK.Kp;q/ should compare
these pictures with the detailed calculations of Hedden [7] or Ozsváth, Stipsicz and
Szabó [17]. Our calculation makes an explicit appeal to a bordered trimodule calculated
by the first author [3], which was reinterpreted combinatorially in work of the authors
predating the immersed curves invariant [6]. Indeed, central to this article is the work of
translating our merge operation (described in terms of loop calculus) into the language
of immersed curves (Section 1); cabling is then seen as a special case of the merge
operation (Section 2).

Recall from [4; 5] that, for a (connected, orientable) three-manifold M with torus
boundary, the invariant cHF.M / takes the form of a collection of immersed curves,
possibly decorated with local systems, in the punctured torus T� D @M n z, where z is
some fixed basepoint in @M. If we choose a pair of parametrizing curves .˛; ˇ/ on @M,
then T� can be identified with the square Œ0; 1�� Œ0; 1� with opposite sides identified
such that ˛ runs in the positive vertical direction, ˇ runs in the positive horizontal
direction, and the puncture z is identified with .0; 0/. For a knot complement, there
is a preferred choice of parametrizing curves, .�; �/, where � is the meridian and
� is the Seifert longitude. The invariant cHF.M / comes equipped with grading data
which, among other things, specifies a lift of these curves to the punctured cylinder

Geometry & Topology, Volume 27 (2023)
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T�D .R2nZ2/=h�i; in the standard framing, this can be identified with .R=Z/�R with
punctures at each lattice point .0; n/. (Note that this is the point of view taken in the
presentation of the invariants in Figure 1: in each rectangle, the sides are identified to
form a cylinder.) Thus as a graded object it makes sense to view cHF.M / as a collection
of closed immersed curves  D .0; : : : ; n/ in T�, defined up to homotopy in T�,
possibly decorated with local systems. For knots in S3, these curves have the property
that, possibly after a homotopy, the curve set intersects the vertical line

˚
1
2

	
�R exactly

once; we will always assume that 0 is the curve component containing this intersection.
In other words, 0 wraps around the cylinder exactly once, while the remaining i>0

can be confined to a neighbourhood of the vertical line through the punctures. We
remark also that, while  may carry nontrivial local systems, 0 always carries the
trivial 1–dimensional local system (otherwise the rank of cHF of the meridional filling
of K would be greater than one). Finally, it is sometimes convenient to work in the
plane zT� DR2 nZ2 rather than the cylinder, with the multicurve  lifting to one that
is invariant under translation by �; note that in this cover 0 lifts to a single periodic
curve while each i>0 lifts to infinitely many copies of the same curve.

We will show that the .p; q/–cable operation acts on cHF.M / by applying a particular
diffeomorphism to the plane. Let gp;q be a diffeomorphism of R2 defined on the
lattice Z2 by sliding each lattice point leftward along lines of slope q

p
until they first

meet a vertical line xD np for some integer n. Note that gp;q does not fix the lattice Z2

but rather takes it to pZ� 1
p

Z; let fp;q be the composition of this map with vertical
stretching by a factor of p and horizontal compression by a factor of p, so that fp;q

takes Z2 to Z2, followed by a vertical shift of 1
2
.p � 1/.q � 1/. We remark that the

vertical shift is forced by the symmetry of the curves cHF.M / for any M and our
convention that these curves are centred at height 1

2
; with this convention understood

we will generally ignore the vertical positioning of the curves, but it is sometimes
helpful to keep track of this vertical translation explicitly. The map fp;q is not linear,
though in some sense it is as close to being linear as possible: it is the composition of
linear transformations, which can each be realized as a sequence of plane shears, with
a single fractional plane shear (defined in Section 2).

Theorem 1 If  is the immersed multicurve associated with K, p;q is the immersed
multicurve associated with Kp;q , and z and zp;q are the corresponding lifts to zT� D

R2 nZ2, then zp;q is homotopic to fp;q.z/.

Note that fp;q is periodic with period p in the horizontal direction, so it makes sense to
view fp;q as a map from the cylinder pT WD .R=pZ/�R to T WD .R=Z/�R taking

Geometry & Topology, Volume 27 (2023)
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Figure 2: Computation of the immersed curve associated with the .3; 2/–
cable of the right-hand trefoil, starting from the trefoil curve pictured on the
left. The two middle diagrams are two ways of thinking about the construction
starting from three copies of the trefoil curve: we either slide lattice points
along lines of slope 2

3
or we stagger the heights of the three copies of the

trefoil curve and then slide lattice points horizontally. Either way the result is
the curve on the right.

lattice points to lattice points. With this view, the process of computing cHF.Mp;q/ fromcHF.M / is to lift from T to pT and then applyfp;q . In practice, this amounts to drawing
p copies of cHF.M / in sequence, perturbing the curve by pushing lattice points along
lines of slope q

p
until they all lie on the same vertical line, and then scaling vertically

by a factor of p. This procedure is depicted in Figure 2 for the case of the .3; 2/–cable
of the right-hand trefoil. It is helpful to note that the procedure of pushing lattice points
along lines of slope q

p
can equivalently be viewed as drawing p copies of the input

curve with staggered heights and then translating punctures horizontally. In practice,
the process for computing cHF.Mp;q/ from cHF.M / amounts to a three-step process:

(1) draw p copies of cHF.M / next to each other, each scaled vertically by a factor
of p, staggered in height such that each copy of the curve is a height of q units
lower than the previous copy;

(2) connect the loose ends of the successive copies of the curve; and

(3) translate the pegs horizontally so that they lie in the same vertical line, carrying
the curve along with them.

Numerical concordance invariants extracted from curves

As an illustration of Theorem 1 at work, we can revisit the work of Hedden [8; 9] and
Van Cott [21], culminating in a result of Hom [11], which establishes the behaviour of
the �–invariant under cabling. Since �.K/ can be easily extracted from the immersed

Geometry & Topology, Volume 27 (2023)
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multicurve cHF.M /, we can recover this cabling behaviour from Theorem 1. The same
is true for some other numerical invariants. We begin by making an observation that is
implicit in earlier work. Let  D .0; : : : ; n/ denote the underlying set of immersed
curves for cHF.M /, with 0 the unique component which wraps around the cylinder.
This component is itself an invariant of K, so it will sometimes be convenient to express
it as 0.K/.

Proposition 2 The curve 0.K/ is an invariant of the concordance class of K.

Proof This follows from Hom [12] and the recipe for deriving cHF.M / from CFK�.K/
described in [5, Section 4]. The concordance invariant described in [12] is the smallest
direct summand of CFK�.K/, up to homotopy equivalence, which supports the ho-
mology of S3. The set of immersed curves derived from this summand is a subset of
the immersed curves cHF.M / which necessarily contains 0.K/. This subset of curves,
and in particular 0.K/, is thus a concordance invariant.

Note that the concordance invariant described in [12] is slightly stronger than 0 since
some information may be lost when passing from complexes to immersed curves
(namely, diagonal arrows are ignored). In fact, 0.K/ carries exactly the same in-
formation as the �–equivalence class of K defined in [12]. Any number that can
be extracted from 0 is automatically a concordance invariant, and several familiar
concordance invariants can be defined in this way. The two most common are � and
Hom’s �–invariant, which are extracted from 0 as follows: Starting on the section
of 0 which wraps around the back of the cylinder — say, at the unique intersection
of 0 with the line x D 1

2
— and moving rightward along 0, let a denote the first

intersection of 0 with the vertical axis x D 0. Then the integer � records the height of
the intersection point a (here we use a discrete notion of height given by the greatest
integer less than the y–coordinate of a). Continuing along 0 from a, one of three
things can happen: 0 can turn downwards, it can turn upwards, or it can continue
straight to wrap around the cylinder. This is recorded by �, which takes the values
C1, �1 or 0 in these three cases, respectively. (Both of these observations are made
in [5].) Note that if � D 0 then there is only one intersection of 0 with the vertical
axis, so 0 is simply a horizontal curve, which is the immersed curve associated with
the complement of the unknot. Now consider the effect of cabling on each of these
invariants. Throughout, let 0 D 0.K/ and let  0

0
D 0.Kp;q/.

Theorem 3 (Hom [11, Theorem 2]) If �.K/ D ˙1 then �.Kp;q/ D �.K/; and if
�.K/D 0 then �.Kp;q/D �.Tp;q/.

Geometry & Topology, Volume 27 (2023)
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A quick reproof of Theorem 3 By Theorem 1,  0
0

is obtained from 0 by placing p

copies of 0 next to each other, with appropriate vertical shifts, and compressing them
into one vertical line. The first intersection of  0

0
with the vertical axis thus comes from

the first intersection of the first copy of 0 with the vertical axis, and clearly if 0 turns
upward or downward at this point then  0

0
does also. On the other hand, if �.K/D 0

then 0 is simply a horizontal line, the same as the curve associated with the unknot. It
follows that  0

0
agrees with 0.Tp;q/, since Tp;q is the .p; q/–cable of the unknot, and

thus �.Kp;q/D �.Tp;q/.

The value �.Tp;q/ was also computed in [11, Theorem 2]; we can recover this computa-
tion by viewing Tp;q as the .p; q/–cable of the unknot. In this case 0 is horizontal in T

and lifts to a horizontal line in pT. To compute  0
0

from this we shift the i th column
downwards by iq

p
and then compress horizontally. If jqj D 1 then Tp;q is unknotted

and we must have �.Tp;q/D 0; indeed, in this case every column of lattice points shifts
by less than one unit, so it is possible for  0

0
to remain horizontal despite the shift. On

the other hand, if q > 1 then the shift causes  0
0

to turn downwards, so �.Tp;q/DC1;
similarly, if q < �1 then  0

0
turns upward and �.Tp;q/D�1.

Theorem 4 [11, Theorem 1] If �.K/D˙1 then �.Kp;q/Dp�.K/C 1
2
.p�1/.q�1/;

and if �.K/D 0 then �.Kp;q/D �.Tp;q/D .�1/sign.q/ 1
2
.p� 1/.jqj � 1/.

A quick reproof of Theorem 4 The first intersection of  0
0

with the vertical axis
clearly comes from the first intersection of the first copy of 0 with the vertical axis.
This intersection occurs between the lattice points at height �.K/ and �.K/C 1; after
applying fp;q and the appropriate vertical shift, these lattice points map to heights
h1Dp�.K/C 1

2
.p�1/.q�1/ and h2Dp�.K/CpC 1

2
.p�1/.q�1/. Note that there

are p � 1 lattice points between these two heights; whether or not  0
0

first intersects
the vertical axis above or below these points depends on the behaviour of 0 just
after it crosses the vertical axis, as pictured in Figure 3. If 0 turns downward (ie if

�

� C 1

p� C 1
2
.p� 1/.q� 1/

p� CpC 1
2
.p� 1/.q� 1/

Figure 3: Calculating �.Kp;q/.
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�.K/DC1), then  0
0

will also turn downward and meet the vertical axis just above
height h1; thus �.Kp;q/D h1. If 0 turns upward (ie if �.K/D�1), then  0

0
will also

turn upwards and meet the vertical axis just below height h2; thus �.Kp;q/D h2�1D

p�.K/C 1
2
.p�1/.qC1/. Finally, if �.K/D 0 then 0 agrees with the curve invariant

of the unknot, so  0
0

is the curve associated with Tp;q , and thus �.Kp;q/D �.Tp;q/. In
particular, if q > 1 then  0

0
bends down after its first intersection with the vertical axis,

and as above �.Kp;q/D h1 D
1
2
.p� 1/.q� 1/. If q < �1 then  0

0
bends upward and

�.Kp;q/ D h2 � 1 D �1
2
.p � 1/.�q � 1/, while if jqj D 1 then  0

0
is horizontal and

�.Kp;q/D 0.

Other concordance invariants can be extracted from 0.K/. For instance, for any
positive integer i , the invariant �i.K/ introduced recently by Dai, Hom, Stoffregen and
Truong [1] counts the number of left arcs of 0 of length i , where a left arc of length i

refers to a segment of 0 connecting successive intersections with the vertical axis
whose height differ by i which does not wrap around the cylinder and which lies to the
left of the vertical axis. These arcs are counted with sign coming from the orientation
of 0, with downward oriented arcs counting positively.1 Like � , the integers �i are
of particular interest in the study of knot concordance because they are additive under
connected sum; that is, they define concordance homomorphisms.

Returning to cabling, the behaviour of the invariants �i is more complicated. In
particular, �i.Kp;q/ does not depend only on �i.K/, or even on the collection of
invariants �.K/, �.K/ and �j .K/ for all j. In order to express the effect of cabling we
need to keep track of how each left arc in 0.K/ behaves at each end. For example, we
can define refined invariants �CCi , �C�i , ��Ci and ���i encoding the signed count of
four different types of length i left arcs in 0. The type is determined by the direction
0 turns at each end of the segment; C indicates that 0 turns upward and � indicates
that 0 turns downward, with the first sign indicating the behaviour at the top of the arc
and the second sign indicating the behaviour at the bottom of the arc, as in Figure 4.
Note that �i D �

CC
i C�C�i C��Ci C���i . With these extra quantities defined, it is

possible to derive explicit formulas for �i.K2;1/. More generally, we could derive
explicit formulas for �i.Kp;q/ in a similar way; the key difference is that the notions
of turning up or turning down used in defining the invariants �˙˙i are dependent on p

1This is a straightforward translation of the definition of �i given in [1] to the language of immersed
curves. The standard complex described in [1] corresponds precisely to the component 0 of cHF.M /.
The integers �i count horizontal arrows of length i in the standard complex, which correspond to length i

right arcs in 0. By symmetry, we can equivalently count length i left arcs in 0.
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���
2 ��C

2
�C�

2
�CC

2

Figure 4: Four cases complete the proof.

and q (here turning up means moving upward vertically or rightward with slope greater
than q

p
). The formulas are cumbersome so, rather that derive the general case, we focus

instead on the special case of .2; 1/–cabling.

Proposition 5 For i > 1 all the variants of �i.K2;1/ are either determined by

�˙˙2n .K2;1/D �
˙˙
n .K/; �

˙�

2n˙1
.K2;1/D �

˙�
n .K/

or they are trivial. In particular , for n� 1,

�2n.K2;1/D �
CC
n .K/C���n .K/; �2nC1.K2;1/D �

C�
n .K/C��C

nC1
.K/:

Proof The curve  0
0
D 0.K2;1/ is constructed in three steps: take two consecutive

copies of 0D 0.K/; scale vertically by a factor of two and shift the second copy of 0

down one unit; and compress horizontally (compare Figure 2). Before compressing
horizontally, we can divide this curve into two (nonconnected) subcurves which lie to
the left and right of vertical line through the first column of lattice points; let L and R

denote the images of these subcurves after horizontal compression, so that  0
0
DL[R .

The key observation is that every component of R lies to the right of every even height
lattice point, and therefore any left arc on  0

0
which lies in R must have length 1.

It is also clear that any left arc of  0
0

intersects at most one component of L, since
otherwise it contains a full component of R which must lie to the right of some lattice
point. Thus each left arc of length greater than 1 in  0

0
comes from a component of L,

which in turn comes from a left arc of the first copy of 0. Conversely, every left arc
of length i in the first copy of 0 gives rise to exactly one left arc in  0

0
, which has the

same end behaviour. The length of this new arc depends on the end behaviour: it is
2i � 1 for �C arcs, 2i for CC or �� arcs, and 2i C 1 for C� arcs (see Figure 4).

We will say that 0 has a unique maximal-length left arc of type CC and length N if
�CC

N
.K/D 1, �CCi .K/D 0 for all i > N, and �C�i .K/D ��Ci .K/D ���i .K/D 0

for all i �N. The following is an immediate consequence of the formulas above:
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Figure 5: Immersed curves for the first few iterated .2; 1/–cables of the right-
hand trefoil. These are also the distinguished curve 0 for the knots K0, K1,
K2 and K3 from Corollary 7. The longest left arc (highlighted) is stretched
by a factor of two with each cabling iteration; thus, the length of the longest
left arc for Kn is 2n.

Proposition 6 If 0.K/ has a unique maximal-length left arc of typeCC and length N,
then 0.K2;1/ has a unique maximal-length left arc of typeCC and length 2N.

Consider for example iterated .2; 1/–cables of the right-hand trefoil T2;3; the immersed
curves for the first few of these knots are shown in Figure 5. The immersed curve
0.T2;3/ has only one left arc, which has type CC and length 1. If we repeatedly
.2; 1/–cable this knot, there is always a single left arc of maximal length, which always
has type CC, and the length of this arc doubles in length with each iteration.

In [1], the concordance invariants �i were used to identify a Z1 direct summand in
the topologically slice smooth concordance group CTS; see also [17]. The relevant
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infinite family of knots is built from cables of a certain knot D, the untwisted positively
clasped Whitehead double of T2;3. More precisely, the family of knots is given by
Dn;nC1 # �Tn;nC1. Using Proposition 6, we can construct another Z1 summand
from D by instead taking iterated .2; 1/–cables. The key properties of D are that

(i) the Alexander polynomial of D is trivial, and

(ii) the distinguished component 0 associated to D agrees with 0.T2;3/.

The knot D can be replaced with any other knot which shares these two properties —
an example of a hyperbolic knot with this property is 15n113775.

Corollary 7 Let K DK0 be a knot for which �K .t/D 1 and 0.K/D 0.T2;3/. For
n � 1 let Kn be the .2; 1/–cable of Kn�1. The knots fKng

1
nD0

span a Z1 summand
of CTS.

Proof According to a result of Freedman, �K .t/D 1 implies that K is topologically
slice [2]. The .2; 1/–cable of a topologically slice knot is topologically concordant to the
.2; 1/–cable of the unknot, which is the unknot; thus, by induction, Kn is topologically
slice for all n. On the other hand, K0 has a unique maximal-length left arc of type CC
and length 1, so Proposition 6 and induction implies that Kn has a unique maximal-
length left arc of typeCC and length 2n. In particular, for each n we have �2n.Kn/D 1

and �i.Kn/D0 for all i >2n. Since each �i is a concordance homomorphism, it follows
that the knots are linearly independent in the smooth concordance group. Moreover, it
is straightforward to see that the homomorphism

1M
iD0

�2i W CTS!

1M
iD0

Z

is an isomorphism when restricted to the span of the Kn. Indeed, it follows from the
information above that the images of the Kn form a basis for Z1 (see for instance [17,
Proposition 6.4]). In fact, by the remark below we also have that �i.Kn/D 0 for all
i < 2n, so the image of Kn is the standard i th basis vector of Z1.

Remark 8 We leave the behaviour of �1 under .2; 1/–cabling, which was not needed
in the above application, as an exercise to the motivated reader, who will find that

�1.K2;1/D�
X
j�1

�j .K/C

�
1 if �.K/ > 0;

0 if �.K/� 0:

Using corresponding formulas for variants of �1 along with those from Proposition 5
and induction on n, it can be shown that the knots Kn in Corollary 7 in fact satisfy
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�i.Kn/D 1 if i D 2n and �i.Kn/D 0 otherwise. Thus the map

1M
iD0

�2i W SpanfKng !

1M
iD0

Z

defines an explicit isomorphism from the span of the Kn in the topologically slice
concordance group to Z1.

Curves that do not come from cables

In many cases Theorem 1 provides a simple obstruction to a knot being a nontrivial
cable. For example, if the curve set corresponding to a knot contains a figure-eight
component enclosing two adjacent lattice points (as is the case, for example, for any
nontorus alternating knot; see [19]), then the knot is not a cable of a knot in S3. This is
because any closed component of cHF.Mp;q/ comes from one copy of cHF.M / before
the transformation of the plane and thus encloses only lattice points with the same
height modulo p. If we restrict our attention to 0, we can find knots which are not
concordant to a nontrivial cable. An example of this is the knot 12n242, whose 0 is
pictured in Figure 6. Because the first left arc has length 2, if this curve comes from
a .p; q/–cable then p must be at most 3. If p D 1, the cable operation is trivial. If
p D 2, then the curve should not pass to the left of an odd-height lattice point (grey in
Figure 6) after passing to the right of an even-height lattice point (black in the figure),
but this clearly happens. Similarly, if p D 3 then the curve should not pass to the left
of a point whose height is congruent to 2 mod 3, after passing to the right of a lattice
point with a different height modulo 3, but this also happens. We thank Tye Lidman
for asking us about the existence of such an example.

Figure 6
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Figure 7: The .3; 4/–cable (left) and the .3; 2/–cable (right) of the right-hand trefoil.

L–space surgeries on cable knots

Other properties of the knot Floer homology of cable knots are made relatively trans-
parent by Theorem 1. The following is a well-known property that was established by
Hom [10] (building on work of Hedden [9]):

Theorem 9 [10, Theorem] For any knot K in S3, Kp;q admits a positive L–space
surgery if and only if K admits a positive L–space surgery and q

p
is at least 2g � 1,

where g denotes the Seifert genus of K.

Note that K admits a positive L–space surgery if and only if cHF.M / is a single curve
which, apart from the segment that wraps around the cylinder, moves monotonically
downward in the neighbourhood of the vertical axis (see [4, Section 7.5]). When this
curve is pulled tight in the cylinder T� (or in the plane zT�), the slope of the nonvertical
segment is 2g� 1. Following Theorem 1, we construct cHF.Mp;q/ from p columns of
the lift of cHF.M / to zT� by translating lattice points along lines of slope q

p
.

A quick reproof of Theorem 9 If cHF.M / is oriented upward at any point apart from
the nonvertical segment, it is clear the same will be true at the image of this point oncHF.Mp;q/; thus K having a positive L–space surgery is a necessary condition for Kp;q

to have one. Supposing K has a positive L–space surgery, it is clear that if q
p
> 2g�1

then the p copies of the downward-oriented portion of cHF.M / miss each other, so
the resulting curve moves monotonically downward and Kp;q has a positive L–space
surgery. On the other hand, if q

p
< 2g�1 then these sections of curves overlap, forcing

some backtracking in the resulting curve, implying that Kp;q has no L–space surgeries.
An example is given in Figure 7.
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Figure 8: The .3; 2/–cabling operation interpreted as a plane tiling: three
copies of the standard square tile (above) are carried to a new regular tile
in T3;2 (below) under the operation fp;q appearing in Theorem 1. To illustrate,
the image of the longitude has been included (gradually homotoped to a
simpler form moving rightward), which recovers the invariant associated with
the right-hand trefoil as expected.

Cabling via tiling

From Theorem 1 it is possible to interpret cabling in terms of plane tilings. That is, in
a visual summary of the above discussion, we record the following:

Corollary 10 For every relatively prime pair .p; q/ there is a periodic tiling Tp;q of
the plane , unique up to lattice-fixing planar isotopy , such that .Kp;q/ is the image
of .K/ under the transformation taking the lattice zT� to Tp;q .
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Proof This is a simple reformulation of Theorem 1: Consider the standard square
tiling of the plane zT� defined by the preferred .�; �/–framing. The image of p square
tiles aligned horizontally, under the application of fp;q , gives a tile in a periodic tiling
of the plane.

This is best illustrated in an example, and we have shown the tiling associated with
.3; 2/–cabling in Figure 8. Note that this point of view comes with a built-in sanity
check: one can check that the image of a longitudinal curve under the transformation
to Tp;q is the immersed curve .Tp;q/. Recalling that, as a polynomial in t , the
Alexander polynomial satisfies

�.Kp;q/D�.K/jtp ��.Tp;q/;

our formula has Tp;q playing the role of �.Tp;q/ in this formula while replacing t

with tp corresponds to the p repeated copies of .K/.

In general, one expects bimodules in bordered Floer homology (for manifolds with
two boundary tori) to be associated with Lagrangians in T� � T�. A simple first
example of this is the bimodule associated with a diffeomorphism of the torus, where
the (embedded) Lagrangian surface is the graph of the diffeomorphism. In that case
we can interpret the action of the bimodule as follows: to compute the image of an
immersed curve  , we consider  � T�, intersect with the Lagrangian surface, and
project to the second coordinate. Cabling bimodules provide a first glimpse at how
this construction might be generalized to arbitrary bimodules. The diffeomorphism
of the plane fp;q does not descend to a diffeomorphism of the torus, but, since fp;q

is periodic and is determined by its effect on p consecutive tiles of the plane, it can
be viewed as a p–valued function on T�; that is, to each point in T� it associates
an unordered tuple of p points in T�. The graph of this multivalued function is an
(immersed) Lagrangian surface in T� �T�, and the action of the bimodule on curves
can be interpreted geometrically as before.

1 Immersed curves and the merge operation

For any orientable manifold M with torus boundary, the Heegaard Floer homologycHF.M / is an immersed multicurve in the marked torus @M [4], as introduced above.
This view of the Heegaard Floer invariants of M arises from an interpretation of
bordered Floer homology [15], and is closely related to the loop calculus introduced
in [6]. This section builds a glossary between loop calculus [6] and immersed curves [4];
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�2�1 D 0
�3�2 D 0

�0 �1

�1

�2

�3

Figure 9: The torus algebra A as the path algebra of a quiver with relations.

in the former we developed the machinery for understanding gluing pairs of manifolds
along essential annuli in their boundaries, which we aim to interpret in terms of the
immersed curves in the case of cabling knots in the three-sphere.

1.1 From puzzle pieces to curve segments

Assuming familiarity with some subset of [4; 6; 15], we give a very terse summary of
the bordered invariants in order to set up the desired glossary.

The torus algebra A is obtained as the path algebra of the quiver described in Figure 9.
Let I �A denote the subring of idempotents generated by �0 and �1. Working over the
two-element field F, a type D structure over A is a finite-dimensional left I–module V

together with a map ı W V !A˝I V. This map must satisfy a compatibility condition
equivalent to ensuring that @.a˝x/D a �ı.x/ is a differential on the A–module A˝I V.

There is a simple interpretation of the above data in terms of decorated graphs: the
vertices encode the generating set (these come in two types � and ı, depending on
the idempotents �0 and �1, respectively) and, by passing to type D structures that are
reduced, the directed edges are labelled by the set f1; 2; 3; 12; 23; 123g in order to
encode the coefficient maps; see Figure 11. These graphs can be naturally immersed in
the marked torus or, more precisely, in the once-punctured torus with a fixed choice
of 1–handle cocores cutting the surface into a disk. In our case, these cocores will
always coincide with the preferred .�; �/–pair, since we are focussed on knots in S3.
With this data in hand, we can decompose the torus into the familiar square patch
with opposite edges identified. The type D structures of interest then are immersed
train tracks (in the sense of Thurston [16]) where all of the vertices/switches lie on the
horizontal or vertical edges; when such a train track comes from a three-manifold, the
classification theorem proved in [4] tells us it is equivalent to an immersed multicurve,
possibly decorated with local systems, which we denote by cHF.M / [4].

In the case where the local systems are trivial, we recover the class of loop-type
manifolds considered in our earlier work [6] (see also [5, Section 1]). Central to
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ak bk ck dkD Nc�k eD Nc0

3

23

2

123

23

1

3

23

1

123

23

2

12

Figure 10: Segments of immersed curve in the cover of the marked torus,
labelled to be consistent with the puzzle pieces given in [6]. The integer
subscript k>0 indicates the number of ı generators in the segment. These
letters can appear forwards or backwards in a cyclic word, so that Nak runs
against the direction indicated by the blue arrow. We can also extend our
notation by setting a�kD Nak , b�kD

Nbk , c�kD
Ndk , d�kD Nck and d0D Nc0De;

note that then a segment with subscript k moves upward k units in the plane.

this is the observation that, when the type D structure in question can be represented
by a valence 2 graph, it is possible to decompose along � vertices into segments,
each of which takes one of five possible forms as described in Figure 10 (compare
[6, Figure 1]).2 As a result, studying these type D structures amounts to a calculus
for manipulating cyclic words in the infinite alphabet A D fak ; bk ; ck ; dk ; eg for all
positive integers k. The segments corresponding to these letters may appear backwards
as we traverse a loop; this is indicated by a bar. There are rules governed by the
algebra restricting the letters that can be concatenated, which are most easily described
by noting that each segment also corresponds to a segment of immersed curve as in
Figure 10: if two curve segments share an endpoint, they must lie on opposite sides
of the vertical near that point. (In [6], a puzzle piece convention is used to describe
these rules.) Note that the ak and the bk correspond to the two types of stable chains
introduced in [15], while ck , dk and e correspond to the three types of unstable chains.
In fact, it makes sense to view the three types of unstable chain as part of a single
family, and with this in mind we set c0 D Ne and c�k D

Ndk . The example in Figure 11
explains this for the right-hand trefoil exterior.

Now consider a component of cHF.M /, that is, an immersed curve  decorated with a
local system .V; ˆ/ of dimension n. Following [4], we can interpret this as a curve-like

2There are certain exceptional type D structures that cannot be decomposed in this way; however, these
examples are not particularly important in this setting. The interested reader can consult [6] for a dual
notation that decomposes along ı vertices.
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�

�

z

11232

3

3 123

3

2 1

Figure 11: Three different views of the invariant associated with the exterior
of the right-hand trefoil. In all three cases, we have fixed the preferred
.�; �/–framing in order to present the torus boundary. On the lower left, the
decorated graph describing the type D structure has been immersed in the
marked torus as a train track. This description exhibits the redundancy in
the edge labels: as shown in the lower right figure, the idempotents can be
recovered from the horizontal and vertical edges while the coefficient maps
are determined by which of the labelled corners are traversed by the curve
segments (a region indicating the 23 edge is shaded). Finally, lifting the curve
to the cover T� (or, as pictured, zT�) makes obvious the cyclic word a1 Nc2b1,
which in [6] is referred to as a loop.

train track, which consists of n parallel copies of  along with some additional edges
that we may assume all lie on a portion of  corresponding to a single segment (that is,
along one letter of A as described above). When M is the complement of a knot K

in S3, we may in fact assume that these edges lie on a segment of type ak ; this is
because the curve 0.K/ does not carry a nontrivial local system, and all other curves
are closed in the lift to the plane zT� and thus must contain a type ak segment. The
portion of the train track containing the extra edges is precisely a type ak segment with
local system .V; ˆ/. These extra edges determine an n� n matrix over F, where the
.i; j / entry is nonzero if the curve-like train track contains a copy of the ak segment
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� � �

� � �

�
F3;

�
0 0 1
1 0 0
1 1 1

��
x

y

x3 x1

y3 y1

Figure 12: A 3–dimensional local system, expanded at an a2 to give a train track.

from the i th copy of the initial generator in the segment to the j th copy of the final
generator of the segment. By construction, this matrix represents the local system ˆ.

It is relatively straightforward to extend this language to cases admitting a nontrivial
local system. Recall that each letter in A corresponds to a (portion of a) type D structure
that is a linear chain of arrows. We allow a letter in A to be decorated by a local system,
as follows. Let V be a vector space over F of dimension n, and let ˆ W V ! V be
an endomorphism. Decorating a segment with .V; ˆ/ amounts to taking n parallel
copies of the appropriate chain, with the n parallel copies of any one arrow in the
chain replaced with a collection of arrows determined by ˆ; see Figure 12 for an
example. Suppose the relevant arrow in the chain connects generators (ie vertices)
x and y, with x occurring first in the chain (ie there is an edge connecting x to y).
Fix bases hx1; : : : ;xni and hy1; : : : ;yni for V and consider an n� n matrix over F

representing ˆ; these arrows connect the i th copy of x (ie xi) to the j th copy of y

(ie yj ) if and only if the .i; j / entry of the matrix is nonzero (again, see Figure 12). If
all letters in a cyclic word carry a local system (each having the same dimension), then
the local system on the cyclic word is determined by composing the endomorphisms.
Note that a letter decorated by the trivial local system of dimension n corresponds to n

parallel copies of the relevant curve segment.

To summarize, given a knot K in S3, the invariant cHF.M / is an immersed multicurve
.K/D .0; 1; : : : ; n/ where each i>0 caries a (possibly trivial) local system. By
the above discussion, we can assume that each component of .K/ is represented by a
cyclic word in A, possibly with a nontrivial local system on a single ak segment.

1.2 The merge operation

Given type D structures # and  , we describe a new type D structure M.;#/. This
follows the notation set out in [6], where we showed that this type D structure agrees
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with cHF.M.M1;M2// in the case where  and # correspond to cHF.M1/ and cHF.M2/,
respectively.3 The operations M and M are referred to as merges; the latter glues two
manifolds along essential annuli in their torus boundaries. We will first describe the
operator M algebraically, and then explain the gluing conventions for M in the next
section in the context of cabling.

Some simplifications are possible in the present setting. First, we assume that  is a loop
consisting only of some ck for integers k. This assumption holds in particular when M1

is a solid torus, in which case M.M1;�/ will give rise to a cabled knot.4 Further, as
described above, we assume that # is represented as a curve-like train track. This may
consist of several disjoint components, but we can restrict to connected train tracks with-
out loss of generality: if # D .#0; : : : ; #n/ then M.;#/D .M.; #0/; : : : ;M.; #n//.

The main tool used in this paper is a distilled version of [6, Proposition 6.4]:

Proposition 11 Let # be a type D structure represented by a single cyclic word in A

and let  be a word containing only the ck . If the local system on # is trivial then the
type D structure M.;#/ is obtained by applying the rules

M.ck ; aj /D aj ; M.ck ; bj /D bj ; M.ck ; cj /D cjCk

to every letter in # , ranging over all letters for  , and assembling the result together
using a toroidal grid to match up the endpoints , as described in Figure 13.

The proof of this result is contained in [6]; however, because nontrivial local systems
are not handled there, we want to be precise about how to extend the result based on
the material in our earlier work.

Proposition 12 Proposition 11 holds when # carries a local system , where , for each
letter u in the word representing # and each ck in the word representing  , M.ck ;u/

carries the same local system as u.

3More specifically, treating  and # as type D structures, in [6] we use M.;#/ as a shorthand for the
type D structure 1CFDAA.P �S1/� .;#/, where 1CFDAA.P �S1/ is the bordered trimodule calculated
in [3] and the three-manifold P �S1 is a circle bundle over a pair of pants (this plays a key role in the
next section).
4In fact, everything we do works in a much more general setting: Any manifold admitting L–space
surgeries has a type D structure that, relative to a slope corresponding to an L–space filling, can be
expressed in terms of only letters ck . We have opted to simplify matters and focus on a well-known
construction with well-established conventions in order to illustrate the key principle. More general cases
follow the same lines, and can be extracted from [4; 6].

Geometry & Topology, Volume 27 (2023)



944 Jonathan Hanselman and Liam Watson

#



bc

1 2 �1 1 2 �1

c1 c2 c�1

c1

b1

c0

a2

c1

c1 c2 c3 c0

c2 c3 c0

a2 a2 a2

c1 c2 c�1

b1 b1 b1

c2 c3 c0

Figure 13: Merging a pair of curves, as in Proposition 11, described graphi-
cally: On the left-hand side of the diagram, the output curve is interpreted
on a toroidal grid, where the ck from  (written on the horizontal) act on the
letters in # (written on the vertical). On the right, this process in interpreted
in terms of curves, where the top right figure gives a section of the (periodic)
curve in zT� while the bottom right figure is the result of the merge. Note that
the horizontal is moved to the key curve bc.

de



bc

Figure 14: The PL key curves approximating  .
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Proof There is nothing to check for trivial local systems, as these are just disjoint
copies of some curve and Proposition 11 applies. For a nontrivial local system, we
need to carry out the computation in [6, Figures 10, 11 and 12], replacing the simple
segments for the `2 input with segments carrying an arbitrary local system as in, for
example, Figure 12. This is a straightforward computation. Note that we do not need
to check this computation for type bk pieces, since we may assume a local system on a
loop is concentrated on any one letter and a loop containing a bk must also contain
an aj . (Furthermore if # is the multicurve corresponding to a knot in S3, as in this
paper, it is enough to check the computation for ak pieces since any component with a
nontrivial local system must contain an ak piece.)

The takeaway from Proposition 11 (and its extension to nontrivial local systems in
Proposition 12) is a graphical calculus used to determine the merge of two curves when
one contains only ck segments; this is the content of Figure 13. Consider a word (in
the ck) representing  , and write this along the top of a rectangular grid; consider a
word in A representing # , and write this along the side of the rectangular grid. Then,
following the letter-by-letter instructions in Proposition 11, the new word M.;#/ can
be obtained by running through the grid, starting at the top left. As shown in Figure 13,
the M.cj ; ck/ D cjCk run diagonally, while the M.cj ; ak/ D ak and M.cj ; bk/ D bk

change direction. The sides of this grid are identified to form a toroidal grid, and this
connects up the endpoints of the segments to form the new loop M.;#/.

Note that, as the resulting loop is traversed, horizontal motion in the grid corresponds
exactly to horizontal motion of the corresponding curve in the plane. In particular, each
vertical line of lattice points in the plane corresponds to a column of the grid containing
some ck in  , and the effect of merging on the curve for # is to shear the plane along
that vertical line by k.

The graphical shorthand from Figure 13 suggests an interpretation of the merge operation
in terms of immersed curves, which we can think of as  acting on # . To describe this,
it is useful to have a piecewise-linear representative of the curve  . Let  be expressible
as a word in only the ck , so that, viewed in the plane zT�,  is a graph. Let bc be the
curve consisting of linear segments that, at each integer in the horizontal direction,
intersects the lattice point immediately below  . The curve de is defined similarly, by
instead pushing up to the lattice points immediately above ; see Figure 14. Note that
this is closely related to the pegboard diagrams introduced in [4].

Geometry & Topology, Volume 27 (2023)



946 Jonathan Hanselman and Liam Watson

Recall that the immersed multicurve cHF.M / coming from a bordered 3–manifold M

lives in the cylinder .R2 nZ2/=h�i, where � corresponds to the homological longitude
of M. Equivalently, we think of this as a multicurve in R2nZ2 which is invariant under
the action of �. We will say that such a curve has horizontal period p if translation
by � moves p units in the horizontal direction.

Corollary 13 Let # be an immersed multicurve with local systems in zT� with horizon-
tal period q, and let  be a curve in zT� with no vertical tangent lines (ie the graph of a
function) with horizontal period p, with p and q relatively prime. Then the immersed
multicurve for M.;#/ is obtained by adding bc to # vertically. That is , we find the
image # under the transformation of zT� which translates along each vertical line to
take the horizontal axis to bc.

Proof This is the main thrust of Figure 13: For a component homologous to �, the
new cyclic word moves q columns to the right in the grid each time it traverses the
grid vertically. Since p and q are relatively prime, the new word makes p vertical
passes, tracing out the entire grid, before returning to the starting point. The new
word is p copies of the word representing # , with the indices on type c letters shifted
according to the column in the grid; this corresponds to p copies of the fundamental
region in z# , each of which moves q units to the right, with a plane shear applied along
each column of lattice points. The magnitude of each shear is determined by the index
of the corresponding letter in  , which amounts to shifting each column upwards by
the height of bzc in that column. The resulting curve has horizontal period pq. For
a nullhomologous component, the grid gives rise to p separate cyclic words, each
traversing the grid vertically once starting in a different column. Each word is a copy
of # with shifted indices on type c letters. The nullhomologous component of # lifts
to infinitely many copies of the same closed curve in z# , which are translations of each
other by multiples of �. Taking p consecutive copies corresponds to the p cyclic words
in the grid, and adding bzc corresponds to the required shifts in indices.

As mentioned previously, the setup of Corollary 13 is more general than we need for
cabling; we will only need the case that  is in fact a straight line of some rational
slope. Note that, when  is a line of slope 1, the transformation taking the horizontal
axis to bc is a lift to zT� of a Dehn twist in T�. This is a linear transformation of the
plane, which we refer to as a plane shear in the vertical direction. The case that  is a
line of rational slope is a mild generalization of this, which we call a fractional plane
shear.

Geometry & Topology, Volume 27 (2023)



Cabling in terms of immersed curves 947

2 The proof of Theorem 1

In order to complete the proof of our theorem, we need to connect the operation
described in Corollary 13 to the specific context of cabling. To do this we first set our
conventions.

2.1 Cabling conventions

Recall that, fixing a knot K, we let M denote the complement S3 n �.K/ and Mp;q

denote the complement of the cable Cp;q.K/. Let P denote a two-sphere with three
disks removed (so that P is homeomorphic to a pair of pants). The manifold Mp;q can
be obtained by gluing M into one boundary component of P�S1 and an appropriately
framed solid torus D2 �S1 into another boundary component. We will briefly review
this construction, paying particular attention to framing conventions.

Each torus boundary in this construction has a natural choice of parametrizing curves.
For @M, we use a meridian � and the Seifert longitude �, fixing orientations on these
curves with the convention that � ��DC1. For @.D2 �S1/, we let m be a meridian
@D2 � fptg and let ` be the longitude fptg �S1, with the orientation convention that
m � `DC1. For i 2 f1; 2; 3g, the i th boundary component of the S1–bundle P �S1

is parametrized by a fibre fi D fptg �S1 and bi D @i.P/� fptg, where @i.P/ denotes
the i th boundary component of the base surface P. We set orientations on these curves
so that bi �fi DC1.

The third boundary component of P�S1 will ultimately become the boundary of Mp;q;
however, it is helpful for the moment to fill this third boundary component in with a
solid torus in a trivial way so that P�S1 becomes A�S1, where A is an annulus. This
solid torus can be removed later by deleting a neighbourhood of a fibre of A�S1. We
glue D2�S1 to the first boundary component of P �S1 (now A�S1) such that f1 is
identified with p`Cqm; this means that b1 is identified with r`Csm for some integers
r and s with ps�qr D�1 (we can choose r and s arbitrarily subject to this condition,
but the choice affects the framings on the resulting boundary components). The result
of this gluing is a solid torus, equipped with a Seifert fibration in which the core of the
solid torus is a singular fibre and the regular fibres wind p times longitudinally and
q times meridionally. This solid torus is glued to the knot complement M such that the
result is S3 and the core of the solid torus is identified with K. As a result, a regular
fibre of D2 �S1 [A�S1 is the cable Cp;q.K/, and removing a neighbourhood of
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one of these (or, equivalently, not filling in the third boundary of P �S1) yields the
complement Mp;q .

Note that inserting A�S1Š T 2� Œ0; 1� between M and D2�S1 amounts to a change
of framing and, in particular, f1 can be identified with f2 and b1 can be identified
with �b2. To recover S3, we want � to be identified with m and � to be identified
with `. It follows that f2 glues to p�C q� and b2 glues to �r�� s�. To summarize,
we have �

f1

b1

�
D

�
p q

r s

��
`

m

�
;

�
f2

b2

�
D

�
p q

�r �s

��
�

�

�
with ps� qr D�1. Inverting these matrices,�

`

m

�
D

�
�s q

r �p

��
f1

b1

�
;

�
�

�

�
D

�
�s �q

r p

��
f2

b2

�
:

If we do not fill in the third boundary of P�S1 in the construction above, the resulting
manifold with torus boundary is Mp;q; it is clear that the meridian �C of the cable
knot is given by b3. While not required, as will follow from the computation below,
one can check that the Seifert longitude �C of the cable knot is given by �f3C q2b3.

2.2 Applying the merge operation

We are interested in obtaining the immersed curve set cHF.Mp;q/ from the immersed
curve set cHF.M /. We can do this by applying the merge operation to cHF.M / andcHF.D2 �S1/, keeping in mind the framings discussed above. Following Section 1
and the conventions in [6], the first step is to draw lifts of both curve sets in the plane
with respect to the parametrization by fi and bi (or, more precisely, by the curves in
@.D2 �S1/ or @M which are identified with fi and bi) such that bi is the horizontal
direction and fi is the vertical direction. Recall our convention is that bi � fi D 1,
but we are now considering the plane as a lift of @.D2 � S1/ or of @M, which are
identified with boundary tori of P �S1 by an orientation-reversing diffeomorphism,
so if we take bi to be the positive horizontal axis then fi is the negative vertical axis.
Note that we could instead choose the opposite orientation for both axes, but this
ambiguity can be ignored since immersed curves for bordered invariants are symmetric
under the elliptic involution of the torus by [5, Theorem 7]. Since cHF.D2 �S1/ is the
meridian mD rf1�pb1, this curve is simple to describe in the relevant basis: it is a
line of slope r

p
[4]. The second step is to apply Corollary 13 by taking the vertical

sum of cHF.M / and bmc; note that the conditions of the corollary are satisfied because
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b

f �

�

m

m

bmc

b

d�e

�D�sf � qb

�D rf Cpb

mD rf �pb

Figure 15: The fractional plane shear in the vertical direction associated with
computing a .p; q/–cable, viewed with respect to the .�f; b/–framing. Other
relevant curves are shown, with respect to this framing, in the top left. The
bottom left shows a copy of m through the origin and the corresponding curve
bmc obtained by dropping down to the highest peg below m in each column.
This curve serves as a “key” for the plane shear — that is, we shift each column
of pegs upward by the height of bmc in that column. Thus the plane shear is
determined by the fact that it takes b to bmc, or equivalently that it takes d�e
to b. The right shows the effect of this shear on the curve for the right-hand
trefoil. For the concrete example in the figure, .p; q/D .2; 1/ and .r; s/D .1; 0/.

components cHF.M / are homologous to zero or to the rational longitude �, which
moves horizontally by q units, while m moves horizontally by p units. The result is (a
lift to the plane of) cHF.Mp;q/, though given with respect to the framing .f3; b3/ rather
than the usual .�C ; �C /; see Figure 15.

While the previous paragraph gives a complete procedure for computing cHF.Mp;q/,
performing the change of basis to draw the curve set cHF.M / with respect to the
.f; b/–framing can be cumbersome. Instead, we can follow the same operation but
view the plane with respect to .�; �/, the preferred framing for @M, throughout the
process. Now, instead of shifting pegs in each vertical column, we shift along lines
parallel to the fibre direction; since f2 D p�C q�, this is a line of slope q

p
. To keep
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b

f�

�

b

d�e�

b D�r�� s� f D p�C q�

Figure 16: Starting with the curve cHF.M / drawn in the plane with respect
to the standard .�; �/–framing, the fractional plane shear in the f direction
which takes d�e to b produces the curve cHF.Mp;q/, though not in terms of a
convenient parametrization. shearing back partially along f gives the curve
with the standard parametrization, up to rescaling the lattice. These two steps
can be combined into one, as shown in the box: each lattice point is translated
leftward along lines of slope q

p
until its x–coordinate is a multiple of p. Note

that p copies of the curve cHF.M / are involved in each copy of cHF.Mp;q/. The
figure shows the case of the .2; 1/–cable of the right-hand trefoil.

track of how much to shift along each line of slope q
p

, we can draw a copy of the
piecewise linear curve d�e; note that this is obtained from a vertical line � through the
origin by pushing each point

�
0; n

p

�
on � leftward along a line of slope q

p
to the first

lattice point it encounters (see Figure 16, top left). To perform the cable operation, we
shear along lines of slope q

p
to bring this curve d�e to b (see Figure 16, bottom left).

We can now start with the curve cHF.M / represented in terms of its standard framing
.�; �/ and produce the immersed curve cHF.Mp;q/ in one simple step. However, as
before, the output is not given with respect to the standard framing by .�C ; �C /. Of
course, it is straightforward to determine the slopes of �C and �C in the output picture

Geometry & Topology, Volume 27 (2023)



Cabling in terms of immersed curves 951

and then we simply need to change basis applying a linear map to the plane which
takes these to the vertical and horizontal directions, respectively. This can always be
accomplished by a sequence of (integral) plane shears in the horizontal and vertical
directions. However, this too is cumbersome, so we will describe a shortcut to this
reparametrization making use of a linear transformation of the plane which does not
preserve the lattice. More precisely, consider the linear transformation which fixes f
and takes b to �; this can be understood as translating each lattice point on b along a
line of slope q

p
until it reaches the vertical line � (see Figure 16, bottom right). Note

that the lattice Z2 is not mapped to itself under this transformation, but rather its image
is pZ� 1

p
Z. Even so, in this new deformed lattice the directions corresponding to �C

and �C are vertical and horizontal, as desired, and we can recover the usual lattice by
ending with another linear transformation which scales and compresses by a factor
of p in the vertical direction and horizontal direction, respectively.

Finally, we mention that there are now two steps which involve shearing along the lines
of slope q

p
: the fractional plane shear taking d�e to b (this transformation is not linear),

and the linear transformation taking b to �. These steps can be combined in one by
shearing along lines of slope q

p
to push d�e onto �. In other words, every pth vertical

column of lattice points is fixed, while all other points are pushed leftward along lines
of slope q

p
until they reach a vertical line containing one of the fixed columns (see the

boxed portion of Figure 16). This proves Theorem 1.
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Let ƒ˙ DƒC[ƒ� � .R3; �std/ be a contact surgery diagram determining a closed,
connected contact 3–manifold .S3

ƒ̇
; �
ƒ̇
/ and an open contact manifold .R3

ƒ̇
; �
ƒ̇
/.

Following work of Bourgeois, Ekholm and Eliashberg, we demonstrate how ƒ˙

determines a family ˛� of contact forms for .R3
ƒ̇
; �
ƒ̇
/ whose closed Reeb orbits

are in one-to-one correspondence with cyclic words of composable Reeb chords
on ƒ˙. We compute the homology classes and integral Conley–Zehnder indices of
these orbits diagrammatically and develop algebraic tools for studying holomorphic
curves in surgery cobordisms between the .R3

ƒ̇
; �
ƒ̇
/.

These new techniques are used to describe the first known examples of closed, tight
contact manifolds with vanishing contact homology: they are contact 1=k surgeries
along the right-handed, tbD 1 trefoil for k > 0, which are known to have nonzero
Heegaard Floer contact classes by work of Lisca and Stipsicz.
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1 Introduction

The main objects of interest in this paper are contact 3–manifolds and their Legendrian
submanifolds. A contact form on an oriented 3–manifold M is a 1–form ˛ 2�1.M/

for which ˛ ^ d˛ > 0 with respect to the orientation of M. A contact 3–manifold
is a pair .M; �/ consisting of an oriented 3–manifold M together with an oriented
2–dimensional distribution � � TM which is the kernel of a contact form ˛ satisfying
d˛j� >0 with respect to the orientation on � . We say that ˛ is a contact form for .M; �/.
A Legendrian submanifold of .M; �/ is a link which is tangent to �. We’ll typically
denote Legendrian submanifolds by ƒ or ƒ0.

Given a contact 1–form ˛ for some .M; �/ its Reeb vector field, R, is determined by
the equations

˛.R/D 1; d˛.R;�/D 0:

For the purposes of studying invariants of .M; �/ and its Legendrian submanifolds
defined by counting holomorphic curves — see Eliashberg, Givental and Hofer [23],
Etnyre and Ng [26], Hutchings [40] and Seidel [59] — we are interested in finding
contact forms on a given .M; �/ for which R is easy to analyze. Specifically we want to
have visibility into the closed orbits ofR as well the chords of Legendriansƒ0� .M; �/,
that is, the orbits of R parametrized by compact intervals which both begin and end
on ƒ0.

Let .R3; �std/ denote the standard contact structure on Euclidean 3–space, where

�std D ker.˛std/; ˛std D dz�y dx;

and let .S3; �std/ denote the standard contact structure on the unit 3–sphere S3, where

�std D ker
� 2X

1

xi dyi �yi dxi

�
:

A contact surgery diagram is a Legendrian link

ƒ˙ DƒC[ƒ� � .R3; �std/:

Performing contact ˙1 surgery on the components of the ƒ˙ as defined by Ding and
Geiges [16] produces a contact 3–manifold, which we will denote by .R3

ƒ˙
; �ƒ˙/.

By considering .R3; �std/ as being contained in .S3; �std/, we can view the surgery
diagramƒ˙ as determining a closed contact 3–manifold .S3

ƒ˙
; �ƒ˙/, with .R3

ƒ˙
; �ƒ˙/

obtained by removing a point from .S3
ƒ˙
; �ƒ˙/. As proved by Ding and Geiges
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in [16] — see also Avdek [2] — every closed, connected contact 3–manifold .M; �/ can
be described as .S3

ƒ˙
; �ƒ˙/ for some choice of ƒ˙.

For the remainder of this introduction we assume basic familiar with contact surgery,
Weinstein handle attachment and symplectic field theory (SFT). Further background
and references will be provided in Section 2.

1.1 Combinatorial Reeb dynamics on punctured contact 3–manifolds

The primary purpose of this article is to describe a family of particularly well-behaved
contact forms ˛� for .R3

ƒ˙
; �ƒ˙/ which are determined by the surgery diagramƒ˙. Our

intention is to extend the analysis of Reeb dynamics appearing in work of Bourgeois,
Ekholm and Eliashberg [7; 18] to allow for contact C1 surgeries. In particular, the
following theorem states that their “chord-to-orbit correspondence” is applicable to
any closed contact 3–manifold:1

Theorem 1.1 Let ƒ˙ be a contact surgery diagram presented in the front projection ,
where each component is equipped with an orientation. Possibly after a Legendrian
isotopy of ƒ˙ which preserves the front projection up to isotopy, there is

(1) a constant �0,

(2) a neighborhood N�0 of ƒ˙ in R3, and

(3) a family of contact forms ˛� with Reeb vector fields R� parametrized by � < �0
on .R3

ƒ˙
; �ƒ˙/

such that the following conditions hold :

(1) For any � < �0, performing contact surgery along a neighborhood N� � N�0
produces .R3

ƒ˙
; �ƒ˙/ equipped with the contact form ˛�.

(2) ˛� D ˛std on the complement of N�.

(3) For any � < �0, there is a one-to-one correspondence between cyclic words of
composable @z chords of ƒ˙ and closed orbits of R� (Theorem 5.1).

(4) For a given cyclic word of chords w, there exists �w < �0 such that the orbits
of R� corresponding to w are hyperbolic for � < �w (Theorem 5.3).

(5) There is pair of sections .X; Y / of .R3
ƒ˙
; �ƒ˙/ determined by ƒ˙ and its orien-

tation , providing a symplectic trivialization of the restriction of .�ƒ˙ ; d˛�/ to
all closed orbits of R�. The zero locus X�1.0/D Y �1.0/ is a link contained in

1Contact �1 surgery — also known as Legendrian surgery — describes how the convex boundaries of
Liouville domains are modified by critical-index Weinstein handle attachment.
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.R3nN�/�R3
ƒ˙

whose connected components are given by transverse push-offs
of the components of ƒ˙ with nonzero rotation number (Theorem 6.1).

(6) The integral Conley–Zehnder indices CZX;Y (Theorem 7.1) and homology
classes (Theorem 9.1) of the closed orbits ofR� can be computed combinatorially
from the surgery diagram.

By “computed combinatorially”, we mean computed via extensions of methods typically
used to set up chain complexes for the Legendrian contact homology (LCH) [26] or
the Legendrian rational symplectic field theory (LRSFT) of Ng [50] of ƒ˙. Analogous
results are stated for chords of Legendrian links ƒ0 � .R3

ƒ˙
; �ƒ˙/ throughout the

paper, providing a “chord-to-chord” correspondence with diagrammatically computable
Maslov indices. The content of Theorem 1.1 is sufficient to compute some algebraic
invariants of tight contact structures on the lens space L.2; 1/ and S1 �S2, as shown
in Section 12.1.

The dynamics analysis of Theorem 1.1 can be supplemented with a direct limit argument
as in Ekholm and Ng [20, Section 4] to obtain a description of the Reeb dynamics on the
closed contact manifolds .S3

ƒ˙
; �ƒ˙/ associated to a contact surgery diagram, which

introduces a pair of embedded elliptic orbits.2 We will not pursue analysis of closed
contact manifolds in this paper, as the open manifolds .R3

ƒ˙
; �ƒ˙/ have particularly

friendly geometries, which we’ll leverage in applications.

1.2 Constrained topology of holomorphic curves and applications

The secondary purpose of this article is to develop tools for studying holomorphic
curves in symplectizations of the .R3

ƒ˙
; �ƒ˙/ and in surgery cobordisms between

them. Our intention is to make “hat versions” of holomorphic curve invariants of
.R3
ƒ˙
; �ƒ˙/— as defined by Colin, Ghiggini, Honda and Hutchings [14, Section 7.1] —

more computationally accessible. Theorem 1.1 already provides us with rather complete
descriptions of the chain complexes underlying such invariants.3 In particular, we’ll be
interested in the hat version of contact homology .CH/,cCH.S3

ƒ˙
; �ƒ˙/D CH.R3

ƒ˙
; �ƒ˙/:

2See for example Bourgeois [6, Section 4.1] and Hutchings [40, Example 1.8].
3There is some subtlety for bECH: In order to compute relative ECH indices, the links underlying collections
of simple Reeb orbits should be known, whereas we will describe the homotopy classes of closed Reeb
orbits. Such link embeddings can be computed as solutions to matrix arithmetic problems described in
Section 5.6.
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Figure 1: The Legendrian trefoil of Theorem 1.2 shown in the front projection.

Hat versions of other holomorphic curve invariants of .S3
ƒ˙
; �ƒ˙/ such as embedded

contact homology ( bECH) and the SFT algebra (bSFT) are defined analogously.4

We demonstrate the utility of our tools in two applications: First we provide a (slightly)
new proof of the vanishing of CH of overtwisted contact manifolds (see Eliashberg
and Yau [65]) using surgery-theoretic methods (Section 12.3). Second, we prove the
following theorem (Section 12.5):

Theorem 1.2 Ifƒ�D¿ andƒC has a component which is a right-handed trefoil , then

CH.S3
ƒ˙
; �ƒ˙/D

cCH.S3
ƒ˙
; �ƒ˙/D 0

In particular , contact 1=k surgery on the right-handed , tbD 1 trefoil for k >0 produces
a closed , tight contact manifold .S3

ƒ˙
; �ƒ˙/ with vanishing contact homology. (See

Figure 1.)

The development of our tools (Section 11) starts with a variation of the construction of
transverse knot filtrations of holomorphic curve invariants from [14, Section 7.2]: Lines
in R3 directed by @z over points .x; y/ 2 R2 n �x;y.N�/ determine infinite-energy
holomorphic planes Cx;y in R�R3

ƒ˙
. The Cx;y form a holomorphic foliation whose

existence constrains the topology of curves à la the proofs of uniqueness-of-symplectic-
manifold theorems of Eliashberg [22], Gromov [32], Geiges and Zehmisch [30],
Hind [34], McDuff [44; 45] and Wendl [61]. Counting intersections Cx;y �U of these
planes with finite-energy curves U asymptotic to collections ˙ of closed R� orbits
yields locally constant, Z�0–valued functions on SFT moduli spaces — topological
invariants determined by the relative homology classes

Œ�R3
ƒ̇
ıU � 2H2.R

3
ƒ˙
; ˙/

of holomorphic curves. Surgery cobordisms may be similarly considered when equipped
with special almost-complex structures described in Section 11.2. By tracking these
intersections, we can:

(1) Show that certain disks appearing in Ng’s combinatorially defined Legendrian
RSFT [50] determine rigid holomorphic planes in R�R3

ƒ˙
(Section 12.2). This

4We use SFT to denote the SFT algebra, while SFT — without italics — refers to Eliashberg, Givental and
Hofer’s framework for defining holomorphic curve invariants of contact and symplectic manifolds of [23].
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follows a Lagrangian-boundary version of Hofer’s bubbling argument [35], in
which case the Cx;y �U completely dictate the ways in which certain families of
holomorphic disks can degenerate into multilevel SFT buildings.

(2) Equip the cCH chain complexes with a new grading, denoted by Iƒ, which
depends on the surgery diagram (Section 12.4). Variants of this grading may
similarly be applied to any holomorphic curve invariant of .R3

ƒ˙
; �ƒ˙/.

In the proof of Theorem 1.2, we show that C1 surgery on the tbD 1 trefoil provides
a CZX;Y D 2 closed orbit  of R� with @CH D˙1 2Q. Computations of Conley–
Zehnder indices, homology classes, and Iƒ shows that any indD1 rational holomorphic
curves positively asymptotic to  must be a plane, and that such planes may be counted
using our bubbling argument.

Theorem 1.2 provides the first examples of closed, tight contact manifolds with CHD0.5

The tightness of 1=k surgeries on the tb D 1 trefoil is provided by computations of
Heegaard Floer (HF) contact classes — see Honda, Kazez and Matić [38] and Ozsváth
and Szabó [53] — by Lisca and Stipsicz in [43, Section 3]. As the HF contact class
contains the same information as the ECH contact class — see Colin, Ghiggini and
Honda [13] and Kutluhan, Lee and Taubes [42] — and both ECH and SFT count
holomorphic curves of arbitrary topological type — in particular, arbitrary genus — it
would be interesting to know if there is some SFT invariant of this contact manifold
which is nonvanishing. Broadening the scope of this inquiry, we ask the following:

Question 1.3 For 3–dimensional contact manifolds , does CH.M; �/¤ 0 imply that the
HFD ECH contact class of .M; �/ is nonzero? Do there exist tight contact manifolds
of dimension greater than three with vanishing contact homology?

We note that, using the algebraic formalism of [23], the vanishing of contact homology
is equivalent to the vanishing of SFT according to Bourgeois and Niederkrüger [9].

Outline of this paper

In Section 2 we outline notation and background information which will be used through-
out the rest of the paper. Section 3 is also primarily concerned with notation, associating
algebraic data to chords of Legendrian links in .R3; �std/, which will be used to package
invariants of chords and closed orbits in the surgered contact manifolds .R3

ƒ˙
; �ƒ˙/.

5Due to CH functoriality under Liouville cobordism, Honda’s tight contact manifold which becomes
overtwisted after contact �1 surgery [37] already provides an example of a contact manifold with convex
boundary whose sutured contact homology [14] is zero.

Geometry & Topology, Volume 27 (2023)



Combinatorial Reeb dynamics on punctured contact 3–manifolds 959

Sections 4–9 carry out the computational details of Theorem 1.1 and analogous re-
sults for chords of Legendrian links ƒ0 � .R3

ƒ˙
; �ƒ˙/. In Section 10 we describe

handle-attachment cobordisms between the .R3
ƒ˙
; �ƒ˙/ associated to surgeries along

their Legendrian knots. The construction of these cobordisms — slight modifications
of Ekholm [18] and Weinstein [60] — provides us with model geometry facilitating
analysis of holomorphic curves.

Section 11 describes holomorphic curves in symplectizations of and surgery cobordisms
between the .R3

ƒ˙
; �ƒ˙/. The algebraic tools described in that section are prerequisite

for the applications appearing in Section 12, culminating in the proof of Theorem 1.2.

Content pertaining to Legendrian links ƒ0 � .R3
ƒ˙
; �ƒ˙/ may be skipped by readers

only interested in the applications of Section 12. This material is included to provide a
complete picture of relative SFT chain complexes in anticipation of their use in future
applications.
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2 Prerequisites

2.1 General notation

Throughout this paper ı�;�— with a double subscript — will denote the Kronecker delta
and b�cwill be the floor function R!Z. A collection will be a set in which elements are
allowed to have nontrivial multiplicity. We use set notation for collections. For example
f1; 1; 2g is a collection with f1; 1; 2gnf1gD f1; 2g and f1; 1; 2g[f2; 3gD f1; 1; 2; 2; 3g.
We’ll use often use collections and ordered collection to organize chords and orbits as
they may appear in CH, ECH, LCH, etc.

Unless otherwise specified, we use I to denote a connected 1–manifold and, for a
positive number �, we write I� D Œ��; ��. For a > 0, the circle R=aZ will be denoted
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by S1a and, without the subscript, S1D S11 . The unit disk of dimension n and radius C
centered about x 2Rn will be denoted by DnC .x/. We’ll typically use the simplified
notation Dn DDn1 .0/ and D for D2. The complex projective space will be written Pn.

For a closed manifold M, �M will denote the open manifold obtained from M by
removing a point or closed disk. When .M; �/ is a closed contact manifold, 1.M; �/
will denote .M; �/ with a point or standard Darboux disk removed. We say that 1.M; �/
is a punctured contact manifold.6

For a space M, we denote homology and cohomology groups by H�.M/ and H�.M/,
respectively. Integral coefficients will be assumed unless otherwise explicitly stated.
When M is a closed manifold, PD will be used to denote the Poincaré duality iso-
morphism in either direction, Hi $H dim.M/�i . Abusing notation, we also use PD
to denote the associated isomorphisms for punctured manifolds �M in degrees i ¤ 0.
By a Q–homology sphere, we mean a closed or punctured 3–manifold with finite H1
(implying that H2 D 0 by the universal coefficients theorem; see [33, Corollary 3.3]).

For a vector bundle E over a manifold M, the space of C1 sections will denoted
by �.E/. The space of nowhere-zero sections — which may be empty — will be
denoted by �¤0.E/. Provided that E has finite rank n and trivializations .Vi / and .Wi /
of E over some set U �M, transformations of the form

P
i;j ai;jWi ˝ V

�
j can be

written as matrices, with respect to which we say that .Vi / is the incoming basis
and .Wi / is the outgoing basis. In such situations, provided a1; : : : ; an 2 C1.U /,
Diag.a1; : : : ; an/ will be the diagonal matrix with a1 in the top-left corner and J0
will denote standard complex multiplication where applicable. The Euler class of a
finite-dimensional bundle will be written e.E/ and Chern classes will be written ck.E/
when the bundle is equipped with a (homotopy class of) complex structure. We will
be predominantly interested in the case E D � for a 3–dimensional contact manifold
.M; �/, in which case the Euler and first Chern classes coincide: e.�/D c1.�/.

2.2 Vector fields and almost-complex structures

In this section we review vector fields and almost-complex structures typically encoun-
tered in symplectic and contact geometry, primarily for the purpose of establishing
conventions which often vary in the literature. We’ll use Option 1 of [63]. See that
article or [46, Remark 3.3] for further discussion.7

6In [14], the notation M.1/ is used for what we call �M.
7Regarding work we’ll be frequently referencing, our signs for symplectic forms on cotangent bundles
will be opposite that of [18] and our signs for Hamiltonian vector fields are opposite that of [4; 3; 14].
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Let .W; ˇ/ be a 2n–dimensional exact symplectic manifold. That is, W is an oriented
2n–manifold on which dˇ is symplectic. We call such ˇ a Liouville form or symplectic
potential. If H 2 C1.W / is a smooth function with values in R or S1, the associated
Hamiltonian vector field, denoted by XH , is the unique solution to the equation

dˇ.�; XH /D dH:

Clearly H is constant along the flow-lines of XH and XH depends only on dˇ (rather
than ˇ). If J is an almost-complex structure for which gJ , defined by

gJ .u; v/D dˇ.u; J v/; u; v 2 Tp†;

is a J –invariant Riemannian metric, then

XH D JrH;

where rH is the gradient of H with respect to gJ solving gJ .rH;�/D dH. We say
that such J is a compatible almost-complex structure.

The Liouville vector field, denoted by Xˇ , on W is the unique solution to the equation

dˇ.Xˇ ;�/D ˇ:

If W is compact and Xˇ points outward along the boundary of W, we say that the pair
.W; ˇ/ is a Liouville domain. Given a functionH 2 C1.W /, the 1–form ˇH DˇCdH

is also a primitive for dˇ such that

XˇH DXˇ CXH :

By our choice of convention, Hamiltonian and Liouville vector fields interact with dˇ
via

ˇ.XH /D dˇ.Xˇ ; XH /D dH.Xˇ /:

Given a contact manifold .M; �/ equipped with a contact form ˛, action of the chords
and closed orbits of its Reeb vector field may be computed as

A./D
Z


˛:

2.3 Contact and symplectic manifolds

Here we review some contact and symplectic manifolds which will appear frequently.

2.3.1 Cotangent bundles Our convention for Liouville forms on the cotangent bundle
T �L of a smooth manifold L will be to use the form .T �L; �can/ with �canDpi dqi in
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a local coordinate system .qi / on L. Provided such coordinates on L, we use .pi ; qi /
as local coordinates on T �L, so that d�can is symplectic with respect to the induced
orientation.

2.3.2 Contactizations Provided an exact symplectic manifold .W; ˇ/, we have a
contact form dzCˇ on I�W. We will refer to the contact manifold .I�W; ker.dzCˇ//
and the pair .R�W; dzCˇ/ both as the contactization of .W; ˇ/.

It’s easy to see that deformations of an exact symplectic manifold give rise to contacto-
morphic contactizations. For, ifH 2C1.W;R/, then the contactization of .W; ˇCdH/
is equivalent to the contactization of .W; ˇ/ by the transformation

.t; w/ 7! .t CH;w/:

We’ll further analyze geometry of contactizations in Sections 10.1 and 11.1. The
quintessential example of a contactization is the 1–jet space of a closed manifold,
which is the contactization of its cotangent bundle.

2.3.3 Symplectizations Provided .M; �/ and ˛ as above, .R�M; et˛/ is an exact
symplectic manifold, called the symplectization of the pair .M; ˛/. By considering
diffeomorphisms of the form .t; x/ 7! .tCf .x/; x/ on R�M for f 2 C1.M; .0;1//,
it is clear that the symplectization is independent of the choice of ˛ for �, up to
symplectomorphism.

For any constant C, we will likewise refer to
�
ŒC;1/�M; et˛

�
as the positive half-

infinite symplectization and
�
.�1; C ��M; et ; ˛

�
as the negative half-infinite symplec-

tization of the pair .M; ˛/. For constants C < C 0, we will call .ŒC; C 0��M; et˛/ a
finite symplectization of the pair .M; ˛/.

Here we can compute
Xˇ D @t ; Xt D e

�tR:

Hence, there is a one-to-one correspondence between periodic orbits of R and 1–
periodic orbits of Xt by associating to each  in M the loop .logA./; / in the
symplectization.

2.3.4 Liouville cobordisms between closed and punctured contact manifolds Here
we review some standard vocabulary regarding symplectic cobordisms, modified to
deal with punctured contact manifolds. What are sometimes called “strong symplectic
cobordisms” we will simply refer to as symplectic cobordisms for notational simplicity.
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What are sometimes called “exact symplectic cobordisms” we will refer to as Liouville
cobordisms. Our reasoning is that there exist symplectic cobordisms which are exact
symplectic manifolds but which are not “exact symplectic cobordisms”; see Section 2.4
of [62]. See that paper or [52, Chapter 12] for a review of various notions of fillings
and cobordisms with emphasis on low dimensions. We will only be concerned with
Liouville cobordisms here.

Let .M; �/ be a closed contact manifold of dimension 2nC 1 and p 2M a point. We
say that a contact form ˛ for � defined on M n fpg is standard at infinity if there exists
a ball Bp about p 2M, a positive constant C and a diffeomorphism

ˆ W .Bp n fpg/! .R2nC1 nD2nC1C .0//

such that ˆ�.dz�yi dxi /D ˛ and jˆ..t//j !1 for paths .t/ in Bp nfpg tending
towards p.

A Liouville cobordism between contact manifolds .MC; �C/ and .M�; ��/ is a com-
pact exact symplectic manifold .W; �/ for which

(1) @W DMC�M�,

(2) the Liouville vector field X� points into W along M� and out of W along MC,
and

(3) �jTM˙ is a contact form for �˙.

We call MC the convex boundary of .W; �/ and M� the concave boundary of .W; �/.
We may think of a Liouville domain as cobordism whose concave boundary is the
empty set.

A Liouville cobordism between punctured contact manifolds 3.MC; �C/ and 3.M�; ��/
is defined analogously as in the case where the .M˙; �˙/ are closed. However, we
require that there exists a region

IC � .R
2nC1

nD2nC1C .0//�W; f˙C g � .R2nC1 nD2nC1C .0//�M˙

along which �D et .dz�yi dxi / and such that the t D˙C slices provide standard at
infinity neighborhoods of the punctures of the M˙.

We won’t bother to specify that a Liouville cobordism is between closed or punctured
contact manifolds, as it should be clear from the context. In either case, we may
define the completion of a Liouville cobordism to be the noncompact exact symplectic
manifold obtained from a Liouville cobordism by appending a positive half-infinite
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symplectization to a collar of its convex boundary and a negative half-infinite sym-
plectization to a collar of its concave boundary. We denote the completion of such a
cobordism .W; �/ by .W ; x�/.

2.4 Remarks on SL.2 ;R/

We briefly review some properties of SL.2;R/ which will be useful for analyzing
Reeb dynamics on contact 3–manifolds. By definition, SL.2;R/ coincides with
Symp.2;R/— the space of matrices preserving the standard symplectic form dx ^dy.

An element A 2 SL.2;R/ has characteristic polynomial

(1) det.A�� Id/D �2� tr.A/�C 1;

using which eigenvalues of A can be found using the quadratic formula. The non-
degenerate elements are those for which 1 is not an eigenvalue. A nondegenerate
element A falls into one of two classes:

(1) A is called elliptic if its eigenvalues lie on the unit circle or, equivalently,
jtr.A/j< 2.

(2) A is called hyperbolic if its eigenvalues are elements of R or, equivalently,
jtr.A/j> 2.

Hyperbolic elements are further classified as positive (resp. negative) hyperbolic if
the eigenvalues are positive (resp. negative) real numbers. The classification of A 2
SL.2;R/ as elliptic, positive hyperbolic or negative hyperbolic depends only on the
conjugacy class of A.

2.5 Conley–Zehnder indices of Reeb orbits in contact 3–manifolds

Throughout the remaining subsections covering Reeb dynamics and contact homology,
we follow the expositions [6] of Bourgeois (which covers all dimensions) and [40,
Section 3.2] of Hutchings (which specifically focuses on the 3–manifolds). Let  be a
closed Reeb orbit of a contact manifold .M; �/ equipped with a contact form ˛ for �,
whose Reeb vector field will be denoted by R. We assume  is embedded and comes
with a parametrization .t/; write k for its k–fold iterate with k > 0.

As the Reeb flow preserves �, the Poincaré return map for time t D A./ sends
�j.0/ to itself and — provided a symplectic basis of .�j.0/; d˛/— determines a matrix
Ret 2 SL.2;R/. The orbit  will be called nondegenerate, elliptic, positive (negative)

Geometry & Topology, Volume 27 (2023)



Combinatorial Reeb dynamics on punctured contact 3–manifolds 965

hyperbolic if the matrix Ret has the associated property. We say that the contact
form ˛ is nondegenerate if all of its Reeb orbits are nondegenerate.8

Remark 2.1 Having a nondegenerate contact form for which all closed orbits are
hyperbolic — as is the case with the contact forms ˛� of Theorem 1.1 — is generally
desirable as branched covers of trivial cylinders over elliptic orbits can have negative
index [41, Section 1]. Likewise, in ECH chain complexes only simple covers of
hyperbolic orbits are considered, whereas multiple covers of elliptic orbits cannot be
avoided [40]. See also [3; 56], where analysis of holomorphic maps is simplified by
considering only hyperbolic orbits.

Suppose that  is a nondegenerate orbit equipped with a framing s 2 �¤0.�j /. By
extending s to a symplectic trivialization of the normal bundle .�j ; d˛/ to  , we can
write the restriction of the linearized flow to �j as a path � D �.t/ in SL.2;R/. Then
we define the Conley–Zehnder index of the orbit  with framing s, denoted by CZs./,
to be the Conley–Zehnder index CZ.�/ of the path �.

If  is hyperbolic, � rotates the eigenspaces of Ret by an angle �n for some n 2 Z,
in which case

CZs.k/D kn:

Negative hyperbolic orbits have n odd and positive hyperbolic orbits have n even. If 
is elliptic, � rotates the eigenspaces of Ret by some angle � 2Rn2�Z in which case
the Conley–Zehnder index is

CZs.k/D 2
j
k�

2�

k
C 1:

Note that CZs depends only on the isotopy class of the framing s. If we write sCn for
a framing whose isotopy class is given by twisting s by n meridians, then

(2) CZsCn.k/D CZs.k/� 2nk:

An orbit k is bad if the parity of its Conley–Zehnder index disagrees with that of
the underlying embedded orbit  . Orbits which are not bad are good. Hence (when
dim.M/D 3), the only bad orbits are even covers of negative hyperbolic orbits. See
[23, Remarks 1.9.2 and 1.9.6].

8In practice, one is typically interested in studying sequences of contact forms ˛n with “nice” limit-
ing behavior, namely there exists a sequence Cn !1 such that the orbits of ˛n of action � Cn are
nondegenerate. See for example [4; 3; 5; 18]. We take a similar approach in this article.
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Note that, as CZs./ mod 2 is independent of s, so is the property that an orbit is good
or bad. We write CZ2./ 2 Z=2Z for the index modulo 2 which satisfies

(3) sgn ı det.Ret � Id/D .�1/CZ2C1:

The following method of computing the Conley–Zehnder index of a path �.t/ for
t 2 Œ0; 1� of symplectic matrices is due to Robbin and Salamon [55]. For a path
� W Œ0; 1�! SL.2;R/, a point t 2 Œ0; 1� is crossing if 1 is an eigenvalue of �.t/. Writing

(4) @�

@t
.t/D J0S.t/�.t/

for symmetric matrices S.t/, we say that a crossing t is regular if the quadratic
form �.t/ defined as the restriction of S.t/ to ker.�.t/� Id/ is nondegenerate. For a
path � with only regular crossings, we can compute CZ.�/ as

(5) CZ.�/D 1
2

sgn.�.0//C
X

t>0 crossing

sgn.�.t//:

Also of utility for computation is the loop property of CZ, which states that, given
k 2 Z and a nondegenerate path �, the path z�.t/D ei2�kt�.t/ has

(6) CZ.z�/D 2kCCZ.�/:

2.6 Holomorphic curves in symplectizations and the index formula

Now suppose that ˛ is a nondegenerate contact form for some contact 3–manifold
.M; �/ and that J is an almost-complex structure which is adapted to the symplectization
.R�M; et˛/. That is,

(1) J is compatible with d.et˛/,

(2) it is t–invariant and preserves �, and

(3) J@t DR.

Let

C D fC1 ; : : : ; 
C

mC
g and � D f�1 ; : : : ; 

�
m�g

be collections of Reeb orbits with C nonempty and let .†; j / be a Riemann surface
with marked points fpC1 ; : : : ; p

C

mC
; p�1 ; : : : ; p

�
m�g. We write †0 for † with its marked
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points removed. We say that .t; U / W†0!R�M is holomorphic if

x@.t; U /D 1
2
.T .t; U /CJ ıT .t; U / ı j /

vanishes. If we wish to specify J and j, we’ll say that the map is .J; j /–holomorphic.
This is equivalent to the conditions

(7) dt D U �˛ ı j; J�˛ ıT U D �˛ ıT U ı j;

where �˛ W TM ! � is the projection V 7! V � ˛.V /R. We provide a few simple
examples.

Example 2.2 (trivial strips, planes and cylinders) Provided a map  W I ! M

parametrizing a Reeb trajectory for a connected 1–manifold I, R� im./�R�M is
an immersion with J –complex tangent planes. Some examples of particular interest:

(1) If I is compact with nonempty boundary parametrizing a chord of R with
endpoints on a Legendrian submanifold ƒ, we’ll call R� im./ a trivial strip.

(2) If I DR and the map  is an embedding, we’ll say that R� im./ is a trivial
plane.

(3) If I D S1a parametrizing a Reeb orbit of action a, then we’ll say that R� im./
is a trivial cylinder.

Given a holomorphic map .t; U / W .†; j /! .R�M;J /, we say that the puncture pCi
is positively asymptotic to the orbit Ci if there exists a neighborhood ŒC;1/� S1

of pCi in † with coordinates r and � for which j is the standard cylindrical complex
structure such that t .r; �/!1 and U.r; �/ tends to a parametrization of Ci as r!1.
Likewise, we say that the puncture p�i is negatively asymptotic to the orbit �i if
t .r; �/!�1 and U.r; �/ tends to a parametrization of �Ci as r!1. Allowing j
and the location of the marked points to vary and then modding out by reparametrization
in the domain, we write M.t;U / for the moduli space of holomorphic maps asymptotic
to the ˙ containing the map .t; U /.

The index of a holomorphic map as above is defined by

(8) ind..t; U //D CZs.C/�CZs.�/��.†0/C 2cs.U / 2 Z;

where

CZs.˙/D
m˙X
iD1

CZs.˙i /:

The relative first Chern class cs.U / is the signed count of zeros of U �� over †0 using
a section which coincides with s near the punctures. Note that ind is independent of s.
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In ideal geometric settings, M.t;U / is a manifold near the point .t; U / of dimension
ind..t; U //.

Remark 2.3 Here we are disregarding asymptotic markers for orbits which are required
for a rigorous functional-analytic setup for moduli spaces and curve counts. We refer
to [4; 54] for details.

The energy of a holomorphic curve is defined by

E.t; U /D
Z
†0
d˛ D

mCX
1

A.Ci /�
m�X
1

A.�i /:

The energy is nonnegative and is zero if and only if .t; U / is a branched cover of a trivial
cylinder. Energies of curves will be presumed finite unless otherwise explicitly stated.

2.7 Contact homology and its variants

We now give a brief overview of contact homology and symplectic field theory. As in
previous subsections, we focus specifically on the case of contact 3–manifolds.

For each closed Reeb orbit  with framing s, we define its degree j jsDCZs./�12Z.
This degree modulo 2will be denoted by j j. We write CC.˛/ for the supercommutative
algebra with unit 1 generated by the good Reeb orbits of ˛ over Q. Here super-
commutativity means 12 D .�1/j1jj2j21. We note that CC.˛/ has two canonical
gradings:

(1) The degree grading given by j1 � � � nj WD
Pn
1 ji j 2 Z=2Z.

(2) The H1 grading given by Œ1 � � � n� WD
Pn
1Œi � 2H1.M/.

For i 2 Z=2Z and h 2H1.M/, we will use the notation CCi;h to denote the relevant
graded Q–subspaces. The contact homology differential

@CH W CCi;h! CCi�1;h

is defined by counting indD 1 (possibly perturbed) solutions to x@.t; U /D 0 with one
positive puncture, any number of negative punctures and genus 0. For such curves .t; U /
positively asymptotic to some C and negatively asymptotic to �j simultaneously
framed with some choice of s, equation (8) becomes

(9) ind..t; U //D jCjs �
X
j

j�j jsC 2cs.U /:

Each such solution contributes a term to @C of the form m.CI �i /
�
1 � � � 

�
n with

m.CI �i / 2Q. If there are no negative punctures, we get a term of the form m.C/1
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and we set @CH1D 0. The differential is then extended to products of orbits using the
graded Leibniz rule

@CH.12/D .@1/2C .�1/
j1j1.@2/

and to sums of products linearly.

Definition 2.4 The resulting differential graded algebra ker.@CH/=im.@CH/ is defined
to be the contact homology of .M; �/, denoted by CH.M; �/. As in the case of CC.˛/,
CH.M; �/ also has degree and H1 gradings. We write CHi;h.M; �/ for the subspace
of CH.M; �/ with degree i and H1 grading h.

This theory, first proposed by Eliashberg, Givental and Hofer [23], has been proven to
be rigorously defined and independent of all choice involved by Bao and Honda [4]
and Pardon [54]. We defer to these citations for the specifics of how the coefficients
m.CI �i / 2 Q are computed and details around any required perturbations of x@.
For the purposes of this paper, it suffices to know that, for generic J adapted to the
symplectization of a contact manifold,

(1) curves which are somewhere injective may be assumed regular,

(2) regularity for these curves may be achieved by perturbations of J in arbitrarily
small neighborhoods of the closed orbits of R, and

(3) assuming such regularity, the moduli space of holomorphic planes positively
asymptotic to a closed, embedded orbit will be a manifold (rather than an
orbifold), so that such indD 1 planes can be counted over Z.

Additional algebraic structures — which require more sophisticated underlying chain
complexes — may be constructed as follows:

(1) By counting ind D 1, genus 0 holomorphic curves with arbitrary numbers of
positive and negative punctures via a differential @RSFT , the rational SFT algebra
(RSFT) may be defined.

(2) By counting indD 1 holomorphic curves with arbitrary genus and numbers of
positive and negative punctures via a differential @SFT , the SFT algebra (SFT)
may be defined.

See [23] for a more complete picture or the exposition [64, Lecture 12] for further
details regarding these invariants.9 For other RSFT-like algebraic structures associated

9At the time of writing, rigorous definitions of RSFT and SFT are under construction using a variety of
frameworks. We refer to [4; 48; 54] for accounts of the current state of the development of SFT.
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to counts of rational curves with multiple positive punctures, see [48], which constructs
such invariants and provides an overview of recent additions to the literature.

The lecture notes [6] and Section 1.8 of [54] also contain a rather exhaustive list of
additional structures such as grading refinements and twisted coefficient systems for
contact homology. We won’t address such additional structures in this article, except
in the following simple situations:

Proposition 2.5 (canonical Z gradings) The 0 2 H1.M/ part of CH.M; �/ is a
subalgebra of CH. Suppose that �¤0.�/ is nonempty (equivalently, c1.�/D 0).

(1) The Z–valued degree gradings j � js on CC.˛/ determine Z–valued gradings
on CH�;0.M; �/ and are independent of the choice of s 2 �¤0.�/.

(2) Moreover , if H 1.M/ DH2.M/ D 0, then the Z–valued degree gradings j � js
on CC.˛/ determine Z–valued gradings CH.M; �/ which are independent of the
choice of s 2 �¤0.�/.

We get canonical Z gradings on CH when we have a nondegenerate Reeb vector field
with only homologically trivial Reeb orbits or whenM is a 3–dimensional Q–homology
sphere.

Proof The fact that CH�;0.M; �/ is a subalgebra of CH.M; �/ is clear from the fact
that @CH preserves H1 and that CC�;0 is closed under products.

Provided s 2 �¤0.�/, extend s to a trivialization �! C. For our extension, we may
use Js for an almost-complex structure J on �. In this way, we see that any other
nonvanishing section s0 defines a map M !C�' S1 and recall that homotopy classes
of maps to S1 are in bijective correspondence with elements of H 1 [33, Theorem 4.57].
Write Œs0� s� 2H 1 for the cohomological element provided by this correspondence. If
 is a closed orbit of some ˛ for .M; �/, then Œs0� s� � Œ� 2 Z equals the difference in
meridians between the framings of �j determined by s and s0. Then CZs./�CZs0./
will be determined by this framing difference according to (2).

If Œ�D 0 2H1, then the above tells us CZs./D CZs0./, so that the gradings j js
on CC�;0 are independent of choice of nonvanishing s. If H 1.M/ D 0 then s0 is
necessarily homotopic to s, so that all of the gradings j � js are equivalent on CC�;�.
As s is nonvanishing, the cs term in (9) is always 0, meaning that @ always lowers the
degree j � js by exactly 1 and so the Z–valued degree gradings on CC determines a Z

grading on homology.
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To complete the proof, we must show that the Z grading is independent of the choices
used to compute CH. Proofs of invariance of CH (see as they appear in [4; 54]) are
obtained by considering the symplectization of .M; ˛/— for some ˛— equipped with
almost-complex structures which are adapted to ˛ at the negative end .�1;�C ��M
of the symplectization and adapted to H˛ at the positive end ŒC;1/�M for some
C > 0 and H 2 C1.M; .0;1//. In such a scenario, T .R�M/ can be split as the
direct sum spanR.@t ; J @t /˚ �, and we can extend s over R�M in the obvious way
to frame Reeb orbits at both ends of R�M. The isomorphism between the contact
homologies of the ends of the cobordism is defined by counting indD 0 holomorphic
curves in R�M, which, by the index formula of (9), must preserve the Z grading.

The variant of contact homology which will be of the most interest to us is the hat version,
denoted by cCH.M; �/ and defined in [14]. To define this theory for .M; �/, we can equip�M with a standard-at-infinity ˛ for y� D �j �M , choose an appropriately convex J on y�,
and compute CH as above. We describe such J for the .R3

ƒ˙
; �ƒ˙/ in Section 11.2.10

The following theorem summarizes some properties of cCH laid out in the introduction
of [14] (coupled with some well-known results):

Theorem 2.6 The invariant cCH.M; �/ satisfies the following properties:

(1) For the standard contact 3–sphere .S3; �std/, cCH.S3; �std/DQ1.

(2) If .M; �/ is overtwisted , then cCH.M; �/D 0.

(3) For a contact-connected sum .M1; �1/ # .M2; �2/,cCH..M1; �1/ # .M2; �2//' cCH.M1; �1/˝ cCH.M2; �2/:

(4) The inclusion 1.M; �/! .M; �/ induces an algebra homomorphismcCH.M; �/! CH.M; �/:

Consequently, CH.M; �/¤ 0 implies cCH.M; �/¤ 0.

(5) A Liouville cobordism .W; �/ with convex boundary 4.MC; �C/ and concave
boundary 3.M�; ��/ determines an algebra homomorphism

ˆ.W;�/ W cCH.MC; �C/! cCH.M�; ��/:

(6) Consequently, if .M; �/ admits a Liouville filling , then both CH.M; �/ andcCH.M; �/ are nonzero.

10In [14], less restrictive conditions are placed on ˛ and J to define cCH within the framework of the more
general sutured contact homology. We choose more restrictive conditions so as to simplify our exposition
and avoid general discussion of sutured contact manifolds and their completions as well as to simplify
J –convexity arguments.
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Item (5), which will refer to as Liouville functoriality, does not explicitly appear
in the literature for cCH, though it follows from a simple combination of existing
arguments and constructions. Liouville functoriality is established for closed contact
manifolds in [4; 54]. To extend the results to punctured contact manifolds, one needs to
establish SFT compactness [8] of (possibly perturbed) moduli spaces of holomorphic
curves positively asymptotic to closed orbits of a standard-at-infinity contact form on
3.MC; �C/ and negatively asymptotic to closed orbits of a standard-at-infinity form

on 3.M�; ��/ in the completion of .W; �/. To obtain compactness, we may restrict
to almost-complex structures J which are t–invariant over the neighborhood of the
puncture of the M˙ to ensure that sequences of curves cannot escape the completed
cobordism through the horizontal boundary of the symplectization of the puncture.
Our definition of Liouville cobordism between punctured contact manifolds and the J
of Section 11.2 ensure that these desired hypotheses are in place. Perturbations of x@
required to achieve transversality for the counting of curves and gluing of multilevel
SFT buildings can be implemented in arbitrarily small neighborhoods of closed Reeb
orbits [4, Section 5], so that such perturbations do not interfere with convexity. In this
way, the compactness results of [14, Section 5] carry over without issue.

For Theorem 2.6(6), Liouville functoriality tells us that a Liouville filling of a closed
contact manifold induces an algebra homomorphism from CH.M; �/ to Q (also known
as an augmentation). Therefore, CH.M; �/¤ 0, implying cCH.M; �/¤ 0 by (4).

2.7.1 Relative contact homology We now briefly review SFT invariants of a Legen-
drian link ƒ� .M; �/. For the case .M; �/D .R3; �std/, we recommend [26], with the
general theory laid out in [23, Section 2.8].

Provided a Legendrian link ƒ� .M; �/ and a contact form ˛ for � , consider the space
of chords of R which begin and end on ƒ. A chord r D r.t/ is nondegenerate if it
satisfies the transversality condition

FlowA.r/
R .Tr.0/ƒ/ t Tr.A.r//ƒ� �r.A.r//:

We then say that the pair .˛;ƒ/ is nondegenerate if all chords for the pair and all closed
orbits of R are nondegenerate. Provided nondegeneracy, we consider a Z=2Z–graded
supercommutative algebra CC.˛;ƒ/ generated by the chords of ƒ and the good closed
orbits of R.11 As in the nonrelative case, CC.˛;ƒ/ comes with an additional homolog-
ical grading, given by the relative homology classes of chords and orbits in H�.M;ƒ/.

11We are skipping definition of the gradings of chords in the general case. See [26; 50] for gradings in the
case of Legendrians in .R3; �std/.
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We may then define a differential

@LCH W CCi;h.˛;ƒ/! CCi�1;h.˛;ƒ/

for i 2 Z=2Z and h 2 H1.M;ƒ/ as follows: for a chord r , @LCH counts ind D 1

holomorphic disks in the symplectization of .M; �/ with

(1) a single boundary puncture positively asymptotic to r ,

(2) any number m of boundary punctures negatively asymptotic to chords r�i of ƒ,

(3) @D with its punctures removed mapped to the Lagrangian cylinder over ƒ, and

(4) n interior punctures negatively asymptotic to closed orbits �j
Each such disk contributes a term of the form m.rCI r�; �/r�1 � � � r

�
m
�
1 � � � 

�
n to

@LCHr
C. For a closed orbit C, the differential @LCH

C coincides with the contact
homology differential of C. The differential is then extended to products and sums
of products using the Leibniz rule and linearity as in the case of nonrelative contact
homology.

Definition 2.7 The resulting differential graded algebra ker.@LCH/=im.@LCH/ is de-
fined to be the Legendrian contact homology of the triple .M; �;ƒ/, denoted by
LCH.M; �;ƒ/. As in the case of CCƒ, LCH has degree and relative H1 gradings.

The computation @2LCH D 0 and proof of invariance for links in .R3; �std/— in which
case there are no closed Reeb orbits — is carried out in [19], with a proof of the general
case sketched in [23]. In the case ƒ� .R3; �std/, a combinatorial version of LCH —
originally due to Chekanov [10] — may be computed by counting immersions of disks
into the xy–plane with boundary mapped to the Lagrangian projection of ƒ, in which
case @2LCH D 0 may be proved diagrammatically. Additional algebraic structures may
derived from the triple .M; �;ƒ/ by considering disks with multiple positive punctures
as in [17; 50]. Again, we point to [26] for further references regarding proofs that the
combinatorially and analytically defined invariants coincide for .R3; �std/ as well as
extensions and generalizations of LCH in both algebraic and geometric directions.

2.8 Legendrian knots and links in .R3; �std/

Legendrian knots and links will be denoted byƒwith sub- and superscripts. Throughout
this article, we assume that each component of ƒ is equipped with a predetermined
orientation. For a Legendrian link ƒ in a contact manifold .M; �/ with contact form ˛

and Reeb vector field R,
FlowıR.ƒ/
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for ı > 0 arbitrarily small will be called the push-off ofƒ. The Legendrian isotopy class
of the pair .ƒ;FlowıR.ƒ// is independent of R and ı. We write �� for the Legendrian
isotopy class of the push-off.

For a Legendrian link ƒ in .R3; �std/, the front and Lagrangian projections will be
denoted by �xz and �xy , respectively. We will use front projections as our default
starting point for analysis of ƒ, from which we will transition to the Lagrangian
projection — see Section 4.4.

Assuming that ƒ has a single connected component, its classical invariants are

(1) the Thurston–Bennequin number tb.ƒ/;

(2) the rotation number, rot.ƒ/, which depends on an orientation of ƒ; and

(3) the smooth topological knot underlying ƒ.

In the Lagrangian projection, we may compute tb.ƒ/ as the writhe and rot.ƒ/ as the
winding number. Geometrically, the Thurston–Bennequin number is defined as the
linking number

tb.ƒ/D lk.ƒ; ��/;

whereas rot is defined as the degree of the Gauss map of Tƒ in �std with respect to
a nowhere-vanishing trivialization. If we replace R3 with any contact Q–homology
sphere, then tb is defined for null-homologous Legendrian knots and rot is defined for
all Legendrian knots using the framings of Proposition 2.5. See also Definition 6.3.

Classical invariants of a Legendrian knot ƒ� .R3; �std/ are constrained by the slice-
Bennequin bound of [57]:

(10) 1
2

�
tb.ƒ/Cjrot.ƒ/jC 1

�
� gs.ƒ/� g.ƒ/:

Here gs.ƒ/ is the smooth slice genus of the topological knot underlying ƒ and g.ƒ/
is the Seifert genus. See [24, Section 3] for an overview of related results.

Let ƒ be a Legendrian knot in a contact manifold .M; �/. Take a cube I 3� �M with
� > 0 and coordinates x, y and z such that

� D ker.˛std/; ƒ\ I 3� D fy D z D 0g

and @x orients ƒ. Then ƒ is locally described by Figure 2, left. The positive and
negative stabilizations of ƒ, denoted by SC.ƒ/ and S�.ƒ/, are defined as the Leg-
endrian knots determined by modifying ƒ in the front projection of I 3� as described
in Figure 2, right. We say that a Legendrian knot ƒ is stabilized if it is a positive or
negative stabilization of some ƒ0 � .M; �/.
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ƒ

SC.ƒ/

S�.ƒ/

Figure 2: Positive and negative stabilizations of ƒ described in the front
projection as in [24, Figure 19].

2.9 Contact surgery

Contact surgery — first defined in [16] — provides a way of performing Dehn surgery
on a Legendrian link ƒ˙ so that the surgered manifold carries a contact structure
uniquely determined by ƒ˙ and .M; �/. We recommend Ozbagci and Stipsicz [52] as
a general reference.

We take the coefficients of the components of the sublinks ƒC (resp. ƒ�) to be C1
(resp. �1). Intuitively speaking, contact �1 (resp.C1) surgery removes a neighborhood
of a Legendrian knot of the form I� � I� � S

1 — the first coordinate being directed
by @z — and then glues it back in using a positive (resp. negative) Dehn twist along
f�g � I� �S

1. The construction may be formalized using the gluing theory of convex
surfaces. A rigorous account of the construction will be carried out in Section 4.
For k 2 Z n f0g one may analogously perform contact 1=k surgery on a Legendrian
knot ƒ by applying �k Dehn twists as above. We will take as definition that contact
1=k surgery for k ¤ 0 is given by performing contact sgn.k/ surgery on jkj parallel
push-offs of ƒ.

We write
ƒDƒC[ƒ0[ƒ� � .R3; �std/

to specify a Legendrian link ƒ0 sitting inside of the contact manifold .R3
ƒ˙
; �ƒ˙/.

Since the neighborhoods of the components of ƒ defining surgery many be chosen to
be disjoint from ƒ0, we may consider it to be a Legendrian link in .R3

ƒ˙
; �ƒ˙/ post

surgery. The superscript 0 on ƒ0 may be thought of as indicating a trivial 1
0
D 1

surgery in the usual notation of Kirby calculus.

In Section 10 we will review how contact surgeries may be viewed as the result of
handle attachments. We refer the reader to [52] for a review in the low-dimensional
case and to [11] for the general case.
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Theorem 2.8 We summarize some known results about contact surgery relevant to
this paper:

(1) The contact manifold obtained by contact C1 surgery on the Legendrian unknot
with tbD�1 yields the standard fillable contact structure �std on S1 �S2.

(2) Applying contact �1 surgery on a Legendrian knot in .M; �/ produces the same
contact manifold as is obtained by attaching a Weinstein handle to the convex
boundary of the symplectization of .M; �/.

(3) Then performing˙1 surgery on a Legendrian knot ƒ� .M; �/ followed by�1
surgery on a push-off �� leaves .M; �/ unchanged.

(4) A contact 3–manifold is overtwisted if and only if it can be described as the result
of a contact C1 surgery along a stabilized Legendrian knot ƒ in some .M; �/.12

(5) If ƒ� .R3; �std/ satisfies tb.ƒ/D 2gs.ƒ/� 1, then contact 1=k surgery on ƒ
produces a tight contact manifold [43] for any k 2 Z.

(6) For a Legendrian knot ƒ� .R3; �std/ and an integer k > 0, contact 1=k surgery
on ƒ produces a symplectically fillable contact 3–manifold if and only if both
k D 1 and ƒ bounds a Lagrangian disk in the standard symplectic 4–disk [15].

3 Notation and algebraic data associated to chords

In this section we describe notation and algebraic data associated to chords of Legendrian
links which will be used throughout the remainder of the paper. We take ƒ� .R3; �std/

to be a nonempty link with sublinks ƒC, ƒ� and ƒ0 — any of which may be empty.
We write ƒ˙ DƒC[ƒ�.

Assumptions 3.1 It is assumed throughout that ƒ is chord generic, meaning that all
chords of ƒ are nondegenerate and that distinct chords are disjoint as subsets of R3.

3.1 Surgery coefficients and chords of ƒ

It will be convenient to write ƒD [ƒi with the subscript i indexing the connected
components ofƒ. Using this notation, we use ci 2f�1; 0;C1g to indicate thatƒi �ƒci .

Denote by rj the Reeb chords of ƒ with the contact form ˛std D dz�y dx, which are
in one-to-one correspondence with the double points of the Lagrangian projection �xy .

12One proof is obtained by proving the “if” statement using [51] and proving “only if” by following the
proof of Theorem 12.3. Alternatively, one can apply a handle-slide to [2, Theorem 5.5(2)].
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We write sgnj 2 f˙1g for the sign of the crossing of ƒ in the Lagrangian projection
associated with the chord rj in accordance with the orientation of ƒ.

We define l�j to be the index i of the ƒi on which rj begins and lCj to be the index of
the component of ƒ on which rj ends. The tip of a chord rj is the point qCj 2ƒlC

j

where the chord ends. The tail of rj is the point q�j 2ƒl�j at which the chord rj begins.
We write the surgery coefficient of the components of ƒ corresponding to l˙j as c˙j .
That is,

c˙j D cl˙
j

:

3.2 Words of chords

An ordered pair of chords .rj1 ; rj2/ is composable if lCj1 D l
�
j2

. A word of Reeb chords
for ƒ is a formal product of chords w D rj1 � � � rjn in which each pair .rjk ; rjkC1/ is
composable for k D 1; : : : ; n� 1.

We say that a word of Reeb chords rj1 � � � rjn is a word of chords with boundary
on ƒ0 if rj1 begins on ƒ0 and rjn ends on ƒ0 and all other endpoints of chords touch
components of ƒC[ƒ�.

A cyclic word of Reeb chords for ƒ, denoted by rj1 � � � rjn , is a word of Reeb chords
for which .rjn ; rj1/ is composable. Cyclic permutations of cyclic words are considered
to be equivalent:

rj1rj2 � � � rjn D rj2 � � � rjnrj1 :

When speaking of cyclic words of Reeb chords on ƒ, we will implicitly assume that it
is a cyclic word of Reeb chords on ƒC[ƒ�.

The word length of a word w of Reeb chords is the number of individual chords it
contains and will be denoted by wl.w/. The actions of each rj will be denoted by Aj
and the action of a word is defined by

A.rj1 � � � rjn/D
nX
kD1

Ajk :

3.3 Capping paths

Provided a composable pair of chords .rj1 ; rj2/, their capping path is the unique
embedded, oriented segment ofƒlC

j1
Dƒl�

j2
, traveling in the direction of the orientation

of ƒ from the tip of rj1 to the tail of rj2 . The capping path will be denoted by �j1;j2 .
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The analogously defined path, which travels opposite the orientation of ƒlC
j1

will be
denoted by x�j1;j2 and called the opposite capping path. We will use �j1;j2 to denote
one of either �j1;j2 or x�j1;j2 . By setting xx�j1;j2 D �j1;j2 , we can define x�j1;j2 in the
obvious way.

3.3.1 Rotation angles and numbers Denote by G the Gauss map sending the unit
tangent bundle of R2 to S12� with

G.cos.t/@xC sin.t/@y/D t:

This determines a map Gƒ W ƒ! S12� assigning to each point in ƒ the unit tangent
vector at that point determined by the orientation on ƒ.

For any path � W Œ0; 1�!ƒ, we can associate an angle �.�/ 2R as follows: Composing
� with Gƒ determines a map

� DGƒ ı � W Œ0; 1�! S12� :

Denoting by z� the lift of this map to R, the rotation angle of �, denoted by �.�/, is
defined by

�.�/D z�.1/� z�.0/:

If q W S1!R3 is a parametrization of a component ƒi of ƒ, then the rotation angle of
the associated path Œ0; 1�!ƒi is 2� rot.ƒi /.

The rotation angle of a composable pair .rj1 ; rj2/, denoted by �j1;j2 2 R, will later
help us to compute Conley–Zehnder indices of closed Reeb orbits. It is defined as
�j1;j2 D �.�j1;j2/. We write x�j1;j2 for the rotation angle computed with the opposite
capping path x�j1;j2 , whence

(11) �j1;j2 �
x�j1;j2 D 2� rot.ƒlC

j1
/:

The rotation number of a composable pair of chords .rj1 ; rj2/, denoted by rotj1;j2 , is
defined as

rotj1;j2 D
�
�j1;j2
�

�
2 Z:

3.3.2 Crossing monomials Now we define the crossing monomials, which will later
facilitate our computations of the homology classes of Reeb orbits of the R� . Consider
a collection of variables �i indexed by the connected components ƒi of ƒ.

The crossing monomial of a chord rj , denoted by crj , is defined by

(12) crj D 1
2
..c�j C sgnj /�l�j C .c

C
j C sgnj /�lC

j

/ 2
M

Z�i :
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�
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��i

�
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�
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��i

Figure 3: Each subfigure gives a local picture of a crossing of a capping
path � with a component of ƒ in the Lagrangian projection. Labelings of the
strands appears at the left of each subfigure, with the local contribution to the
crossing number appearing below. Each subfigure may be rotated by � .

The crossing monomial of a composable pair of chords .rj1 ; rj2/, denoted by crj1;j2 ,
is defined by

crj1;j2 D
X

q�
j�
2int.�j1;j2 /

sgnj��lC
j�
C

X
q
C

jC
2int.�j1;j2 /

sgnjC�l�
jC
2

M
Z�i :

The contributions are as described in Figure 3.

Remark 3.2 (crossing monomials for connected ƒ) When ƒ consists of a single
connected component, we get a single surgery coefficient c and a single �. In this
case, crj D .cC sgnj /� 2 2�Z and crj1;j2 D m�, where m is the number of times
the interior capping path �j1;j2 touches the tips and tails of chords, counted with signs
given by the sgnj .

3.4 Broken closed strings

We temporarily work with an arbitrary contact 3–manifold .M; �/ containing a Legen-
drian submanifold ƒ. Equip .M; �/ with a contact form ˛ and write �j for the chords
of ƒ, which will be assumed nondegenerate. Words of chords with boundary on ƒ and
cyclic words of chords on ƒ are defined as above in the obvious fashion.

Let �k for k D 1; : : : ; n be a sequence of chords on ƒ and let ak 2 f˙1g. Let �k be a
collection of oriented arcs �k W Œ0; 1�!ƒ starting at the endpoint (starting point) of �k
if ak is positive (negative) and ending at the starting point (endpoint) of �kC1 if akC1
is positive (negative). Assume that the ak and �jk are such that

(13) b D .a1�1/� �1 � � � � � .ak�n/� �n

forms a closed, oriented loop, where � denotes concatenation and ˙�k is �k paramet-
rized with positive (negative) orientation.
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Definition 3.3 We call a map b as in (13) a broken closed string on ƒ. We call the
ak asymptotic indicators. We consider broken closed strings which differ by cyclic
rotation of indices involved to be equivalent and say that a broken closed string is
parametrized if a fixed ordering of the indices is in use. We also consider broken closed
strings which differ by homotopy of the �k (relative to their endpoints) to be equivalent.

Example 3.4 Let .t; U / be a holomorphic map from a disk with boundary punctures
fpj g removed, D n fpj g, to the symplectization of .M; �/, with boundary punctures
asymptotic to chords of ƒ. Suppose that

(1) the pj are indexed according to their counterclockwise ordering along @D,

(2) the pj are aj –asymptotic to chords �j (aj D 1 for positively asymptotic and
aj D�1 for negatively asymptotic), and

(3) U.@D n fpj g/ � ƒ with �j denoting the restriction of U to the component of
@D n fpj g/�ƒ whose oriented boundary is pjC1�pj .

With the data aj , �j and �j specified by .t; U / as above, equation (13) is a broken
closed string on ƒ. Of particular interest are broken closed strings determined by disks
appearing in the LRSFT differential for Legendrian links in .R3; �std/ [50].

This may be generalized in the obvious way to holomorphic maps .t; U / whose domain
is a compact Riemann surface .†; j / decorated with interior punctures (asymptotic to
closed Reeb orbits) and boundary punctures (asymptotic to chords). Then any boundary
component of † determines a broken closed string on ƒ.

Definition 3.5 A broken closed string determined by a holomorphic map as in
Example 3.4 will be called a holomorphic boundary component.

We note that the �k in the definition of a holomorphic boundary component may be
constant: for example, if .t; U / is a trivial strip with domain R� I� for some chord �,
consider

b D � � �1 � .��/� �2

with �1 being a constant path with value the tip of � and �2 a constant path with value
the tail of �.

Example 3.6 Suppose that ƒ˙ is a contact surgery diagram and let w D rj1 � � � rjn be
a cyclic word of composable Reeb chords on ƒ. There are 2n parametrized broken
closed strings associated to this cyclic word, given by all of the ways that we may
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choose orientations for the capping path starting at the tip of each rjk and ending at
the tail of each rjkC1 :

rj1 � �j1;j2 � � � � � rjn � �jn;j1 ;

rj1 � �j1;j2 � � � � � rjn � x�jn;j1 ;
:::

rj1 � x�j1;j2 � � � � � rjn � �jn;j1 ;

rj1 � x�j1;j2 � � � � � rjn � x�jn;j1 :

Definition 3.7 We call each of the broken closed strings described in Example 3.6 an
orbit string associated to w.

When dealing with orbit strings, the rj are determined by the indices of the capping
paths involved, and so will be omitted from our notation.

Note that a broken closed string on a Legendrian submanifold of dimension n in a
contact manifold of dimension 2nC 1 for n > 1 is uniquely determined by its chords
up to homotopy through broken closed strings. We will see in Section 9.3 that a
parametrized capping string provides instructions for homotoping a Reeb orbit of
.R3
ƒ˙
; �ƒ˙/ into the complement of a neighborhood of ƒ˙ in R3.

3.5 Maslov indices of broken closed strings

Here we define Maslov indices on broken closed strings on Legendrians in contact 3–
manifolds, which are relevant to index computation of holomorphic curves. Essentially,
we are packaging terminology appearing in the above subsection so as to be cleanly
plugged into index computations appearing in [19; 17]. See Section 8.

We assume that dim.M/D3 and that we are working with �k , ak and �k for kD1; : : : ; n,
as described in the previous subsection, determining a broken closed string b whose
domain we take to be dom.b/D S1. We remark on the case dim.M/ > 3 later in this
subsection. Our discussion follows [17, Section 3]. We write q�

k
2ƒ for the starting

point of each �k and qC
k

for its endpoint.

We assume that � is equipped with an adapted almost-complex structure J and suppose
that we have a trivialization s W �jim.b/ ! C of � over the image of a broken closed
string b in M which identifies the symplectic structure d˛ and complex structure J on
the target with the standard symplectic and complex structures on C. The trivialization s
provides us with an identification

b�� 'C �S1
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Denote by L.�/! M the bundle whose fiber L.�jx/ ' S1� over a point x 2 M is
the space of unoriented Lagrangian subspaces — that is, unoriented real lines — in
.�x; d˛/.13 Then s likewise determines an identification

b�L.�/' S1� �S
1:

Over the subset of S1 parametrizing the �k , we have a section of this bundle determined
by the unoriented Gauss map,

t 7! Tb.t/ƒ� �b.t/:

Using s, this section determines a map �G over this subset to S1� . We now describe
how to extend this section over the subset of S1 parametrizing the ak�k .

For each chord �k , the time t 2 Œ0;A.�k/� flow of R determines a path in SL.2;R/
by writing FlowtR.�q�k / in the standard basis of R2 determined by s. This likewise
determines a section of L.�/ over the chord by FlowtR.Tq�k ƒ/. As we’ve assumed that
�k is nondegenerate,

FlowA.�k/
R .Tq�

k
ƒ/¤ T

q
C

k

ƒ

as Lagrangian subspaces of �qC
k

. In order to assign a Maslov number to b, we must
make a correction to obtain a closed loop of Lagrangian subspaces:

(1) If ak D 1, then the orientation of b and the chord coincide. To form a closed loop
we join FlowA.�k/

R .Tq�
k
ƒ/ to T

q
C

k

ƒ by making the smallest possible clockwise
rotation to FlowA.�k/

R .Tq�
k
ƒ/.

(2) If ak D�1, then the orientation of b and the chord disagree. To form a closed
loop of Lagrangian subspaces along b, we start at the endpoint of the chord,
follow the negative flow of R, and then join Flow�A.�k/R .T

q
C

k

ƒ/ to Tq�
k
ƒ by

making the smallest clockwise rotation possible.

Denote by �b;s W S1! S1� the map so obtained.

Definition 3.8 We call the degree of the map �b;s described above the Maslov index
of the broken closed string b with respect to the framing s, denoted by Ms.b/ 2 Z. It is
easy to see that Ms.b/ does not depend on the cyclic ordering of its indices involved,
so that it is well defined.

13We use the circle of radius � , S1� , rather than S12� due to our ignoring the orientations of the lines
involved.
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The following easily follows from the construction of Ms:

Proposition 3.9 Let b be a broken closed string on ƒ� .M; �/ with a trivialization s
of �jim.b/. Smooth homotopies of such trivializations s leave Ms.b/ unchanged. The
mod 2 reduction of Ms.b/ is independent of s, so that we may define M2.b/ 2 Z=2Z

as an invariant of b.

Now suppose that �¤0.�/ is nonempty as in Proposition 2.5, which clearly applies to
any ƒ� .R3; �std/:

(1) If b is homologically trivial in M, then Ms.b/ is independent of s 2 �¤0.�/.

(2) If H2.M/DH 1.M/D 0, then Ms.b/ is independent of s 2 �¤0.�/, regardless
of the homotopy class of b in M.

3.6 Generalizations and comparison with existing conventions

3.6.1 Generalized crossing signs and Maslov indices Crossing signs generalize
to n–dimensional Legendrian submanifolds inside contact manifolds of dimension
2nC 1 as follows. As above, consider a generic chord � on an oriented Legendrian
submanifoldƒ� .M; �/ parametrized by an interval Œ0; a� given by the flow of some R.
Then we may define sgn.�/ by�Vn

T�.a/ƒ
�
^
�Vn FlowaR.T�.0/ƒ/

�
D sgn.�/

�V2n
��.a/

�
as an orientation on ��.a/. Note that sgn.�/ is independent of the orientation of ƒ if
and only if ƒ is connected. However, the product of sgn over the chords appearing in
a broken closed string is always independent of choice of orientation.

We also briefly address generalizations of the Maslov index to higher dimensions.
Provided a contact manifold .M; �/ of dimension 2nC1, we write L.2n/DU.n/=O.n/
for the space of (unoriented) Lagrangian planes in the standard symplectic vector space
and define the bundle

L.2n/ ,! L.�/�M

as above without modification. Provided a trivialization

s W b�.�/!Cn
�S1;

we can view the sections of b�L.�/ as maps from S1 to U.n/=O.n/, in which case
Ms.b/ may be defined and computed as the usual Maslov index of loops in the La-
grangian Grassmannian. See for example [46, Theorem 2.35]. The required “clockwise
rotation” correction in arbitrary dimensions is described by the paths fj .s/ appearing
in Section 5.9 of [19].
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3.6.2 Conventions for capping paths We briefly address how our conventions
for capping paths and rotation angles differ from those used to construct gradings
in Legendrian contact homology. See for example the exposition [26, Section 3.1].
Assume that ƒ � .R3; �std/ consists of a single component and has a designated
basepoint � not coinciding with the tip or tail of any chord.

For a chord rj , exactly one of �j;j or x�j;j will pass through �. Denoting by �j the
rotation angle of the path not passing through �, the LCH grading is defined — by a
slight manipulation of conventional notation — as

jrj j D

�
�j

�

�
� 1:

This is very similar to our computation of rotation numbers except that

(1) knots along which we are performing surgery do not have basepoints,

(2) our capping paths do not necessarily begin and end at endpoints of the same chord,

(3) our capping paths follow the orientation of ƒ by default.

We will see that our conventions for computation arise naturally when computing
Conley–Zender indices of Reeb orbits of the R� using the framing construction of
Section 6. This convention is also convenient as it will simplify the statements of
homology classes of closed Reeb orbits in Section 9.

Our framing construction can be modified so as to naturally lead to computations of
rotation angles using basepoints as in LCH. See Remark 6.2. By (11), if rot.ƒ/D 0
then our computation of rotation angles coincide when the endpoints of a capping path
lie over the same chord:

�j;j D x�j;j D �j :

3.6.3 Conventions for broken closed strings In [50, Definition 3.1], broken closed
strings have discontinuities at Reeb chords, whereas our broken closed strings are
continuous maps. We have chosen to define broken closed strings to include the data of
the chords in question, so as reduce ambiguity when discussing chords on Legendrians
contained in surgered contact manifolds .R3

ƒ˙
; �ƒ˙/.

4 Model geometry for Legendrian links and contact surgery

In this section we construct neighborhoods of Legendrian links and then perform
contact surgery on ƒ˙ using these neighborhoods to describe the contact manifolds
.R3
ƒ˙
; �ƒ˙/ and the contact forms ˛�.
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Our strategy is to develop highly specialized models for the objects involved in contact
surgery, determining Reeb vector fields on surgered contact manifolds which are linear
in a way which will be made precise in Section 5.1. The main benefits of this approach
are that the proofs of the following will be considerably simplified:

(1) The chord-to-orbit (Theorem 5.1) and chord-to-chord (Theorem 5.10) correspon-
dences.

(2) The Conley-Zehnder index (Theorem 7.1) and Maslov index (Theorem 7.2)
computations.

We will also be able to determine the embeddings of simple closed orbits in surgered
manifolds as fixed points of explicitly defined affine endomorphisms of R2 (Section 5.6).
While we don’t pursue computation in this paper, we anticipate this being of utility in
future applications.

The primary disadvantage to our contact forms being so specialized is that surgery
cobordisms between the .R3

ƒ˙
; �ƒ˙/ will be less explicitly defined and will require

greater effort in their construction (Section 10). Furthermore, we will be imposing
restrictions on the Lagrangian projections of Legendrian links in the style of [49], so
that our analysis — which is applicable to all Legendrian isotopy classes ƒ˙— will
not be applicable to all chord-generic Legendrian links in .R3; �std/.

Remark 4.1 Our approach to contact surgery is quite similar to that of Foulon and
Hasselblatt [29], who defined surgery using a model Dehn twist as in our Section 4.6.

In [7; 18], Bourgeois, Ekholm and Eliashberg describe surgeries as the result of critical-
index Weinstein handle attachments and then study the resulting Reeb dynamics. This
contrasts with our approach in that we will first describe our contact forms ˛� and then
build specialized Weinstein handles that have the ˛� as the restriction of their Liouville
form to their contact boundaries.

The approaches to contact surgery here and [29; 7; 18] all have at least one feature in
common: shrinking the size of the surgery locus is used to control Reeb dynamics.

4.1 Almost-complex structures, metrics and the Gauss map

We will want our Legendrians and their neighborhoods to interact nicely with an
almost-complex structure J0 and a metric gR3 , which we now describe.

Define vector fields X; Y 2 �.�std/ by lifting the derivatives of the usual coordinates:

X D @xCy@z; Y D @y :
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We define a complex structure J0 on �std as the lift of the usual complex structure on
R2 DC:

(14) J0X D Y; J0Y D�X:

This determines an almost-complex structure, which we’ll also call J0, adapted to the
symplectization .R�R3; et˛std/, defined by

J0@t D @z; J0@z D�@t :

This almost-complex structure determines a J0–invariant metric gR3 on R3, defined by

gR3.u; v/D ˛.u/˛.v/C d˛.�˛u; J0�˛v/; �˛.u/D u�˛.u/@z 2 �std:

The metric yields a simple formula for the lengths of vectors in �std:

(15) Z D aX C bY 2 �std D) jZj D
p
a2C b2:

4.2 Good position and Lagrangian resolution

Definition 4.2 We say that a Legendrian link ƒ�R3 is in good position if it is chord
generic and, for each double point .x0; y0/ 2R2 of its Lagrangian projection �xy.ƒ/,
there exists a neighborhood within which

(1) the over-crossing arc admits a parametrization satisfying

.x; y/.q/D .x0C q; y0� q/;

and

(2) the under-crossing arc admits a parametrization satisfying

.x; y/.q/D .x0C q; y0C q/:

Good position guarantees that the Gauss map of a parametrization of ƒ evaluates to
3
4
� or 7

4
� near an over-crossing and to 1

4
� or 5

4
� near an under-crossing.14 Likewise,

the condition ensures that capping paths of composable pairs of chords satisfy

�j1;j2 mod 2� 2
˚
1
2
�; 3

2
�
	
:

14In [7], it is presumed that the tangent map of Reeb flow along a chord r sends Tr.0/ƒ � � to the
subspace JTr.a/ƒ, which is achieved by an appropriate choice of almost-complex structure on the contact
hyperplane of the manifold containing ƒ. In our case, this is achieved by assuming that ƒ is in good
position. We will see in the proof of Theorem 7.1 that our analysis is contingent upon this assumption.
Similarly precise perturbations of Legendrian submanifolds near endpoints of chords appear in [19] for
the purpose of guaranteeing transversality of moduli spaces used to compute differentials for the contact
homology of Legendrians in .R2nC1; �std/.
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Figure 4: The first row of subfigures shows segments of a Legendrian link
appearing in the front projection. Directly below each subfigure is how it
appears in the Lagrangian resolution.

Proposition 4.3 Provided a front projection of a Legendrian link ƒ, we may perform
a Legendrian isotopy so that the following properties are satisfied :

(1) ƒ is in good position.

(2) The Lagrangian diagram is obtained by resolving singularities of the front as
depicted in Figure 4.

(3) The arc length of each connected component of ƒ with respect to gR3 is 1.

Proof The proof proceeds in three steps. The first step establishes the first two desired
properties of ƒ. This step is essentially the proof of Proposition 2.2 from [49] and so
we will omit the details. The only modification required to ensure a link is in good
position after Legendrian isotopy is to control @z=@x of a parametrization of ƒ near
the right-pointing cusps and what are called “exceptional segments” in that proof. In
particular, @z=@x can be made quadratic with highest-order coefficient 1

2

�
resp. �1

2

�
on neighborhoods of the positive (resp. negative) endpoints of chords.

In our second step, we modify ƒ so that the arc length of each component is arbitrarily
small while maintaining our desired conditions on the Lagrangian projection. For � > 0,
consider the linear transformation �� of R3, defined by ��.x; y; z/D .�x; �y; �2z/.
Then ���˛std D �

2˛std, so that each �� is a contact transformation. The map �� also
has the following useful properties:

(1) It preserves the angles of vectors in �std.

(2) If ƒi is a Legendrian curve with arc length `, then ��.ƒi / has arc length �`.

Take the family of Legendrians �e�T .ƒ/ for T 2 Œ0; T0� with T0 large enough that each
connected component of �e�T0 .ƒ/ will have arc length� 1. This interpolation between
ƒ and �e�T0 .ƒ/ determines a 1–parameter family of Legendrian submanifolds and so
may be realized by a Legendrian isotopy.

In the case that ƒ connected, we choose T0 so that the arc length is exactly equal to 1
after the isotopy and conclude the proof. When ƒ is disconnected, a final, third step is
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Figure 5: Locally modifying a Legendrian in the Lagrangian projection by a
rapidly oscillating function Qy to increase its arc length.

required. In this step we increase the arc lengths of the connected components of ƒ so
that they are all 1 while preserving good position and the smooth isotopy type of the
Lagrangian projection.

We demonstrate how to increase arc lengths so as to achieve the desired result. Consider
a segment ofƒi along which the x–derivative is nonzero, parametrized via the x variable
by x 7! .x; y.x/; z.x// with x 2 Œ�ı; ı� for an arbitrarily small positive constant ı. We
assume that the Lagrangian projection of the segment does not touch any double points.
Let Qy 2 C1.Œ�ı; ı�/ be a function with compact support contained in .�ı; ı/ and for
which

R ı
�ı Qy dx D 0. Consider perturbations ƒi;T of ƒi parametrized by T 2 Œ0; 1�

which modify ƒi along our segment to take the form

x 7!

�
x; yCT Qy; zCT

Z x

�ı

Qy dx

�
:

The vanishing of the integral of Qy ensures that the z–values at the endpoints of the
segment are unaffected by the perturbation. By making sup Qy small and

R
j@ Qy=@xj dx

very large, we can ensure that, for T 2 Œ0; 1�, our perturbations introduce no new double
points in the Lagrangian projection and that ƒi;T has arc length as large as we like,
say 2 when T D 1. See Figure 5. Hence, for some T0 2 Œ0; 1�, the arc length of ƒi;T0
will be exactly 1.

r1 r2 r3
r4

r5

Figure 6: The left column shows Legendrian tbD�1 unknot in the front and
Lagrangian projections. A right-handed trefoil knot with tbD 1 and rotD 0 is
shown in the front and Legendrian projections on the right. The Reeb chords
of the Lagrangian projection of the trefoil are labeled ri .
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Apply such perturbations to each connected component of ƒ so that no new double
points are created and neighborhoods of double points are unaffected. Each perturbation
is realizable by a Legendrian isotopy. Thus, we have obtained a Legendrian isotopy
of ƒ having all of the desired properties.

Provided ƒ as a front projection diagram, we call the Lagrangian projection of (an
isotopic copy of) ƒ obtained as in the above proposition the Lagrangian resolution of
the front diagram. Figure 6 displays Lagrangian resolutions of an unknot and a trefoil.
Following [49], we say that a front projection of a Legendrian link ƒ is nice if there
exists some x0 2R for which all right-pointing cusps have x–value x0. It’s not difficult
to see that any ƒ can be isotoped to have a nice front projection.

4.3 Conventions for link diagrams

We will not concern ourselves with specific requirements of good position or arc
length when drawing Legendrian links in the Lagrangian projection and consider such
a diagram to be valid if it recovers the Lagrangian projection of a Legendrian link
after an isotopy of the xy–plane. In particular, we will not take care to ensure that
angles at crossings are precise or that the components of R2 n�xy.ƒ/ satisfy the area
requirements of [24, Section 2].

Throughout, Legendrian knots with surgery coefficient C1 will be colored blue and
knots with surgery coefficient �1 will be colored red. If the coefficient of a knot is not
already determined or the knot corresponds to a component of ƒ0, it will be colored
black.

4.4 Standard neighborhoods

Before stating the properties we will want our neighborhoods ofƒ to have, we will create
model neighborhoods near under- and over-crossings of chords. The neighborhood
construction is completed in Proposition 4.5.

4.4.1 Model neighborhoods near endpoints of chords Here we describe a con-
struction of a neighborhood of ƒ along the arcs described in Definition 4.2. We can
reparametrize the arcs to have unit speed, so that they take the form

q 7!
�
x0C

1p
2
q; y0�

1p
2
q; z0C

1p
2
y0q�

1
4
q2
�

near an over-crossing and

q 7!
�
x0C

1p
2
q; y0C

1p
2
q; z0C

1p
2
y0qC

1
4
q2
�
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along an under-crossing. For � > 0 sufficiently small, we extend these embeddings to
embeddings of I��I��I2� into R3 using coordinates .z; p; q/. Near an over-crossing,
this embedding takes the form

(16) ˆCx0;y0;z0.z; p; q/

D
�
x0�

1p
2
pC 1p

2
q; y0�

1p
2
p� 1p

2
q; z0CzCy0

1p
2
q�pC 1

4
p2C 1

2
pq� 1

4
q2
�
:

Near an under-crossing arc, this takes the form

(17) ˆ�x0;y0;z0.z; p; q/

D
�
x0C

1p
2
pC 1p

2
q; y0�

1p
2
pC 1p

2
q; z0CzCy0

1p
2
pCq�1

4
p2C1

2
pqC1

4
q2
�
:

Properties 4.4 The following properties are satisfied by the ˆ˙x0;y0;z0 :

(1) ˆ˙x0;y0;z0.0; 0; q/ provides a parametrization of ƒ with unit speed.

(2) .ˆ˙x0;y0;z0/
�˛std D dzCp dq.

(3) With respect to the basis P D @p and QD @q �p@z , we have J0 D
�
0 �1
1 0

�
.

(4) �xy ıˆ
˙
x0;y0;z0

is an affine map.

(5) The images of �xy ıˆ˙x0;y0;z0 overlap in squares of the form I� � I� near a
crossing (see Figure 9).

4.4.2 Neighborhood construction We now assume that ƒ satisfies the conclusions
of Proposition 4.3.

Proposition 4.5 For �0 sufficiently small , there exists a neighborhoodN�0;i of eachƒi
parametrized by an embedding

ˆi W I�0 � I�0 �S
1
!R3

with coordinates .z; p; q/ such that the following conditions are satisfied :

(1) ˆ�i ˛std D dzCp dq.

(2) The N�0;i are disjoint.

(3) ˆi .0; 0; q/ provides a unit-speed parametrization of ƒi .

(4) J0 is z–invariant inN�0;i and , with respect to the basisP D@p and QD@q�p@z ,
it satisfies

ˆ�i J0 D

�
0 �1
1 0

�
CO.p/:
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(5) Near the endpoints .xj ; yj ; z˙j / with zCj > z
�
j of each chord rj of touching ƒ,

we can find a matrix of the formM DDiag.1; 1; 1/ or Diag.1;�1;�1/ such that

ˆi .z; p; q/Dˆ
˙

xj ;yj ;z
˙
j

ıM.z; p; q� q˙j /;

where the ˆ
xj ;yj ;z

˙
j

are as in Properties 4.4.

Proof Presuming that ƒi is parametrized with a variable q with respect to which
it has unit speed, we pick an arbitrarily small positive constant �1 and define a map
I�1 �S

1!R3 as

�1 W .p; q/ 7! expƒi .q/

�
�pJ0

@ƒi

@q
.q/C h1.p; q/

�
;

where h1 2 C1.I�1 �S1;R3/ vanishes up to second order in p and is chosen so that it
produces the map

.p; q/ 7!ˆ˙
xj ;yj ;z

˙
j

ıM.0; p; q� q˙j /

near the endpoints of the chords of ƒ as in the statement of the proposition. Here exp
is the exponential map with respect to the metric gR3 and the matrix M is as in the
statement of the proposition.

Since the tangent map of the exponential map is the identity along the zero section,

T expƒi .q/ D Id W Tƒi .q/R
3
! Tƒi .q/R

3

and h1 is O.p2/, we have

@�1

@p

ˇ̌̌̌
pD0

D�J0
@ƒi

@q
C
@h1

@p

ˇ̌̌̌
pD0

D�J0
@ƒi

@q
D�J0e

J0GiX D�eJ0Gi .q/Y;

@�1

@q

ˇ̌̌̌
pD0

D
@

@q
expƒi .q/.0/D

@ƒi

@q
D eJ0GiX:

Therefore, the tangent map for �1 can be expressed along fp D 0g as a matrix

(18) T�1jpD0 D�J0e
J0Gi .q/

with incoming basis .P;Q/ and outgoing basis .X; Y /. This map will be an embedding
when restricted to some I�1 �S

1 for �1 sufficiently small.

From (18), we compute ��1 d˛std D dp^ dq along fp D 0g. More generally, we can
write ��1 d˛std D F dp ^ dq for some smooth function F satisfying F jfpD0g D 1.
Hence, F will be strictly positive on some tubular neighborhood of fpD 0g � I�1�S

1,
so that ��1 d˛std will be symplectic on some I�2 �S

1 for �2 sufficiently small.
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Applying a fiberwise Taylor expansion to ��1˛std along the annulus I�2 �S
1, we write

��1˛std D .f0Cpf1Cp
2f2Cfhot/ dpC .g0Cpg1Cp

2g2Cghot/ dq;

where

(1) fhot and ghot are functions of p and q which are O.p3/, and

(2) f0; : : : ; g2 are functions of q.

As ƒi is Legendrian and J0 preserves the contact structure, we must have f0D g0D 0.
Then, computing

��1 d˛std D d�
�
1˛std D

�
g1Cp

�
2g2�

@f1

@q

�
�p2

@f2

@q
C
@ghot

@p
�
@fhot

@q

�
dp^ dp;

we must have g1 D 1, so that

��1˛std D .pf1Cp
2f2Cfhot/ dpC .pCp

2g2Cghot/ dq:

We can eliminate the f1 term in this equation with a perturbation in the z direction.
With h2 D 1

2
p2f1, we have dh2 D pf1 dpC 1

2
p2@f1=@q dq. Hence,

�2.p; q/D �1.p; q/� .0; 0; h2.p; q//;

admits an expansion of the form

��2˛std D .p
2f2Cfhot/ dpC .pCp

2g2Cghot/ dq:

To ensure that this map is an embedding, we restrict its domain to I�3 �S
1 for some

sufficiently small �3 � �2. We note that the f2 and g2 here may differ from those in
the Taylor expansion of ��1˛std.

Now we’ll apply a Moser argument as in [46, Section 3.2] to modify �2 by precomposing
it with an isotopy to produce a map �3 so that ��3 d˛std D dp ^ dq. Due to the facts
that the annulus is not closed and that we’ll require the result to be an codimension 1
embedding, we cannot simply quote [46, Section 3.2].

Writing ��2˛std D p dqC � and, solving for a vector field X� satisfying

dp^ dq.�; X� /D �;

we see that � and X� have coefficient functions, vanishing up to second order,

� DO.p2/ dpCO.p2/ dq; X� DO.p2/@pCO.p2/@q:

Writing FlowtX� for the time t flow of X� , choose �4 � �3 so that FlowtX� .I�4 �S
1/�

I�3 �S
1 for all t 2 Œ0; 1� and define

�3.p; q/D �2 ıFlow1X� .p; q/ W I�4 �S
1
!R3:
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The Moser argument shows that ��3 d˛std D dp ^ dq, as desired. Moreover our
conditions on X� imply that Flow1X� must agree with the identity mapping up to third
order along fp D 0g. Hence, we can continue to write ��3˛std D p dqC � for some �
which vanishes up to second order in p. Using ��3 d˛std D dp^dq, we know that � is
closed, and, since it mush vanish along fp D 0g, we conclude that it is exact. Hence,
��3˛std D p dqC dh4 for some h4 2 C1.I�3 � S1;R/. Possibly restricting to some
I�4 �S

1, we define
�4.p; q/D �3.p; q/� .0; 0; h4/;

so that �4 is an embedding, whence ��4˛std D p dq. Now define

ˆi .z; p; q/D �4.p; q/C .0; 0; z/:

Restricting to some I�0 � I�0 �S
1 for �0 sufficiently small, we can ensure that

F
ˆi

is an embedding. By construction of the ˆi , we have

ˆ�i ˛std D dzCp dq:

Regarding the formula for J0 in the basis .P;Q/, note that this is satisfied for the
map �1 and that subsequent perturbations —�2, �3 and �4 — preserve .P;Q/ up to
second order in p. The z–invariance of J0 is clear from the definition of the ˆi and
z–invariance of the almost-complex structure on �std.

For the last condition stated in the proposition, we note that �1 produces the desired
result by definition of the function h1. As all other required conditions are satisfied
by �1, where the last condition is required to be satisfied as per Properties 4.4. The
perturbations of �1 carried out in the remainder of the proof are trivial where this
condition is required to be satisfied. Indeed, near the endpoints of chords h2 (used to
define �2), � (used to define �3) and h4 (used to define �4) all vanish.

Assumptions 4.6 We assume throughout the remainder of this article that the Leg-
endrian link ƒ is in good position and has unit arc length with respect to gR3 , and
write

N� D
[
i

N�;i

for a neighborhood of ƒ as described in the above proposition with � � �0. We call the
set fz D 0g �N�;i the ribbon of ƒi . From the above proof, we may assume that the
image of the projection of the ribbon of ƒi to the xy–plane coincides with the image
of the projection of N�;i .
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4.5 Transverse push-offs

The boundary of the ribbon of a component ƒi of ƒ consists of two knots

(19) TCi;� D fz D 0; p D �g T �i;� D fz D 0; p D��g:

Definition 4.7 With � fixed, the knots TCi;� and T �i;� will be called the positive and
negative transverse push-offs of ƒi . We orient both of these knots so that @q > 0 in the
coordinate system on N�;i .

The positive (negative) transverse push-off is positively (negatively) transverse to �ƒ.
Because these knots live on the boundary of N�;i , we may consider them as living
within either .R3

ƒ˙
; �ƒ˙/ or .R3; �std/.

4.6 Model Dehn twists

In this and the following subsection we describe contact forms on R3
ƒ˙

which will
facilitate analysis on Reeb orbits after contact ˙1 surgery. We begin by providing an
explicit model for a Dehn twist and then describe the gluing map used to define contact
˙1 surgery explicitly.

Provided a smooth function f WR! S1, we define �f 2 DiffC.R�S1/ by

�f .p; q/D .p; qCf .p//

and note that ��f D ��1f . We’ll call the map �f a positive (resp. negative) Dehn twist
by f if:

(1) The derivative of f has compact support in R.

(2)
R

R @f=@p dp D�1 (resp. C1).

A positive (resp. negative) Dehn twist by f is a positive (resp. negative) Dehn twist in
the usual sense of the expression. We compute

(20) ��f p dq D p dqCp
@f

@p
dp; ��f .dp^ dq/D dp^ dq;

so that �f is always a symplectomorphism with respect to dp^dq but does not preserve
p dq unless f is constant. For any f and � > 0, we write

f�.p/D f
�
p

�

�
:

Geometry & Topology, Volume 27 (2023)



Combinatorial Reeb dynamics on punctured contact 3–manifolds 995

p
�
1
2

1
2

f lin f f�

Figure 7: The functions f lin, f and f� .

Assumptions 4.8 Throughout the remainder of this paper, f will denote a function
for which �f is a negative Dehn twist whose derivative @f=@p is

(1) nonnegative,

(2) an even function of p,

(3) supported on I1 D Œ�1; 1�, and

(4) bounded in absolute value pointwise by 1.

We think of f as being a smooth approximation to a piecewise-linear function

(21) f lin.p/D

8<:
0 if p 2

�
�1;�1

2

�
;

pC 1
2

if p 2 I1=2;
1 if p 2

�
1
2
;1

�
:

See Figure 7.

The following proposition gathers some properties of the deviation of twists by f� from
preserving p dq, as described in (20):

Proposition 4.9 Suppose that f satisfies Assumptions 4.8 and , for � 2 .0; 1/, define

H�.p/D

Z p

�1

P
@f�

@p
.P / dP:

Then H is well defined , zero on the complement of I�, symmetric and satisfies �� �
H� � 0 pointwise.

Proof The first two statements are clear from the compact support and symmetry of
the derivative of f. Then, using the fact that @f�=@p is supported on I�, we have

jH�.p/j D
1

�

ˇ̌̌̌Z p

��

P
@f

@p

�
P

�

�
dP

ˇ̌̌̌
�
1

�
sup
p

ˇ̌̌
@f

@p

ˇ̌̌ Z �

��

jP j dP D � sup
p

ˇ̌̌
@f

@p

ˇ̌̌
� �:

For p � 0, H�.p/ is an integral of a nonpositive function and so must be nonpositive.
Then, for p � 0,

H�.p/DH�.0/C

Z p

0

P
@f�

@p
.P / dP DH�.0/�

Z 0

�p

P
@f�

@p
.P / dP DH�.�p/

by the symmetry of the derivative of f.
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p
q

z

Figure 8: From left to right: the top, side and bottom pieces of our neighbor-
hood are shaded.

4.7 Gluing maps

Now we define the gluing maps to define contact surgery on ƒ and contact forms ˛�
on the surgered manifold R3

ƒ˙
.

Let �0 be a sufficiently small as described in Proposition 4.5 and choose � 2 .0; �0/.
We decompose a neighborhood of each @N�;i into top, side and bottom pieces as shown
in Figure 8:

(1) Tı;� D fz � �� ıg.

(2) Sı;� D fjpj � �� ıg.

(3) Bı;� D fz � ��C ıg.

To perform contact surgery along ƒi with surgery coefficient ci , we define a map
�ci ;f;�;ı in coordinates .z; p; q/ by

(22) �c;f;�;ı.z; p; q/�

�
.z� ciH�.p/; p; qC cf�.p// along Tı;�;
.z; p; q/ along Sı;� [Bı;�;

where H� is as described in Proposition 4.9. Due to the properties of f� and H�
described in the previous section, we have that �c;f;�;ı agrees on the overlaps of the
top, bottom and sides of N�;i for ı sufficiently small. Therefore, the map determines a
smooth gluing.

The tangent map of the gluing map is given by

(23) T�ci ;f;�;ı D @z˝

�
dz� cip

@f�

@p
dp

�
C @p˝ dpC @q˝

�
dqC ci

@f�

@p
dp

�
along Tı;� and T�ci ;f;�;ı D Id along Sı;� [Bı;�, so that

��ci ;f;�;ı.dzCp dq/D dzCp dq:

The gluing map therefore determines a contact form ˛ci ;f;�;ı on the manifold R3ƒi
obtained by performing the surgery and hence a contact structure �ƒ˙ D ker.˛ci ;f;�;ı/
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on this manifold. Shrinking ı amounts to a restriction of the domain of the map and so
does not affect the associated contact manifold.

Definition 4.10 For � 2 .0; �0/, we write ˛� for the contact form on R3
ƒ˙

determined
by performing surgery using the gluings �ci ;f;�;ı as described in (22) to each connected
component N�;i of N�. The Reeb vector field of ˛� will be denoted by R�.

5 Chord-to-orbit and chord-to-chord correspondences

In this section we study the dynamics of the Reeb vector fields R� for the contact
forms ˛� for .R3

ƒ˙
; �ƒ˙/ as described in Definition 4.10. Our results are summarized

by the following:

Theorem 5.1 There exist one-to-one correspondences between:

(1) Closed orbits ofR� in .R3
ƒ˙
; �ƒ˙/ and cyclic words of chords onƒ˙� .R3; �std/.

(2) Chords of R� with boundary on ƒ0 � .R3
ƒ˙
; �ƒ˙/ and words of chords with

boundary on ƒ0 � .R3; �std/.

A description of the correspondences will be given below.

Definition 5.2 Via the above theorem, we use the notation

.rj1 � � � rjn/

to denote either a closed orbit of R� or a chord of ƒ0 � .R3
ƒ˙
; �ƒ˙/ whose underlying

word is rj1 � � � rjn .

After establishing Theorem 5.1, we estimate the actions of chords and closed orbits
in .R3

ƒ˙
; �ƒ˙/ in Section 5.5. Then, in Section 5.6, we describe equations whose

solutions determine the embeddings of closed Reeb orbits and allow exact calculation
of their actions. While we do not provide a closed form solutions to these equations,
their analysis provides the following:

Theorem 5.3 For each n > 0, there exists �n such that , for all � � �n, all orbits  of
word length � n are hyperbolic with

CZ2./D
nX
kD1

.rotjk ;jkC1 Cı1;cC
jk

/ 2 Z=2Z:

Moreover , if either ƒC D¿ or ƒ� D¿, then all closed orbits of R� are hyperbolic for
all � <min

˚
1
2
; �0
	
.

Geometry & Topology, Volume 27 (2023)



998 Russell Avdek

Throughout this section,  will denote a closed orbit of R� and � will denote a chord
of ƒ0 � .R3

ƒ˙
; �ƒ˙/.

5.1 Overlapping rectangles

In order to state our chord-to-orbit and chord-to-chord correspondences, we need to
introduce the objects which will define them: embedded squares in .R3

ƒ˙
; �ƒ˙/ which

record the positions of Reeb orbits as they propagate through the manifold. Along the
way, we slightly refine the specifications of the function f in our surgery construction so
as to reduce our analysis of dynamics of R� to analysis of affine linear transformations.

With �— the constant which governs the size of N� — sufficiently small, the projection
of N� to the xy–plane will have overlaps only at rectangles centered about double
points of the Lagrangian projection of ƒ. There is a unique rectangle Dj � R2 for
each chord rj . As per Assumptions 4.6 and Properties 4.4, each Dj is the image of a
map of the form

.p; q/ 7! .x0Cp� q; y0CpC q/

for .p; q/ 2 I�1 � I�2 for some �i 2 .0;1/ with .x0; y0/ 2 R2 being the coordinates
of the double point of ƒ in the xy–plane corresponding to rj .

We write Dex
j for the lift of this disk to the top of the N�;l�

j
and Den

j for the lift to the
bottom of N

�;l
C

j

. The superscripts are indicative of the fact that closed orbits of R�
enter N� through the Den

j and exit N� through the Dex
j . See Lemma 5.6.

Again using Assumptions 4.6 and Properties 4.4, we have that each Den
j and Dex

j can
be described as

(24) fz D˙�; q 2 Œq˙j � ı; q
˙
j C ı�g

for some ı2 .0;1/with respect to the coordinates .z; p; q/ provided by Proposition 4.5
on the “outside” of the surgery handle.

If we flow Den
j through the surgery handle in which it is contained, we will see it pass

through the top fz D �g in a set D�j , which, when projected onto the .p; q/ coordinates,
is of the form

D�j D �
c
C

j

f�
.fq 2 Œq0� ı; q0C ı�g/

for some q0 2 S1 and ı > 0. This set will intersect the each Dex
j 0 for j 0 ¤ j in a

connected set diffeomorphic to a square. These intersections are depicted as the dark
gray regions in Figure 9, right.
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Dj Den
j

Dex
j

rj Dex
j 0

D�j
HHY

HHj

Figure 9: On the left, we see the xy–projection of the ribbon ofƒ overlapping
at a rectangle Dj . In the middle — with a slightly offset point of view — we
see the D�j touching the endpoints of a chord rj . Here the boxes represent
portions of N� . On the right, we see �f� applied to one rectangle intersecting
other rectangles. In this portion of the diagram, @p points upward and @q
points to the left.

Assumptions 5.4 For a fixed �, we refine our choice of f in Assumptions 4.8 so that
it is affine with derivative equal to 1 on some I1�ı � I1, with ı chosen sufficiently
small that each D�j \Dex

j 0 with j ¤ j 0 is determined by a pair of linear inequalities

D�j \Dex
j 0 D fq 2 Œq0� ı1; q0C ı1�; aC bq 2 Œı2; ı3�g

for constants a, b, ı1, ı2 and ı3.

Properties 5.5 Under Assumptions 5.4, we have that , at any point .p; q/ 2 Den
j for

which �f� .p; q/ 2 D
ex
j 0 ,

@f�

@p
.p/D

1

�
; H�.p/DH�.0/C

p2

2�
;

where i D lCj . At such points we can write �ci
f�

as

.p; q/ 7!

�
p; qC

1

2
C
cip

�

�
:

5.2 Cyclic words from Reeb orbits

Here we prove the easy part of the of the (cyclic words)$ (closed orbits) correspon-
dence, showing that each  uniquely determines a cyclic word of chords on ƒC[ƒ�.

Lemma 5.6 Any closed orbit  of R� must pass through N� . Every time  enters N�,
it must pass through some Den

j , and , every time it exits N�, it must pass through
some Dex

j .

Proof The Reeb vector field R� agrees with @z on the complement of N� and flows
Dex
j into Den

j . The orbit  must pass through N� as otherwise z./ would take on

Geometry & Topology, Volume 27 (2023)



1000 Russell Avdek

arbitrarily large values, implying that  is not closed. If when passing through some
component N�;i of the surgery handles  exits the top of N�;i in the complement of
the Dex

j , then, again, z./ would tend to 1 as we follow the trajectory of the orbit.
Likewise, if  enters some N�;i in the complement of the Den

j , then, following the orbit
backwards in time, we see that z./ is unbounded from below.

Then  must intersect some nonempty finite collection of the Dex
j . Let j1; : : : ; jn be the

indices of the Dex
j through which  passes, ordered in accordance with a parametrization

of  .

Definition 5.7 We define the cyclic word map as

cw./D rj1 � � � rjn

and write wl./ for the word length of cw./.

5.3 Reeb orbits from cyclic words

In this section we describe how a cyclic word of composable Reeb chords uniquely
determines an closed orbit of R�. Let rj1 � � � rjn be a cyclic word and consider the
squares D�jk ;� D en; ex; � as described in the previous subsection.

Theorem 5.8 For � � �0 and each word w D rj1 � � � rjn , there is a unique closed Reeb
orbit w of R� for which cw.w/D w.

Our logic follows directly from arguments in [7, Section 6.1] — carried out in de-
tail in [18] — which are simplified by our reduction of dynamics to that of affine
transformations in Section 5.1.

Proof The proof follows from an analysis of FlowtR� applied to the disk Dex
j1

. Recall
that this disk is contained in the “top” of a surgery handle N�;l�

j1

.

Write S1 DDex
j1

and let G1 D IdS1 . Consider the following iterative process, for which
Figure 10 serves as a visual aid:

(1) Flow through the handle complement There is a function t .p; q/ solving for
the minimal t > 0 such that Flowt.p;q/R�

applied to .p; q/ 2 S1 is an element of the
square Den

j1
directly above S1. Write F co

1 .p; q/D Flowt.p;q/R�
.p; q/, whose image is the

square S 01, which is contained in the bottom of N�;lC
j1

. By the results of Section 5.1,
S 01 D Den

j1
. Briefly, F co

1 is the flow of our square Den
j1

through the handle complement.

(2) Flow through the handle Similarly define a function F h1 which flows S 01 �
fz D��g �N

�;l
C

j1

up to the top, fz D �g, of the surgery handle. The square F h.S 01/
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Dex
j1
DS1

Dex
j2

Dex
j3

S2
-

dom.G2/ -dom.G3/ -

S3

?

Figure 10: Following the subfigures clockwise we see the sets Sk and
dom.Gk/ drawn schematically. The Sk are shaded dark gray. Each rectangle
represents the ribbon of some component ofƒ cut at some value of q, layered
over each other as indicated by the crossings so that the value of z increases
as we traverse each subfigure clockwise. Within each rectangle, the sides
of shorter (resp. longer) length are directed by p (resp. q). In the top-right
we see F h1 ı F

co
1 .S1/ as a subset of the top of N�;lC

j1
DN�;l�

j2
. Taking the

intersection of this set with Dex
j2

determines S2.

will appear in the coordinates .z; p; q/ on the “outside” of the surgery handle as the
application of a (positive or negative) Dehn twist to S 01. That is, in the notation of
Section 5.1, F h1 .S

0
1/D D�j2 is the flow through the handle.

(3) Trim We write S2 D F h1 .S
0
1/\Dex

j2
for the intersection of F h1 .S

0
1/ with the next

square in the sequence Dex
jk

determined by w. Then S2 is contained in the top of N�;l�
j2

.
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We get a diffeomorphismG2 from dom.G2/D .F h1 ıF
co
1 /
�1.S2/�S1 to im.G2/DS2

by G2 D F h1 ıF
co
1 .

(4) Repeat We now inductively repeat the process by applying it to Sk � Dex
jk

. We
analogously define F co

k
and F h

k
with domain Sk then apply F h

k
ıF co

k
to flow Sk up

through the next handle in the sequence N�;lC
jk

whose image we trim to define SkC1.
This determines a diffeomorphism

GkC1 D F
h
k ıF

co
k ı � � � ıF

h
1 ıF

co
1 W .dom.GkC1/� S1/! .SkC1 � Dex

jkC1
/:

Making use of the results in Section 5.1, we have the following observations:

(1) Each F co
k

— considered with the domain Dex
jk

in which Sk is contained — is an
affine transformation with respect to the .p; q/ coordinates of the components of N�.
Each F co

k
sends Dex

jk
diffeomorphically to Den

jk
and is a symplectomorphism with respect

to d˛�.

(2) Each F h
k

— considered with the domain Den
jk

— is nonlinear, as can by seen
by looking at where p is extremal. It is also a symplectomorphism with respect
to d˛std. The restriction of F h

k
to .F h

k
/�1.Dex

j / for each j is an affine transformation
by Properties 4.4.

(3) We see by induction that Sk is a connected, nonempty quadrilateral determined by a
nondegenerate pair of linear inequalities, one of which is of the form q 2 Œq0�ı; q0Cı�.

(4) Combining the above with the fact that a composition of affine transformations
is an affine transformation, dom.Gk/ is a quadrilateral determined by a pair of linear
inequalities, one of which is the trivial p 2 Œ��; ��.

(5) Each trimming step monotonically decreases the area with respect to d˛� and, for
each k, we have dom.GkC1/¨ dom.Gk/:

0 <

Z
SkC1

d˛� <

Z
Sk

d˛�; 0 <

Z
dom.GkC1/

d˛� <

Z
dom.Gk/

d˛�:

Now observe that dom.Gn/ stretches across Dex
j1

in the p direction and that Sn stretches
across Dex

j1
in the q direction. Since both sets are convex, U1 D dom.Gn/\Sn must

be nonempty and convex. We likewise define Uk as the intersection of Snk with
dom.Gnk/ for all k > 0. See Figure 11.

The Uk satisfy UkC1 ¨ Uk and we claim that area.Uk/! 0 as k!1. To see this,
recall that f� is linear on p 2 Œ��.1� ı/; �.1� ı/�, where ı 2 .0; 1/ is as described
in Assumptions 5.4. By the conditions which characterize ı, for each k � 0 the set
of points in Sk which reach SkC1 via the map F h

k
ıF co

k
must be contained in the set
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Uk
Snk

dom.Gnk/

Figure 11: Overlaps of the sets Snk and dom.Gnk/ within in the set S1 D Dex
j1

.

S lin
k
D fp 2 Œ��.1� ı/; �.1� ı/�g \Sk . By the fact that Sk is a rectangle stretching

across the p coordinate of the annulus, area.S lin
k
/D .1� ı/ area.Sk/. By the definition

of S lin
k

and the fact that F h
k
ıF co

k
is symplectic, area.SkC1/� area.S lin

k
/. Inductively,

we conclude area.Sk/� .1� ı/k�1 area.S1/. Since Uk is contained in Snk , our claim
is established.

By our construction, any Reeb orbit with word wk must intersect Dex
j1

at a point in
dom.Gnk/ which is sent to itself via Gnk . Hence, such a point of intersection must lie
in Uk . By considering multiple covers of the orbit w — whose existence we seek to
establish — we see that, if such a point of intersection lies in U1, then it must lie in Uk
for all k > 0. We therefore define

U1 D

1\
1

Uk � Dex
j1
;

which, by our previous analysis, consists of a single point.

To complete our proof, it suffices to show that Gnk.U1/ D U1 for all k > 0. This
amounts to unwinding the definitions established in the proof so far. If we write
k D k1C k2 for any pair of natural numbers k1 and k2, then we must have

Gnk1.dom.Gnk//� dom.Gnk2/

as otherwise Gnk2 ıGnk1.dom.Gnk// would not be contained in Dex
j1

. On the other
hand, dom.Gnk/¨ dom.Gnk1/ implies that

Gnk1.dom.Gnk//¨ Snk1 :

Combining the above two equations, we conclude that

U1 D

1\
1

.Snk \ dom.Gnk//D
�1\
1

Snk

�
\

�1\
1

dom.Gnk/
�

satisfies Gnk.U1/D U1.
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5.4 Reeb chords of ƒ0 after surgery

In this section, we describe open-string versions of our results for closed Reeb orbits,
establishing the chord-to-chord correspondence of Theorem 5.10.

Definition 5.9 Suppose that a chord � of ƒ0� .R3
ƒ˙
; �ƒ˙/ passes through a sequence

of the D�j of the form

Den
j1
;Dex

j2
;Den

j2
; : : : ;Dex

jn�1
;Den

jn�1
;Dex

jn
:

Then we write w.�/D rj1 � � � rjn . We call the association � 7! w.�/ the word map.

Theorem 5.10 For each � < �0, the word map w determines a one-to-one correspon-
dence between words of chords with boundary on ƒ0 � .R3; �std/ and Reeb chords
of ƒ0 � .R3

ƒ˙
; �ƒ˙/ determined by the contact form ˛�. For each such word w, the

associated chord �w is nondegenerate for all � < �0.

The chords with word length 1 are those which exist forƒ0�R3 prior to surgery, while
the rest of the chords in Theorem 5.10 are created after the performance of surgery
along ƒ˙.

Proof The proof is analogous to the proof of Theorem 5.8, although considerably
simpler.

Let wD rj1 � � � rjn be a word of chords on ƒ0 with word length n> 1. By (16), flowing
ƒ0 up to N� along a chord sends ƒ0 to a strand in N� of the form q D q0, which we
call A

0

1. Flow this arc up to the top of N� and take its intersection with Dex
j2

to obtain
an arc we’ll call A1. Define arcs Ak for k > 1 as follows:

(1) Flow through the handle complement Flow Ak�1 �Dex
jk

up to Den
jk

using the
map F co

k
as in the proof of Theorem 5.8.

(2) Flow through the handle Now we apply the map F h
k

as defined in Theorem 5.8
to flow F co

k
.Ak�1/ up to the top of N�.

(3) Trim Define Ak D F hk ıF
co
k
.Ak�1/\Dex

jk
.

(4) Repeat Repeat the above steps until we obtain an arc An � Dex
jn

.

Again, following the logic of the proof of Theorem 5.8 using the linearity conditions of
Section 5.1, each Ak �Dex

jk
is a line segment which wraps across Dex

jk
in the q direction.

In other words, each admits a parametrization of the form

Ak D f.aqC b; q/ W q 2 Œq0� ı; q0C ı�g
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for some constants a ¤ 0; b; q0; ı. Since flowing ƒ0 downward to Dex
jn

along the
chord rjn is a set of the form q D q0, the intersection of this set with Ak consists
of a single point. Since Ak wraps across Dex

jn
in the q direction, this intersection is

transverse. By construction, the collection of such intersections are in one-to-one
correspondence with the collection of chords of ƒ0 � .R3

ƒ˙
; �ƒ˙/.

For words of length 1, the restriction of R� to the complement of the surgery handles
is @z , so that words of length 1 correspond exactly to the chords of ƒ0 present prior to
surgery.

5.5 Action estimates

To obtain refined estimates of the actions of the chords and orbits of R� we’ll need the
following lemmas. The first lemma tells us how much time it takes to flow from the
top of N� to the bottom in a neighborhood of a chord rj .

Lemma 5.11 Let rj be some chord of ƒ� .R3; �std/ with action A.rj / and parame-
trize the disk Dex

j � @N� with coordinates .p; q/ as in (17). Then , for each .p; q/2Den
j ,

there exists a minimal-length chord from Dex
j to Den

j starting at .P;Q/ with action

t DA.rj /� 2��pq:

Proof This is a straightforward calculation, so we omit the details. For a given j,
write .pex; qex/ and .pen; qen/ for the coordinates on Dex

j and Den
j provided by (17)

and (16), respectively. Then pen D�qex and qen D pex. Plug these into the equations
provided to compute the differences in the z coordinates and consider the fact that
R� D @z on R3 nN�.

Our second lemma tells how much time it takes for an orbit to flow through one of the
surgery handles.

Lemma 5.12 For some j, again consider coordinates .p; q/ on Dex
j � @N� as provided

by (17). Then the time it takes a point in Den
j to reach this point via the flow of R� is

t D 2�C ciH�.p/:

This becomes obvious if we look at the graph of the “top” part of the gluing map of (22).
See Figure 12. By comparing Proposition 4.9 with the definition of the gluing map
in (22), actions increase slightly as we pass through a surgery handle with coefficient�1
and decrease slightly as we pass through a surgery handle with coefficient C1.
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2� ��ciH�.p/

Figure 12: The squares represent fq D q0g �N�;i slices of the N� at compo-
nents N�;i with surgery coefficient ci D�1 (left) and ci D 1 (right). The black
arcs represent the boundaries of the gluing region, as it intersects each slice.

Proposition 5.13 For all closed Reeb orbits  of R�, we have

jA./�A.cw.//j< 3�wl./:

For each chord r of R� with boundary on ƒ0 � .R3
ƒ˙
; �ƒ˙/, we have

jA.r/�A.w.//j< 3�wl.r/:

This is obvious from Lemmas 5.11 and 5.12 together with Proposition 4.9.

5.6 Calculating orbit embeddings

Let  D .rj1 � � � rjn/ be a closed orbit of some R� . Let .pk; qk/ be coordinates on the
squares Dex

jk
described by (16). Suppose that, in these coordinates,  passes through

the points .Pk;Qk/. If  is simply covered and we compute the exact values of
the .Pk;Qk/, then we can see the knot formed by  inside of R3

ƒ˙
and be able to

compute the action A./ exactly. In this section, we describe how these .Pk;Qk/
can be calculated. The analysis here will be the starting point for the computation of
Conley–Zehnder indices.

In the above notation, we can describe .P1;Q1/ as a fixed point of an affine transfor-
mation

AC b WR2!R2; A 2 SL.2;R/; b 2R2;

as follows.

Starting at (a subset of) Dex
jk

, apply FlowR� to pass through the handle complement
to Den

jk
and then through the surgery handle N�;lC

jk
to Dex

jkC1
. As we are only interested

in the set of points in Dex
jk

along which the �˙f� are linear, we can write this as a map
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Ak C bk with Ak 2 SL.2;R/. The bk 2 R2 term is required by (16) centering the q
coordinate about the endpoint of the Reeb chord rkC1.

Hence, we may write

(25) AC b D .AnC bn/ ı � � � ı .A1C b1/

D .An � � �A1/C .An � � �A2/b1C � � �CAnbn�1C bn

with .P1;Q1/ being the fixed point of this map. By linearity of the equations involved
and our prior knowledge (Theorem 5.8) that there exists a unique fixed point, we may
as well consider the Ak C bk to be transformations of R2. We can then solve for
u1 D .P1;Q1/ as

u1 D .Id�A/�1b D .Id�An � � �A1/�1.An � � �A2b1C � � �CAnbn�1C bn/:

Provided u1, we can then find the uk D .Pk;Qk/ by applying the .AkC bk/:

ukC1 D AkukC bk D .AkC bk/ � � � .A1C b1/u1:

Proposition 5.14 In the above notation ,

(� 1/rotjk;jkC1Ak D

�
0 �1

1 �cjk=�

�
D J0

�
1 �cjk=�
0 1

�
;

(� 1/rotjk;jkC1bk D

�
0

1
2
� djk ;jkC1

�
D J0

�
1
2
� djk ;jkC1

0

�
;

where djk ;jkC1 is the minimal length of a capping path for the pair .rj ; rjkC1/ projected
to the xy–plane using the standard Euclidean metric on R2.

Proof We can determine Ak C bk as a composition of the following elementary
mappings:

(1) The change of coordinates from Dex
jk

to Den
jk

, which we see when flowing points
.p; q/ through the handle complement,

.p; q/ 7! .�q; p/:

(2) The flow from Den
jk

to the top of N�;lC
jk

, which, according to Properties 5.5, is
given by

.p; q/ 7!

�
p; qC

1

2
C
cCjk
�
p

�
:

(3) A shift in the q coordinate such that .0; 0/ is identified with the tail of rjkC1 .
Here d in

k;kC1
is the magnitude of this shift when ƒjk is parametrized with ˆiC ,
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as in Proposition 4.5,

.p; q/ 7! .p; q� d in
k;kC1/:

(4) A mapping of the coordinates on the top of N�;lC
jk

to Dex
kC1

,

.p; q/ 7! .�1/
rotjk;jkC1 .p; q/:

The result of composing the above maps produces

.p; q/ 7! .�1/
rotjk;jkC1

�
�q; pC

1

2
� d in

k;kC1�
cCjk
�
q

�
:

5.7 Hyperbolicity and the Z=2Z index

For a given closed orbit  D .rj1 � � � rjn/, we can use the above formula to write its
Poincaré return map as Ret DAn � � �A1, where the Ak are given by (25). By using the
calculation of the Ak in Proposition 5.14, we have an explicit representation of Ret
as

(26)

.�1/rot Ret D
nY

KD1

J0

 
1 �cCjnC1�K�

�1

0 1

!

D J0

 
1 �cCjn�

�1

0 1

!
� � �J0

 
1 �cCj1�

�1

0 1

!

D J n0 C

nX
KD1

� X
k2IK

� KY
iD1

�cCjki

�
Mk

�
��K ;

rotD
nX

KD1

rotjK ;jKC1 ;

Mk D J
n�kK
0 Diag.0; 1/J kK�kK�1�10 � � �J

k2�k1�1
0 Diag.0; 1/J k1�10 ;

IK D fk D .k1; : : : ; kK/ W 1� k1 < � � �< kK � ng:

The equality in the third line involving the Mk easily follows from an induction on n.

Observe that In consists of a single element .1; : : : ; n/, so that the K D n term in the
above formula is

(27) ��n
� nY
kD1

�cCjk

�
Diag.0; 1/D ��n.�1/#.c

C

jk
D1/ Diag.0; 1/:

Thus, for a fixed word, tr.Ret / can be expressed as a polynomial in ��1 whose
highest-order term is given by the above expression.
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Proof of Theorem 5.3 For �w sufficiently small, the ��n term in the polynomials
for tr.Ret / determines their sign for all � < �w and words of length � n as there are
only finitely many cyclic words less than a given length. Possibly making �w smaller,
we can guarantee that the absolute values of the traces are bounded below by 2. To
compute CZ2, we apply (1) and (3), noting that det.Ret� Id/D 2� tr.Ret/.

If one of ƒC or ƒ� is empty, then each orbit of word length n has return map

Ret D˙M n
a ; Ma D

�
0 �1

1 a

�
; aD˙��1:

If � < 1
2

, then Ma is hyperbolic and so is conjugate to Diag.�; ��1/ with

�D 1
2
.aC

p

a2� 4/; ��1 D 1
2
.a�
p

a2� 4/;

implying that Ret is conjugate to ˙Diag.�n; ��n/. In this case, it’s clear that
jtr.Ret /j> 2 independent of n, implying that all closed orbits of R� are hyperbolic
for � < 1

2
.

6 The semiglobal framing .X; Y /

Having computed the Z=2Z Conley–Zehnder indices of the closed Reeb orbits of R� ,
we now seek to compute Z–valued indices with respect to a framing as well as Maslov
indices of broken closed strings on ƒ0 � .R3

ƒ˙
; �ƒ˙/.

In this section we describe sections of �ƒ˙ , which we will later use to compute these
indices. This will allow us to draw a cycle representing PD.c1.�ƒ˙//D PD.e.�ƒ˙//
as a link in the Lagrangian projection: See Figure 13 for an example. The results of
this section are summarized as follows:

Theorem 6.1 For each � < �0 there are sections X; Y 2 �.�ƒ/ such that the following
conditions hold :

(1) .X; Y /D .@xCy@z; @y/ on R3
ƒ˙
nN� 'R3 nN�.

(2) .X; Y / is a symplectic basis of .�ƒ˙ ; d˛�/ at each point contained in a closed
Reeb orbit of R�.

(3) X�1.0/ D Y �1.0/ is a union of connected components of
S
i T

ci
i , where the

T˙i are the transverse push-offs of the ƒi as described in Definition 4.7.

Using the .X; Y /, the first Chern class of �ƒ˙ may be computed as

PD.c1.�ƒ˙//D
X

ƒi�ƒ˙

�ci rot.ƒi /ŒT
ci
i �D

X
ƒi�ƒ˙

rot.ƒi /�i 2H1.R3ƒ˙/:
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Figure 13: Here we consider contact˙1 surgery on the Legendrian unknot
with rot.ƒ/D 1. In each case, Theorem 6.1 provides a framing of �ƒ on the
complement of a transverse push-off of ƒ which travels along the right-hand
side of ƒ when the surgery coefficient is C1 and along the left side of ƒ
when the coefficient is �1. These push-offs are depicted as the dashed, black
circles.

The classes �i are given by a standard presentation of H1.R3ƒ˙/ determined by the
surgery diagram, which we will describe in Section 9.

Theorem 6.1 may be compared with [31, Proposition 2.3], where a similar result is stated
for Chern classes integrated over 2–cycles in Stein surfaces, and with [27, Section 3],
where Chern classes are computed when performing surgery along Legendrians lying
in pages of open book decompositions.

For notational simplicity, we assume throughout this section that ƒ˙ has a single
connected component unless otherwise stated. Accordingly, we temporarily drop the
indices i appearing in the notation of Section 3. The surgery coefficient of this knot
will be denoted by c.

Our framing is constructed in three steps:

(1) We start with a framing of �std over the complement of N� and express it in
terms of our local coordinate system .z; p; q/ along the boundary of our surgery
handles.

(2) Next, we describe an explicit extension of this framing throughout most of the
handle. We will need this explicit description to compute Conley–Zehnder and
Maslov indices in Section 7.

(3) Finally, we describe the zero locus of this extension.

6.1 Change of bases between trivializations

Consider the following pairs of sections of �std and �ƒ˙ , which form symplectic bases:

fXD@xCy@x; Y D@yg; fPinD@p; QinD@q�p@zg; fPoutD@p; QoutD@q�p@zg:
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These come from

(1) the coordinate systems .x; y; z/ on R3,

(2) the coordinates .z; p; q/ on N� viewed “from the outside” of the surgery handle
prior to surgery, and

(3) .z; p; q/ on N� viewed “from the inside” of the surgery handle after surgery,

respectively. After performing surgery, the pairs .X; Y / and .Pin;Qin/ are well defined
on the complement of a neighborhood of the form N�0 for some �0 < �. Our strategy
will be to apply a series of change-of-basis transformations to extend the framing
.X; Y / of �ƒ˙ throughout the surgery handle in so far as cohomological obstruction —
c1.�ƒ˙/— will allow.

First we describe change of bases from .Pin;Qin/ to .Pout;Qout/. Following (23), the
restriction of the tangent map of the gluing map �c;f;�;ı — defined in (22) — to �ƒ˙
can be written as

(28) T�c;f;�;ı.z; p; q/j� D

�
1 0

c@f�=@p.p/ 1

�
along Tı;� and as Diag.1; 1/ along Bı;� [Sı;� . Here the incoming basis is .Pin;Qin/,
the outgoing basis is .Pout;Qout/, and coordinates .z; p; q/ correspond to the coordinate
system inside of the surgery handle.

Now we describe change of bases from .Pout;Qout/ to .X; Y /. To this end, let G
be the Gauss map for a parametrization of ƒ as described in Section 4.4. Using the
construction of N� in Proposition 4.5, we can write the change of basis at a point
.p; q; z/ as

(29) E.p; q/eJ0.G.q/��=2/;

where E DDiag.1; 1/CO.p/. Here the incoming basis is .Pout;Qout/, the outcoming
basis is .X; Y /, and coordinates .z; p; q/ correspond to the coordinate system on “the
outside” — the complement of the surgery handle in N�.

By composing the changes of bases described above in (28) and (29) and then inverting,
we can write .X; Y / in the basis .Pin;Qin/ on a neighborhood of @N� as follows: Along
Bı;� [Sı;� the change of basis is given by

(30) eJ0.�=2�G.q//E�1.p; q/:

Along Tı;� the transition map is

(31)
�

1 0

�c@f�=@p.p/ 1

�
eJ0.�=2�G.qCcf�.p///E�1.p; qC cf�.p//:
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Here the incoming basis is .X; Y /, the outcoming basis is .Pin;Qin/, and coordinates
.z; p; q/ correspond to the coordinate system inside of the surgery handle. Then, where
they are defined, equations (30) and (31) provideX and Y as a linear combination of Pin

and Qin by multiplying the above expressions on the left by
�
1
0

�
and

�
0
1

�
, respectively.

6.2 Framing extension up to obstruction

We use the above equations to extend the framing .X; Y / of �ƒ˙ inside of the surgery
handle. To this end, let ı > 0 be an arbitrarily small constant and consider a smooth
function � W I�! Œ0; 1� with the following properties:

(1) �.��/D 0 and �.�/D 1.

(2) All of its derivatives vanish outside of I��ı .

When c D 1, we use (30) and (31) to extend the definitions of .X; Y / over the set
fp < �� ıg �N� using the family of matrices

(32)
�

1 0

�@f�=@p.�
C/ 1

�
eJ0.�=2�G.�

C//E�1.�C; �C/;

where

�C.z; p/D p�.z/� �.1� �.z//; �C.z; p; q/D qCf�.�
C.z; p//:

Note that �CD�� along fzD��g[fpD��g and that �CD p along zD �. By these
properties and the properties of f� and its derivatives in Section 4.7, we have that this
family of matrices agrees with (30) along Bı;� and with (31) along Tı;�.

Likewise, when c D�1, we extend the definitions of .X; Y / over fp > ��C ıg �N� ,
using the family of matrices which provide .X; Y / in the basis .Pin;Qin/,

(33)
�

1 0

@f�=@p.�
�/ 1

�
eJ0.�=2�iG.�

�//E�1.��; ��/;

where

��.z; p/D p�.z/C �.1� �.z//; ��.z; p; q/D q�f�.�
�.z; p//:

Note that �� D � along fz D��g [ fp D �g and that �� D p along z D �. As in the
c D 1 case, this family of matrices agrees with (30) along Bı;� [Sı;� and with (31)
along Tı;�.

The extension of the fields .X; Y / through the surgery handle N� is illustrated in
Figure 14.
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p D�� p D �� ı p D��C ı p D �

Figure 14: On the left we have the extension of the framing .X; Y / through
the surgery handle over a square of the form fq D q0; p < �� ıg in N� when
c D 1 and rot.ƒ/D 1. On the right is the case c D �1, rot.ƒ/D 1. Here @p
points to the right, @q points in to the page, and @z points upwards. Along the
bottom of the square, the framing is constant. At each p, the framing twists
with respect to the trivialization .@p; @q � p@z/ according to the twisting of
Gauss map along the path inƒ from q0 to q0Cf�.p/. For cD 1, moving from
left to right, we eventually get to p0 D �� ı such that f�.p/D 1 for p > p0.

6.3 Obstruction to global definition of .X; Y /

The Chern class c1.�ƒ˙/ agrees with the Euler class of �ƒ˙ and so can be represented
as the zero locus of a generic section s 2�.�ƒ˙/. In attempting to extend the definition
of .X; Y / over the squares SC

q0;�;ı
WD fq D q0; � � ı � p � �g when c D 1 and

SCq0;�;ı WD fq D q0; �� � p � ��C ıg when c D�1, we may complete the proof of
Theorem 6.1.

Proof of Theorem 6.1 We attempt to extend X throughout the entirety of the han-
dle, assuming that ı is small enough so that f� is constant on each component of
Œ��;��C ı/[ .�� ı; ��. For the case of C1 contact surgery we study (32). We orient
SC
q0;�;ı

so that @q points positively through it. Parametrize the oriented boundary of
each SC

q0;�;ı
with a piecewise-smooth curve  D .t/ so that

@

@t
D

8̂̂̂<̂
ˆ̂:

@z if p D �� ı;
@p if z D �;
�@z if p D �;
�@p if z D �:

Applying the vector
�
1
0

�
to the left of (31) gives us the sectionX as a linear combination

of Pin and Qin along  . By throwing away the shearing and rescaling terms in (32),
this section is homotopic through nonvanishing sections of �ƒ˙ to a section of the form

(34) t 7!

�
e�J0G.q0Cf�.t�// for p D �� ı; t 2 Œ�1; 1�;
e�J0G.q0Cf�.�// on fz D��g[ fp D �g[ fz D �g:
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This is homotopic to
t 7! econst�2�it rot.ƒ/; t 2 Œ0; 1�:

Therefore, a generic extension of X over each SC
q0;�;ı

will have �rot.ƒ/ zeros counted
with multiplicity. Taking a generic extension of X over fp > � � ıg will then be an
oriented link which transversely intersects each square with multiplicity rot.ƒ/. Pushing
this zero locus through the side p D � of the surgery handle provides PD.c1.�ƒ˙//D
�rot.ƒ/�� .

The case c D �1 is similar; we only check signs. Consider a parametrization of the
boundary of the square S�

q0;�;ı
with a loop  satisfying

@

@t
D

8̂̂̂<̂
ˆ̂:
�@z if p D��C ı;
�@p if z D��;
@z if p D��;
@p if z D �:

Then, following (33), the analog of (34) for the c D�1 case is

t 7!

�
e�J0G.q0�f�.t�// for p D��C ı; t 2 Œ�1; 1�;
e�J0G.q0�f�.�// on fz D �g[ fp D��g[ fz D��g;

so that the zero locus of the extension of the vector field X throughout the handle is
homologous to rot.ƒ/�� .

Remark 6.2 We sketch how the framing .X; Y / can be modified so that its zero locus is
contained in a union of meridians of the ƒi . Take a meridian �i of ƒi and handle-slide
it through N� to obtain a longitude �ci�i , which we may take to be �ciT ci .

This homotopy, say parametrized by Œ0; 1�may be chosen so that the surface S it sweeps
out is an embedded cylindrical cobordism parametrized by an annulus Œ0; 1��S1. Then
we can find a family .Xt ; Yt / of sections of �ƒ whose zero loci are contained in ftg�S1,
so that .X1; Y1/ will vanish along some union of the ƒi , as desired.

If  is a Reeb orbit of R� , then, according to (2), we can compute CZX1;Y1 from CZX;Y
by counting the number of intersections of  with S, which measures the meridional
framing difference.

6.4 Rotation numbers and Chern classes in arbitrary contact 3–manifolds

We briefly state how the above can be generalized to understand how c1 changes
after contact surgery on an arbitrary contact manifold .M; �/. A section s 2 �.�/
determines a homotopy class of oriented trivialization of � on the complement of
s�1.0/ by considering �x D spanR.sx; Jsx/ for an almost-complex structure J on �
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compatible with d˛ for a contact form ˛ for � and x 2M n s�1.0/. Suppose that s is
transverse to the zero section and nonvanishing along a neighborhood N� of ƒ. Write
�s for the oriented link

Ts D s
�1.0/� .M nN�/D .Mƒ nN�/:

Definition 6.3 The rotation number rots.ƒ/ is the winding number of @q in �ƒ
determined by the trivialization of �jƒ provided by s.

Note that changing the orientation of ƒ multiplies the rotation number by �1 and that
rots agrees with the standard definition of the rotation number for oriented Legendrians
in .R3; �std/ if we take s 2�¤0.�std/. More generally, the rotation number of Legendrian
knot ƒ is canonically defined whenever � admits a nonvanishing section and at least
one of H 1.M/D 0 or Œƒ0�D 0 2H1.M/ holds as in Proposition 2.5.

We note that Definition 6.3 may be applied to Legendrian knots in .R3
ƒ˙
; �ƒ˙/ even

when these hypotheses are not satisfied: if such a knot ƒ0 is contained in R3 nN� D

R3
ƒ˙
nN� , then rotX;Y .ƒ0/ may be computed using the typical methods for Legendrian

knots in .R3; �std/ as described in Section 2.8. This follows immediately from the first
condition listed in Theorem 6.1.

Proposition 6.4 Following the notation in the preceding discussion and writing �� for
a longitude ofƒ determined by �, and � for a meridian ofƒ, the Chern class c1.�ƒ/ for
the contact manifold .Mƒ; �ƒ/ obtained by performing contact ˙1 surgery on ƒ�M
is determined by the formula

PD.c1.�ƒ//D ŒTs�� rots.ƒ/�� D ŒTs�˙ rots.ƒ/� 2H1.Mƒ/:

This can be proved using the same strategy as Theorem 6.1, replacing X with s.

7 Conley–Zehnder and Maslov index computations

The goal of this section is to compute the integral Conley–Zehnder indices of closed
orbits of the R� and the Maslov indices of broken closed strings on ƒ0 � .R3

ƒ˙
; �ƒ˙/

using the framing .X; Y / defined in Section 6.

Theorem 7.1 For each n > 0, there exists �0 such that , for all � � �0, all orbits  of
word length � n are hyperbolic with

CZX;Y ./D
nX
kD1

.rotjk ;jkC1 Cı1;cC
jk

/ 2 Z:
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Theorem 7.2 Let b be a broken closed string on ƒ0 � .R3
ƒ˙
; �ƒ˙/ of the form

b D �1 � .a1�1/� � � � �n � .an�n/;

where each �k is a path in ƒ0 and each �k is a chord of ƒ0 with respect to R�. By
Theorem 5.10, we can write

�k D .rk1 � � � rknk
/

for some word of chords with boundary on ƒ0 � .R3; �std/. In this notation ,

MX;Y .b/D

nX
1

�
�.�k/

�
�
1

2
C akmX;Y .�k/

�
;

mX;Y .�k/D

nk�1X
lD1

.rotjkl ;jklC1 Cı
C
1;ckl

/:

Proving the above theorems requires further analysis of (32) and (33). The analysis will
provide an expression of the linearized flow of R� as a path of matrices in SL.2;R/
with entries in RŒ��1� determined by cw./. Analysis of the highest-order terms of
these polynomials gave us the proof of Theorem 5.3. Analysis of the second-highest-
order terms of these polynomials will yield a formula for integral Conley–Zehnder
indices, CZX;Y .

7.1 Matrix model for the linearized flow

With respect to the coordinate system .z; p; q/ inside of the surgery handles R� D @z .
Hence computing the restriction of the linearized to flow to �ƒ˙ from the bottom
(z D ��) to a point above it (z > ��) in the surgery handle with respect to .X; Y /
amounts to writing .X; Y /��;p;q in the basis .X; Y /z;p;q . We write Fi .z; p; q/ 2
SL.2;R/ for this path of matrices associated to points .z; p; q/ in the component of
N� associated to ƒi .

By composing (30) with equations (32) — in the case of C1 surgery — and (33) — in
the case of �1 surgery — we have

(35) Fi .z; p; q/DE.�
ci ; �ci /eJ0Gi .�

ci /

�
1 �ci@f�=@p.�

ci /

0 1

�
e�J0Gi .q/E�1.p; q/

D eJ0Gi .�
ci /

�
1 �ci@f�=@p.�

ci /

0 1

�
e�J0G.q/.IdCO.p//:
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We have preemptively simplified the expression with some basic arithmetic. Here Gi
is the Gauss map associated to the component ƒi of ƒ. The following collection of
assumptions will allow us to further simplify the above expression:

Assumptions 7.3 We refine our previous constructions as follows: At any point
through which a closed Reeb orbit passes, the sections X and Y of �ƒ˙ described in
Section 6.2 are defined according to the formula contained within that section. This
can be achieved by setting the constant ı to be sufficiently small.

Some consequences of the above assumptions coupled with Assumptions 5.4 are:

(1) Equation (35) is valid for any point contained in a closed Reeb orbit.

(2) The expression �ci@f�=@p.�ci / in that formula simplifies to �ci��1 for any
point lying in a closed Reeb orbit.

Combining these consequences with a conjugation, we have that Fi in a neighborhood
of a Reeb segment which exits N�;i near lCj1 and exits near l�j2 for composable Reeb
chords rji and rj2 is homotopic — relative endpoints — to a path of the form

(36) Fj1;j2.t/D e
J0t�j1;j2

 
1 �tcCj1�

�1

0 1

!
.IdCO.�// 2 SL.2;R/; t 2 Œ0; 1�;

where we use the basis ei�=4.X; Y /.

Using (36), we can write the restriction of Poincaré return map to � of a closed Reeb
orbit  of ˛� with cw./D rj1 � � � rjn as

(37) Ret D Fjn;j1.1/Fjn�1;jn.1/ � � �Fj1;j2.1/

by composing the flow maps as an orbit passes through the various surgery handles. If
the word consists of a single chord, then we have RetD Fj1;j1.1/. Note that, while
our expression for Ret depends on a particular representation of the associated cyclic
word, its conjugacy class in SL.2;R/ does not.

7.2 Integral Conley–Zehnder indices

In this subsection we prove Theorem 7.1 via induction on the word length n of  . The
proof is computational, making use of the Robbin–Salamon characterization of the
Conley–Zehnder index described in (5).
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7.2.1 The case n D 1 We begin with the case n D 1, analyzing (36). A slight
modification of the proof of the following lemma along with further analysis of (26)
will provide the general case. For the sake of notational simplicity, we temporarily
drop the subscripts required to describe words of length greater than 1.

Lemma 7.4 Theorem 7.1 is valid for Reeb orbits of word length 1.

Proof We homotop the path F so that it is parametrized with the interval Œ0; 3�, taking
the form

(38)

F.t/D eJ0t1�
�
1 �t2c�

�1

0 1

�
E.t3/; E.0/D Id; E.1/D IdCO.�/;

tk D

8<:
0 if t � k� 1;
t � kC 1 if t 2 .k� 1; k/;
1 if t � k:

With this parametrization we are performing the rotation first so that the path is
nondegenerate at F.0/D Id. A standard computation shows that, along the interval Œ0; 1�,
the contributions to CZX;Y are given by 2b�=2�cC 1. Then, along t 2 Œ1; 2�, we have

F.t/D .�1/rot
�
0 �1

1 �t2c�
�1

�
By the SL.2;R/ trace formula of (1), t 2 Œ1; 2� will be crossing exactly when

tr.F.t//D .�1/1Crott2c D 2:

Therefore, we find a crossing in the interval — and a single one at that — if and only
if c D .�1/1Crot. At such a crossing, if it exists, the matrix S.t/ of (4) is S.t/ D
Diag.t2c��1; 0/. So the contribution to CZX;Y can be computed as 1

2
.c � .�1/rot/.

Adding up the contributions along t 2 Œ0; 2�, we have

CZD 2
j
�

2�

k
C 1C 1

2
.c � .�1/ı/D 2

j
�

2�

k
C
1
2
.1� .�1/rot/C 1

2
.cC 1/

D rotCı1;c :

Along the interval Œ2; 3�, the addition of the E term to the formula contributes a term to
the trace which is bounded by a constant which is independent of �. Thus, this interval
is devoid of crossings for � small.

7.2.2 The case n> 1 Now we prove the induction step in our index computation. We
suppose that the Reeb orbit in question has word length nC 1 > 1 and is parametrized
with an interval Œ0; nC 1�. Then we can compute the Conley–Zehnder index using the
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path of symplectic matrices

�.t/D Fjn;jnC1.tnC1/ � � �FjnC1;j1.t1/; tk D

8<:
0 if t � k� 1;
t � kC 1 if t 2 .k� 1; k/;
1 if t � k;

by combining (36) and (37). As in the proof of Lemma 7.4, we can drop the E terms
in the equations, count the contributions to CZ coming from the rotation and shearing
matrices, then reintroduce the E terms, noting that they do not contribute to CZ due
to the large absolute values of traces. Consequently, we ignore these E terms during
computation. With this simplification, � takes the form, when t 2 Œn; nC 1�,

(39) �.t/D z�.tnC1/Retn;

where

z�.tnC1/D e
itn�jnC1;j1

 
1 �tnC1c

C
jnC1

��1

0 1

!
;

Retn D Fjn�1;jn.1/ � � �FjnC1;j1.1/

D .�1/rotn
�
J nC

nX
KD1

� X
k2IK

� KY
iD1

�cCjki

�
Mk

�
��K

�
;

rotn D
n�1X
0

rotjk ;jkC1 ;

over the subinterval Œn; nC 1�. Here indices are cyclic, so that rotj0;j1 D rotjnC1;j1 .
The Mk are as in (26).

By Theorem 5.3, the trace of Retn has absolute value of order ��n. Therefore, n; nC12
Œ0; nC1� are not crossing for � small. The ��n term in Retn is given by (27). The �1�n

term is also easily computable. Noting that Diag.0; a/J Diag.0; b/D 0 for a; b 2 R,
the only k for whichMk is nonzero with k 2 In are .1; : : : ; n�1/ and .2; : : : ; n/. Thus,
the �1�n terms in Retn are� n�1Y

1

�cCjki

�
Diag.0; 1/JC

� nY
2

�cCjki

�
J Diag.0; 1/D

 
0 �

Qn
2 �c

C
jkiQn�1

1 �cCjki
0

!
:

Combining this with (27), we have

(40) Retn D .�1/rotn

 
0 ���nC1

Qn
2 �c

C
jki

��nC1
Qn�1
1 �cCjki

��n
Qn
1 �c

C
jki

!
CO.�2�n/

D .�1/rotn��nC1
� nY
1

�cCjki

� 
0 cCjk1

�cCjkn
��1

!
CO.�2�n/:
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Lemma 7.5 For � sufficiently small , the contribution to CZX;Y along the interval
Œn; nC 1� in (39) is

rotjn;jnC1 Cı1;cC
jnC1

:

Proof We begin by making some temporary notational simplifications and further
subdivide the interval Œn; nC1� along which the map z� is changing and Retn is constant.
We are referring here to (39) and use notation from that equation throughout the proof.
We write

� D .�1/rotn
� nY
1

�cCjki

�
2 f˙1g;

c1 D c
C
j1
; cn D c

C
jn
; cnC1 D c

C
jnC1

;

rotD rotjn;jnC1 ; rot2 D rot mod 2 2 Z=2Z;

�jn;jnC1 D �
�
2kC ı1;rot2 C

1
2

�
; k D

�
�jn;jnC1

2�

�
2 Z:

By combining the above notation with (40), we can write �.t/D z�.tn/Retn, where

z�.tnC1/D e
J0tnC1�jn;jnC1

�
1 �tnC1cnC1�

�1

0 1

�
;

Retn D ��1�n
�

0 c1
�cn �

�1

�
CO.�2�n/:

Along the subset t 2 Œn; nC 1�, we homotop z� to take the form

z�.tnC1/D e
J0�

�
1 �s2cnC1�

�1

0 1

�
; � D �

�
s1 �

1
4
C s3

�
ı1;rot2 C

1
4

�
C s4 � 2k

�
;

where si are functions of t taking values in Œ0; 1� as described in Figure 15, so that
� D �jn;jnC1 when s1 D � � � D s4 D 1. In words, we will be applying a rotation by 1

4
� ,

a shear, a rotation by �
�
ı1;rot2 C

1
4

�
, and then finally a rotation by 2�k. Taking the

arguments of all trigonometric functions to be � ,

� D

�
cos �sin
sin cos

��
1 �s2cnC1�

�1

0 1

��
��1�n

�
0 c1
�cn �

�1

�
CO.�2�n/

�
D ���n

�
s2cncnC1 cos �s2cnC1��1 cos� sin
s2cncnC1 sin �s2cnC1��1 sinC cos

�
CO.�1�n/;

tr.�/D ���n.s2cncnC1 cos�s2cnC1��1 sinC cos/CO.�1�n/:

Along our first subinterval parametrized by s1, we have s2 D s3 D s4 D 0 with �
increasing from 0 to 1

4
� . Here tr.�/D ���n cosCO.�1�n/ has large absolute value
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n nC 1

Figure 15: From left to right are graphs of the functions s1.t/; : : : ; s4.t/.

when � is small. Hence, for � small, there are no crossings over the s1 subinterval and
so there are no contributions to the Conley–Zehnder index.

Along the subinterval parametrized by s2, we have �D 1
4
� , so that cos.�/Dsin.�/D 1p

2
.

Hence,

(41) tr.�/D 1p
2
���n.s2cncnC1� s2cnC1�

�1
C 1/CO.�1�n/:

At both the s2 D 0 and s2 D 1 endpoints of the interval, tr.�/ will have large absolute
value of orders ��n and ��1�n, respectively, so that � cannot be crossing at either
of these endpoints. Over the interior of the subinterval, we see that there is a single
crossing if cnC1 D 1 and no crossings if cnC1 D�1.

If cnC1 D 1, then at the unique crossing we compute the crossing form

S D�J0
@�

@s2
��1 D

1

2�

�
1 �1

�1 1

�
;

�
a b

�
S

�
a

b

�
D
1

2�
.a� b/2:

The quadratic form determined by S vanishes exactly along the line R
�
1
1

�
. Therefore,

to see that the unique crossing along the s2 subinterval is nondegenerate, we only need
to check that �

�
1
1

�
¤ 0 at the crossing. Plugging cnC1 D 1 into (41), at the crossing

we must have
s2.cn� �

�1/C 1DO.�/

in order to eliminate the ��n and ��n�1 terms. Therefore, at the crossing,

�

�
1

1

�
D

1p
2
���n

�
s2.cn� �

�1/� 1

s2.cn� �
�1/C 1

�
CO.�1�n/D 1p

2
���n

�
�2

0

�
CO.�1�n/

is nonzero for � small. We conclude that, at the crossing, ker.� � Id/ must be 1–
dimensional and the restriction of S to ker.� � Id/ must be positive. Hence, the s2
subinterval contributes ıcnC1;1 to the Conley–Zehnder index.

Now we study the s3 subinterval along which s2 D 1 and � 2
�
1
4
�; �

�
ı1;rot2 C

1
2

��
.

Along this subinterval,

tr.�/D ���n.cncnC1 cos�cnC1��1 sinC cos/CO.�1�n/:
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If ı1;rot2 D 0 and � is very small, then, as � increases from 1
4
� to 1

2
� , the sin term

dominates, tr.�/ maintains a large absolute value, and there are no crossings.

If ı1;rot2 D 1, then we have a single crossing at which the crossing form is determined
by the matrix

S D�J0
@�

@s2
��1 D 3

4
� Id:

Because the crossing form is positive definite, the contribution to the Conley–Zehnder
index is the dimension of ker.� � Id/— either 1 or 2. At the crossing, sin is O.�/,
implying that � ! � (and so cos.�/!�1) as �! 0. Therefore, at the crossing,

.� � Id/
�
0

1

�
D ���n

�
�cnC1�

�1 cos� sin
�cnC1�

�1 sinC cos

�
CO.�1�n/

D ���1�n
�
�cnC1 cos

0

�
CO.��n/¤ 0;

implying that dim ker.� � Id/D 1. We conclude that the contribution to CZ along the
s3 interval is ı1;rot2 .

For the s4 subinterval, we appeal to the loop property of CZ described in (6) to see a
contribution of 2k. Combining the contributions over the four si subintervals, we get

2kC ırot2;1C ıcnC1;1 D rotjn;jnC1 CıcC
jnC1

;1
;

by reverting to our original notation, thereby completing the proof.

The combination of the above lemmas completes our induction, thereby proving
Theorem 7.1.

7.3 Integral Maslov indices

The proof of Theorem 7.2 follows from the same methods of calculation as Theorem 7.1.

Proof of Theorem 7.2 According to Definition 3.8, we need to measure the rotation
of FlowtR� .Tq�k1ƒ

0/ along each chord .rk1 � � � rknk / with respect to the framing .X; Y /.
For chords �k of word length 1, the flow is trivial, so we restrict attention to chords
of word length > 1. The required analysis can be carried out via analysis of (36); we
recall that this describes the restriction of the linearized flow of R� to �ƒ˙ through a
component N�;j1 of N� starting at a point near the tip of one chord rj1 up to a point
near the tail of another chord rj2 .
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We study the rotation along a single � D .rj1 � � � rjn/: The matrix expression Fj1;j2.t/
in (36) applies to the basis

ei�=4.X; Y /' .@q �p@z;�@p/;

beginning on the bottom, fz D ��g, of the surgery handle N�;j1 . For j1 D k1 and
j2 D k2, the strand of ƒ0 touching the starting point of the chord rj1 is such that
Tƒ0 D R

�
0
1

�
. Therefore, we need to see how Fj1;j2.t/ rotates this subspace for

t 2 Œ0; 1�. As in the proof of Theorem 7.1, we can modify the path so as to apply the
shearing first, and then the rotation.

For the shearing, we study the family of real lines in R2 given by

R

 
1 �tcCj1�

�1

0 1

!
.IdCO.�//

�
0

1

�
; t 2 Œ0; 1�:

The end result is a line of the form R
��
1
0

�
CO.�/

�
obtained by rotating R

�
0
1

�
by an

angle of

(42) cCj1 �
1
2
� CO.�/:

Then, applying the rotation through angles t�j1;j2 as in (36), we rotate this subspace by

(43) �j1;j2 D � rotj1;j2 C
1
2
�;

which we recall from Section 3 is the rotation angle of the capping path �i;j associated
to the pair of composable chords .rj1 ; rj2/.

Continuing the flow by applying the remaining Fkl ;klC1 for l D 2; : : : ; nk�1 provides
us a total rotation angle of

�

� nk�1X
lD1

rotkl ;klC1 C
1
2
C
1
2
cC
kl

�
CO.�/D �

� nk�1X
lD1

rotkl ;klC1 CıcC
kl
;1

�
CO.�/;

leaving us on a neighborhood of the strand of ƒ lying at the starting point of the
chord rknk which ends on ƒ0. Each summand in the above formula is the result of
adding the contributions of (42) and (43). As in the case wl.�/ D 1, the linearized
flow up to ƒ0 along rknk is trivial in the basis .X; Y /. This nearly completes the
construction of the section �G along the chord �: we must apply one more rotation
to ensure that the unoriented Lagrangian line closes up as described in the discussion
preceding Definition 3.8.
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In the case that our asymptotic indicator is ak D 1, the total rotation along the chord
will be

�

�
�
1
2
C

nk�1X
lD1

.rotkl ;klC1 CıcC
1;kl

/

�
;

where the 1
2

is the contribution of the clockwise correction rotation at the end of the
chord. From the above analysis we know that the angle for this rotation is �1

2
�CO.�/.

If the asymptotic indicator is �1, we must travel in the opposite direction, from the tip
to the tail of the chord, and then apply small the clockwise rotation to obtain a total
rotation angle of

�

�
�
1
2
�

nk�1X
lD1

.rotkl ;klC1 CıcC
1;kl

/

�
:

The section �G appearing in the definition of Ms is determined by the �.�k/ as the
framing .X; Y / coincides with .@x�y@z; @y/— from which the �.�k/ are computed —
on the complement of N�, in which ƒ0 is presumed to be contained.

8 Diagrammatic index formulas

In this section we compute indices of holomorphic curves in .R�R3
ƒ˙
; d.et˛�//. We

begin by covering the case of curves whose domain is a closed surface with punctures,
which is a simple application of (8) to our existing computations of Conley–Zehnder
indices and Chern classes. Next we cover the case of a holomorphic disk which is
asymptotic to a broken closed string on ƒ0 � .R3

ƒ˙
; �ƒ˙/ in the sense of Example 3.4.

The case ƒ˙D¿ recovers a classic index formula appearing in combinatorial versions
of LCH and Legendrian RSFT . These index formulas are then combined to describe
indices associated to holomorphic curves with arbitrary configurations of interior and
boundary punctures in Theorem 8.3.

All indices computed will depend only on topological data, so mention of any specific
almost-complex structures are ignored.

8.1 Index formulas for closed orbits

Let fwC1 ; : : : ; w
C

mC
g and fwC1 ; : : : ; w

�
m�g be collections of cyclic words of chords onƒ.

By Theorem 7.1, we may choose some � > 0 such that for all � < � , the closed orbits
˙j of R� corresponding to these cyclic words via Theorem 5.8 are all nondegenerate
hyperbolic à la Theorem 5.3. Write C D fC1 ; : : : ; 

C

mC
g and � D f�1 ; : : : ; 

�
m�g

for the corresponding collections of orbits.
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Suppose that .†; j / is a closed Riemann surface containing a nonempty collection of
punctures and that .t; U / W†0!R�R3

ƒ˙
is a holomorphic curve (as in Section 2.7)

which is positively asymptotic to the punctures C and negatively asymptotic to the �.

Theorem 8.1 Using the framing .X; Y / described in Section 6.2, we can write the
expected dimension of the moduli space of curves near .t; U / as

(44) ind..t; U //D CZX;Y .C/�CZX;Y .�/��.†0/� 2
nX
1

ci rot.ƒi /.U �T
ci
i /

for all � < � , where the sum runs over the connected components of ƒ˙ and the
CZX;Y are computed as in Theorem 7.1.

Proof By comparing with (8), we only need to check that

cX;Y .U /D�

nX
1

ci rot.ƒi /.U �T
ci
i /;

where cX;Y .U / is the relative Chern class of the framing .X; Y /. Letting XU 2
U �.R3

ƒ˙
; �ƒ˙/ be a section for which TzU.XU / D X.U.z// for z 2 †0 to compute

cX;Y .U / provides the desired result, as X�1.0/ is a union of connected components
of
S
T
ci
i and the coefficients �ci rot.ƒi / account for the multiplicities of the zeros

of XU by the construction of .X; Y / in Section 6.

8.2 Index formulas for disks with boundary punctures

Now suppose that fpj gm1 � @D is a collection of distinct points on the boundary of a
disk. Write D0 D D n fpj g for the complement of the boundary punctures in D and
write j for the standard complex structure on D. Suppose that .t; U / WD0!R�R3

ƒ˙

is a .j; J /–holomorphic map satisfying

(1) .t; U /.@D0/�R�ƒ0, and

(2) the punctures fpj g are asymptotic to chords of R� with boundary on ƒ0 �
.R3
ƒ˙
; �ƒ˙/.

As described in Example 3.4, such a map determines a broken closed string which
we will denote by bcs.U /. As in the case of (8), we use ind..t; U // to denote the
expected dimension of the space of holomorphic maps with the same bcs.U / boundary
conditions as .t; U / and in the same relative homotopy class obtained by allowing
the locations to vary and then modding out by holomorphic reparametrization in the
domain (when m< 3).
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Theorem 8.2 The moduli space of holomorphic disks with boundary condition bcs.U /
in the homotopy class of U has expected dimension

(45) ind..t; U //DMX;Y .bcs.U //Cm� 1� 2
nX
1

ci rot.ƒi /.U �T
ci
i /

near the point .t; U /. The sum appearing in the above formula is indexed over the
components ƒi of ƒ.

Proof We are simply plugging our definition of broken closed strings into formulas
appearing in [19; 17].

Assume first that X is nonvanishing over im.U /, so that @t , R� , X and Y determine a
trivialization of U �T .R�R3

ƒ˙
/ which splits as a pair of complex lines. Using framing

deformation-invariance of MX;Y , we may perturb .X; Y / so that it is invariant under
the flow of R� , in which case the geometric setup described in [17, Section 3.1] applies.
Our choices of “clockwise rotations” along positive punctures and “counterclockwise
rotations” along negative punctures in the definition of the path of symplectic matrices
defining Ms coincide with those used to define the Maslov numbers (which are denoted
by �./) in that text. The tangent space of our Lagrangian — R � ƒ0 — splits as
R@t ˚Tƒ0, so the only contribution to the Maslov number in question comes from the
rotation of Tƒ0 along the boundary of the disk by the direct sum formula for Maslov
numbers. Then the moduli space dimension formula of [17, Section 3.1] completes our
proof.

Now suppose that X is nonvanishing along im.U /. By the construction of the framing
.X; Y /, we have that this section must be nonvanishing along ƒ0 and all of its Reeb
chords, and so is nonvanishing along im.bcs.U //. Therefore, the Maslov index can
corrected by a relative Chern class term as in (8), which may be computed as signed
count of intersections of U with the transverse push-offs of the ƒi as in the statement
of that theorem.

8.3 Index formulas for curves with interior and boundary punctures

Now we state an index formula for holomorphic curves of general topological type.
The geometric setup is as follows.

Let .†; j / be a compact, connected Riemann surface with boundary components

.@†/k; k D 1; : : : ; #.@†/;
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marked points pint;˙
i contained in int.†/, and marked points p@;˙i contained in @†.

We write †0 for † with all of its marked points removed. Consider a holomorphic map
.t; U / W†0!R� .R3

ƒ˙
; �ƒ˙/ subject to the following conditions:

(1) the pint;C
i are positively asymptotic to some collection C of closed orbits of R� ,

(2) the pint;�
i are negatively asymptotic to some collection � of closed orbits of R� ,

(3) the p@;Ci are positively asymptotic to some collections �C of chords of ƒ0 �
.R3
ƒ˙
; �ƒ˙/,

(4) the p@;�i are negatively asymptotic to some collections �� of chords of ƒ0 �
.R3
ƒ˙
; �ƒ˙/, and

(5) .t; U /.@†0/�R�ƒ0.

In this setup, we have a broken closed string bcsk associated to each component .@†/k
of †. We may consider the moduli space of curves subject to the same asymptotics —
˙ and bcsk — allowing the complex structure on † to vary and taking a quotient by
j–holomorphic symmetries on the domain.

Theorem 8.3 In the above notation , the expected dimension of the moduli space of
holomorphic maps is

ind..t; U //D CZX;Y .C/�CZX;Y .�/C
X
k

MX;Y .bcsk/

��.†/C #.pint/C #.p@/� 2
X

ƒi�ƒ˙

ci rot.ƒi /.U �T
ci
i /:

The proof is a simple combination of Theorems 8.1 and 8.2 using index additivity; see
[58, Section 3].

9 H1 computations and push-outs of closed orbits

Here we compute the first homology H1.R3ƒ˙/ of R3
ƒ˙

and the homology classes of
the closed orbits of R�.

Theorem 9.1 The first homology H1.R3ƒ˙/ is presented with generators �i and
relations

.tb.ƒi /C ci /�i C
X
j¤i

lk.ƒi ; ƒj /�j D 0:
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Figure 16: Default orientations for meridians.

Let  be a Reeb orbit of ˛� with cw./ D rj1 � � � rjn . Then its homology class in
H1.R3ƒ˙/ with respect to the above basis is

Œ�D
1

2

nX
kD1

.crjk C crjk ;jkC1/;

where the k are considered modulo n.

Relative homology classes Œ�� 2 H1.R3ƒ˙ ; ƒ
0/ of chords � with boundary on ƒ0 �

.R3
ƒ˙
; �ƒ˙/ can similarly be computed using the technique of the proof of Theorem 9.1

which is carried out in Section 9.3. It will be clear that the method of proof allows
the reader to compute Œ� as an element of the H0 of the free loop space of R3

ƒ˙
. In

Section 9.4, we show how the proof can be generalized to provide a general means of
homotoping closed orbits of R� into R3 nN, a technique we will need for the proof of
Theorem 1.2.

9.1 Conventions for meridians and longitudes

Before proving Theorem 9.1, we quickly review some standard notation. Let �j denote
a meridian ofƒ and �i a longitude ofƒ provided by the Seifert framing and orientation
of ƒi . We note that, with respect to the Seifert framing of ƒi , the longitude provided
by � , denoted by ��;i is

��;i D �i C tb.ƒi /�i :

Each �i is oriented so that

.meridian, longitude, outward-pointing normal/

is a basis for TR3 agreeing with the usual orientation over @N (after rounding the
edges of @N in the obvious fashion). See Figure 16.

9.2 First homology of the ambient space

The computation of H1.R3ƒ˙/ easily follows from the fact that contact ˙1 surgery is a
form of Dehn surgery. Suppose that R3L is a 3–manifold obtained by Dehn surgery on
a smooth link LD

S
Li for which the surgery coefficients with respect to the Seifert
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framing are pi=qi for relatively prime integers pi and qi . Writing �j for the oriented
meridians of the Li , we have the following theorem from Kirby calculus — see eg [52,
Theorem 2.2.11]:

Theorem 9.2 Denote by R3L a 3–manifold determined by a surgery diagram where
each component Li of L has Dehn surgery coefficient pi=qi for relative prime integers
pi and qi . Then H1.R3L/ is presented with generators �i and relations

pi�i C qi
X
j¤i

lk.Li ; Lj /�j D 0;

where lk.Li ; Lj / is the linking number.

When performing contact surgery on the componentƒi ofƒ, the meridian �i bounding
a core disk of the surgery handle is sent to

�i C ci��;i D .1C ci tb.Li //�i C ci�i :

Thus, for Legendrian knots in R3, contact ˙1 surgery on ƒi is topologically a
.tb.ƒi /˙1/ surgery. From this computation, the calculation ofH1.M/ in Theorem 9.1
is then immediate.

9.3 Homology classes of Reeb orbits

In this section we describe how to compute homology classes of the Reeb orbits of ˛� .
Our strategy will be to homotop orbits to the complement of N� in R3

ƒ˙
, after which

the following computational tool may be applied:

Theorem 9.3 Let  be an oriented link in R3 nL. Then the homology classes of  in
H1.R3 nL/ and H1.R3L/ is given by

Œ�D
X
i

lk.; Li /�i :

Proof Assume that  is embedded and let S �R3 be a Seifert surface which trans-
versely intersects the Li . Punch holes in S near its intersections with the Li , producing
a surface S 0 which is disjoint from L and whose oriented boundary is a union of 
and a linear combination

P
ai�i . Then S 0 provides a cobordism from  to these �i ,

providing an equivalence Œ�D
P
ai�i in homology. By the definition of lk, we have

ai D lk.; Li /.

Warning 9.4 The homotopies which we apply to closed Reeb orbits  are not guaran-
teed to preserve the isotopy class of their embedding in R3

ƒ˙
(assuming  is embedded).
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Figure 17: Homotoping a Reeb orbit into R3 nN� as it passes through a
c DC1 surgery handle.

Figure 17 demonstrates how to homotop a segment of a Reeb orbit  into the exterior
of the surgery handle N� as it passes through a component N�;i for which ci D 1. The
boxes represent the surgery handles with @p pointing into the page, @q pointing to
the left, and @z pointing up. On the left we have an arc parallel to the Reeb vector
field entering the handle as seen from the inside of N�;i . The arc extends in the @z
direction through the handle, along which it can be realized as being contained in the
boundary of a square of the form fp � p0; q D q0g, depicted in gray. On the right, we
see intersection of the boundary of this square with @N� as seen from the outside of
the surgery handle R3 nN� . By homotoping  across the gray disk, we obtain this arc
shown on the right.

Figure 18 demonstrates the same procedure for orbits as they pass through surgery
handles with surgery coefficient �1. In this case we consider squares of the form
fp � p0; q D q0g through which we homotop our arcs. Note that our choice of
homotopy for both surgery coefficients is such that the homotoped arcs traverse @N in
the @q direction in which the components of ƒ are oriented.

For a Reeb orbit  , we can perform homotopies as described above at the tips of all
chords in cw./ to push it to the exterior of N� . Away from the chords, we may arrange
that the homotoped orbit traverses the pD�� side of N�;i when the surgery coefficient
of ƒi is ˙1. The image of  after homotopy is shown in the Lagrangian projection in
Figure 19.

Figure 18: Homotoping a Reeb orbit into R3 nN� as it passes through a
c D�1 surgery handle.
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Figure 19: Here the homotopy described in Figures 17 and 18 are depicted in
the Lagrangian projection. The top (bottom) row shows positive (negative)
crossings of ƒ˙. Each subfigure may be rotated by � . Local contributions to
linking numbers are indicated below each subfigure.

The computation of homology classes of orbits in Theorem 9.1 then amounts to
packaging the above observations algebraically:

Proof of Theorem 9.1 We homotop  to R3 nN� as described above and then apply
Theorem 9.3. We write  0 for the image of  under the homotopy. The linking number
of two knots in R3 may be computed from a diagram as half of the signed count of
crossings in the diagram. Therefore, in order to compute Œ�, it suffices to show that
the signed count of crossings between  0 and each ƒi is given by the �i coefficients inP
.crjk C crjk ;jkC1/.

In a neighborhood of a crossing,  0 will be as depicted in Figure 19 in the Lagrangian
projection, where the contribution to the signed count of crossings between  and
the ƒi is given by the terms

1
2
..c�jk C sgnjk /�l�jk

C .cCjk C sgnjk /�lC
jk

/:

The formula may be verified on a case-by-case basis for each of the eight components
of the figure. This is exactly the definition of crjk given in (12).

Away from a crossing,  0 will continue following alongside arc components of the ƒi ,
to the right (in the p > 0 direction) of ƒ when the component of ƒ has coefficient �1
and to the left otherwise as it travels from a crossing jk to jkC1. The contributions to
the signed count of crossings with each of the ƒi are given by the coefficients of �i
in crjk ;jkC1 in the formula, as is clear from the definition of the crossing monomial.
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�1;1 x�1;1 �2;2 x�2;2

�1;1 x�1;1 �2;2 x�2;2

�1;2�2;1 x�1;2�2;1 �1;2x�2;1 x�1;2x�2;1

�1;2�2;1 x�1;2�2;1 �1;2x�2;1 x�1;2x�2;1

Figure 20: Push-outs of Reeb orbits in .R3
ƒ̇
; �
ƒ̇
/, where ƒ is the trefoil

of Figure 6. Default orientations for ƒ and hence for capping paths are
determined by the arrow on ƒ appearing in that figure. Each subfigure
is labeled (to its lower-left) with the capping paths which determine the
homotopy shown with homotoped Reeb orbits appearing in black.

9.4 Push-outs of Reeb orbits

We’ve demonstrated how squares of the form fp � p0; q D q0g � N� in the case of
C1 surgery and of the form fp � p0; q D q0g in the case of �1 surgery are used to
homotop Reeb orbits into R3

ƒ˙
nN� DR3 n � so that the homotoped circles ride along

some �j1;j2 �ƒ according to its prescribed orientation.

Squares of the form fp � p0; q D q0g inside of a ci DC1 component of ƒ and of the
form fp � p0; q D q0g inside of a ci D �1 component could also be used. As may
be checked with the same local model — Figures 17 and 18 — but with opposite the
prescribed orientation for ƒ, we may use these squares to homotop an orbit  to R3 n�.
Using these squares will result in the homotoped arcs riding along some x�j1;j2 �ƒ.
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We then have two choices of homotoping square each time our orbit  passes throughN� ,
with each choice corresponding to a choice of either a �j1;j2 or a x�j1;j2 . Hence, for a
Reeb orbit  D .rj1 � � � rjn/, a choice of �1; : : : ; �n with each �j 2 f�jk ;jkC1 ; x�jk ;jkC1g
determines a means of homotoping  into R3 nN�.

Definition 9.5 Provided �1; : : : ; �n as above, we say that the homotopy class of the
map of the circle in R3 nN� determined by homotoping  as described above is the
push-out of �1; : : : ; �n.

In other words, each orbit string — recall Definition 3.7 — determines instructions for
homotoping  into the complement of the surgery locus. Various examples are depicted
in Figure 20, displaying all push-outs for orbits .r1/, .r2/ and .r1r2/ for R3

ƒ˙
, where

ƒ is the trefoil of Figure 6 for both choices of surgery coefficient.

10 Surgery cobordisms and Lagrangian disks

The purpose of this section is to build symplectic cobordisms between the .R3
ƒ˙
; �ƒ˙/

with specialized properties. We consider the following setup: Take ƒ� .R3; �std/ in
good position with ƒ0 �ƒ nonempty. After performing surgery on ƒ˙ �ƒ, we have
a contact form ˛� on .R3

ƒ˙
; �ƒ˙/ and consider ƒ0 as a Legendrian link in .R3

ƒ˙
; �ƒ˙/.

We choose a constant c D˙1 and denote the contact manifold obtained by performing
contact c surgery along ƒ0 � .R3

ƒ˙
; �ƒ˙/ by .R3ƒ; �ƒ/; we also denote the contact

form on .R3ƒ; �ƒ/ so obtained by ˛�. We write N 0
� for a standard neighborhood of

ƒ0 �R3
ƒ˙

, as described in Section 4.4, of size �.

Theorem 10.1 For any � > 0, there exists a positive constant C > 0 and a Liouville
cobordism .Wc ; �c/ with the following properties:

(1) If c D C1, the convex end of the cobordism is .R3
ƒ˙
; eC˛�/ and the concave

end is .R3ƒ; e
�C˛�/.

(2) If c D�1, the convex end of the cobordism is .R3ƒ; e
C˛�/ and the concave end

is .R3
ƒ˙
; e�C˛�/.

(3) .Wc ; �c/ contains a disjoint collection of disks Dc;i along which �c D 0, bound-
ing ƒ0 in the convex end of the cobordism when c DC1 and bounding ƒ0 in the
concave end of the cobordism when c D�1.

(4) A finite symplectization

.Œ�C;C �� .R3
ƒ˙
nN 0

� /; e
t˛�/
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of .R3
ƒ˙
nN 0

� / is contained in .Wc ; �c/, so that the restriction of its inclusion map
to .@Œ�C;C �/�.R3

ƒ˙
nN 0

� / provides the obvious inclusions into .R3
ƒ˙
; e˙C˛�/

and .R3ƒ; e
˙C˛�/.

We will construct .Wc ; �c/ by attaching 4–dimensional surgery handles to R3
ƒ˙

. As
mentioned in the above theorem, the key properties of our cobordism are that

(1) we get exactly the contact forms ˛� on its boundaries, and

(2) all of the perturbations required to achieve this end happen within a standard
neighborhood of ƒ0 whose size shrinks as � tends to zero.

Then the analysis of Sections 4–7 applies to contact forms on the ends of our cobordisms
without modification.

We are only slightly modifying known handle-attachment constructions — correspond-
ing to the case c D�1 above — such as appear in Weinstein’s original work [60] and
Ekholm [18].

An outline of this section is as follows:

(1) In Section 10.1 we collect lemmas required to perturb contact forms on contacti-
zations, being particularly interested in standard neighborhoods of Legendrian
knots.

(2) In Section 10.2 we describe a square surgery handle sitting inside of R4 and
outline the properties of its ambient geometry.

(3) In Section 10.4 we flatten the corners of the handle to prepare for later attachment.

(4) In Section 10.5 we describe Reeb dynamics on the convex end of this handle,
showing that its flow is described as a Dehn twist.

(5) In Section 10.6 we modify the handle so that the Dehn twist determined by
the Reeb flow is a linear Dehn twist as described in the gluing construction of
Section 4.7.

(6) In Section 10.7 we finalize our construction by attaching our handle to finite
symplectizations of .R3

ƒ˙
; ˛�/.

10.1 Geometry of 1–forms on contactizations and their symplectizations

Let .I �W; ˛ D dzCˇ/ be a contactization of an exact symplectic manifold .W; ˇ/
as in Section 2.3.2.

10.1.1 �–preserving perturbations We first look at how the Reeb vector field
changes if we multiply ˛ by a positive function, thereby preserving the contact structure.
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Lemma 10.2 Given H 2 C1.I �W /, the Reeb vector field RH of the contact form

˛H D e
H .dzCˇ/

on I �W is
RH D e

�H
�
.1Cˇ.XH //@z �XH �

@H

@z
Xˇ

�
;

where XH is computed with respect to dˇ.

This is a straightforward computation. We’ll be interested in the following special case:

Lemma 10.3 Suppose that H DH.z; p/ is a smooth function on I � I �S1. Then
the Reeb vector field of ˛H D eH .dzCp dq/ is

RH D e
�H

��
1Cp

@H

@p

�
@z �

@H

@p
@q �p

@H

@z
@p

�
and the function peH is invariant under FlowtRH .

For the last item, we see that the projection of RH onto the .z; p/ coordinates is the
Hamiltonian vector field associated to dp^ dz and the function pe�H .

10.1.2 �–modifying perturbations Now we study perturbations of ˛ which modify � .
Similar modifications of contact forms appear in [4, Definition 3.1.1; 14, Corollary 2.5].

Lemma 10.4 Given a smooth function h 2 C1.I �W; .0;1//, the contact form

˛h D h dzCˇ

is contact if and only if
h dˇCˇ^ dh

is a symplectic form on each fzg�W. If this form is contact , its Reeb vector field Rh is

Rh D .h�ˇ.Xh//
�1.@z �Xh/;

where Xh is computed with respect to dˇ. The contact structure �h D ker.˛h/ is given
by

�h D fhV �ˇ.V /@z W V 2 T W g:

The following technical result will allow us to modify the Reeb vector field on standard
neighborhoods of Legendrians so that the flow map from the bottom to the top of the
neighborhood realizes a Dehn twist �g associated to a function g. For applications
to surgery later in this section, it will be important to keep track of the size of our
neighborhood.

Geometry & Topology, Volume 27 (2023)



1036 Russell Avdek

Proposition 10.5 For positive constants �p; �g > 0, let g D g.p/ W I�p ! R be a
smooth function which vanishes for all orders on @I�p and satisfies the pointwise bound
jg.p/j � �g . Then , for constants �z and �t satisfying

�p�g �
1
2
�z;

�t�z

2.1C �t /
;

there exists a function hD h.z; p/ on I�z � I�p and an exact symplectic manifold

.Œ��t ; 0�� I�z � I�p �S
1; �/

such that the following conditions hold :

(1) �jf��t g�I�z�I�p�S1 D e
��t .dzCp dq/.

(2) �jf0g�I�z�I�p�S1 D ˛h, where ˛h is as in Lemma 10.4 for a positive function h.

(3) s˛hC .1� s/.dzCp dq/ is contact for all s 2 Œ0; 1�.

(4) ˛h� .dzCp dq/ and all of its derivatives vanish along @.I�z � I�p �S
1/.

(5) The Reeb vector field Rh of ˛h satisfies dz.Rh/ > 0 everywhere.

(6) For each point .p; q/ 2 I�p �S
1 a flow-line of Rh passing through .��z; p; q/

will pass through .�z; p; qCg.p//.

(7) The Liouville vector field of � agrees with @t on a collar neighborhood of the
boundary of its domain.

Proof We first outline the contact forms we’ll need. Consider functions of the form
hD 1CF.z/G.p/ on I�z � I�p and 1–forms

˛h D h dzCp dq

as studied in Lemma 10.4. We assume F � 0 and that both F and G and all of
their derivatives vanish on collar neighborhoods of the boundary of their domains. By
Lemma 10.4, ˛h is contact if and only if

(46) 0 < 1CFG �pF
@G

@p
:

Second we outline the construction of Liouville forms which interpolate between
˛ D dz C p dq and ˛h. Consider functions E on an interval Œ��t ; 0� satisfying
E.��t / D 0 and E.0/ D 1 with @kE=@tk D 0 for all k > 0 at the endpoints of its
domain and @E=@t � 0 everywhere. Define a 1–form

�EFG 2�
1.Œ0; �t �� I�z � I�p �S

1/

determined by

(47) �EFG D e
t
�
.1CE.t/F.z/G.p// dzCp dq

�
:
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Then we compute

(48) d�EFG ^d�EFG D e2t
�
1CEFG�pEF

@G

@p
C
@E

@t
FG

�
dt ^dz^dp^dq:

We seek to specify the E, F and G so that

(1) ˛h is contact and its flow determines a Dehn twist by g,

(2) d�EFG is symplectic, and

(3) the sizes of our neighborhood and symplectic cobordism — governed by the
constants �z and �t — are reasonably small.

First we show that G is determined by g. If ˛h is contact, its Reeb vector field is

Rh D
�
1CFG �pF

@G

@p

��1�
@z �F

@G

@p
@q

�
:

This Reeb vector field is particularly friendly in that it preserves p and provides us
with a separable ODE. For, provided an initial condition .z0; p0; q0/ and some z > z0,
we see that, after some time t > 0, FlowtRh will pass through the point .z; p0; q/ with

q D q0�
@G

@p

Z z

z0

F.Z/ dZ:

In order to realize the flow from f��zg�R�S1 to f�zg�R�S1 as a Dehn twist by g,
we need

G.p/D�

�Z �z

��z

F.z/ dz

��1 Z p

�1

g.P / dP:

This quantity is well defined by our presumption that g is compactly supported.

With this choice of G, the contact condition provided by (46) is equivalent to

(49) F �

�Z p

�1

g.P / dP �pg.p/

�
�

Z �z

��z

F.z/ dz

for all .z; p; q/. The condition that d�EFG is symplectic provided by (48) is equivalent
to

(50) EF �

�Z p

�1

g.P / dP �pg.p/

�
C
@E

@t
F �

�Z p

�1

g.P / dP

�
�

Z �z

��z

F.z/ dz:

Now choose F and a constant �F so that

�F D sup jF.z/j; �F �z D

Z �z

��z

F.z/ dz:

It’s easy to see by drawing pictures of bump functions that these choices can be made.
Then (49) is satisfied so long as

�p�g �
1
2
�z
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and, since 0�E � 1, we have that (50) is satisfied so long as�
2C

@E

@t

�
�p�g � �z :

Choose E so that sup @E=@t D 2=�t . Then this last inequality, which we seek to satisfy,
becomes

2.1C ��1t /�p�g � �z () �p�g �
�t�z

2.1C �t /
:

10.2 The square handle

Having established the above lemmas, we proceed with the construction of our sym-
plectic handle. Here we construct a square Weinstein handle sitting in R4.

Consider the Liouville form on R4 DC2,

�0 D

2X
1

2xi dyi Cyi dxi :

This is a potential for the standard symplectic form d�0 D dxi ^ dyi with Liouville
vector field

X�0 D 2xi@xi �yi@yi ;

whose time t flow is given by

(51) FlowtX�0 .x; y/D .e
2tx; e�ty/:

For �0 > 0, consider also the convex set with corners

D�0 �D D fjxj � �0; jyj � 1g �R4;

whose smooth boundary strata we denote by

MC�0 D @D�0 �D; M��0 DD�0 � @D:

ThenX�0 is positively transverse to theM˙�0 if we equipMC�0 with the outward-pointing
orientation and equip M��0 with its inward-pointing orientation. Therefore, �0jM˙
is contact. Applying FlowtX�0

for t 2 .�1; 0�, we have embeddings of the negative
half-infinite symplectizations of the .M˙�0 ; �0jTS˙/ into R4,

(52) FlowtX�0 ı i
˙
W .�1; 0��M˙�0 !R4;

where i˙ WM˙�0 !R4 denote the inclusion mappings.

10.2.1 Reeb trajectories across the square handle The Reeb vector field R�0
along MC�0 is

R�0 D
1

2�20
xi@yi D) FlowtR�0 .x; y/D

�
x; yC

t

2�20
x

�
:
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Starting at points .x� ; y0/D .�0 cos.�/; �0 sin.�/; 1; 0/, Reeb trajectories are

FlowtR�0 .x� ; y0/D
�
�0 cos.�/; �0 sin.�/; 1C

t

2�0
cos.�/;

t

2�0
sin.�/

�
:

In order that such a trajectory does not immediately exitMC�0 (maintaining the condition
jyj � 1 for small t � 0), we must have � 2

�
1
2
�; 3

2
�
�
. These trajectories touch @MC�0

when
1D

�
1C

t

2�0
cos.�/

�2
C

�
t

2�0
sin.�/

�2
() �4�0 cos.�/D t;

at which point the y coordinate will be

y� D .1� 2 cos2.�/;�2 cos.�/ sin.�//D .�cos.2�/;�sin.2�//

D .cos.2� ��/; sin.2� ��//:

We can then measure the angle from y0 to y� as 2� �� 2 Œ0; 2��.

10.3 Identification of the concave end of the handle as a 1–jet space

We define an embedding of a standard neighborhood of a Legendrian into M�1 as

ˆ�.z; p; q/D
�
z cos� p

2�
sin; z sinC p

2�
cos; cos; sin

�
;

where the arguments of cos and sin are both 2�q. The map parametrizes M�1 so that

(1) 2�q is the angle in the y–plane,

(2) z D x �y,

(3) p D x � @y=@q, and

(4) jxj2 D z2C .p=2�/2.

The tangent map of ˆ� is

Tˆ� D

0BB@
cos �.1=2�/ sin �2�z sin�p cos
sin .1=2�/ cos 2�z cos�p sin
0 0 �2� sin
0 0 2� cos

1CCA
with incoming basis f@z; @p; @qg and outgoing basis f@x1 ; @x2 ; @y1 ; @y2g, from which
it follows that

ˆ���0 D dzCp dq:
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We can extend ˆ� to an embedding of the symplectization of the 1–jet space into R4

by

(53) x̂
�.t; z; p; q/D FlowtX�0 ıˆ�.z; p; q/

D

�
e2t
�
z cos� p

2�
sin
�
; e2t

�
z sinC p

2�
cos
�
; e�t cos; e�t sin

�
:

By (51) and LX�0�0 D �0, we have

(54) x̂�
��0 D e

t .dzCp dq/:

10.4 Shaping the handle

Here we shape our handle so that the manifold obtained by the handle attachment will
be smooth. Moreover, we will choose a specific shape which allows us to control Reeb
dynamics on the surgered contact manifold.

Pick a positive constant �1 < �0 and a smooth function B D B.�/ W .0;1/! Œ0;1/

satisfying the conditions

(1) B.�/D log
p
�0=�D�

1
2
.log �� log �0/ for � 2 .0; �1/,

(2) B.�/D 0 for � > �0, and

(3) 0� �@B=@� < ��1 everywhere.

Along � 2 .0; �1/, we have @B=@�D�1=2�, so that our last condition is satisfied. To
find such a function B, we can take a smoothing of the piecewise-smooth function

(55) BPW.�/D

�
log

p
�0=� if � � �0;

0 if � � �0:

Let N D I � I � S1 be a standard neighborhood of a Legendrian ƒ with ƒ D
f0g � f0g �S1. Using the function B, we define an embedding

ˆH W .N nƒ/!R4; ˆH D FlowHX�0 ıˆ�;

where

H.p; z/D B.�.p; z//; �.p; z/D

r
z2C

�
p

2�

�2
:

We outline some important properties of the map ˆH :

(1) From (54), ˆ�H�0 D e
H .dzCp dq/.

(2) Along the set fz2C .p=2�/2 � �0g, ˆH is the same as ˆ�.
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Figure 21: On the left is the square handle D�0 �D and on the right is the
handle WH . Flow-lines of X�0 transversely pass through M˙�0 and MH . The
Lagrangian disks fxD 0g and fyD 0g are shown in red and blue, respectively.

(3) From the first property characterizing B and (53), we see that, on the set f���1g,
the x and y coordinates of the embedding satisfy

(56)
jx ıˆH .z; p; q/j D e

2H

r
z2C

�
p

2�

�2
D �0;

jy ıˆH .z; p; q/j D e
�H
D

r
�

�0
:

From the last equation, we have the equivalences

ˆH .f� � �1g/D

�
jxj D �0; jyj �

r
�1
�0

�
n fy D 0g;

ˆH .f� � �1g/D

�
jxj D �0; jyj �

r
�1
�0

�
:

The closure of the image ofˆH in R4 is a smooth hypersurfaceMH which is positively
transverse to X�0 . We write MH for this hypersurface and define WH �R4 to be the
set enclosed by M�1 and MH . The handle WH is depicted in Figure 21, right.

10.5 Analysis of RH overMH

Here we analyze dynamics on MH of the Reeb vector field RH for the contact form
˛H D �0jMH . Because of our use of the imprecisely defined function B, we won’t
be able to solve for FlowtRH explicitly. However, we’ll be able to capture enough
information about this flow for the applications to handle attachment.
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Figure 22: Projections of flow-lines of RH to the .p; z/ coordinates. By
Lemma 10.3, these are the level sets of pH. Here p points to the right and z
points upward. The dot represents the circle jxj D 0 along which our flow is
not defined in the .z; p; q/ coordinate system. The region � 2 Œ�1; �0� where
the function BPW is smoothed to obtain B is shaded.

On the complement of the set fz D pD 0g, our contact form is ˛H D eH .dzCp dq/,
whose Reeb field will be denoted by RH . Writing �D �.p; z/, we compute

dH D
@B

@�
d�; d�D ��1

�
z dzC

p

.2�/2
dp

�
:

Now apply Lemma 10.3 to computeRH using the coordinates .z; p; q/ onMH nfyD0g

as

(57) RH D e
�H

��
1C

@B

@�
��1

�
p

2�

�2�
@z �

p

�

@B

@�

�
1

.2�/2
@qC z@p

��
:

Here is a collection of observations regarding RH and its flow:

(1) The @z part of RH is always strictly positive. This is a consequence of the
inequalities

�
@B

@�
��1

�
p

2�

�2
� �

@B

@�
��1�2 D�

@B

@�
� < 1 D) 1C

@B

@�
��1

�
p

2�

�2
> 0

following from the definition of � and the third defining property of the function B.

(2) For each p and � > 0, a flow-line starting at the point .��; p; q/ will pass through
some .�; p; q0/. This follows from the facts that .pe�H /.�z; p/D .pe�H /.z; p/ and
that the projection of RH onto the .z; p/–plane is Hamiltonian with respect to dp^dz
as per Lemma 10.3. See Figure 22.

(3) The flow-line passing through .��; 0; q/ will pass through the point
�
�; 0; qC 1

2

�
.

To see this, observe that such a flow-line with such an initial condition must flow up
into the circle fz D p D 0g along the line fp D 0g and compare with the definition of
the map ˆH .
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(4) A twist map fH;�0 W I2��0 ! S1 is defined by following the flow-line of RH
passing through .��; p; q/ to a point .�; p; qC fH;�0.p//. By the properties we’ve
used to specify B, the derivatives of fH;�0 are supported on I2��0 as RH coincides
with @z outside of this region. Likewise, RH D @z on fj�j � �0g.

(5) The twist map satisfies

fH;�0.�p/D�fH;�0.p/; fH;�0.�2��0/D fH;�0.2��0/D 0:

The first equality follows from the fact that the @z factor of RH is a function of p2

while the @p and @q factors are antisymmetric in p. The second equality follows from
the previous item.

(6) As @B=@p� 0, the @q coefficient of RH from (57) has sign equal to sgn.p/ where
is it nonzero. Hence, fH;�0 always twists to the right for p < 0 and to the left along
p > 0. This is the expected behavior of a positive Dehn twist.

Proposition 10.6 Write QfH;�0 W I2��0!R for the lift of the twist map fH;�0 W I2��0!
R with initial condition

QfH;�0.�2��0/D 0 D) QfH;�0.0/D�
1
2
; QfH;�0.2��0/D�1

by the preceding analysis. Suppose that Qf W I2��0 ! Œ�1; 0� is a decreasing function
also satisfying the above equalities. Then , for H constructed using a function B which
is sufficiently C0–close to the function BPW, the estimate

(58) j QfH;�0.p/�
Qf .p/j � 1

2

is satisfied for all p 2 I2��0 .

Proof The analysis of Section 10.2.1 provides a very explicit approximation of the
function QfH;�0 . Let’s consider the degenerate case when B D BPW as described
in (55), writing H PW for the associated piecewise-smooth function. Then MH PW will
be piecewise smooth as a submanifold of R4. We have a C0 flow on MH PW given by
following @z on MH PW nMC�0 and by following R�0 on MC�0 . We can view MH PW as a
smooth manifold by viewing its nonsmooth part to be the graph of a C0 function, and
observe that MH and MH PW coincide along the sets jxj � �0.

We look at flow trajectories passing over the q D 0 slice of our neighborhood, which
corresponds to the y D y0 subset of MH PW . Then ˆH PW maps the arc

AD

�
z D�

r
�20 �

�
p

2�

�2
; q D 0

ˇ̌̌
p 2 Œ�2��0; 2��0�

�
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to the semicircle

(59)
��
�

r
�20 �

�
p

2�

�2
;
p

2�
; 1; 0

� ˇ̌̌
p 2 Œ�2��0; 2��0�

�
�MH PW :

In the language of Section 10.2.1, this semicircle is the set˚
.x� ; y0/ j � 2

�
1
2
�; 1

2
3�
�	
�R4

equipped with a clockwise parametrization (determined by the variable p). When a
trajectory passes through the handle entering at angle � D �.p/2

�
1
2
�; 3

2
�
�

determined
by p in the x–plane, it will come out on the top of our neighborhood at angle 2� �� ,
as described in Section 10.2.1. Therefore, when using the piecewise-smooth handle,
the lift QfH;�0 of our continuous flow map fH PW;�0 can be written as

QfH PW;�0.p/D

8<:
0 if p < �2��0;
.1=2�/.2�.p/��/ if p 2 Œ�2��0; 2��0�;
�1 if p > 2��0;

where �.p/ is the angle in the x–plane given by (59).

As the p coordinate wraps around the semicircle of (59) in a clockwise fashion,
we conclude that QfH PW;�0 is a decreasing function. Moreover, QfH;�0.�2��/ D 0,
QfH PW;�0.0/D�

1
2

and QfH PW;�0.�2��/D�1, just like our test function Qf. Therefore,
both Qg D Qf ; QfH PW;�0 must satisfy

(60) Qg.Œ�2��0; 0�/D
�
�
1
2
; 0
�
; Qg.Œ0; 2��0�/D

�
�
1
2
;�1

�
:

From this we conclude that (58) holds for QfH PW;�0 given any function Qf satisfying the
required properties.

Now we suppose that B is smooth and C0–close to BPW. Then the twist map QfH;�0
will be C0–close to QfH PW;�0 . This is because the twist map is entirely determined by
the flow of the arc A across the surgery handle. All Reeb trajectories starting at points
in A which pass through the jyj < 1 portion of the handle will intercept the region
� 2 Œ�1; �0� where BPW is smoothed to obtain B. See Figure 22.

Because of item (6) in the observations preceding this proof, QfH;�0.p/ < 0 for p < 0,
we can guarantee to that QfH;�0 satisfies Qg.Œ�2��0;�ı�/�

�
�
1
2
; 0
�

for some arbitrarily
small ı > 0. Therefore, we have j QfH;�0.p/� Qf .p/j �

1
2

for p 2 Œ�2��0;�ı�. By
continuity we can also ensure that the desired inequality holds for p 2 Œ�ı; 0� by making
B C0–close enough to BPW. The same arguments with modified notation apply to
ensure that (58) holds over Œ0; 2��0� for B close enough to BPW.
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10.6 Perturbing �0

Now that we’ve shown that the flow from the set fzD��0g to the set fzD �0g defined
by RH is determined by a Dehn twist by fH;�0 , which is supported on I2��0 � S

1.
Moreover, equation (58) tells us that we can use Proposition 10.5 to correct �0 so that the
flow over our handle will be an “approximately linear twist” satisfying Assumptions 5.4.
We now carry out the details of this correction.

We construct a new coordinate system .z; p; q/ on MH as follows: On the set

fjyj D 1; jxj> �0g;

we have coordinates .p; q; z/ onMH coming from the embedding ˆ� asM�1 andMH

overlap on this region. To get a standard coordinate system on MH , apply the map

(61) .z; p; q/ 7! FlowzC�0RH
ıˆ�.��0; p; q/; z 2 I�0 :

With respect to this coordinate system,

�0jMH D dzCp dq:

Due to our identification of the flow from the top to bottom of this region — with
respect to the .z; p; q/ coordinates on M�— as being determined by a Dehn twist
by fH;ı , the change of coordinates on the overlap

.MH n f� < �0g/!M�1

is given exactly as the gluing map of Section 4.7 with the “height perturbation func-
tion” — denoted in that section by Hf;� — uniquely determined by fH;�0 .

We seek to modify fH;� using Proposition 10.5 so that the flow over the convex boundary
of our handle satisfies the linear dynamics assumptions described in Assumptions 5.4.
To this end, let g W I2��0 !R be a function satisfying the following properties:

(1) A Dehn twist by f�0.0/ D fH;�0.p/C g.p/ satisfies Assumptions 5.4 with
@f�0=@p.0/D .2��0/

�1.

(2) jg.p/j � 1
2

.

(3) g and all of its derivatives vanish along @I2��0 .

Such a choice of g is possible by (58). According to Proposition 10.5, using

(62) �p D �z D 2��0; �g D
1
2

and �t arbitrarily large, we can modify the contact form within the coordinate system
on MH by
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Figure 23: On the left, the rounded handle WH of Figure 21. On the right,
the perturbed handle W �R4. The region along which �0 is modified — as
in Proposition 10.5 — is shaded in dark gray. The lightly shaded extension
of WH indicates extension by the Liouville flow.

(1) adding a finite symplectization .Œ0; e�t ��MH ; �0 D e
t .dzCp dq// to obtain a

handle W �R4 containing WH , and

(2) perturbing �0 within a proper subset of this region to obtain a contact form �

on W,

so that the flow over MH in the coordinates .z; p; q/ is given by a Dehn twist by f�0 .
A schematic for this extension and perturbation is depicted in Figure 23, right.

Now we rework through (61) and its consequences this time using the new Reeb vector
field R. The map

(63) .z; p; q/ 7! FlowzC�0R ıˆ�.��0; p; q/

will provide us with a coordinate system .z; p; q/ on the convex boundary of W. Now
our attaching map is determined by the composition of the Dehn twists

.p; q/ 7! .p; qCg.p//; .p; q/ 7! .p; qCfH;�0/;

yielding a Dehn twist by f�0 , as desired.

10.7 Attaching the handle to finite symplectizations

To finish our construction, we attach the handle .W; �/ to a finite symplectization of
.R3
ƒ˙
; ˛�/. In doing so, we will omit the specific choices of �0 required provided that

they are determined by � as described in Definition 4.10. Likewise, we assume that ƒ0

consists of a single connected component to simplify notation.

We first consider the case c D�1; the map ˆ� provides us with an identification of
standard neighborhood N 0

� of ƒ0. The map ˆ� provides us with an identification
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of this neighborhood with the convex end of the handle W. By considering R3
ƒ˙

as
being contained in the top of a finite symplectization Œ�C; 0��R3

ƒ˙
, we may attach

the handle W via this identification to obtain a 4–manifold along which we set

��1jW D �; ��1jŒ�C;0��R3
ƒ̇
D et˛�:

Outside of a neighborhood of the form f�.p; z/ < constg¨ f0g �N 0
� , we may extend

by some Œ0; C ��R3
ƒ˙
n fjzjC jpj< constg, over which we take

��1jŒ0;C ��R3
ƒ̇
nf�.p;z/<constg D e

t˛�:

The constant C may be chosen so that the top of this region coincides with the convex
end of the handle W. By the fact that the perturbation of � described in the previous
subsection occurs away from the attaching locus,W�1 is smooth with ��1 determining a
smooth form, as desired. The disk D�1 is obtained by taking the intersection of the plane
fjxj D 0g �R4 with the handle WH �W, depicted as the red line in Figures 21 and 23,
and then extending through Œ�C; 0��R3

ƒ˙
by a Lagrangian cylinder Œ�C; 0��ƒ0.

Now set c D C1. In this case our disk DC1 is taken to be the intersection of the
plane fjyj D 0g with the handle W. According to (47), �jDC1 D 0. Using the co-
ordinates .p; q; z/ on (63), we may identify a neighborhood of the boundary of this
disk with a standard neighborhood of ƒ0, which we may consider as being contained
in the bottom of a finite symplectization Œ0; C � � R3

ƒ˙
. We extend the disk by a

Lagrangian cylinder overƒ0 within Œ0; C ��R3
ƒ˙

so that its boundary lies in fC g�R3
ƒ˙

.
To complete the construction of our Liouville cobordism .WC1; �C1/, we layer on
Œ�C; 0��R3

ƒ˙
nfjzjCjpj< constg so that the concave end of the cobordism is smooth

and coincides with .R3ƒ; ˛�/.

11 Holomorphic foliations, intersection numbers and the
ƒ quiver

In this section we describe some tools which allow us to frame geometric questions
regarding holomorphic curves in the 4–manifolds relevant to this article — symplecti-
zations and surgery cobordisms — as algebraic problems. We will largely be relying
on intersection positivity for holomorphic curves in 4–manifolds [47, Appendix E] and
basic algebraic topology.

These tools serve to establish some properties of holomorphic curves in R�R3
ƒ˙

and
surgery cobordisms which we believe to be true intuitively but which are more difficult
to articulate precisely: curves with “high energy” should look like Legendrian RSFT
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disks as they pass through the complement of the surgery locus N� while “low energy”
curves should be trapped inside of the union of N� with a neighborhood of the chords
of ƒ and have constrained asymptotics. This will be formalized in Section 11.7 as the
exposed/hidden alternative.

The first three subsections deal with geometry: In Section 11.1, we describe special
almost-complex structures on contactizations and how combinatorial LRSFT disks can
be “lifted” to holomorphic disks. Section 11.2 described how these complex structures
J can be used on large open subsets of symplectizations and surgery cobordisms.
Next, in Section 11.3, we show that such J endow open subsets of our 4–manifolds
with a foliation by J –holomorphic planes. This is another area of analysis which is
considerably simplified by working with .R3

ƒ˙
; �ƒ˙/ rather than .S3

ƒ˙
; �ƒ˙/.

The remainder of the section is concerned with algebra: Section 11.4 describes some
properties of intersections between these planes and finite-energy holomorphic curves
asymptotic to chords and orbits of the R�. These intersection numbers are essentially
homological invariants of curves. In the event that the intersection numbers all vanish,
an alternative bookkeeping device can be used to keep track of holomorphic curves — an
object we call the ƒ quiver, Qƒ. This quiver can be used as an algebraic tool to encode
LCHcyc chain complexes — see Remark 4.1 of [7] — but we will be most interested in
the fact that it is a quotient of a space homotopy equivalent to the complement of the
C–foliated region of our 4–manifold.

11.1 Model almost-complex structures on symplectizations of
contactizations of Stein manifolds

Here we review some generalities regarding holomorphic curves in symplectizations of
contactizations of Stein manifolds. For the purposes of this paper, we’re really only
interested in the cotangent bundles of the real line — for .R3; �std/ is the 1–jet space
of R — though the results are no harder to state or prove in fuller generality. The results
here are known; for example, they are implicit in the convexity arguments of [14] and
definitions of LCH moduli spaces in [19].

Let W be a manifold of dimension 2n with complex structure J and suppose that
F 2 C1.†/ is such that

ˇ D�dF ıJ

is a Liouville form on W. In other words, .W; J; F / is a Stein manifold except that we
have omitted any requirements regarding transversality between Xˇ and @W. Define a
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contact 1–form ˛ D dzCˇ on R�W so that

� D fV �ˇ.V /@z W V 2 T W g

for V 2 T W. We can define a J 0 adapted to the symplectization of .R�W;˛/ by

J 0@t D @z; J 0.V �ˇ.V /@z/D JV �ˇ.JV /@z :

As previously mentioned, we’re primarily concerned with the cases W D R� I for
a 1–manifold I with ˇ D p dq D�1

2
d.p2/ ı j. We get .R2;�y dx/ by a change of

coordinates.

Lemma 11.1 If a map .t; z; u/ W†0!R�R�W is .J 0; j /–holomorphic , then

(1) z is harmonic , and

(2) u is .J; j /–holomorphic.

Moreover , if †0 is simply connected and we have .z; u/ for which z is harmonic and
u is .J; j /–holomorphic , then there exists t W †0 ! R for which .t; z; u/ is .J 0; j /–
holomorphic. Such t is unique up to addition by a constant.

Proof This is a local calculation: Take coordinates x and y on D, which we may
consider being contained in †0 with j denoting the standard complex structure on TD.
We will be studying (7).

Write x@J 0;j .t; z; u/D 1
2
.T .t; z; u/CJ 0T .t; z; u/ ı j / for the usual Cauchy–Riemann

operator. For V 2 T W, we calculate

�˛.a@zCV /D V �ˇ.V /@z;

so that the �–valued part 1
2
.�˛CJ

0 ı�˛ ıj / of x@J 0;j .s; t; u/ depends only on u. Then

.�˛CJ
0
ı�˛ ı j /.s; t; u/D x@J;ju�ˇ ı .x@J;ju/@z;

where x@J;j is the Cauchy–Riemann operator for u. The T W part of this expression
vanishes if and only if u is .J; j /–holomorphic, which would imply that the @z part of
the expression vanishes as well.

Assuming that .t; z; u/ is .J 0; j /–holomorphic, then u is .J; j /–holomorphic and
dt D ..z; u/�˛/ ı j, implying

u�ˇ D�u�.dF ıJ /D�d.F ıu/ ı j;

.z; u/�˛ ı j D dz ı j C d.F ıu/;

d2t D d..z; u/�˛ ı j /D d.dz ı j /D��.z/D 0;

where � is the Laplacian. Therefore, z is harmonic.
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Now, provided harmonic z and .J; j /–holomorphic u for simply connected †0, the
above expression tells us that .z; u/�˛ ı j is closed, and so is exact. Therefore, we
have a function t — determined uniquely up to addition by scalars — satisfying dt D
.z; u/�˛ ı j. Then, by the above formula and (7), .t; z; u/ is .J 0; j /–holomorphic.

Corollary 11.2 (drawing-to-disk correspondence) Suppose that .W; J; F / is a Stein
manifold of complex dimension 1 and that ƒ is a chord-generic Legendrian link in
.I �W; dz� dF ıJ /. Suppose that

u WD n fpj g !W

is an orientation-preserving immersion of the disk with a finite set of boundary punctures
fpkg removed such that u.@D n fpkg/ � �W .ƒ/. Then there exists a set fp0

k
g of

boundary punctures on the disk , a diffeomorphism � W D n fp0
k
g ! D n fpkg and

functions t; z W !R such that

.t; z; u ı�/ WD n fp0kg !R�R�W

is .J 0; j /–holomorphic with .z; u ı �/.@D n fpkg/ � ƒ. Provided �, z is uniquely
determined and t is uniquely determined up to addition by a positive constant.

Proof Because u is an immersion, we can force it to be .J; j 0/–holomorphic for some
almost-complex structure j 0 on D by defining j 0@x D .T u/�1J.T u/@x . We can then
find a diffeomorphism � which is .j 0; j /–holomorphic by the uniformization theorem.

By the chord-genericity and smoothness of ƒ, there exists a unique, bounded, smooth
function z@ on @D n fp0

k
g for which

.z@; u ı�/ 2ƒ:

Applying [1, Chapter 6, Section 4.2], there is a function z WD n fp0
k
g !R solving the

Dirichlet problem
�.f /D 0; zj@Dnfp0

k
g D z@;

which is unique by the maximum principle. By Lemma 11.1, we can find t for which
.t; z; u ı�/ is .J 0; j /–holomorphic, as desired.

11.2 N–standard almost-complex structures

As always, let N� be a tubular neighborhood ofƒ, whose complement we may consider
to be a codimension-0 submanifold of either R3 or R3

ƒ˙
. Define

zN� D �
�1
xy .�xy.N�//;

which we may view as an open set in either R3 or R3
ƒ˙

. Denote its complement by zN {
� .
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Definition 11.3 We say that an almost-complex structure J on R�R3
ƒ˙

isN –standard
if its restriction to �ƒ˙ agrees with the standard almost-complex structure J0 on �ƒ˙
described by (14) on zN {

� as well as on a neighborhood

NC;1 D fx
2
Cy2C z2 > C g

of the puncture of our 3–manifold for some �; C > 0. In order that J be adapted to the
symplectization, we require J@t D @z on R� zN {

� .

We may define N–standard for almost-complex structures on completions of surgery
cobordisms .Wc ; �c/ of Section 10 analogously as the cobordisms contain the sym-
plectizations of .R3

ƒ˙
nN�; ˛std/.

For an N –standard almost-complex structure J and a .J; j /–holomorphic curve

U W†0!R�R3
ƒ˙
;

along U�1.R�NC;1/ we can write U D .t; z; u/. By Lemma 11.1, z is harmonic
and u is holomorphic, so that x ı u and y ı u are harmonic as well. It follows that
�d.d.z2Cjuj2/ ı j / is nonnegative as an area form on †0. Hence, for C 0 > C, finite-
energy curves with punctures asymptotic to chords and orbits of R� cannot touch
spheres of radius C 0 by the maximum principle.

11.2.1 Compatibility with perturbation schemes and adaption to symplectizations
Note that perturbations of almost-complex structures required to achieve the transver-
sality required to define SFT curve counts in R�R3

ƒ˙
or .Wc ; x�c/ may be defined in

arbitrarily small neighborhoods of the orbits of R� [4, Section 5] and these orbits are
properly contained in open sets unconstrained by the N–standard condition. Hence,
these perturbations may be carried out for N –standard almost-complex structures while
maintaining their defining properties.

Similarly, the cobordisms .Wc ; �c/ of Section 10 are designed to support N –standard
almost-complex structures which are adapted to their cylindrical ends. For such
cobordisms, we’ll be additionally interested in studying somewhere-injective curves
positively asymptotic to chords of the Legendrian boundaries of the disks Dc;i �Wc
with Lagrangian boundary. See Section 12.2. In this context, the perturbation scheme
of [18, Section 2] may be applied, which likewise only deforms Cauchy–Riemann
equations in arbitrarily small neighborhoods of chords and orbits. Again, there is no
lack of compatibility with the N –standard condition.
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Assumptions 11.4 Throughout the remainder of this section, we assume that any
almost-complex structure J on a symplectization or surgery cobordisms is N –standard
and that all somewhere-injective curves under consideration are regular. When dis-
cussing surgery cobordisms, we assume that J is adapted to the cylindrical ends of its
completion and that almost-complex structures on symplectizations are adapted.

11.3 Semiglobal foliation by holomorphic planes

Here we describe holomorphic foliations by infinite-energy planes in symplectizations
and surgery cobordisms.

11.3.1 C foliations in symplectizations Observe that zN {
� is foliated by embedded,

R–parametrized Reeb orbits of the form t ! .t; x0; y0/. Then R� zN {
� is foliated by

holomorphic planes parametrized

.s; t/ 7! .s; t; x; y/

for .x; y/ 2R2 n�x;y.N�/. We denote each such unparametrized plane by Cx;y .

11.3.2 C foliations in surgery cobordisms For the following, we require that ƒ0

be nonempty. The link ƒ˙ is allowed to be empty, in which case we would have
.R3
ƒ˙
; �ƒ˙/D .R

3; �std/ and set ˛� D dz�y dx. Let .Wc ; �c/ be a surgery cobordism
associated to the pair

ƒ0 � .R3
ƒ˙
; �ƒ˙/; c 2 f˙1g

as described in the introduction of Section 10, with completion .Wc ; x�c/. Because the
handles are attached along a neighborhood of ƒ0, we can view R� zN { as a subset
of Wc which is also foliated by infinite-energy planes Cx;y .

11.4 Intersection numbers

For the following, let .†; j / be a compact Riemann surface, possibly with boundary,
with fixed collections of interior points pint

k
and boundary points p@

k
. As usual, we

write †0 for † with all of its marked points removed. When discussing completions
.Wc ; x�c/, we write

Dc;i �Wc

for the Lagrangian planes obtained by extending the disks Dc;i of Theorem 10.1 by
the positive (resp. negative) half-infinite Lagrangian cylinders over their Legendrian
boundaries when c D 1 (resp. c D�1).
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Definition 11.5 We say that a holomorphic map U W†0!Wc is a Wc curve if it its
boundary is mapped to the Dc;i , its boundary punctures are asymptotic to chords of
their Legendrian boundaries, and all interior punctures are asymptotic to closed Reeb
orbits at the convex and concave ends of Wc .

We say that a holomorphic map U W †0 ! R � R3
ƒ˙

is an R � R3
ƒ˙

curve if the
boundary of †0 is mapped to the Lagrangian cylinder over ƒ0, its boundary punctures
are asymptotic to chords of ƒ0, and its interior punctures are asymptotic to closed
orbits of R�.

We recall — see [47, Definition E.2.1] — that, provided a pair of maps ui W†0i !W

from surfaces †0i for i D 1; 2 into a 4–manifold W whose images are disjoint outside
of some open sets Si �†i with compact closures outside of which the †i are disjoint,
then we can define a intersection number u1 �u2 2Z by perturbing the ui along the Si
so that the maps are transverse and counting their intersections with signs.15

Theorem 11.6 Suppose that U is a Wc curve or an R � R3
ƒ˙

curve. Then , for
.x; y/ 2 R2 n �x;y.N�/, the intersection number Cx;y � Us 2 Z is well defined and
nonnegative. Furthermore , they are homological invariants in the following sense:

(1) Boundaryless curves in symplectizations Suppose that U is an R � R3
ƒ˙

curve positively asymptotic to a collection C of Reeb orbits and negatively
asymptotic to some �. Then the intersection number Cx;y �U depends only on
the relative homology class

Œ�R3
ƒ̇
.U /� 2H2.R

3
ƒ˙
; C[ �/:

(2) Curves in symplectizations with Lagrangian boundary Suppose that U is an
R�R3

ƒ˙
curve asymptotic to collections ˙ of Reeb orbits and collections of

chords �˙ of ƒ0. Then the intersection number Cx;y �U depends only on the
relative homology class

Œ�R3
ƒ̇
.U /� 2H2.R

3
ƒ˙
; C[ �[ �C[ ��[ƒ0/:

(3) Boundaryless curves in surgery cobordisms Suppose that U is a Wc curve
positively asymptotic to a collection of closed Reeb orbits C in @CW and

15We’re taking a slight modification of [47, Definition E.2.1] by defining the intersection number to be the
sum of the local intersection numbers over all points of intersection. This is feasible for holomorphic curves
in 4–manifolds with our hypotheses as distinct curves have isolated intersections [47, Proposition E.2.2].
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negatively asymptotic to some collection of closed Reeb orbits � in @�W. Then
the intersection number Cx;y �U depends only on the relative homology class

ŒU � 2H2.Wc ; 
C
[ �/:

Here we view U as a cobordism in the compact manifold Wc bounding the orbit
collections ˙ in its boundary.

(4) Curves in surgery cobordisms with Lagrangian boundary Suppose that U
is a Wc curve positively asymptotic collection of closed Reeb orbits ˙ in @CW
with boundary punctures asymptotic to some collection �˙ of chords of the
Legendrian boundaries of disks Dk . Then the intersection number Cx;y � U

depends only on the relative homology class

ŒU � 2H2

�
Wc ; 

C
[ �[ �C[ ��[

[
Dc;i

�
:

Proof To check well-definedness, we need to ensure that any intersections between
Cx;y and U.†0/ occur away from the boundary and punctures of†0, so that intersection
numbers are independent of the perturbation required in their definition. By our
boundary conditions, U must be such that there exists some open neighborhood S �†0

of the punctures and boundary of†which maps into the complement of R�.R3
ƒ˙
nN�/.

The images of the complements of the Ss must be contained in some compact set of the
form Œ�C1; C1��.R3ƒ˙ nN�/. Likewise, the images of the complements of the Ss must
be bounded in the z coordinate on R3. Hence, all intersections occur within a subset
of the form Œ�C1; C1�� Œ�C2; C2��f.x; y/g �Cx;y , implying that the Cx;y �Us 2Z

are well defined.

Intersection nonnegativity follows from positivity of intersections of holomorphic
curves in 4–manifolds. See for example [47, Section E.2]. For homological invariance,
we will work out the details in the case of boundaryless curves in symplectizations.
The other cases follow similar reasoning.

As in the statement of the theorem, we can slightly perturb U near its asymptotic
ends to obtain a 2–cycle in Œ�C;C � � R3

ƒ˙
bounding fC g � C � f�C g � � for

some large C > 0. Using the coordinates on R � R3 in which we may consider
Cx;y to be contained, each intersection between U and Cx;y occurs at some .t; z; x; y/.
Possibly perturbing U near each such intersection to achieve transversality and isolation
of intersections, the sign of each intersection is given by the sign of TCx;y ^ T U

considered as an oriented ray in the orientation line bundle R@t ^ @z ^ @x ^ @y for
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T.t;z;x;y/W. As TCx;y D spanR.@t ; @z/, this sign only depends on the @x and @y parts
of the tangent map T U of U. Hence, the intersection number Cx;y �U only depends
on .x; y/ and �R3

ƒ̇
ıU.

The ending of the above proof also immediately implies the following:

Lemma 11.7 Suppose that U WD n fpkg !R�R3 is a holomorphic disk determined
by an immersion u W D n fpkg ! R2 as in Corollary 11.2. Given a point .x; y/ 2
R2 n�x;y.N�/, the intersection number is

Cx;y �U D #u�1..x; y//:

11.5 Bases and energy bounds

Here we’ll reduce the information of the Cx;y down to that of a finite collection of
planes. Write Rk for the connected components of R2 n�x;y.N�/ of finite area and
write

Ek D
Z
Rk
dx ^ dy

for their areas. There is also a single connected component R2 n�x;y.N�/ of infinite
area, which we will denote by R1.

Pick a point .xk; yk/ within the interior of each Rk as well as a point .x1; y1/ 2R1.
We’ll call such a choice of indices and points a point basis for ƒ. Provided a point
basis, we may abbreviate

Ck DC.xk ;yk/:

Such a choice allows us to package a simple-to-state energy estimate:

Proposition 11.8 Let U be a finite-energy R�R3
ƒ˙

curve with interior punctures
asymptotic to some collections of orbits of R� and boundary punctures asymptotic to
chords of ƒ0 �R3

ƒ˙
. Then

E.U / >
X
k

EkCk �U:

Proof For each k ¤1 for which

†0k D U
�1.R�R�Rk/

is not empty,
�x;y ı�R3

ƒ̇
ıU W†0k!Rk

is a nonconstant holomorphic map. By our boundary conditions, each †0
k

is disjoint
from some neighborhood of the boundary and punctures of†0 and so must be a branched
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Figure 24: From left to right: a Legendrian Hopf link ƒ in the Lagrangian
projection, the associated quiver Qƒ and the quiver Qƒ=`.

covering. The degree of the associated map

.†0k; @†
0
k/! .Rk; @Rk/

is equal to Ck �U , so that our requirement that ˛� coincides with ˛std D dz�y dx on
the compliment of N˙ implies

E.U / >
X
k

Z
†0
k

d˛� D
X
k

Z
†0
k

dx ^ dy D
X
k

EkCk �U:

11.6 The ƒ quiver

In the event that all intersection numbers Ck � U are zero for a given curve U, we
can employ another device to keep track of holomorphic curves and their boundary
conditions.

Definition 11.9 The ƒ quiver, denoted by Qƒ, is the directed graph with

(1) one vertex `i for each connected component ƒi of ƒ, and

(2) one directed edge for each chord rj of ƒ � R3 starting at the vertex `l�
j

and
ending at `

l
C

j

.16

Also define a graph Qƒ=` which is the quotient of Qƒ obtained by identifying all of
its vertices. We write

�` WQƒ!Qƒ=`

for the quotient map.

An example is provided in Figure 24.

16We recall the l˙j are defined in Section 3.
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11.6.1 Algebraic aspects ofQƒ andQƒ=` The primary utility of the space Qƒ=`
is that its homology has a particularly nice presentation, with H1 freely generated by
the chords of ƒ� .R3; �std/,

H1.Qƒ=`/D˚Zrj ;

while its fundamental group — based at its unique vertex, `— is a free group on the
chords of ƒ,

�1.Qƒ=`; `/D hrj i:

In applications, we’ll make use of the following definitions and lemma:

Definition 11.10 For an edge e of a directed graph G we define the collapse map at e,
denoted by �e WG! S1, as the map which takes the quotient by G n int.e/. The target
is naturally pointed and oriented by the direction of e. A continuous map ˆ W S1!G

from an oriented circle is nonnegative if, for every edge e of g, the composition

S1 ˆ
�!G

�e
�! S1

with the collapse map has nonnegative degree. We say that the map is positive if it is
nonnegative and there exists at least one e �G for which �e ıˆ has positive degree.

Definition 11.11 Let S be a set with associated free group hSi. We say that an element
x 2 hSi is positive if it can be described as a word

x D x1 � � � xn; xk 2 S:

Alternatively, the set of positive elements in hSi is equivalent to the image of the natural
monoid homomorphism from the free monoid on S into hSi.

If x is positive then the above factorization is necessarily unique. We say that two
positive elements x and y of hSi are cyclically equivalent if their positive factorizations
differ by a cyclic rotation. That is, provided a factorization of x as above, there exists
k for which

y D xk � � � xnx1 � � � xk�1:

We say that x 2 hSi is negative if x�1 is positive. Two negative elements x and y are
cyclically equivalent if x�1 and y�1 are cyclically equivalent.

Cyclic equivalence is no stronger than conjugacy equivalence.

Lemma 11.12 Suppose that x; y 2 hSi are positive and conjugate in hSi. Then they
are cyclically equivalent.
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Proof Suppose there exists some z for which zx D yz and write z D z1 � � � zn with
the zk being elements of S or inverses of such letters. We can assume that at least one
of z1 or zn is positive. Otherwise we can write z�1y D xz�1 to obtain the desired
hypothesis by a change of notation.

Suppose that z1 is positive. Then the positive factorization of y must start with z1.
Then y0D z�11 yz1 is positive, so we can write z0xD y0z0 with z0D z2 � � � zn. We have
reduced the problem to finding a cyclic equivalence between two positive elements x
and y0 which are conjugate by a word z0 of length n� 1. A similar argument may be
applying in the case that zn is positive.

To complete the proof, loop through this argument n times.

11.6.2 Geometric aspects ofQƒ andQƒ=` The primary utility of the space Qƒ
in relation to the present discussion is given by the following result:

Proposition 11.13 There exist surjective maps

R3
ƒ˙
n zN {

� !Qƒ; Wc nR� zN {
� !Qƒ;

both of which we will denote by �Q, such that , for each chord rj of ƒ and each line
segment I directed by @z connecting Dex

j to Den
j , the submanifold R� I is mapped

onto the edge rj of Qƒ in a way such that , for each t in R, ftg � I ! ej is a
homeomorphism.17

Proof We start with the case in which the domain of �Q is R3
ƒ˙
n zN {

� . We have that
R3
ƒ˙
n zN {

� is homotopy equivalent the union of N� with all of the chords rj of ƒ. We
can perform this homotopy so that the intervals connecting the Den

j and Dex
j (forming

a neighborhood of rj ) collapse onto rj as a fibration. Note that N� is a collection of
solid tori, so that N� [frj g is homotopy equivalent to a 1–dimensional CW complex.
If we collapse each connected component N�;i of N� to a point `i , the graph Qƒ is
obtained.

The proof for Wc nR� zN {
� is nearly identical except at the last step; the addition of

the surgery handles already provides the effect of attaching 2–cells along the circles in
our 1–complex corresponding to components of ƒ˙. We then collapse these 2 cells
to points, which has the same effect — in the homotopy category — as collapsing the
circles corresponding to the components of ƒ to points.
17We recall that the D�j are defined in Section 5.1.
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Proposition 11.14 Suppose that .t/ parametrizes a Reeb orbit in R3
ƒ˙

or @Wc . Then
�Q ı  is positive in the sense of Definition 11.10.

The open string version of this assertion is as follows: Let U be a Wc or R �R3
ƒ˙

curve with domain†0 having a boundary component @i†� @† for which all punctures
along @i† have positive asymptotics. Then �Q ı U j@i† is a positive loop. If all
punctures along @i† have negative asymptotics , then this loop is negative.

This is clear from the construction of the map �Q. For a parametrization  of a Reeb
orbit with cyclic word rj1 � � � rjn , we have

Œ�` ı�Q ı �D

nX
1

Œrjk � 2H1.Qƒ=`/:

Intuitively, the map �` ı�Q induces a map on homology which abelianizes boundary
conditions for holomorphic curves. We can also view Œ�` ı�Q ı � as an element of
the H0 of the free loop space of Qƒ=` which records the word map of  .

For a single chord � with boundary on someƒ0� .R3
ƒ˙
; �ƒ˙/, we can view �`ı�Qı�

as a pointed map
.�; @�/! .Qƒ=`; `/

as ƒ is mapped to ` by �` ı �Q. In this way, � determines a positive element of
�1.Qƒ=`/ as well as a relative homology class

Œ�` ı�Q ı �� 2H1.Qƒ=`; `/:

Both the �1 and H1 classes record the word map of �.

11.7 The exposed/hidden alternative

Assume thatƒ is equipped with a basis of points .xk; yk/2R2n�x;y.N�/ as described
in Section 11.5.

Definition 11.15 (exposed/hidden alternative) We say that an R�R3
ƒ˙

orWc curveU
is exposed if there exists at least one k for which Ck �U > 0. Otherwise we say that U
is hidden.

If a curve U is exposed, then we can use the intersection numbers to keep track of
the location of its image within the target manifold. If the curve is hidden, then,
by intersection positivity, its image must be entirely contained in the complement
of R� zN {

� , whence we can apply the map �` ı�Q. We state some simple applications,
the first few of which tell us that the homology of Qƒ=` dictates whether a curve is
exposed or hidden.
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Proposition 11.16 (homological mismatches are exposed) Suppose that U is an
R�R3

ƒ˙
or Wc curve without boundary components positively asymptotic to some

collection C D fC
k
g of closed orbits and negatively asymptotic to some collection

� D f�
k
g of Reeb orbits. If the 1–cycleX

Œ�` ı�Q ı 
C

k
��
X

Œ�` ı�Q ı 
�
k �¤ 0 2H1.Qƒ=`/;

then U is exposed.

Proof If the curve was hidden, then we could apply the map �`ı�Q to the image of U.
Our hypotheses on asymptotics imply that we would get a 2–cycle in R3

ƒ˙
n zN {

� or
Wc nR� zN {

� bounding a homologically nontrivial 1–cycle, providing a contradiction.

A slight modification applies to chords as well.

Proposition 11.17 (exposure of filling curves) Suppose that U is an R�R3
ƒ˙

or Wc
curve for which all asymptotic chords and orbits are positive. Then U must be exposed.

Proposition 11.18 (homological matches are hidden) Let h 2 H1.Qƒ=`/ be a
positive homology class.18 Then there exists �h such that , for each � < �h, given a
holomorphic curve in R�R3

ƒ˙
positively asymptotic to a collection of orbits C and

negatively asymptotic to a collection � of R� orbits with

Œ�` ı�Q ı 
C�D Œ�` ı�Q ı 

��D h 2H1.Qƒ=`/;

then U is hidden.

Proof By the action estimates of Section 5.5, we have

E.U /DO
�
3�
X

wl.C
k
/
�
:

For � sufficiently small, we could guarantee that this quantity is less than the energies Ek
of the regions Rk (which grow slightly as � tends to 0 with N� shrinking). Therefore,
the energy bound of Proposition 11.8 would imply that U must be hidden.

Proposition 11.19 (cyclic order preservation of open–closed interpolations) Suppose
that U is a hidden Wc curve whose domain is a disk with a single interior puncture and
any number of boundary punctures. We require that :

(1) If c D C1, the boundary punctures are positively asymptotic to chords of ƒ0

with words w1; : : : ; wn.
18That is, h may be represented as a sum of positive cycles.
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(2) If c D �1, the boundary punctures are negatively asymptotic to chords of ƒ0

with words w1; : : : ; wn.

Here indices follow the counterclockwise cyclic ordering of the punctures around @D.
Then interior puncture of U asymptotic to the orbit .w1 � � �wn/.

The c D �1 curves described are those used to determine homomorphisms from
linearized contact homology to a cyclic version of Legendrian contact homology when
performing a contact �1 surgery in [7; 18; 20].19 We’ll see some of the c D 1 curves
shortly in Theorem 12.2.

Proof Consider the map �` ı �Q ıU from the punctured disk to the graph Qƒ=`.
Then @D — compactified appropriately — will give us an element of the free loop space
ofQƒ=`. It is clear from the construction of the map �Q that the connected component
of the free loop space of Qƒ=` containing this loop is indexed by w1 � � �wn. Looking
at circles of varying radii in D provides a homotopy between this loop and the one
provided by the interior puncture. Again by the construction of �Q, observe that, if the
orbit to which the puncture is asymptotic has cyclic word rj1 � � � rjn , then this word
must also index the component of the free loop space of Qƒ=` to which the puncture is
associated. The connected components of the free loop space of Qƒ=` are in bijective
correspondence with conjugacy classes on hrj i, so that the expressions rj1 � � � rjn and
w1 � � �wn are conjugate by the existence of the aforementioned homotopy. They are
also both positive in the sense of Definition 11.11 and so differ by a cyclic permutation
of their letters by Lemma 11.12.

Proposition 11.20 (triviality of hidden cylinders and strips) Suppose that U is a
hidden holomorphic cylinder in R�R3

ƒ˙
. Then U is a trivial cylinder.

If U has domain R� IC for some C > 0, is hidden , with boundary on the Lagrangian
cylinder over ƒ0 � .R3

ƒ˙
; �ƒ˙/, and with punctures asymptotic to chords of ƒ0, then

U is a trivial strip.

Proof If U is positively asymptotic to some orbit .rj1 � � � rjn/, then we can follow the
proof of Proposition 11.19 verbatim to conclude that U is negatively asymptotic to
.rj1 � � � rjn/. Hence, the energy of U is zero and it must be a trivial cylinder.

The case of a holomorphic strip is even easier. Suppose the strip is parametrized
by s 2 R and t 2 IC , and consider the family of paths s.t/ D �R3

ƒ̇
ıU.s; t/ with

boundary onƒ0�R3
ƒ˙

. Then we may consider the �`ı�Qıs as an R family of based

19We’re ignoring anchors, which can be avoided in some settings, such as [20].
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loops in Qƒ=`. As s!1, the �1.Qƒ=`/ element recorded by this based loop is the
word map of the chord to which U is positively asymptotic. As s!�1, the element
recorded is the word map of the chord to which U is negatively asymptotic. Hence,
the asymptotics are equivalent by our chord-to-chord correspondence (Theorem 5.10),
the energy of U is zero, and U is a trivial strip.

12 Applications

In this section we apply our computational tools to study the contact homology of
various contact manifolds. A summary of the results are as follows:

(1) In Section 12.1, we compute the contact homology of contact ˙1 surgeries on
the tbD�1, rotD 0 unknot in R3.

(2) In Section 12.2, we use the results of Section 11 to prove a general existence
result for holomorphic planes in R�R3

ƒ˙
when ƒC ¤¿.

(3) In Section 12.3, we use the existence of these holomorphic planes to provide a
new proof of the vanishing of CH for overtwisted contact structures.

(4) In Section 12.4, we state how the intersection numbers of Section 11 can be used
to define a grading Iƒ on the CH chain complex for ˛�.

(5) In Section 12.5, we compute the homology classes and Conley–Zehnder indices
of R� orbits appearing after application of contact surgeries to the tbD 1, right-
handed trefoil.

(6) In Section 12.6, we combine computations of Section 12.5 with the results of
Sections 12.2 and 12.4 to prove Theorem 1.2.

For notational simplicity, we will ignore mention of specific contact forms ˛� , assuming
that each contact manifold .R3

ƒ˙
; �ƒ˙/ is equipped with such a contact form with �

small enough to guarantee that all orbits under consideration are hyperbolic and that
Theorem 7.1 may be applied. Assumptions 11.4 are also in effect. When working with
symplectizations of .R3; �std/, we assume that we’re using the standard almost-complex
structure J0.

12.1 Surgeries on the standard unknot

Let ƒ be the Legendrian unknot with tbD�1 and rotD 0, depicted as a figure 8 in the
Lagrangian projection in Figure 25. Performing contact �1 surgery will produce the
standard contact lens space L.2; 1/— the unit cotangent bundle of S2, or alternatively
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Figure 25: Contact surgeries on the tbD�1 unknot with push-outs of their
unique embedded Reeb orbits. A�1 (C1) surgery is applied on the left (right)
subfigure.

the unit circle bundle associated to the line bundle O.�2/! P1. We’ll denote this
contact lens space by .L.2; 1/; �std/. Performing contact C1 surgery produced the
standard contact S1 �S2 — see Theorem 2.8 — denoted by .S1 �S2; �std/.

We can arrange that the Lagrangian projection of ƒ has a single crossing corresponding
to a Reeb chord we denote by r , so that after performing a contact ˙1 surgery there is
only a single embedded orbit .r/ with cyclic word r . Push-outs of .r/ using a choice
of capping path are shown in Figure 25. As rot.ƒ/D 0, the framing .X; Y / described
in Section 6 is nowhere-vanishing. For either choice of surgery coefficient, the first
homology H1 is generated by a meridian � of ƒ with

H1.L.2; 1//D .Z=2Z/�; H1.S
1
�S2/D Z�:

Theorem 12.1 The Conley–Zehnder gradings j � jX;Y oncCH.L.2; 1/; �std/ and cCH.S1 �S2; �std/

are canonical in the sense of Proposition 2.5. We computecCH.L.2; 1/; �std/DQŒz0; z2; : : : ; z2k; : : : �; jz2kjX;Y D 2k; Œz2k�D � 2H1;

for the lens space andcCH.S1 �S2; �std/D
V1
kD1Qz2k�1; jz2k�1jX;Y D 2k� 1; Œz2k�1�D 0 2H1;

for S1 �S2.

Proof For either choice of surgery coefficient c D ˙1, we may compute Conley–
Zehnder indices of .r/ using a capping path �. We see that the rotation angle of �
is 3
2
� , so that its rotation number 1. We conclude that

CZX;Y ..rk//D
�
k if c D�1;
2k if c DC1:

Here and throughout the remainder of the proof, .rk/D .r � � � r/ is the k–fold cover
of the embedded orbit .r/ for k > 0. To sanity check our index computations against
known results, we may:
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(1) Compare the case c D�1 with [7, Section 7.1], in which contact �1 surgery is
applied to ƒ.

(2) Compare the case c DC1 with [20, Lemma 4.2], in which a contact 1–handle is
attached to .R3; �std/ to obtain 6.S1 �S2; �std/.

In each case a single closed, embedded orbit is produced with Conley–Zehnder index
as described in the present scenario.

For the homology classes of orbits, we may apply Theorem 9.1, or simply look at the
push-outs depicted in Figure 25 to compute

Œ.r/�D

�
� if c D�1;
0 if c DC1:

As the framing .X; Y / is nonvanishing, we conclude that cCH is canonically Z–graded
for either choice of surgery coefficient, for, when c D �1, we have a Q–homology
sphere and, when c DC1, all orbits are homologically trivial.

When c D�1, an orbit .rk/ is bad exactly when k mod 2D 0. Write z2k for the orbit
.r2k�1/. Then the cCH chain algebra is freely generated by the z2k with gradings as
described in the statement of the theorem. As the CZX;Y grading is even, @CH must
vanish. The theorem is now complete in the case c D�1.

When c DC1, all of the .rk/ are good orbits, which we will denote by z2k�1. These
are graded as described in the statement of the theorem. As .r/ is the unique orbit of
index 1, @CH.r/ must be a count of holomorphic planes. If this count was nonzero,
then the unit in cCH would be exact. This is impossible, as .S1 �S2; �std/ bounds the
Liouville domain

.S1 �D3; x dy �y dxC z d�/;

implying that CH.S1 � S2; �std/¤ 0 and so cCH.S1 � S2; �std/¤ 0 by Theorem 2.6.
We conclude @CH.r/D 0.

For c D C1 and k > 1, the contact homology differential of .rk/ is determined by
counts of pairs of pants P1 n f0; 1;1g with

(1) 1 positively asymptotic to .rk/,

(2) 0 negatively asymptotic to some .rk0/,

(3) 1 negatively asymptotic to some .rk1/, and

(4) k D k0C k1, as required by the index formula, equation (8).
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Figure 26: Some RSFT disks with only positive punctures.

The energies of any such curves must be 0, indicating that these curves must be branched
covers of the trivial cylinder over .r/. According to calculations of Fabert [28], the
contact homology differential must be strictly action-decreasing, implying that the
counts of such curves are 0. We conclude @CH.r

k/D 0, completing the proof.

12.2 Bubbling planes in surgery diagrams

In this section we use the results of Section 11 to count holomorphic curves in completed
surgery cobordisms .WC1; x�C1/ determined by certain LRSFT disks on Legendrian
links in .R3; �std/ with only positive punctures. The arguments can be generalized to
Legendrians ƒ0 in arbitrary punctured contact manifolds .R3

ƒ˙
; �ƒ˙/, with additional

notation and hypothesis. We consider LRSFT disks with arbitrary numbers of positive
punctures, although in the applications of Sections 12.3 and 12.5 we’ll only need to
look at disks with a single positive puncture.

As mentioned in the introduction, the inspiration for our construction is Hofer’s bubbling
argument [35], used to prove the Weinstein conjecture — that every Reeb vector field
on a given contact manifold has a closed orbit — for certain contact 3–manifolds.
We also have in mind the holomorphic curves in contact �1 surgery cobordisms
of [7; 18] positively asymptotic to closed orbits and negatively asymptotic to chords of
a Legendrian link. In the case of C1 surgery, we will see some curves for which these
boundary conditions have been flipped upside-down, allowing us to interpolate between
chords of Legendrian links and Reeb orbits appearing after contact C1 surgery.

Suppose that ƒ0 � .R3; �std/ has an immersed LRSFT disk u W D n fpkg ! R2 for
some boundary punctures fpkg as in Figure 26. Specifically, we assume that u is an
embedding with only positive punctures, completely covering a connected component
of R2 n�x;y.ƒ0/. Write rj1 ; : : : ; rjn for the chords associated to the punctures of the
disk indexed in a counterclockwise fashion along its boundary and write

U WD n fpkg !R� .R3; �std/
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for the associated holomorphic curve with boundary mapping to R�ƒ0 determined by
the drawing-to-disk correspondence, Corollary 11.2.

Let .xk; yk/ be a basis of points for ƒ0, indexed so that .x1; y1/ lies in the interior of
the image of u. Then, by our hypothesis on u,

(64) Ck �U D

�
1 if k D 1;
0 if k ¤ 1:

Consider the completed cobordism .WC1; x�C1/ obtained by performing contact C1
surgery on ƒ0 as described by Theorem 10.1. Then we may consider U as having
WC1 as its target with boundary on an embedded union of Lagrangian planes DC1;i —
as described in Section 10 — whose intersection with the positive end of WC1 is
Œ0;1/ �ƒ0. We simply write DC1 for this union of planes. We may consider the
planes Ck as being contained in any of R�R3, WC1 or R�R3ƒ.

We consider the following moduli spaces:

(1) MR3 is the moduli space of holomorphic disks in R�R3 with positive punctures
asymptotic to the r1; : : : ; rn and boundary on R�ƒ0 satisfying (64).

(2) MWC1
is the moduli space of holomorphic disks in WC1 with positive punctures

asymptotic to the r1; : : : ; rn and boundary on DC1 satisfying (64).

(3) MR3ƒ
is the moduli space of holomorphic planes in R�R3ƒ positively asymptotic

to the closed orbit .rj1 � � � rjn/ and satisfying (64).

Within the positive end of the completed cobordism, we can translate U positively in
the R direction, determining a half-infinite ray Œ0;1/ �MWC1

. The index of U is
equal to 1, so that these curves are regular. Following the analogy with [35], these
disks will serve as our Bishop family.

Theorem 12.2 The boundary of the SFT compactification MWC1
of the moduli

space MWC1
consists of two points (when curves in symplectizations are considered

equivalent modulo R–translation). One point is given by R–translations of the curve U,
considered as living in R�R3. The other point is given by a height 3 SFT building
consisting of :

(1) A collection of trivial strips over the rjk in R�R3.

(2) A hidden curve U oc in WC1 from a disk with n boundary punctures positively
asymptotic to the rjk — preserving the cyclic ordering of the rjk — and a single
interior puncture negatively asymptotic to the closed Reeb orbit .rj1 � � � rjn/.

(3) A curve U c
¿
2MR3ƒ

.
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R�R3

WC1

R�R3ƒ

Figure 27: Elements of @MWC1
.

The algebraic count of such U oc is ˙1 and the algebraic count of points in MR3ƒ
is

also˙1.

The two buildings in @MWC1
are shown in Figure 27. The notation U oc indicates that

the curves interpolates between open and closed strings — that is, between chords and
orbits — and this curve is shown in the center-right of Figure 27. The curve U c

¿
is

shown in the bottom-right of the figure.

Proof The space @MWC1
consists of multilevel SFT buildings such that, when their

levels are glued together, an index 1 curve obeying the topological hypotheses on MWC1

is obtained. Subject to these conditions, such buildings may be of any of the following
configurations:

(1) Case .1;¿;¿/ A 3–level building consisting of an index 1 curve in R�R3, an
empty curve in WC1, and an empty curve in the symplectization of the surgered
manifold R�R3ƒ.

(2) Case .1;0;¿/ A 3–level building consisting of an index 1 curve in R�.R3; �std/,
a collection of index 0 curves in WC1, and an empty curve in R�R3

ƒ˙
.

(3) Case .0; 0; 1/ A 3–level building consisting of a collection of index 0 curves in
R�R3, a collection of index 0 curves in WC1, and an index 1 curve in R�R3

ƒ˙
.

The buildings are required to recover the boundary conditions of U when glued in
the obvious way. Buildings of height greater than 3 are ruled out by presumption of
transversality for somewhere-injective curves in Assumptions 11.4, index additivity and
the fact that all closed orbits of R� at the negative end of WC1 are assumed hyperbolic,
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so that there cannot be levels consisting of branched covers of trivial cylinders with
ind� 0 as described in [41, Section 1].

We will show, using the intersections with the Ck , that

(1) U is the only possibility for the case .1; 0;¿/,
(2) there are no curves in the case .1; 0;¿/, and

(3) the second configuration described in the statement of the proposition — appear-
ing in Figure 27, right — is the only possibility for the case .0; 0; 1/.

Case .1;¿;¿/ For the case .1;¿;¿/, our assumptions on the immersion u indicate
that U is the only disk in R�R3 satisfying (64). We conclude that U is then the only
possibility in this case.

Case .1; 0;¿/ Next, suppose we have a holomorphic building satisfying the condi-
tions of the case .1; 0;¿/ and note that the middle level — a union of curves in WC1
we’ll denote by UWC1 — must be positively asymptotic to some number of chords and
have no negative asymptotics. Hence, each connected component of UWC1 must be
exposed by Proposition 11.17.20 The conditions on intersection numbers of (64) then
indicate that UWC1 must consist of a single component and that the upper level of this
building UR�R3 must be hidden.

For each component of UR�R3 , the number of positive punctures must match the
number of negative punctures, as otherwise Proposition 11.16 would indicate that this
component is exposed. If any component had more than a single negative puncture,
then UWC1 would have more than a single connected component in violation of the
above arguments. We conclude that UR�R3 must be a union of hidden strips, which
are then trivial by Proposition 11.20.

Since UR�R3 is a collection of trivial strips, it must then have indD 0, in violation of
our hypothesis. We conclude that no buildings of type .1; 0;¿/ can exist.

Case .0; 0; 1/ Finally, we address configurations of type .0; 0; 1/. Suppose that
we have such a height 3 building whose levels — going from top to bottom — will
be denoted by UR�R3 , UWC1 and UR�R3ƒ

. By Proposition 11.17, UR�R3ƒ
must be

exposed and so, by (64), both UR�R3 and UWC1 must be hidden. Then UR�R3ƒ
must

consist of a holomorphic plane positively asymptotic to some orbit  . The curve UWC1
20By connected component we intend that nodal configurations, such as those appearing in the appendix
of [12], are broken up into their irreducible pieces, with any removable boundary singularities filled in.
We maintain this convention throughout the remainder of the proof.
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must then consist of a single connected component negatively asymptotic to  , as
any additional components would necessarily have trivial negative asymptotics and
therefore be exposed by Proposition 11.17. As its index is zero, UR�R3 must be a
collection of trivial strips. We conclude that UWC1 must consist of a punctured disk
exactly as described in the statement of the proposition. We know that the negative
puncture of UWC1 must be asymptotic to .rj1 � � � rjn/ by Proposition 11.19.

Apart from the statement regarding algebraic counts, our proof is complete. To prove
this last statement, observe that @MWC1

has a count of 0 points when taking into account
some choice of orientation as it is the boundary of a 1–manifold. We can also write

#@Mx0;y0 D #..1;¿;¿/ buildings/C #..1; 0;¿/ buildings/C #..0; 0; 1/ buildings/;

where the #.� � � / are counted with signs. We know that the set of .1;¿;¿/ buildings
consists of a single element yielding a count of˙1 and that the set of .1; 0;¿/ buildings
must be empty by our previous arguments providing a count of 0. Hence, the number
of .0; 0; 1/ buildings must be �1. But this number is equal to #.UWC1/ � #.UR�R3ƒ

/,
so that both numbers must have absolute value 1. Observing that #.UR�R3ƒ

/ coincides
with a count of points in the moduli space MR�R3ƒ

, the proof is complete.

12.3 Vanishing invariants of overtwisted contact manifolds

Here we use the holomorphic planes of Section 12.2 to prove that the contact homologies
of overtwisted contact 3–manifolds are 0. Throughout, we write .MOT; �OT/ for a closed,
overtwisted contact 3–manifold.

Theorem 12.3 [65] cCH.MOT; �OT/D CH.MOT; �OT/D 0.

Proof Applying Eliashberg’s theorem [21; 39], which asserts that isotopy classes
of overtwisted contact structures on a given contact 3–manifold are classified by the
homotopy classes of their underlying oriented 2–plane fields, we know that, for each
n 2 Z, there exists a unique overtwisted contact structure �n on S3 whose d3 invariant
is n� 1

2
. For the tight contact structure .S3; �std/ on S3, we have d3.�std/ D �

1
2

.21

Denoting contact-connected sum by # and isotopic contact structures by ',

.MOT; �OT/' .MOT; �OT/ # .S3; �std/' .MOT; �OT/ # .S3; ��1/ # .S3; �1/:

By the connected-sum formula of Theorem 2.6, then, we only need to show thatcCH.S3; �1/D 0.
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R1

R2

R3

Figure 28: A basis for the tbD�2, rotD 1 unknot.

A contact surgery diagram for .S3; �1/ is provided by a contactC1 surgery on a tbD�1,
rotD 1 unknot. See [52, Lemma 11.3.10]. A Lagrangian resolution of this knot ƒ—
shown in Figure 28 — has two chords, say r1 and r2. Perturbing ƒ as necessary, we
may assume that the actions of the chords are distinct and that r1 has the least action of
the two chords with r1 corresponding to the positive puncture of the disk determined
by the region R1 of Figure 28. Applying the Conley–Zehnder index calculations of
Theorem 7.1 to the figure, we see that the Reeb orbit .r1/ has CZX;Y D 2. Moreover,
the orbit is contractible as can be seen by considering a push-out by the orbit string �1;1.

As the action of .r1/ is the least among all orbits R� according to our chord-to-orbit
correspondence (Theorem 5.1) and the action estimates of Proposition 5.13, @CH.r1/ and
@SFT.r1/ are counts of planes bounding .r1/. Using the notation of Section 11.5, write
Ei for the areas of the regions Ri �R2 n�xy.N�/ shown in Figure 28. By taking the �
parameter in ˛� to be sufficiently small, we may assume that E2; E3>A..r1//. Likewise,
by Stokes’ theorem, A..r1//� E1 is positive. and may be assumed arbitrarily small by
taking � to be arbitrarily small. Then, by the action-energy bound of Proposition 11.8
and the exposure of filling curves (Proposition 11.17), any plane U W C ! R�R3ƒ
bounding .r1/ must satisfy

Ck �U D

�
1 if k D 1;
0 if k ¤ 1:

We can view R1 as determining a disk with a positive puncture at the chord r1, apply
Theorem 12.2 to obtain a holomorphic plane bounding .r1/, and conclude that the
count of such planes is ˙1. Hence,

@CH.r1/D˙1 2Q;

so that the unit in cCH is zero. This implies that CH.MOT; �OT/ must also be zero by
Theorem 2.6.
21See [52, Section 11.3] for an overview of d3 invariants (which we will be following in this proof) as
defined by Gompf [31, Section 4].
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12.4 Intersection gradings on bCH chain complexes

Here we describe how the intersections of finite-energy curves with the planes Ck
of Section 11.4 can define gradings on the CC�;0.˛�/ chain complexes of punctured
Q–homology spheres which take values in a free Z–module. As described in the intro-
duction, this is simply a variation of the transverse knot filtrations of [14, Section 7.2].

It will be clear from their construction that analogous gradings — which depend on
a surgery presentation of our punctures contact manifold — can be constructed for
holomorphic curve invariants of Q–homology spheres .R3

ƒ˙
; �ƒ˙/ such as bECH and

the bSFT. It will also be clear that the assumption that H2.M/ D 0 may be dropped
by considering QŒH2.M/� coefficient systems as described in [6]. Likewise, such
gradings can be extended to all of CC�;� using QŒH2.M/� coefficients and spanning
surfaces bounding unions of closed orbits and fixed representatives of homology classes
as in [6]. In Section 12.6 we will use this grading to prove Theorem 1.2, in which case
we will only need the CC�;0 version of this construction for Q–homology spheres.

Let .R3
ƒ˙
; �ƒ˙/ be a contact manifold determined by a contact surgery diagram ƒ˙

with R3
ƒ˙

a Q–homology sphere. Let .xk; yk/ for k D 1; : : : ; K be a point basis for
the surgery diagram determining a finite collection of infinite-energy holomorphic
planes Ck as described in Section 11.5.

Suppose  D fkg is a collection of Reeb orbits for which Œ�D 0 2H1.R3ƒ˙/ and let
S be a surface in R3

ƒ˙
with @S D  . To the surface S and each point .xk; yk/, we

define
Ik./D

�
f.xk; yk/g �R

�
�S 2 Z:

By Theorem 11.6 and the fact that H2.R3ƒ˙/D 0, the numbers Ik./ are independent
of choice of spanning surface S for  . We collect all of these numbers as monomials

Iƒ./D
KX
1

Ik./�k 2 ZK

for formal variables �k for k D 1; : : : ; K. It follows from this definition that, provided
two homologically trivial collections 1, 2 of closed Reeb orbits, we have

Iƒ.1[ 2/D Iƒ.1/C Iƒ.2/:

We set Iƒ.¿/D 0 2 ZK . Then Iƒ determines a ZK–valued grading on the H1 D 0
subalgebra CC�;0 of the chain algebra CC for the contact homology associated to the
contact form ˛� of R3

ƒ˙
.
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r1 r2 r3

r4

r5

R1
R2 R3

R4

R5

R6

Figure 29: A Legendrian trefoil with tbD�1 and rotD 0 in the Lagrangian
projection together with a basis for R2 nN.

Now suppose that C and � are two homologically trivial collections of closed orbits
and that U is a map from a surface with boundary into R3

ƒ˙
for which @U D C��.

Then, relative to its boundary, we have�
f.xk; yk/g �R

�
�U D Ik.

C/� Ik.
�/ 2 Z:

In particular, if .t; U / W†0!R�R3
ƒ˙

is a holomorphic curve positively asymptotic to
the C and negatively asymptotic to the �, then

(65) Iƒ.C/� Iƒ.�/D
X��

f.xk; yk/g �R
�
�U
�
�k D

X
.Ck � .t; U //�k 2 ZK�0:

In summary, the Iƒ allows us to make a priori computations of intersection numbers be-
tween holomorphic curves asymptotic to orbits with leaves of the foliation as described
in Section 11. In particular, if

(66) Iƒ.C/� Iƒ.�/ … ZK�0;

then the coefficient of � in @CH.
C/ must be zero.22

12.5 Surgery on a trefoil

Take ƒ to be the trefoil depicted in Figure 29 with chords r1; : : : ; r5. This is a
reproduction of Figure 6 with a point basis shown in the right-hand side of the figure.
This trefoil is the unique nondestabilizable m.31/ by [25].

22Here it is implicit that, if the collection C contains more than a single orbit, then a holomorphic map
.t; U / as above contributing to @CH will consist of a connected index 1 holomorphic curve positively
asymptotic to some orbit in C together with a union of trivial cylinders over the remaining orbits in the
collection. This deviation from convention allows us to associate cobordisms to differentials of monomials
consisting of C containing more than one orbit.
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12.5.1 Ambient geometry According to Theorem 9.1, the first homology of R3
ƒ˙

is
generated by the meridian � with

H1.R
3
ƒ˙
/D

�
Z=2Z� if c D 1;
Z� if c D�1:

Since ƒ is smoothly fibered, with fiber a punctured torus, the closed manifold obtained
by contact �1 surgery — a topological 0 surgery with respect to the Seifert framing —
is a torus bundle over S1. This manifold is Liouville fillable, and hence tight, and so is
a torus bundle covered by the classification in [36, Section 2].

PerformingC1 contact surgery produces a tight but nonfillable contact manifold studied
in [43] — see also [52, Theorem 1.3.4] — which is a Brieskorn sphere with reversed
orientation, �†.2; 3; 4/. Nonfillability may also be viewed as a consequence of the
fact that the trefoil is not slice by [15], as mentioned in Theorem 2.8.

12.5.2 Rotation numbers and crossing monomials Here we compute rotation
numbers and crossing monomials for the trefoil, which will allow us to compute
Conley–Zehnder indices and homology classes of the orbits in the surgered manifolds
by applying Theorems 7.1 and 9.1, respectively.

To compute the rotation numbers, we first find the rotation angles �j1;j2 , which we see
are all either 1

2
� , 3

2
� or 5

2
� , producing the following table:

chord rotj;1 rotj;2 rotj;3 rotj;4 rotj;5

r1 0 0 0 0 1

r2 0 0 0 0 1

r3 0 0 0 0 1

r4 1 1 1 1 2

r5 0 0 0 0 1

For the computation of the crossing monomials, there is only a single �i , so that
Remark 3.2 is applicable. The � coefficients of the relevant crossing monomials are:

chord sgn crj W c D 1 crj W c D�1 crj;1 crj;2 crj;3 crj;4 crj;5

r1 1 2 0 0 0 2 3 1

r2 1 2 0 0 0 0 1 1

r3 1 2 0 �2 0 0 1 �1

r4 �1 0 �2 1 1 3 4 2

r5 �1 0 �2 �1 1 1 2 0
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cw./ � W c D 1 CZX;Y W c D 1 � W c D�1 CZX;Y W c D�1

r1 1 1 0 0

r2 1 1 0 0

r3 1 1 0 0

r4 0 2 1 1

r5 0 2 �1 1

r1r2 0 2 0 0

r1r3 0 2 0 0

r1r4 1 3 1 1

r1r5 1 3 �1 1

r2r3 0 2 0 0

r2r4 0 3 0 1

r2r5 0 3 0 1

r3r4 1 3 1 1

r3r5 1 3 �1 1

r4r5 0 4 0 2

Table 1

12.5.3 Homology classes and indices of orbits after surgery Using the above com-
putations, we can produce in Table 1 the homology classes and Conley–Zehnder indices
of Reeb orbits with word length � 2 using Theorems 9.3 and 7.1. Multiply covered
orbits have been omitted. Coefficients for � in the case c D 1 are taken modulo 2.

12.6 Proof of Theorem 1.2

In this section, we prove Theorem 1.2 by computing @CH.r4/.

12.6.1 The subalgebra C0;0 and intersection gradings As the rotation numbers
of capping paths on ƒ are bounded below by 0, Theorem 7.1 tells us that the Conley–
Zehnder indices of all orbits of are bounded below by their word lengths. We conclude

Figure 30: An annulus bounding .r1/[ .r2/.
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that @CH.r4/must be an element of CC0;0 which is a commutative algebra on generators

1; .r1/
2; .r2/

2; .r3/
2; .r1/.r2/; .r1/.r3/; .r2/.r3/:

We’ll compute the Iƒ gradings on CC0;0 using points .xk; yk/ appearing in the centers
of the regions Rk of Figure 29:

CC�;0 monomial I1 I2 I3 I4 I5 I6

.r4/ 0 0 0 0 1 0

.r1/
2 �1 �1 �2 �1 1 1

.r2/
2 1 2 2 1 �1 �1

.r3/
2 �1 �2 �1 �1 1 1

.r1/.r2/ 0 1 0 0 0 0

.r1/.r3/ �1 �1 �1 �1 1 1

.r2/.r3/ 0 0 1 0 0 0

To establish the calculations appearing in the above table, we construct surfaces bound-
ing .r1/.r2/, .r2/.r3/ and .r2/.r2/, filling in the remainder of the table using arithmetic.
Such surfaces will be constructed out of simple cobordisms built out of homotopies
and skein operations. For .r4/, we have an obvious disk bounding a push-out along x�4,
obtained by perturbing R5.

In Figure 30, we construct a spanning surface for the union of the orbits .r1/[ .r2/.
We begin by homotoping the union of orbits into the complement of N� , as described
in Section 9.4. The result — associated to capping paths �1 and x�2 — is shown on the
left-most subfigure. To get from the left column of the figure to the center, we apply
a skein cobordism along the dashed arc, resulting in a pair-of-pants cobordism. The
resulting knot can be homotoped to the Reeb orbit .r1r2/ as shown in the right-hand
side of the figure. So far our surface has avoided passing through any of the lines
f.x; y/D .xk; yk/g �R3

ƒ˙
. To complete our cobordism, we fill in the knot shown in

the right-most subfigure using the obvious disk which is a perturbation of the disk R2.
The union of our pair of pants with this disk provides us with an annular filling of
.r1/[ .r2/ which intersects the link f.x; y/D .x2; y2/g exactly once with positive sign.
We conclude that

Iƒ..r1/.r2//D �2:

A similar construction can be carried out to find an annular filling of .r2/[ .r3/: we
start with a push-out corresponding to capping paths x�2 and �3, apply a skein cobordism
giving us a pair of pants with boundary .r2/[ .r3/� .r2r3/, and then fill in .r2r3/ with
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Figure 31: A cobordism with boundary .r2/C�.

a perturbation of the disk D3. We conclude that

Iƒ..r2/.r3//D �3:

Now we construct a spanning surface for .r2/[ .r2/. The construction is more compli-
cated in this case: we construct two cobordisms from .r2/ from a positive and negative
meridian of ƒ, which can then be patched together to give us a surface with boundary
.r2/[ .r2/.

We break down the construction of one such cobordism whose boundary is .r2/C�
into a sequence of elementary cobordisms, as shown in Figure 31:

(1) We start with a push-out of .r2/ using the capping path x�2, as shown in the
top-left subfigure.

(2) Going from the top-left to top-center, we homotop our knot across the disks R2
and R3. Along the way, we pick up two intersections with the lines associated
to the points .x2; y2/ and .x3; y3/ with positive signs.

(3) Going from the top-center to the top-right, we apply skein cobordisms along the
dashed arcs appearing in the top-center.

(4) Going from the top-right to the bottom-left, we apply another skein cobordism
along the dashed arc appearing in the top-right yielding a 4–component link.

Figure 32: A tube bounding ���.
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(5) Going from the bottom-left to the bottom-center, we fill in one of the components
of our link with a disk which is a perturbation of the disk R4. In doing so, we
pick up a positive intersection with the line over the point .x4; y4/.

(6) Going from the bottom-center to the bottom-right, we homotop one component
of our knot over �R6 to a ��

Combining all of the above steps, we’ve constructed a homotopy from .r2/ to a collec-
tion of meridians. We can cancel a pair of them with a tube as shown in Figure 32. The
end result is a cobordism with boundary .r2/C� passing through the lines associated to
the points .x2; y2/, .x3; y3/ and .x4; y4/ once each with positive intersection number
and passing through the line over .x6; y6/ with negative intersection number.

We can also construct a cobordism with boundary .r2/ � � by flipping Figure 31
about a horizontal line, starting with a push-out of �2. The resulting cobordism passes
through the lines associated to the points .x1; y1/, .x2; y2/ and .x3; y3/ once each with
positive intersection number and passing through the line over .x5; y5/ with negative
intersection number.

We can connect the two cobordisms with another tube bounding ��� to obtain a
spanning surface for .r2/[ .r2/. By the above counts of intersections, we have

Iƒ..r2/2/D �1C 2�2C 2�3C �4� �5� �6:

Using our calculations of Iƒ..r1/.r2//, Iƒ..r2/.r3// and Iƒ..r2/2/, we can fill out
the remainder of the above table by computing

Iƒ..r1/2/D 2Iƒ..r1/.r2//� Iƒ..r2/2/;

Iƒ..r3/2/D 2Iƒ..r2/.r3//� Iƒ..r2/2/;

Iƒ..r1/.r3//D Iƒ..r1/.r2//C Iƒ..r2/.r3//� Iƒ..r2/2/:

12.6.2 Intersection numbers of curves positively asymptotic to .r4/ Now suppose
that we have a holomorphic curve U positively asymptotic to .r4/ and negatively
asymptotic to a collection of generators � from C0;0. Writing � as a monomial
in C0;0, there are nonnegative constants Ci;j for which

� D .r1/
2C1;1.r2/

2C2;2.r3/
2C3;3..r1/.r2//

C1;2..r1/.r3//
C1;3..r2/.r3//

C2;3 :

We’ll use the intersection grading to show that all of the Ci;j must be zero, so that
U cannot have any negative asymptotics. We can count the intersection of U with
the planes Ck as the coefficients of the �k in the expression Iƒ..r4//� Iƒ.�/ as
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described in (65). Using the table above, we compute

Iƒ..r4//� Iƒ.�/D .C1;1�C2;2CC3;3CC1;3/�1
C .C1;1� 2C2;2C 2C3;3�C1;2CC1;3/�2

C .2C1;1� 2C2;2CC3;3CC1;3�C2;3/�3

C .C1;1�C2;2CC3;3CC1;3/�4

C .1�C1;1CC2;2�C3;3�C1;3/�5

C .�C1;1CC2;2�C3;3�C1;3/�6:

All of the �k coefficients above must be nonnegative by intersection positivity.

As the �4 and �6 coefficients are the same with opposite sign, both must be zero so that

C2;2 D C1;1CC3;3CC1;3:

Therefore, we must have

Iƒ..r4//� Iƒ.�/D .�C1;1�C1;2�C1;3/�2C .�C3;3�C1;3�C2;3/�3C �5;

implying that the remaining Ci;j are all zero.

12.6.3 Completion of the proof The above analysis implies that, if U is an index 1
holomorphic curve contributing to @CH.r4/, then it cannot have any negative asymptotics
and must satisfy

(67) Ck �U D

�
1 if k D 5;
0 if k ¤ 5:

Such a curve must be parametrized by C as per the definition of @CH. To complete our
proof, we analyze the moduli space of finite-energy curves

M4;5 D fC
U
�!R�R3

ƒ˙
W U asymptotic to .r4/, satisfying (67)g=reparametrization:

By the above analysis, @CH..r4// D #.M4;5/1, counting points algebraically. This
moduli space exactly describes the lowest levels U c

¿
of the height 3 SFT buildings

studied in Theorem 12.2, which when applied to the disk R5 tell us that #.M4;5/D˙1.

The proof of Theorem 1.2 is then complete in the case of the tbD 1 trefoil shown in
Figure 29. By the classification torus knots in .R3; �std/ [25], all other right-handed
trefoils are stabilizations of this one — contact C1 surgeries on these stabilized knots
will be overtwisted and so will have CHD 0. The proof is now complete in the case
that ƒC consists of a single component. In the case that ƒC D

Sn
i ƒ
C
i has multiple

components, we have — as described in Section 10 — a Liouville cobordism .W; �/

whose convex end .MC; �C/D .@CW; ker.�/j@CW / is given by contact C1 surgery
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on ƒC1 and whose concave end .M�; �C/D .@�W; ker.�/j@�W / is given by contact
surgery on ƒC. If we index the components of ƒC so that ƒC1 is a right-handed
trefoil, then CH.MC; �C/D 0, and so, by Liouville functoriality, CH.M�; ��/D 0
as well. The proof is now complete for all right-handed trefoils and all contact surgery
coefficients 1=k with k > 0.
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Unexpected Stein fillings, rational surface singularities
and plane curve arrangements
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We compare Stein fillings and Milnor fibers for rational surface singularities with
reduced fundamental cycle. Deformation theory for this class of singularities was stud-
ied by de Jong and van Straten (1998); they associated a germ of a singular plane curve
to each singularity and described Milnor fibers via deformations of this singular curve.

We consider links of surface singularities, equipped with their canonical contact
structures, and develop a symplectic analog of de Jong and van Straten’s construction.
Using planar open books and Lefschetz fibrations, we describe all Stein fillings of
the links via certain arrangements of symplectic disks, related by a homotopy to the
plane curve germ of the singularity.

As a consequence, we show that many rational singularities in this class admit Stein
fillings that are not strongly diffeomorphic to any Milnor fibers. This contrasts with
previously known cases, such as simple and quotient surface singularities, where
Milnor fibers are known to give rise to all Stein fillings. On the other hand, we show
that if for a singularity with reduced fundamental cycle, the self-intersection of each
exceptional curve is at most �5 in the minimal resolution, then the link has a unique
Stein filling (given by a Milnor fiber).
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1 Introduction

The goal of this paper is to compare and contrast deformation theory and symplectic
topology of certain rational surface singularities. Using topological tools, we examine
symplectic fillings for links of rational surface singularities with reduced fundamental
cycle and compare these fillings to Milnor fibers of the singularities. Each Milnor fiber
carries a Stein structure and thus gives a Stein filling of the link; however, we show that
there is a plethora of Stein fillings that do not arise from Milnor fibers. Milnor fibers
and deformation theory are studied in the work of de Jong and van Straten [27] for
sandwiched surface singularities (this class includes rational singularities with reduced
fundamental cycle). The main feature of their construction is a reduction from surfaces
to curves: deformations of a surface singularity in the given class can be understood
via deformations of the germ of a reducible plane curve associated to the singularity.
To describe Stein fillings, we develop a symplectic analog of de Jong and van Straten’s
constructions, representing the fillings via arrangements of smooth (or symplectic)
disks in C2. Our approach is purely topological and thus different from de Jong and
van Straten’s; their algebrogeometric techniques do not apply in our more general
symplectic setting. We work with Lefschetz fibrations and open books, referring to
algebraic geometry only for motivation and for the description of smoothings from [27].

Let X �CN be a singular complex surface with an isolated singularity at the origin.
For small r > 0, the intersection Y DX \S2N�1

r with the sphere S2N�1
r D fjz1j

2C

jz2j
2C� � �CjzN j

2D rg is a smooth 3–manifold called the link of the singularity .X; 0/.
The induced contact structure � on Y is the distribution of complex tangencies to Y,
and is referred to as the canonical or Milnor fillable contact structure on the link. The
contact manifold .Y; �/, which we will call the contact link, is independent of the
choice of r , up to contactomorphism.

An important problem concerning the topology of a surface singularity is to compare the
Milnor fibers of smoothings of .X; 0/ to symplectic or Stein fillings of the link .Y; �/.
A smoothing is given by a deformation of X to a surface (the Milnor fiber) that is
no longer singular. (We discuss smoothings in more detail in Section 2.) Milnor
fibers themselves are Stein fillings of .Y; �/, called Milnor fillings. An additional
Stein filling can be produced by deforming the symplectic structure on the minimal
resolution of .X; 0/; see Bogomolov and de Oliveira [10]. For rational singularities, this
filling agrees with the Milnor fiber of the Artin smoothing component and need not be
considered separately; see Section 4. An interesting question is whether the collection
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of these expected fillings, taken for all singularities with the same link .Y; �/, gives all
possible Stein fillings of the link. In this article, we will use the term unexpected Stein
filling to refer to any Stein filling which does not arise as a Milnor fiber or the minimal
resolution.

There are very few examples of unexpected Stein fillings in the previously existing
literature, none of which are simply connected. In this article, we show that, in fact,
unexpected Stein fillings are abundant, and in many cases simply connected, even
for the simple class of rational singularities with reduced fundamental cycle. These
singularities, also known as minimal singularities (see Kollár [29]), can be characterized
by the conditions that the dual resolution graph is a tree, where each vertex v corresponds
to a curve of genus 0, and its self-intersection v �v and valency a.v/ satisfy the inequality
�v � v � a.v/. (See Section 2 for more details.) In low-dimensional topology, such
graphs are often referred to as trees with no bad vertices. The corresponding plumbed
3–manifolds are L–spaces, ie they have the simplest possible Heegaard Floer homology;
see Ozsváth and Szabó [51]. In a sense, links of rational singularities with reduced fun-
damental cycle are just slightly more complicated than lens spaces. As another measure
of low complexity, these contact structures admit planar open book decompositions. In
the planar case, the set of Stein fillings satisfies a number of finiteness properties (see
for instance Kaloti [28], Lisi and Wendl [35], Plamenevskaya [54] and Stipsicz [60]),
which makes it rather surprising that these singularities diverge from the expected.

We construct many specific examples of unexpected Stein fillings for rational singulari-
ties with reduced fundamental cycle. Then we show that our examples can be broadly
generalized to apply to a large class of singularities with reduced fundamental cycle:
we only require that the resolution graph of the singularity contain a certain subgraph
to ensure that the link has many unexpected Stein fillings.

Theorem 1.1 For any N > 0, there is a rational singularity with reduced fundamental
cycle whose contact link .YN ; �N / admits at least N pairwise nonhomeomorphic
simply connected Stein fillings , none of which is diffeomorphic to a Milnor filling
(rel certain boundary data). Examples of such .YN ; �N / include Seifert fibered spaces
over S2 corresponding to certain star-shaped resolution graphs.

The statement also holds for any rational singularity with reduced fundamental cycle
whose resolution graph has a star-shaped subgraph as above.

More precise statements are given in Section 7. Our first example which admits
simply connected unexpected Stein fillings corresponds to the singularity with resolution
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�11

Figure 1: A resolution graph for a singularity whose link admits simply con-
nected unexpected fillings. (Unlabeled vertices have self-intersection �2.)
Any graph containing this as a subgraph corresponds to a singularity which
also admits simply connected unexpected fillings.

graph in Figure 1. More generally, for every N > 4 we can find N distinct unexpected
Stein fillings for singularities whose dual resolution graph is star-shaped with at least
2N C 5 sufficiently long legs, the self-intersection of the central vertex is a large
negative number, and the self-intersection of any other vertex is �2.

By contrast, previous results have indicated that for simple classes of singularities,
all Stein fillings come from Milnor fibers or the minimal resolution (there are no
unexpected fillings). This is true for .S3; �std/ by Eliashberg [13], for links of simple
and simple elliptic singularities by Ohta and Ono [49; 50], for lens spaces (links of
cyclic quotient singularities) by Lisca [34] and Némethi and Popescu-Pampu [45], and
in general for quotient singularities by Bhupal and Ono [8] and Park, Park, Shin and
Urzúa [52]. Theorem 1.1 breaks this pattern and provides many unexpected fillings.
However, we are also able to show that certain classes of rational singularities with
reduced fundamental cycle do not admit any unexpected fillings:

Theorem 1.2 Let .X; 0/ be a rational singularity with reduced fundamental cycle with
link .Y; �/, and suppose that each exceptional curve in its minimal resolution has self-
intersection at most �5. Then the resolution of .X; 0/ is the unique weak symplectic
filling of .Y; �/, up to blow-up , symplectomorphism and symplectic deformation.

This theorem proves a symplectic analogue of [27, Theorem 6.21], which establishes a
special case of a conjecture of Kollár, showing that for singularities as in Theorem 1.2,
the base space of a semiuniversal deformation has one component. Thus, they show there
is a unique smoothing, whereas we generalize this to show there is a unique minimal
symplectic filling. To prove Theorem 1.2, we build on the combinatorial argument
of [27] and use mapping class group arguments to establish the symplectic case.

The bound of �5 on the self-intersection of the exceptional curves in Theorem 1.2
cannot generally be improved. Indeed, any singularity whose minimal resolution
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contains a sphere of self-intersection �4 has at least two distinct Stein fillings, because
a neighborhood of the .�4/ sphere can be rationally blown down to produce another
filling with smaller Euler characteristic; see Symington [61]. This corresponds to the fact
that the singularity has at least two smoothing components if a .�4/ sphere is present;
see Kollár [30]. While our Theorem 1.1 shows there are unexpected fillings in many ex-
amples, we do not cover all examples which fail the hypotheses of Theorem 1.2; there are
many cases where we cannot determine whether or not the link has unexpected fillings.

Theorem 1.2 extends the list of singularities with no unexpected Stein fillings. However,
when complexity of the singularity increases, one should expect the unexpected: as
predicted in Némethi [43], more complicated singularities are likely to have Stein
fillings that do not arise from Milnor fibers. To our knowledge, the only previous
examples of unexpected Stein fillings in the literature are detected by their first Betti
number. By Greuel and Steenbrink [22], Milnor fibers for normal surface singularities
always have b1 D 0. An infinite family of Stein fillings with b1 ¤ 0 was given in
Akhmedov and Ozbagci [3; 4] for links of certain nonrational singularities; these links
are Seifert fibered spaces over higher genus surfaces. It follows from [3; 4] that most
of these fillings are different from both the Milnor fibers and the resolution of the
singularity. The constructions in these papers use surgeries and produce infinite families
of exotic fillings (which are all homeomorphic but pairwise nondiffeomorphic). Note
that for rational singularities, the first Betti number cannot detect unexpected fillings:
the link is a rational homology sphere, and a homology exact sequence argument shows
that b1 D 0 for any Stein filling; see Remark 6.5.

Note that, in general, known results allow us to find many nonrational singularities
whose links have infinitely many Stein fillings. As an example, consider a normal
surface singularity whose resolution has a unique exceptional curve of genus g� 2 with
self-intersection �d , for d > 0. The resolution is the total space of the complex line
bundle of degree d over the corresponding Riemann surface, and the singularity can be
thought of as cone point. If g D 1

2
.d � 1/.d � 2/, one of the analytic singularities in

this topological type is the hypersurface .Xd ; 0/ in C3, given by xd C yd C zd D 0.
For each d � 5, the results of Baykur, Monden and Van Horn-Morris [7] produce
arbitrarily long positive factorizations of the corresponding open book monodromy,
which in turn yields infinitely many Stein fillings for the link .Yd ; �d /; in particular,
there are Stein fillings with arbitrarily large b2. One might hope that most of these
Stein fillings are unexpected: indeed, a hypersurface singularity has a unique Milnor
fiber, and its topology is well understood; see Milnor [39] and Tyurina [64]. However,
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the question is more subtle: because .Xd ; 0/ is not (pseudo)taut (see Laufer [32]),
there are infinitely many singularities with the same link .Yd ; �d /. Milnor fibers of
these singularities may yield additional Stein fillings. Describing all such Milnor fibers
seems to be out of reach; conceivably, they may produce all the Stein fillings given
by the arbitrarily long factorizations of [7]. We will discuss related questions in more
detail in Section 4, although we do not have any answers for this case.

Our present work gives the first examples of unexpected Stein fillings for rational singu-
larities, and for the case where the link Y is a rational homology sphere. In the case of ra-
tional singularities, the fillings must be differentiated from Milnor fibers by more subtle
means than b1, as all Stein fillings have b1D0 in this case. For singularities with reduced
fundamental cycle, the contact link admits a planar open book decomposition; see
Némethi and Tosun [46] and Schönenberger [58]. By Kaloti [28], Plamenevskaya [54]
and Stipsicz [60], it follows that the number of Dehn twists in any positive monodromy
factorization, and thus b2 of Stein fillings, is bounded above. This means that we
cannot generate unexpected fillings by arbitrarily long positive factorizations. On the
other hand, even though there is typically an infinite collection of singularities with the
given link, the reduced fundamental cycle hypothesis, together with the de Jong–van
Straten theory, gives us certain control over the topology of all possible Milnor fibers.

In general, comparing Stein fillings to Milnor fillings is a two-fold challenge: clas-
sification is typically out of reach, both on the deformation theory side (smoothings
and Milnor fibers) and on the symplectic side (Stein fillings). In the particular case of
rational singularities with reduced fundamental cycle, two important tools facilitate
the study of fillings. On the algebraic geometry side, de Jong and van Straten reduce
the study of deformations of the surface to certain deformations of a decorated germ
of a reducible singular complex curve C � C2. (The germ C is associated to the
surface as explained in Section 2. For now, we omit the decoration from notation.) The
construction of [27] works for a more general class of sandwiched rational singularities;
in the case of reduced fundamental cycle, the associated plane curve germ has smooth
irreducible components. Thus in this case, C is simply the union of smooth complex
disks C1;C2; : : : ;Cm, all passing through 0. The decoration of the germ is given by
marked points, initially concentrated at the origin. To encode deformations of the surface
singularity, one considers 1–parameter ı–constant deformations of C, where the marked
points are redistributed so that all singularities of the deformed curve Cs are marked
(additional “free” marked points are also allowed). Smoothings of the corresponding
singularities are given by picture deformations, where the only singularities of the
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deformed curve are transverse multiple points. While picture deformations are still
hard to classify directly and thus rarely give explicit classification of smoothings, they
do provide a lot of useful information. In certain examples, they allow us to understand
the topology of Milnor fibers and compute their basic invariants.

The following theorem summarizes the results of de Jong–van Straten that we use.
Detailed definitions and precise statements will be given in Section 2.

Theorem 1.3 [27, Theorem 4.4, Lemma 4.7] Let .X; 0/ be a rational singularity with
reduced fundamental cycle , and C � C2 its decorated germ of a reducible complex
curve such that all the branches C1; : : : ;Cm of C are smooth complex disks. Then
smoothings of .X; 0/ are in one-to-one correspondence with picture deformations of C.
A picture deformation gives an arrangement Cs of the deformed branches C s

1
; : : : ;C s

m,
s ¤ 0, with marked points that include all the intersections of the branches. The Milnor
fiber WCs of the corresponding smoothing can be constructed by blowing up at all
marked points and taking the complement of the proper transforms of C s

1
; : : : ;C s

m.

The Milnor fibers described in Theorem 1.3 are noncompact, but a slight modification
yields compact Milnor fillings of the contact link .Y; �/ of .X; 0/. We consider the
germ C in a small closed ball B �C2 centered at 0, such that all the branches of C, and
thus all the deformed branches for small s, intersect @B transversely, and B contains
all marked points. To obtain a smooth compact 4–manifold whose boundary is the
link Y, we blow up B at the marked points, take the complement of disjoint tubular
neighborhoods of the proper transforms of C s

1
; : : : ;C s

m, and smooth the corners.

In turn, on the symplectic side, contact links of singularities with reduced fundamental
cycle are more accessible because they are supported by planar open books; see Némethi
and Tosun [46] and Schönenberger [58]. By a theorem of Wendl [65], all Stein fillings
of a planar contact manifold are given by Lefschetz fibrations whose fiber is the page of
the open book. In other words, all these Lefschetz fibrations arise from factorizations
of the monodromy of the given open book into a product of positive Dehn twists. In
most cases, such positive factorizations cannot be explicitly classified, but they give a
combinatorial approach to Stein fillings.

To relate the two sides of the story, we generalize the notion of picture deformation and
consider smooth graphical homotopies of the decorated germ C with smooth branches.
A smooth graphical homotopy of C is a real 1–parameter family of embedded disks
C t

1
; : : : ;C t

m such that for t D 0 the disks C 0
1
; : : : ;C 0

m are the branches of C, and
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for t D 1, the intersections between C 1
i and C 1

j are transverse and positive for all i; j .
There is a collection of marked points on C 1

1
; : : : ;C 1

m, coming from a redistribution of
the decoration on C, such that all intersection points are marked. (See Definition 3.1.)

We prove that just as picture deformations yield smoothings in [27], every smooth
graphical homotopy gives rise to a Stein filling naturally supported by a Lefschetz
fibration.

Theorem 1.4 Let .Y; �/ be the contact link of a singularity .X; 0/ with reduced
fundamental cycle , and let C be a decorated plane curve germ representing .X; 0/,
with m smooth components C 0

1
; : : : ;C 0

m. For any smooth graphical homotopy , let W

be the smooth 4–manifold obtained by blowing up at all marked points and taking
the complement of the proper transforms of C 1

1
; : : : ;C 1

m. (In the case of a picture
deformation Cs, W is the Milnor fiber WCs from Theorem 1.3).

Then W carries a planar Lefschetz fibration that supports a Stein filling of .Y; �/. When
W DWCs , the Lefschetz fibration is compatible with the Stein structure on the Milnor
fiber.

The fiber of the Lefschetz fibration on W is a disk with m holes , and the vanishing
cycles can be computed directly from the decorated curve configuration C 1

1
; : : : ;C 1

m.
On .Y; �/, the Lefschetz fibration induces a planar open book decomposition , which is
independent of the smooth graphical homotopy of the given decorated germ C.

Each rational singularity with reduced fundamental cycle has a distinguished Artin
smoothing component, which corresponds to a picture deformation called the Scott
deformation; see Section 4. Applying Theorem 1.4 to the Scott deformation yields
a planar Lefschetz fibration filling .Y; �/ where the vanishing cycles are disjoint; see
Proposition 4.1. This gives a natural model for the planar open book decomposition
on .Y; �/. This open book is closely related to the braid monodromy of the singularity
of C. Note that we need to consider all singularities topologically equivalent to .X; 0/ to
describe all Milnor fillings for .Y; �/, since all such singularities have the same contact
link. However, topologically equivalent singularities can be represented by topologically
equivalent decorated germs and produce the same open book decompositions.

The process of computing the monodromy factorization resembles a known strategy for
monodromy calculation for a plane algebraic curve; see Moishezon and Teicher [40; 41].
The necessary information can be encoded by a braided wiring diagram given by the
intersection of Cs with a suitably chosen copy of C �R�C2.
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A reversal of the above constructions allows us to represent Stein fillings of .Y; �/ via
arrangements of symplectic curves, as follows. Let W be an arbitrary Stein filling of
the link .Y; �/. We fix an open book for .Y; �/ defined by the germ C as above. By
Wendl’s theorem, W can be represented by a Lefschetz fibration with the planar fiber
given by the page. The Lefschetz fibration corresponds to a factorization of the open
book monodromy into a product of positive Dehn twists. We reverse-engineer a braided
wiring diagram producing this factorization, and then use the diagram to construct an
arrangement � of symplectic disks. (In fact, an arrangement of smooth graphical disks
is sufficient for our constructions, but the symplectic condition can be satisfied at no
extra cost.) We require that the disks intersect transversally (multiple intersections are
allowed), and equip � with a collection of marked points that include all intersections
and possibly additional “free” points. We also show that the resulting arrangement
of disks and points is related to the decorated germ C by a smooth homotopy, which
is graphical in suitable coordinates. (The homotopy moves the disks and the marked
points.) This yields a symplectic analog of Theorem 1.3.

Theorem 1.5 Let .Y; �/ be the contact link of a singularity .X; 0/ with reduced
fundamental cycle that corresponds to a decorated plane curve germ C. Then any
Stein filling of .Y; �/ arises from an arrangement � of symplectic graphical disks with
marked points , as in Theorem 1.4. The arrangement � is related to the decorated germ C
by a smooth graphical homotopy.

Theorems 1.3 and 1.5 mean that both Milnor fibers and arbitrary Stein fillings of a given
link of rational singularity with reduced fundamental cycle can be constructed in a
similar way, starting with the decorated plane curve germ C representing the singularity.
Milnor fibers arise from algebraic picture deformations of the branches of C, while
Stein fillings come from smooth graphical homotopies of the branches.

Once the comparison of Milnor fibers and Stein fillings is reduced to comparison
of arrangements of complex curves or smooth disks with certain properties, we can
construct examples of arrangements that generate Stein fillings not diffeomorphic to
Milnor fibers. We need arrangements that are related to a particular plane curve germ
by a smooth graphical homotopy but not by an algebraic picture deformation. We
build unexpected line arrangements satisfying this property in Section 7, using classical
projective geometry and a study of analytic deformations. We use these to construct
unexpected Stein fillings; then we verify that they are not diffeomorphic (relative to
the boundary open book data) to Milnor fillings by an argument based on Némethi
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and Popescu-Pampu [44]. This leads to the proof of Theorem 1.1 and other similar
examples.

At first glance, the difference between algebraic and smooth plane curve arrangements
seems rather obvious. However, because we are in an open situation, working with
germs of curves and smooth disks with boundary as opposed to closed algebraic surfaces,
the question is quite subtle. In particular, we cannot simply use known examples of
topological or symplectic line arrangements in CP2 not realizable by complex lines.
Indeed, in many cases the smooth surfaces can be closely approximated by high-degree
polynomials, so that a Lefschetz fibration on the corresponding Stein filling can be
realized by a Milnor fiber. We discuss the relevant features of the picture deformations
and smooth (or symplectic) graphical homotopies in detail in Section 8, and explain
what makes our examples work.

It is worth stating that while Stein fillings and Milnor fillings are the same for certain
small families of singularities, the two notions are in fact fundamentally different. A
Milnor filling is given by a smoothing of a singular complex surface, so there is a
family of Stein homotopic fillings of .Y; �/ that degenerate to the singular surface. A
Stein filling of the link has no a priori relation to the singular surface and is not part
of any such family. This distinction becomes apparent in our present work, by the
following heuristic reasoning. A picture deformation Cs of the decorated germ C gives,
for any s ¤ 0, a Milnor filling WCs , so that all these fillings are diffeomorphic and
even Stein homotopic. The Milnor fillings look the same for all s ¤ 0 because the
arrangements of deformed branches fC s

1
; : : : ;C s

mg have the same topology. By contrast,
if the germ C is homotoped via a family of smooth disk arrangements � t, the topology
of the arrangement f� t

1
; : : : ; � t

mg may change during the homotopy. Under certain
conditions we can construct a family of Lefschetz fibrations Wt that includes the given
Stein filling and changes its diffeomorphism type at finitely many discrete times as it
connects to the minimal resolution. In other cases, at some time t the homotopy gives
an arrangement � t which produces an achiral Lefschetz fibration, so the 4–manifolds
in the corresponding family do not necessarily carry a Stein structure. We return to
this discussion in Section 8.

One can also ask whether unexpected fillings exist for rational singularities with reduced
fundamental cycle that are not covered by Theorem 1.1 or Theorem 1.2. For certain
additional simple examples, we can use Theorem 1.5 and pseudoholomorphic curve
arguments to verify that there are no unexpected fillings, even though the smoothing
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may not be unique. This approach only works when the germ of the singularity is a
pencil of lines satisfying certain restrictive constraints. Namely, we can consider

(1) arrangements of 6 or fewer symplectic lines, or

(2) arrangements of symplectic lines where one of the lines has at most two marked
points where it meets all the other lines in the arrangement.

Since the boundary behavior of symplectic lines is controlled, we can cap off symplectic
lines in a ball to symplectic projective lines in CP2, together with the line at infinity.
The corresponding arrangements in CP2 are shown to have a unique symplectic isotopy
class and are symplectically isotopic to an actual complex algebraic line arrangement
in CP2; see Starkston [59, Lemma 3.4.5]. It follows that every symplectic arrangement
as above can be obtained as picture deformation of a pencil of complex lines, and
therefore, the corresponding Stein fillings are given by Milnor fibers. The links of the
corresponding singularities are Seifert fibered spaces, for which Stein fillings were
completely classified and presented as planar Lefschetz fibrations in [59, Chapter
4]. The line arrangements appearing in that classification precisely coincide with the
symplectic disk arrangements from the perspective of this article. (Here, gluing in the
deleted neighborhood of the disk provides an embedding of the Stein filling into a
blow-up of C2. In [59], gluing on the cap, which augments the configuration of lines
by the additional line at infinity, provides an embedding of the Stein filling in a blow-up
of CP2.) In general, Theorem 1.5 seems to have limited applications to classification
of fillings, due to complexity of arrangements of curves.

It is interesting to note that while de Jong and van Straten describe deformations
of sandwiched singularities, our constructions only work for the subclass of rational
singularities with reduced fundamental cycle. Indeed, a planar open book decomposition
of the contact link plays a key role in our work because we need Wendl’s theorem
to describe Stein fillings. By Ghiggini, Golla and Plamenevskaya [19] the Milnor
fillable contact structure on the link of a normal surface singularity is planar only if the
singularity is rational and has reduced fundamental cycle. This means that our methods
in the present paper cannot be used for classification for any other surface singularities.
However, for future work, we are investigating extensions of these methods to produce
examples of unexpected fillings for more general surface singularities. Finally, recall
that all weak symplectic fillings of a planar contact 3–manifold are in fact given by planar
Lefschetz fibrations, up to blow-ups and symplectic deformation; see Niederkrüger
and Wendl [48]. It follows that Theorem 1.5 and related results apply to describe all
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minimal weak symplectic fillings. However, we focus on Stein fillings and will give all
statements, with the exception of Theorem 1.2, only for the Stein case.

Organization of the paper

In Section 2 we review the definitions of rational singularities with reduced funda-
mental cycle as well as their deformation theory from [27], and prove some of their
properties from the topological perspective. In Section 3 we prove the first direction
of the symplectic correspondence, namely Theorem 1.4. In Section 4 we explain
the smoothing in the Artin component from the perspective of symplectic topology,
discuss the corresponding open books, and also raise some questions related to open
book factorizations and nonrational singularities. In Section 5 we prove the other half
of the correspondence, establishing Theorem 1.5 using braided wiring diagrams and
Wendl’s theorem [65]. In Section 6 we prove Theorem 1.2 and explain how to calculate
algebraic topological invariants of the fillings, which we will use to distinguish our
examples of unexpected Stein fillings from Milnor fillings. In Section 7 we prove
that there are many examples of unexpected Stein fillings for links of rational surface
singularities with reduced fundamental cycle, establishing Theorem 1.1. Finally, in
Section 8 we explain what key differences between picture deformations and smooth
graphical homotopies contributed to the distinction between expected and unexpected
Stein fillings.
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2 Rational singularities with reduced fundamental cycle, their
decorated curve germs, and relation to deformations

In this section, we collect some facts about rational singularities with reduced fundamen-
tal cycle and state de Jong and van Straten’s results on their smoothings [27]. De Jong
and van Straten’s results are in fact more general: they fully describe deformation
theory for a wider class of sandwiched singularities. We state only the results we need.
Some of our statements are slightly different from [27]: we describe their constructions
from the topological perspective and set the stage for our work. Although we aim for
a mostly self-contained discussion, the reader may find it useful to consult [42] for a
general survey on topology of surface singularities. The survey [56] focuses on the
interplay between singularity theory and contact topology and provides very helpful
background. Additionally, a brief survey of the key results of [27] from the topological
perspective can be found in [44].

2.1 Resolutions and smoothings.

We begin with some general facts about surface singularities. Let .X; 0/ be a normal
surface singularity. Its resolution � W zX ! X is a proper birational morphism such
that zX is smooth. The exceptional divisor ��1.0/ is the inverse image of the singular
point. For a given singularity .X; 0/, the resolution is not unique, as one can always
make additional blow-ups; however, for a surface singularity, there is a unique minimal
resolution [31]. The minimal resolution is characterized by the fact that zX contains no
embedded smooth complex curves of genus 0 and self-intersection �1 (thus it does not
admit a blow-down).

After performing additional blow-ups if necessary, we can assume that the exceptional
divisor ��1.0/ has normal crossings. This means that ��1.0/D

S
v2G Ev , where the

irreducible components Ev are smooth complex curves that intersect transversally at
double points only. A resolution with this property is called a good resolution. For a
surface singularity, a minimal good resolution is also unique [31].

The topology of a good resolution is encoded by the (dual) resolution graph G. The
vertices v 2G correspond to the exceptional curves Ev and are weighted by the genus
and self-intersection Ev �Ev of the corresponding curve. We will often refer to Ev �Ev

as the self-intersection of the vertex v, and use the notation v � v for brevity. The edges
of G record intersections of different irreducible components. Note that the link of the
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singularity is the boundary of the plumbing of disk bundles over surfaces according
to G. In this paper, we focus on rational singularities; in this case G is always a tree,
and each exceptional curve Ev has genus 0. (Genus 0 curves are also called rational
curves.) Therefore we will typically omit the genus from the markings on the vertices
and only record the self-intersection numbers.

It is well known that the dual resolution graph of every normal surface singularity is
negative definite, and conversely, every negative definite connected graph corresponds
to some normal surface singularity; see eg [42]. The link of the singularity deter-
mines the dual graph of the minimal good resolution, and vice versa. By a result of
W Neumann [47], the links of two normal surface singularities have the same oriented
diffeomorphism type if and only if their dual resolution graphs are related by a finite
sequence of blow-ups/blow-downs along rational .�1/ curves. Moreover, the links of
two normal surface singularities are orientation-preserving diffeomorphic if and only if
their minimal good resolutions have the same dual graphs. Minimal good resolutions
are easy to recognize: if a good resolution is not minimal, its graph will have a vertex
representing a genus 0 curve with self-intersection �1. (This follows from [47]; see
also [19, Lemma 5.2] for a direct proof that any possible blow-downs can be seen
directly from the graph.)

The local topological type of the singularity .X; 0/ can be understood from its link Y,
as a cone on the corresponding 3–manifold. We will say that two singularities are
topologically equivalent if they have the same link. It is important to note that the
analytic type of the singularity is not uniquely determined by the link; typically, many
analytically different singularities have diffeomorphic links. It is known that the
canonical contact structures are all isomorphic for different singularities of the same
topological type [11]; thus, the dual resolution graph encodes the canonical contact
structure. Indeed, this contact structure can be recovered as the convex boundary of the
plumbing, according to the graph, of the standard neighborhoods of the corresponding
symplectic surfaces.

We now turn our attention to deformations and Milnor fibers. A deformation of a
surface singularity .X; 0/ is any flat map � W .X ; 0/! .T ; 0/ such that ��1.0/D .X; 0/.
A versal (or semiuniversal) deformation f W .X ; 0/! .B; 0/ parametrizes all possible
deformations of .X; 0/. The base space .B; 0/ generally has multiple irreducible
components, which may have different dimensions. It is generally difficult to understand
the space B, its irreducible components, and the dimensions of these components.
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A deformation � W .X ; 0/! .D; 0/ over the disk in C is called a (1–parameter) smoothing
of .X; 0/ if Xs WD �

�1.s/ is smooth for all s ¤ 0. For any smoothing all such Xs are
diffeomorphic, and we call Xs the Milnor fiber of the smoothing. For example, for a
hypersurface X Dff .x;y; z/D0g�C3 with f .0/D 0 and df .0/D 0, a smoothing of
the singularity at 0 can be given by f WC3!C, with Milnor fiber X�Dff .x;y; z/D�g

for a small �¤ 0. Each Milnor fiber is endowed with a Stein structure, and for different
t0; t1 2 D n 0, Xs0

and Xs1
are Stein homotopic (the Stein homotopy is obtained by

choosing a path from s0 to s1 in D which avoids 0).

We need to work with a compact version of the Milnor fiber. For a sufficiently small
radius r > 0, the surface X � CN is transverse to the sphere SN�1

r . We fix a ball
BN

r � CN centered at 0, sometimes called a Milnor ball, and consider X \BN
r as

the Milnor representative of X . The boundary @.X \BN
r / is the link Y of .X; 0/,

and the complex structure on X induces the canonical contact structure � on Y. For
sufficiently small s¤ 0, we can similarly find a compact version of Xs whose boundary
is contactomorphic to the link .Y; �/, which provides a Stein filling of .Y; �/.

For a semiuniversal deformation f W .X ; 0/! .B; 0/ of the surface singularity .X; 0/, an
irreducible component Bi of B is called a smoothing component of .X; 0/ if the general
fiber over Bi is smooth. We note that Bi may have lower (complex) dimensional strata
where the fibers over these strata are not smooth. For example, these nongeneral strata
could arise from singularities in the component Bi or intersections of Bi with other
irreducible components of B. Nevertheless, these nongeneral strata have positive com-
plex codimension, so the subset of Bi over which the fiber is smooth will be connected.
Any 1–parameter smoothing of .X; 0/ lies in a unique smoothing component Bi .

In general, not every surface singularity admits a smoothing. However, for rational
singularities every irreducible component of B is a smoothing component; see [5] and
also [56, Theorem 4.24]. Moreover, there is one distinguished component, called the
Artin component. This component is associated to the minimal resolution zX of .X; 0/;
see [5] and also [56, Theorem 4.25]. (For rational singularities, deformations of zX
come from deformations of .X; 0/, and these deformations of .X; 0/ form the Artin
component.) We discuss Milnor fibers in this component in greater detail in Section 4.

In this paper, we study Stein fillings for the contact link .Y; �/ of a surface singularity,
and compare them to Milnor fillings. As explained above, in general the link determines
only the topological, but not the analytic, type of the singularity. Normal surface
singularities whose topological type admits a unique analytic type are called taut; if
there are only finitely many analytic types, the singularity is pseudotaut. Taut and
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pseudotaut singularities were classified by Laufer [32]: there are several very restrictive
lists for the dual resolution graphs, in particular, the graphs cannot have any vertices
of valency greater than 3. Thus, most singularities are not (pseudo)taut, even if we
restrict to a very special kind that we consider in this paper, rational singularities with
reduced fundamental cycle. If we are to compare Stein fillings and Milnor fillings
of the link, we need to consider Milnor fibers for all possible singularities of the
given topological type. In principle, it is quite possible that topologically equivalent
singularities have nondiffeomorphic Milnor fibers: for example, the hypersurface
singularities x2Cy7Cz14D 0 and x3Cy4Cz12D 0 have the same topological type,
but their (unique) Milnor fibers have different b2; see [33] and also the discussion in
[56, Section 6.2]. Fortunately, in the case of reduced fundamental cycle we will have
some control over the topology of Milnor fibers for different analytic types, thanks to
the de Jong–van Straten construction.

2.2 Sandwiched singularities, extended graphs, and decorated germs

Definition 2.1 .X; 0/ is a rational singularity with reduced fundamental cycle if it
admits a normal crossing resolution such that all exceptional curves have genus 0, the
dual resolution graph G is a tree, and for each vertex v 2G, the valency a.v/ of v and
the self-intersection v � v satisfy the inequality

(2-1) a.v/� �v � v:

It follows from (2-1) that the graph as above can only have vertices with self-intersection
�1 as the leaves of the tree. Blowing down all such vertices, we obtain a graph that
still satisfies (2-1) and represents the minimal resolution of .X; 0/.

To explain the terminology of Definition 2.1, we recall the definition of a fundamental
cycle. For a given resolution, consider the set of divisors�

Z D
X
v2G

mvEv

ˇ̌̌
Z > 0; and Z �Ev � 0 for all Ev

�
:

This set has a partial order, defined by
P

mvEv �
P

nvEv if mv � nv for all v. There
is a minimal element with respect to this partial order, denoted by Zmin and called
Artin’s fundamental cycle. The resolution dual graph is connected, different components
Ev intersect positively, and Z > 0, so any element in the set has mv > 0. Therefore,
Zmin �

P
v2G Ev . It is easy to see that

�P
v2G Ev

�
�Ev � 0 for all Ev if and only if

condition (2-1) is satisfied. In this case Zmin D
P
v2G Ev , and since each exceptional

curve enters with multiplicity 1, we say that the fundamental cycle Zmin is reduced.
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In [27], de Jong and van Straten work with sandwiched singularities. By definition, a
sandwiched singularity .X; 0/ is analytically isomorphic to the germ of an algebraic
singular surface which admits a birational morphism to .C2; 0/. For a resolution
� W zX !X , we get a diagram . zX ; ��1.0//Ü .X; 0/Ü .C2; 0/. In particular, X is
sandwiched between two smooth spaces via birational maps. Sandwiched singularities
are rational and can be characterized by their resolution graphs as follows, by translating
the sandwiched condition. The graph G is sandwiched if we can add to it a number
of edges and their end vertices with self-intersections .�1/, so that the resulting
graph G0 gives a plumbing whose boundary represents S3. In other words, G0 gives a
configuration of rational curves that can be blown down to a smooth point. The choice
of the graph G0 is not unique. It is not hard to see that every rational singularity with
reduced fundamental cycle is sandwiched. In Proposition 2.2 below, we discuss in
detail the construction of the possible graphs G0 for this case.

Any sandwiched singularity can be associated to a (germ of a) complex plane curve
singularity, constructed as follows. The choice of the graph G0 corresponds to an
embedding of the tubular neighborhood of the exceptional set of the resolution zX into
some blow-up of C2. This blown-up surface also has a distinguished collection of
.�1/ curves, so that the configuration of these .�1/ together with the exceptional set
can be completely blown down. For each distinguished .�1/ curve, choose a transverse
complex disk (called a curvetta) through a generic point. Now, contract the curve
configuration corresponding to G0. The union of the curvettas becomes a germ of a
reducible curve C in C2, with components passing through 0. Let Ci , i D 1; 2; : : : ;m,
be the irreducible components of C; following [27], we also refer to Ci as curvettas.
We emphasize that only the germ of C at the origin is defined; when we use the notation
C �C2, we only consider a small neighborhood of 0 2C2. In particular, we are only
interested in the singularity of the reducible curve C at 0. In this paper, we will focus
on the case where the components Ci are smooth at 0, so that locally Ci is a smooth
disk. This suffices to study rational singularities with reduced fundamental cycle, as
we will soon see. This disk may be locally parametrized by a high-degree algebraic
curve in C2, but the global topology of this curve is unimportant to us, because we
only use the part of the curve in a neighborhood of the origin.

Each curvetta Ci comes with a weight wi Dw.Ci/, given by the number of exceptional
spheres that intersect the corresponding curve in the blow-down process from G0 to
the empty graph. In other words, wi is the number of blow-down steps that affect the
corresponding curvetta before it becomes Ci . The weighted curve .C; w/ is called a
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Figure 2: An example of a sandwiched singularity and a choice of corre-
sponding curvettas (green arrows). The first diagram shows the resolution
curves together with extra (red) .�1/ exceptional curves attached. Then
there is a sequence of blow-downs. We keep track of the weights w.Ci/ in
rectangular boxes next to each green curvetta arrow. The multiplicities of
tangencies between bunches are recorded in blue circled numbers.

decorated germ corresponding to .X; 0/. An example of this process, and the resulting
decorated germ for the given singularity, is shown in Figure 2.

It is convenient to start the process with the minimal normal crossings resolution
of .X; 0/. For rational singularities with reduced fundamental cycle, it is easy to
see that the graph of the minimal normal crossings resolution has no .�1/ vertices.
(From (2-1), only vertices of valency 1 can have self-intersection �1 in any resolution
graph, and these can be blown down to get the minimal graph.) If G has no .�1/

vertices, then all the .�1/ vertices of G0 are those that come from the extension: each
.�1/ vertex is a leaf of G0, connected by an edge to a unique vertex of G. The transverse
curvetta slices are added to all these .�1/ vertices.

In what follows, we will only consider decorated germs that arise from the above
construction. (These are called standard decorated germs in [44]. Some statements
in [27] allow for more general decorated germs.)
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The singularity .X; 0/ can be reconstructed from .C; w/. We iteratively blow up points
infinitely near 0 on proper transforms of curvettas C1; : : : ;Ck until we obtain a minimal
embedded resolution of C. Then we perform additional blow-ups at the intersection
of Ci with the corresponding exceptional curve, so that the sum of multiplicities of
proper transforms of Ci at the blow-up points is exactlywi . The union of the exceptional
curves that do not meet the proper transforms of the curvettas is then contracted to
form .X; 0/.

We emphasize that C depends on the choice of the graph G0, ie on the particular
extension of the resolution graph of .X; 0/ by .�1/ curves. Any of these choices can
be used to classify Milnor fillings as in [27]. In general, the branches of C are singular
curves. However, if .X; 0/ is a rational singularity with reduced fundamental cycle, an
appropriate choice of G0 ensures that C has smooth branches. We will always work
in this setting and only consider decorated germs with smooth components. In the
following proposition, we establish a necessary and sufficient condition for smoothness
purely in terms of the graph G0. Although similar questions were studied in [27; 26],
we formulate the condition here in a way that seems simplest from the topological
point of view. In the next section, we will reinterpret the statement for open book
decompositions.

Proposition 2.2 Let the graph G0 be a negative definite plumbing tree , and P 0 the
corresponding plumbing of disk bundles over rational curves. Suppose that the bound-
ary of the plumbing P 0 is S3; equivalently, G0 encodes a configuration of rational
curves that can be blown down to a smooth point. For each .�1/ vertex, let zCj be a
complex disk intersecting the corresponding .�1/ sphere in P 0 transversally once. Let
C1; : : : ;Cm be the images of zC1; : : : ; zCm under blowing down the configuration G0.
Then the following are equivalent :

(1) Each Cj is smooth.

(2) There exists exactly one v0
0
2G0 such that

v00 � v
0
0C a.v00/D�1;

v0 � v0C a.v0/ D 0 for all v0 ¤ v00:

(We will often refer to v0
0

as the root.)

As before , v0 � v0 denotes the self-intersection of a vertex v0 2G0, and a.v0/ its valence.
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Proof Consider C D C1 [ � � � [ Cm with smooth branches Cj . We obtain G0 as
described above, by blowing up repeatedly at intersections of the Cj with each other
and with the exceptional divisors. We stop when the resulting configuration of curves
has the following property: if an exceptional divisor intersects a proper transform zCj

then it is disjoint from all other proper transforms zCj 0 , j 0¤ j (in particular, different zCj

are disjoint from each other), and the total number of blow-ups performed on (proper
transforms of) Cj is exactly wj , the weight on Cj .

We will show that G0 has the structure of a rooted tree by repeatedly applying the
following procedure. For the root v0

0
, we will have v0

0
� v0

0
C a.v0

0
/D�1, and for all

other vertices v0 ¤ v0
0
, v0 � v0C a.v0/D 0. We show that this condition is satisfied at

every stage of the process.

Blow up at the common intersection point of all Cj . The resulting exceptional divisor
(and its future proper transforms) gives the root of the tree. If proper transforms
of all Cj still have a common point, we repeatedly blow up at the same point until
some of the proper transforms zCj become disjoint from each other. (With a slight
abuse of notation, zCj will denote the proper transform of Cj at any stage of the
process.) Additional blow-ups create a chain of exceptional .�2/ spheres with the
root at one end and the most recent exceptional .�1/ sphere at the other end. Up to
relabeling, we can assume there are distinct intersection points zC1\ � � � \

zCa1
D p1

1
,

zCa1C1\� � �\
zCa2
Dp1

2
; : : : ; zCa1

r1

\� � �\ zCmDp1
r1

lying on the most recently introduced
exceptional divisor B1.

Assuming m>1, since all the zCj intersect B1, we must blow up exactly once at each p1
i

to make them all disjoint from B1. Here we use smoothness of the curvettas Cj (and
thus of their proper transforms) to ensure that they become disjoint from B1 after a
single blow-up: every point on Cj has multiplicity 1, thus zCj intersects each exceptional
divisor with multiplicity at most 1. Note that once zC1; : : : ; zCm are all disjoint from B1,
we will not blow up at any point on B1 again, therefore at this stage we can already
compute the self-intersection and valency of the corresponding vertex in G0. The self-
intersection of the proper transform of B1 in G0 (which we will also denote by B1) is
�r1�1. If B1 is not the root, it has valency r1C1, and if it is the root it has valency r1.
Thus, condition (2) is satisfied for the vertex of G0 given by B1. All the other vertices in
the graph at this stage are either .�2/ spheres in a chain of valency 2 (if not the root) or
valency 1 (if the root), or newly introduced .�1/ vertices of valency 1, so condition (2)
is satisfied at this stage.
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In order to obtain G0 we repeat this process iteratively, replacing the first exceptional
sphere with the exceptional sphere obtained by blowing up at some ps

i . (The points
p1

1
; : : : ;p1

r1
were introduced above; after blowing up at each of these new points,

the new exceptional curves intersect the proper transforms of the curvettas at points
p2

1
; : : : ;p2

r2
; similarly, points ps

i ; : : : ;p
s
rs

are the intersections that appear at step s.)
Each time, condition (2) is preserved, since each curve zCj intersects each exceptional
divisor with multiplicity at most 1. Repeating sufficiently many times, eventually all of
the zCj will intersect only disjoint exceptional spheres. After potentially blowing up
more times at the intersection of zCj with its intersecting exceptional sphere until the
number of blow-ups is wj , we obtain G0. (The additional blow-ups create a chain of
.�2/ vertices connecting to the last .�1/ vertex.) Since condition (2) is preserved at
each step of this procedure, G0 satisfies condition (2).

Conversely, if G0 satisfies condition (2), the only .�1/ vertices are leaves of the rooted
tree (valency 1). Blowing down a leaf preserves condition (2) because it decreases the
valency of the adjacent vertex by 1 and increases the self-intersection by 1. The zCj are
disks which transversally intersect the .�1/ leaves of G0 with multiplicity 1. Therefore
each zCj intersects each exceptional divisor with multiplicity at most 1. This property is
preserved under blowing down a .�1/ leaf, because a multiplicity 1 intersection of zCj

on a .�1/ leaf becomes a multiplicity 1 intersection on the adjacent exceptional divisor
after blowing down. Blowing down an exceptional divisor which intersects zCj with
multiplicity 1 preserves smoothness of zCj . Therefore after blowing down all leaves
of G0 and finally the root, the resulting proper transforms Cj are still smooth.

Remark 2.3 Another way to see that G0 must satisfy condition .2/ is to consider
what happens if G0 has a vertex with a.v0/ > �v0 � v0. After blowing down, eventually
the vertex v0 will correspond to a .�1/ sphere with valency � 2, with at least one zCj

intersecting it with multiplicity at least 1. (The existence of the intersecting zCj comes
from the fact that intersections are transferred under blow-down to the adjacent ver-
tices. Initially, every .�1/ sphere in G0 has an intersecting curvetta. Each time that
a .�1/ sphere is blown down, the curvetta intersection is transferred to the adjacent
vertices, whose self-intersections are correspondingly increased. For v0 to reach self-
intersection �1, one must have blown down .�1/ vertices adjacent to it. Throughout
the process of blowing down, we maintain the condition that .�1/ vertices always have
at least one intersecting curvetta.) After blowing down the .�1/ sphere of valency � 2,
we obtain a point where at least two exceptional divisors intersect at the same point
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Figure 3: Two possible choices to add�1 curves to the same resolution graph,
resulting in different curvettas, one with smooth components and another
with a singular (cuspidal) component.

with a zCj . Eventually one of these exceptional divisors will be blown down, forcing
zCj to intersect the other exceptional divisor with multiplicity � 2. Once this other
exceptional divisor is blown down, the proper transform of zCj becomes singular.

Note that it is possible to have different choices of extension for G, such that one
choice yields smooth curvettas and another yields singular curvettas; see Figure 3 for
an example. In other words, some sandwiched resolution graphs G have extensions
both to a graph which does satisfy condition (2) of Proposition 2.2 and to a graph which
does not. For our classifications, we will always work with a choice of extension of G

which does satisfy condition (2) and the corresponding smooth curvettas.

We can also deduce some basic numerical properties from Proposition 2.2. It turns out
that for a rational singularity .X; 0/ with reduced fundamental cycle, the multiplicity
of the singular point determines the number of choices for the defining plane curve
germ C with smooth branches, as well as the number of curvetta branches in each such
germ. Assuming that .X; 0/� .CN ; 0/ for some large N , recall that the multiplicity
mult X can be defined geometrically as the number of intersections #X \L of X with
a generic complex .N�2/–dimensional affine subspace L�C, passing close to the
origin. For rational singularities, multiplicity is a topological invariant, which can be
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computed from the resolution graph by the formula mult X D�Z2
min; see eg [42]. The

two statements below are also discussed in [27] from the algebrogeometric perspective,
but they follow easily from the combinatorics of the resolution graph.

Proposition 2.4 Let .X; 0/ be a rational singularity with reduced fundamental cycle ,
and C a plane curve germ corresponding to .X; 0/. If C has smooth branches , the
number of branches is given by mult X � 1.

Proof The minimal normal crossings resolution graph G for .X; 0/ has no .�1/

vertices. Then G is obtained from (any choice of) the graph G0 by deleting all vertices
v0 2 G0 with v0 � v0 D �1. The curvetta branches are obtained by putting transverse
slices on each .�1/ sphere v0 2G0, thus the number m of curvetta branches is given
by the number of the .�1/ vertices in G0. By condition (2) of Proposition 2.2,X

v02G0

.v0 � v0C a.v0//D�1:

Again by condition (2), each .�1/ vertex has valency 1 in G0, so each addition of a
.�1/ vertex to G increases the sum

P
v2G.v � vC a.v// by 1, thus we haveX

v2G

.v � vC a.v//D
X
v02G0

.v0 � v0C a.v0//�mD�1�m:

Finally, we relate this quantity to the fundamental cycle Zmin, which is the sum of
homology classes of the exceptional divisors, Zmin D

P
v2G Ev:X

v2G

.v � vC a.v//D
X
v

E2
v C

X
v¤u

Ev �Eu DZ2
min:

So mD�1�Z2
min Dmult X � 1.

Decorated germs representing a given .X; 0/ are obtained from extensions G0 of the
resolution graph G as above. These can be thought of as combinatorial choices for
the decorated germ; in the next lemma, we compute the number of such extensions.
Then, we show that the combinatorial choice, namely the choice of vertices of G on
which the additional .�1/ vertices are placed to form G0, determines the topological
type of the resulting decorated germ. By definition, the topological type of a germ
of a singular curve C � C2 is given by its link, which is the intersection of C with a
sufficiently small 3–sphere S3 �C2 centered at the origin. For a decorated germ, we
additionally record the weights of the curvetta components. Later on, we will see that
the different choices of G0 correspond to natural different choices of data on the open
book decomposition we construct in Section 4.
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Lemma 2.5 Up to topological equivalence , there are at most mult X choices of plane
curve germs with smooth branches representing .X; 0/.

Proof We first show that there are at most mult X D�Z2
min possible combinatorial

choices for germs with smooth components representing .X; 0/. These correspond
to choices of extensions of G to G0 by adding .�1/ vertices. If we have a minimal
graph G with an extension G0 satisfying condition (2) of Proposition 2.2, then we can
add another .�1/ sphere leaf adjacent to the root to get a new graph G00 so that the
valency of each vertex of G00 equals its negative self-intersection. All the other possible
extensions of G to a graph satisfying condition (2) can be obtained by deleting one
of the .�1/ vertices of G00. (Indeed, adding a .�1/ vertex to any other position in G

would violate condition (2).) Since G0 has .mult X �1/ vertices of self-intersection �1,
we know that G00 has exactly mult X vertices with this property, one of which must
be deleted. Note that because of potential symmetries in the graph G00, some of the
choices of G0 will result in isomorphic germs C , but mult X gives an upper bound on
the number of combinatorially different curvetta configurations.

Once the choice of the extension G0 of the graph G is made, the topological type of
the decorated germ C can be read off directly from G0. In particular, we can compute
the relevant numerical invariants, such as linking numbers between the components of
C �C2. As before, we assume that G0 satisfies condition (2) of Proposition 2.2, so that
C has smooth branches.

Following [27, Definition 4.14], we define the length and overlap functions on the
vertices of the graph G. For v0; vi 2G, let the length l.v0; vi/ be the number of vertices
in the path from vi to v0 in the tree G (including endpoints). For v0; vi ; vj 2G, let the
overlap �.vi ; vj I v0/ be the number of common vertices in the paths from vi to v0 and
vj to v0.

Let v0 2G �G0 be the root. Now, if the curvetta Ci comes from the transverse slice
on a .�1/ sphere corresponding to a leaf of G0, and this leaf is attached to the vertex
vi 2G, then the blow-down process gives w.Ci/D 1C l.v0; vi/. If Ci and Cj are the
curvettas at the .�1/ vertices attached to vi and vj , the order of tangency tang.Ci ;Cj /

between the corresponding branches of C is given by tang.Ci ;Cj /D �.vi ; vj I v0/.

The topological type of C�C2 is described via its link, given by the intersection C\S3,
where S3 is a small sphere centered at the origin. As each of the curvettas C1; : : : ;Cm

is a smooth disk, the intersection of Ci with S3 is an unknot; C \ S3 is a link with
m components C1\S3; : : : ;Cm\S3, each of them unknotted. The components of
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Ci \S3 are oriented as boundaries of Ci \B4. Then, the linking number between two
link components equals the order of tangency between the corresponding curvettas,

lk.Ci \S3;Cj \S3/D tang.Ci ;Cj /:

The topological equivalence of germs follows from the above calculations, by con-
struction of the links of the germs that we consider; it can also be seen more directly.
Any decorated germ for .X; 0/ comes, after a blow-down, from a particular placement
of the transverse curvetta slices on the .�1/ curves corresponding to vertices that we
added to G to from the graph G0. This gives a configuration of curvetta slices together
with the curve configuration corresponding to the graph G0, embedded in a blow-up
of C2. Clearly, for two different choices of the generic curvetta slices for the same
graph G0, the two configurations of curvettas+curves can be identified by an ambient
homeomorphism (in the blown-up C2). After the blow-down, the induced ambient
homeomorphism will identify the links of the resulting germs, showing that the germs
are topologically equivalent. We already know that the weights will be same, so the
decorated germs have the same topological type.

The following observation will also be useful later. Let t.Ci/Dmaxj tang.Ci ;Cj / be
the maximal order or tangency between Ci and another branch of C. Then it follows that

(2-2) t.Ci/ < w.Ci/

for all curvettas Ci .

Remark 2.6 De Jong and van Straten [27] study deformation theory of the surface
singularity .X; 0/; in particular, they are interested in the analytic type of the singularity
and its deformations. To encode the analytic type of .X; 0/, one needs the analytic
type of the corresponding decorated germ C. By contrast, our focus is on the contact
link .Y; �/ of .X; 0/ and its Stein fillings. A priori there may be another surface
singularity .X 0; 0/ whose link is Y, and by [11], the singularities .X; 0/ and (X 0; 0/
have contactomorphic links. By Neumann’s results [47], all singularities with the
same link have the same dual graph of minimal resolution, so both .X; 0/ and .X 0; 0/
correspond to the same minimal graph G. (Note that by [32], if G has any vertices of
valency greater than 3, the analytic type of the singularity is not uniquely determined,
so indeed .X; 0/ and .X 0; 0/ may be analytically different in the above scenario.) We
can compare the decorated germs that describe singularities .X; 0/ and .X 0; 0/: any
choice of the decorated germ for .X; 0/ arises from an extension G0 of the graph G and
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the corresponding placement of the curvettas. Although analytically the exceptional
divisors of resolutions of .X; 0/ and .X 0; 0/ may be different, topologically they look
the same, and we can choose the same extension G0 and the corresponding placement
of curvettas for .X 0; 0/. By the argument above, the resulting germ for .X 0; 0/ will
be topologically equivalent to the germ for .X; 0/, even if the two germs may be
analytically different. This fact will play an important role in the proof of Theorem 7.8.
In particular, the two germs will have the same number of branches, the same weights
and the same pairwise orders of tangency for the branches.

Of course, if we only know the combinatorics of the graph G, we lose analytic in-
formation on the plane curve germ C (such as, for example, the angles between its
transverse branches), but we will never need the analytic information. The contact
3–manifold .Y; �/ is fully determined by the weights and pairwise orders of tangency
of the branches of the decorated germ C.

2.3 De Jong–van Straten theory: Milnor fibers from germ deformations

The main result of [27] says that deformations of the sandwiched singularity can be
encoded via deformations of the germ .C; 0/ satisfying certain hypotheses. We will
state a special case of their theorem that will be relevant to us, but first we introduce
some notation.

We have defined the weights as positive integers wi associated to the irreducible
components (curvettas) Ci of C. It will be convenient to interpret the weight wi as a
collection of wi marked points concentrated at 0 2 Ci . More formally, we consider a
subscheme w.i/ of length wi at 0 in Ci . The normalization zC of the reducible curve C
with smooth components is given by the disjoint union of the components Ci ; thus
we can think of the decoration w D .w1; w2; : : : ; wm/ as a subscheme of zC, with
components w.i/� Ci as above. (We use the notation zC for normalization here and in
the discussion below. Similar notation zCj had a different meaning in Proposition 2.2,
though in a sense, both uses refer to resolutions of the curve Cj � C. This should not
lead to confusion as normalization is only mentioned in the next few paragraphs.)

De Jong and van Straten prove that for sandwiched singularities, 1–parameter smooth-
ings correspond to picture deformations, which are 1–parameter deformations of the
germ C together with the subscheme w. In fact, de Jong and van Straten describe all
deformations of .X; 0/, but in this paper we are only interested in smoothings. Since
we do not use their results in full generality, we omit some technical points and give
simpler versions of the definitions and statements from [27].

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1109

Informally, picture deformations look as follows. The deformation Cs is given by
individual deformations C s

i of the curvetta components, so that the deformed germ Cs

is reduced and has irreducible smooth components C s
i corresponding to the original

curvettas. (In the case of plane curves, any deformation is given by unfolding, ie by
deforming the defining equation of the curve.) The deformation is required to eliminate
tangencies between the curvettas, so that for s ¤ 0 all deformed curvettas C s

i intersect
transversally. Thus, the only singularities of the deformed germ Cs D

S
i C s

i for
s ¤ 0 are transverse multiple points. For s D 0, the decoration w consists of wi

marked points on the curvetta Ci for each i D 1; : : : ;m, concentrated at 0. During
the deformation, these marked points move along the curvettas, so that for s ¤ 0, the
deformed curvetta C s

i contains exactly wi distinct marked points, and all intersection
points C s

i \C s
j for j ¤ i are marked.

More formally, deforming the curvettas Ci individually means that we consider ı–
constant deformations of the reducible germ C D

S
i Ci . Intersection points between

deformed curvettas define the total multiplicity scheme ms on the normalization zCs for
s ¤ 0; if all intersections are transverse, the corresponding divisor is reduced, ie each
point enters with multiplicity one. The requirement that all intersection points are
marked means that the deformation wS � zC �S of the decoration w must satisfy the
condition ms � ws . The requirement that all marked points be distinct on each C s

i

for s ¤ 0 is the same as saying that the divisor given by ws
i is reduced for s ¤ 0. The

condition ms � ws then implies automatically that all singularities of the deformed
germ Cs are ordinary multiple points, ie the deformed curvettas intersect transversally.

Definition 2.7 A picture deformation CS of the decorated germ .C; w/ with smooth
components C1; : : : ;Cm over a germ of a smooth curve .S; 0/ is given by a ı–constant
deformation CS ! S of C and a flat deformation wS � zCS D zC �S of the scheme w
such that for s ¤ 0, the divisor ws is reduced, the only singularities of Cs are ordinary
multiple points, and ms � ws .

Strictly speaking, wS lives in the normalization, but for s ¤ 0 we can think of ws as
the set of marked points fp1;p2; : : : ;png �

Sm
iD1 C s

i such that all intersection points
C s

i \C s
j are marked. We say that pi is a free marked point if it lies on a single C s

i

(away from the intersections). (Note that these points, and the number of such points n,
can generally be different for different picture deformations.)

With these definitions in place, de Jong and van Straten’s results on smoothings are as
stated in Theorem 1.3: every picture deformation of .C; w/ gives rise to a smoothing
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of the corresponding surface singularity .X; 0/, and every smoothing arises in this
way. Specifically, the Milnor fiber of the smoothing that corresponds to the picture
deformation Cs D

Sm
iD1 C s

i �C2 with marked points fp1;p2; : : : ;png is obtained by
blowing up C2 at all points p1;p2; : : : ;pn and taking the complement of the proper
transforms of C s

1
; : : : ;C s

m in C # #n
jD1 CP2. Picture deformations of C generate all

Milnor fibers, that is, each Milnor fiber of .X; 0/ arises from some picture deformation
of .X; 0/ via this construction. Note that Theorem 1.3 makes no claim of a precise
one-to-one correspondence between picture deformations and smoothings: one expects
that isomorphic smoothings only come from isomorphic picture deformations (in the
appropriate sense), but this has not been established. In certain cases, one can distinguish
Milnor fibers by their topological invariants, or by comparing incidence matrices of the
corresponding curvetta arrangements; see [27, Section 5] or [44]. We discuss this in
Section 6 and use a similar technique to distinguish Stein fillings.

Remark 2.8 To be more precise, we need to consider the compact version of the
construction of Milnor fibers, as follows. Fix a closed Milnor ball B�C2 for the germ C.
For sufficiently small s¤0, the deformed arrangement Cs will have a representative in B

which meets @B D S3 transversally, and all marked points p1; : : : ;pn are contained
in the interior of B. Let zB be the blow-up of B at p1; : : : ;pn. Because in the picture
deformation all the intersections between deformed curvettas are transverse, the proper
transforms of C s

1
; : : : ;C s

m in zB will be disjoint smooth disks. Let T1; : : : ;Tm be
pairwise disjoint tubular neighborhoods of these proper transforms. As a compact
4–manifold with boundary, the Milnor fiber that corresponds to Cs is given by W D
zB n

Sm
iD1 Ti , after corners are smoothed, and the Stein structure is homotopic to the

complex structure induced from the blow-up.

3 Graphical deformations of curvettas yield fillings

Let .X; 0/ be a rational surface singularity with reduced fundamental cycle, and consider
the associated decorated germ .C; w/ of a reducible plane curve as in the previous
section, with smooth branches C1;C2; : : : ;Cm equipped with weights. Our goal is to
build an analog of [27] in the symplectic category: it turns out that Stein fillings of the
link of .X; 0/ can be obtained from certain smooth homotopies of the branches of the
decorated germ C. We will restrict to graphical homotopies to streamline our definition
and constructions. (In our setting, one can always choose an appropriate coordinate
system, so the graphical hypothesis leads to no loss of generality.)
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Fix a closed Milnor ball B for C as in Remark 2.8, so that each branch Ci intersects @B
transversally. If B is small enough, the complex coordinates .x;y/ in C2 can be chosen
so that all branches C1;C2; : : : ;Cm are graphical in B: Ci D fyDfi.x/g. We will
consider smooth graphical arrangements � D f�1; �2; : : : ; �mg such that each �i is
a smooth graphical disk, so that �i D fyDgi.x/g for a smooth function gi , and �i

intersects @B transversally.

The following definition is given for homotopies of the branches defined for a real
parameter t 2 Œ0; 1�. Sometimes we will use the same notion for homotopies defined
in a parameter interval t 2 Œ0; � �, with obvious notational changes. We assume that
coordinates .x;y/ are chosen as above.

Definition 3.1 Let .C; w/ be a decorated plane curve germ, with weights wi D w.Ci/

of its smooth graphical branches C1;C2; : : : ;Cm. A smooth graphical homotopy of
.C; w/ is a smooth homotopy C t

i of the branches of C, so that C D
Sm

iD1 C 0
i , together

with distinct marked points pk , k D 1; : : : ; n (for some n), on
Sm

iD1 C 1
i . We assume

that in a Milnor ball B the following conditions are satisfied:

(1) Each branch is given by C t
i D fyDf

t
i .x/g for a function f t

i .x/ D fi.x; t/

smooth in .x; t/, and C t
i intersects @B transversally for all t .

(2) Intersections between the branches remain in the interior of B during the homo-
topy.

(3) At t D 1, all intersections of any two branches C 1
i and C 1

j are positive and
transverse.

(4) At t D 1, all intersection points on each branch C 1
i are marked, and there may

be additional free marked points. Each free point lies in the interior of B on a
unique branch C 1

i . The total number of marked points on C 1
i is wi .

The choice of Milnor ball B is unimportant as all our considerations are local. For
brevity, we will often omit B from notation and talk about decorated germs and their
homotopies in C2. In that case, we implicitly work in a fixed neighborhood of the origin,
and assume that all intersections between branches which begin in this neighborhood
remain in this neighborhood during the homotopy, and thus the components of the
arrangement have controlled behavior near the boundary of the neighborhood.

Conditions (1) and (2) are automatically satisfied for “small” homotopies. Indeed, if
t is close to 0, C t

i is C 1–close to Ci . The reducible curve C with smooth branches has a
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finite set of tangent directions at the origin, and the branches C t
i will have tangent spaces

lying in a small neighborhood of these directions in the Grassmannian of symplectic
planes in C2. Therefore we can choose coordinates so that the fiber of the projection
avoids these directions. We only include the intersection of the branches of C at 0 in
the Milnor ball B, so for small t , intersections will remain in B. For larger homotopies,
we require these conditions nontrivially.

Picture deformations satisfy all of the conditions (1)–(4), so a picture deformation is a
special case of a smooth graphical homotopy of the germ (in appropriate coordinates).
In contrast to picture deformations of [27], condition (4) on the marked points and
the weight restrictions is only required at t D 1 for homotopies. For a closer analogy
with Definition 2.7, we can consider marked points fpj

i .t/gj2f1;:::;wi g
on C t

i for all
0� t � 1. For t D 0, the marked points are concentrated at the origin on each branch,
giving the decoration of .C; w/. Suppose that p

j
i .t/, 0� t � 1, are smooth functions

describing the motion of marked points during homotopy, so that p
j
i .t/ 2 C t

i for all t .
For t D 1, the points p

j
i .1/Dp

j
i satisfy condition (4) above. This implies, in particular,

that at t D 1, the branch C t
i has no more than wi intersection points with other branches.

However, for 0< t < 1, the marked points p
j
i .t/ are not subject to any restrictions and

have little significance. The homotoped curvettas C t
i can have an arbitrary number of

intersections, and intersections may be positive or negative. By contrast, for picture
deformations, the weights control the number of intersection points between deformed
curvettas at all times, the intersections between branches are always marked during
deformation, and all intersections are positive because curvettas are deformed through
complex curves.

Let .Y; �/ be the link of the singularity .X; 0/ with the decorated germ .C; w/. We will
show that every smooth graphical homotopy of the germ C gives rise to a Stein filling
of .Y; �/.

First, we focus on the curvetta arrangement fC 1
1
;C 1

2
; : : : ;C 1

mg with marked points,
produced at the end of homotopy at the time t D 1. Lemma 3.2 below produces a certain
Lefschetz fibration from this input. The lemma applies to any arrangement of smooth
graphical disks f�1; �2; : : : ; �mg satisfying the stated hypotheses; the homotopy is not
used at this stage. We use different notation to emphasize that f�ig need not be related
to C. Then, Lemma 3.4 uses the homotopy between the decorated germ .C; w/ and
the curvetta arrangement fC 1

1
;C 1

2
; : : : ;C 1

mg with its marked points p1;p2; : : : ;pn to
show that the open book on the boundary of the Lefschetz fibration supports .Y; �/. It
follows that our construction produces a Stein filling of .Y; �/.
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As a smooth 4–manifold, the filling produced by Lemma 3.2 is constructed similarly
to the Milnor fibers in Theorem 1.3. Namely, we blow up at each of the intersection
points of the homotoped curvettas, as well as at the free marked points, and then take
the complement of the proper transforms of the curvettas. Even though C 1

i are smooth
disks (rather than complex curves), we will assume that they are locally modeled on
complex curves near the intersection point, so the blow-up and the proper transforms
can be understood in the usual sense. Alternatively, one could also think about the
proper transform in the smooth sense, as the closure of the complement of the blown-up
point; see [20, Definitions 2.2.7 and 2.2.9]. To obtain a 4–manifold with given boundary,
we consider a compact version of the construction in a Milnor ball, as explained in
Remark 2.8. It is convenient to consider the Milnor ball of the form BDDx�Dy �C2,
with corners smoothed, where Dx and Dy are disks in the coordinate planes Cx and Cy .
For every x0 2Dx , the graphical disks �i intersect fx0g �Dy transversally, and the
intersection with @.Dx �Dy/ lies as a braid in @Dx �Dy . To simplify notation, we do
not mention the Milnor ball B explicitly in the first part of the lemma.

Lemma 3.2 Let �1; : : : ; �m be smooth disks in C2 which are graphical with respect
to the projection �x , that is , �i D fyDfi.x/g. Assume that at each intersection point
of two or more �i , there exists a neighborhood U of the intersection such that

S
i �i

is cut out by complex linear equations inside U. (Up to graphical isotopy, this only
requires the �i to intersect transversally and positively with respect to the orientation
on the graph �i induced from the natural orientation on C.) Let p1; : : : ;pn be points
on the disks �i which include all intersection points , and let ˛ WC2 # nCP2!C2 be
the blow-up at the points p1; : : : ;pn. Let z�1; : : : ; z�m denote the proper transforms
of �1; : : : ; �m. Then �x ı ˛ W .C2 # nCP2/ n .z�1 [ � � � [

z�m/ ! C is a Lefschetz
fibration whose regular fibers are punctured planes , where each puncture corresponds to
a component z�i . There is one vanishing cycle for each point pj , which is a curve in the
fiber enclosing the punctures that correspond to the components �i passing through pj .

Similarly, if B D Dx �Dy is a Milnor ball that contains all the points pi ; : : : ;pn

and contains .Dx �C/\
�S

i �i

�
, and Ti is a small tubular neighborhood of z�i , then

�x ı˛ W .˛
�1.Dx �Dy//n .T1[� � �[Tm/!Dx is a Lefschetz fibration with compact

fiber. The fiber is a disk with holes corresponding to the components �i . The vanishing
cycles correspond to the points pj in the same way.

If the curvettas C s
1
; : : : ;C s

m with marked points are the result of picture deformation
of the germ .C; w/ associated to a surface singularity, then the Lefschetz fibration
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constructed as above is compatible with the complex structure on the Milnor fiber of
the corresponding smoothing.

Proof Before blowing up, the projection �x W C2 ! C is clearly a fibration, and
the smooth disks �i are sections of this fibration. If they were disjoint sections, then
their complement would be a fibration whose fiber is C with m punctures. Since the
sections intersect, we blow up at each of the intersection points, along with blow-ups
at other chosen points on the curves. For each fiber containing one of the pj where
we blow up, the corresponding fiber in the blow-up is the total transform, which is a
nodal curve containing the exceptional sphere and the proper transform of the fiber.
More specifically, translating the coordinates .x;y/ on C2 to be centered at pj , the
coordinates on the blow-up are

C2 # CP2
pi
D f..x;y/; Œu W v�/ j xv D yug:

The singular fiber is the total transform of F D fxD0g, which has two irreducible
components: �

E D f..0; 0/; Œu W v�/g
�
[
�
zF D f..0;y/; Œ0 W 1�/g

�
:

The node occurs at the intersection of these two components at ..0; 0/; Œ0 W1�/. Therefore
in a neighborhood of the node we can take v D 1, so we have local coordinates on the
blow-up given by .y;u/ 2C2 where x D yu. The projection �x ı˛ is given in these
coordinates by

�x ı˛.y;u/D yu;

which is exactly the model for a Lefschetz singularity at .y;u/D .0; 0/.

In the coordinate chart on C2 centered at pj , let �iDf.x; fi.x//g. The total transforms
of the curves �i which pass through pj — ie which have fi.0/D 0 — are given by�

E D f..0; 0/; Œu W v�/g
�
[

�
z�i D

��
.x; fi.x//;

�
1 W lim

a!x

fi.a/

a

����
;

and those which do not pass through pj — ie which have fi.0/¤0 — lift isomorphically
to the blow-up ˚�

.x; fi.x//; Œx W fi.x/�
�	
:

Note that the proper transforms do not pass through the node ..0; 0/; Œ0 W 1�/. Moreover,
since the intersections between the �i were assumed to be transverse, lima!0 fi.a/=a

have different values for different values of i where fi.0/ D 0. Therefore, the z�i
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are disjoint sections of the Lefschetz fibration from the blow-up of C2 to C, so their
complement gives a Lefschetz fibration with punctured fibers. Moreover, in the singular
fibers, the sections which intersect the exceptional sphere part of the fiber are precisely
the proper transforms z�i such that �i passed through pj .

Regular neighborhoods Ti of the z�i can be chosen sufficiently small to be disjoint
from each other and the Lefschetz singular points, thus yielding the compact Lefschetz
fibration. This changes the fiber (converting the punctures into holes) but does not
change the fibration structure and the vanishing cycles. The total space of a Lefschetz
fibration over a disk is a compact 4–manifold with boundary; the fibration induces a
planar open book decomposition on the boundary.

In the case of a picture deformation of the germ .C; w/, the deformed curvettas
C s

1
;C s

2
; : : : ;C s

m are smooth complex disks with marked points satisfying the hypotheses
of the lemma. The Stein structure induced by the Lefschetz fibration is compatible
with the complex structure on the Milnor fiber, because �x ı˛ is holomorphic.

Consider a smooth graphical arrangement � D f�1; : : : ; �mg in a Milnor ball B D

Dx �Dy , such that each �i transversally intersects the vertical part @Dx �Dy of @B
and is disjoint from Dx � @Dy . Taking the boundaries of the graphical disks, we have
an m–braid @� D @�1 [ @�2 [ � � � [ @�m � @B D S3. (Each component @�i is an
unknot, but the components are linked.) The monodromy of this braid is called the
monodromy of the arrangement � . We can interpret the braid group on m strands as
the mapping class group MCG.Cm/ of the m–punctured plane. Then the braid @� is
identified with the monodromy �� of the Cm–bundle over S1, given by the projection
�x WC2 n

Sm
iD1 �i!C restricted to the preimage ��1

x .@Dx/ of the circle @Dx �C.

To construct the Lefschetz fibration corresponding to � in Lemma 3.2, we perform
blow-ups at points pi that project to the interior of Dx . These blow-ups do not affect
the bundle over @Dx . Therefore, the noncompact version of the Lefschetz fibration
(with fiber Cm) has the monodromy �� given by the braid @� .

For the compact version of the Lefschetz fibration from Lemma 3.2, the general fiber Pm

is the disk Dy with m holes. The fibration induces an open book on its boundary,
with page Pm. The boundary of the total space of the fibration Ls is the union of two
parts: the horizontal boundary @Pm �D, which forms the binding of the open book,
and the vertical boundary, a fiber bundle over S1 D @Dx with fiber Pm, which forms
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the mapping torus for the open book. This fiber bundle is given by the projection
.�x ı˛/

�1.@Dx/!Dx , which is the same as the projection �x W B n
Sm

iD1 �i!Dx

restricted to ��1
x .@Dx/, because the blow-up map ˛ is the identity over @Dx . Let

� W Pm! Pm denote the monodromy of this fiber bundle, ie the monodromy of the
open book. We then have a commutative diagram

Pm
�
//

��

Pm

��

Cm
��
// Cm

where the vertical maps are inclusions. This proves:

Lemma 3.3 Let � D f�1; : : : ; �mg be a smooth graphical arrangement with marked
points fpj g, and B DDx �Dy a Milnor ball whose interior contains all marked points ,
such that �i \ .Dx �C/� B and �i is transverse to @B for all i D 1; : : : ;m. Let ��
be the monodromy of the braid @� D @�1[ � � � [ @�m � @B D S3.

Let � W Pm ! Pm be the monodromy of the open book induced by the Lefschetz
fibration constructed for .�; fpj g/ in Lemma 3.2. Then �� is the image of � under the
projection

� WMCG.Pm/!MCG.Cm/

induced by the inclusion Pm ,! Cm of the compact disk with m holes into the m–
punctured plane.

When the arrangement .�; fpj g/ is related to the decorated germ .C; w/ by a smooth
graphical homotopy, the monodromy �� of the braid @� is the same as the monodromy
of the braid @C D @C1 [ � � � [ @Cm, because the homotopy between disks gives an
isotopy of the two boundary braids. By definition, the braid monodromy of @C is the
monodromy ' of the singular point of C.

We next examine the monodromy of the open book corresponding to � in the case of
the compact fiber, and find its relation to the monodromy of the singular curve C.

Lemma 3.4 Let f�1; : : : ; �mg and f� 0
1
; : : : ; � 0mg be two smooth graphical arrange-

ments , such that the boundary braid of are braid-isotopic (respecting labels) and the
weights on the corresponding components agree. Let L and L0 be the corresponding
Lefschetz fibrations constructed in Lemma 3.2. Then the induced open book decompo-
sitions on the boundary have the same page and same monodromy.
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We will prove the lemma after pointing out its consequences. Since the plane curve
arrangements at either end of a smooth graphical homotopy have braid-isotopic bound-
aries, and the weights on the components remain constant during the smooth graphical
homotopy, it follows that the open book decomposition induced on the boundary for
any Lefschetz fibration arising in this way is independent of the choice of smooth
graphical homotopy.

For the case where .�;w/ is the end point of a picture deformation of a plane curve germ
.C; w/, L0 is a Lefschetz fibration on the (compactified) Milnor fiber of the associated
smoothing of the surface singularity .X; 0/, as in Theorem 1.3. In this case the boundary
of the Milnor fiber is the link Y of the singularity .X; 0/, and the Milnor fiber gives a
Stein filling of the canonical contact structure � on the link, so the open book supports � .
Because every rational singularity has a picture deformation yielding a Milnor fiber
arising in such a manner (see Section 4 in our case), the open book on the boundary of
any Lefschetz fibration arising from the endpoint of a smooth graphical homotopy of the
same germ must support the canonical contact structure on the link of the singularity.

Combining Lemmas 3.2 and 3.4 with this discussion completes the proof of Theorem 1.4,
which we summarize in the following corollary.

Corollary 3.5 A smooth graphical homotopy of the decorated germ .C; w/ gives rise
to a Stein filling of the link .Y; �/ of the corresponding singularity.

Proof of Lemma 3.4 Applying the previous discussion and Lemma 3.3 to the ar-
rangement � D f�1; �2; : : : ; �mg, we see that the homomorphism � WMCG.Pm/!

MCG.Cm/ sends the open book monodromies � and �0 to the same braid monodromy
' 2 MCG.Cm/. The kernel of the map � W MCG.Pm/ ! MCG.Cm/ is generated
by the boundary-parallel Dehn twists around the holes in the fiber Pm. (Recall that
the monodromy of an open book is considered rel boundary of the page, so while
the twists around individual strands are trivial in the braid case, the boundary twists
become nontrivial for open books.) It follows that the monodromies � and �0 of the
open books on the boundaries of L and L0 can differ only by boundary twists, since
�.�/D �.�0/D '.

Let Ti denote a positive Dehn twist around the i th hole. Then we have

(3-1) �0 D � ıT
˛1

1
ıT

˛2

2
ı � � � ıT ˛m

m

for some integers ˛1; ˛2; : : : ; ˛m. The order is unimportant since the boundary twists
are in the center of MCG.Pm/.
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It remains to pin down the boundary twists around each hole, ie to show that ˛i D 0

for every i D 1; : : : ;m. To do so, we need to take into account the blow-ups at
the free marked points pi (the marked points that lie on the branches away from
the intersections). These correspond to boundary twists. Recall a basic fact about
diffeomorphisms of a planar surface rel boundary: for any two factorizations ‰ and ‰0

of  W Pm! Pm, the number of Dehn twists that enclose a given hole h is the same
for ‰ and ‰0. (Here, we count all twists, not only the boundary ones.) The above
statement easily follows from the fact that lantern relations generate all relations in the
mapping class group of a planar surface [36], and the number of Dehn twists enclosing
a given hole is unchanged under a lantern relation. This implies that the number of
Dehn twists enclosing the i th hole is well defined for a monodromy  W Pm! Pm; let
ni D ni. / denote this number. If two monodromies � and �0 are related by (3-1), we
have

(3-2) ni.�
0/D ni.�/C˛i :

On the other hand, the number ni is determined by the vanishing cycles of the Lefschetz
fibration. By construction of the fibration L1 associated to the homotopy Ct , the number
of Dehn twists enclosing the i th hole is given by the number of blow-ups at the marked
points on C 1

i , which in turn equals the weight wi of the component Ci of the original
germ C. So ni.�/D wi D ni.�

0/, and ˛i D 0 from (3-2).

Remark 3.6 Our description of the open book monodromy for an arrangement is
somewhat similar to E Hironaka’s results [24] on the monodromy of complexified real
line arrangements in C2. An important difference is that we consider Lefschetz fibrations
on the complement of the proper transform of the curves in a blow-up of C2, while
Hironaka computes the monodromy of the fiber bundle over S1 obtained by projecting
the complement of the complex lines in C2 to a circle of large radius; compare with the
proof of Lemma 3.4. She also considers the setting with compactified fibers, by taking
the complement of tubular neighborhoods of the lines, and computes the monodromy
of line arrangements as an element of MCG.Pm/. It is important to note that even
in the compactified setting, her answers are different from the monodromy of the
corresponding Lefschetz fibrations that we consider. (The difference is given by some
boundary twists.) The discrepancy appears because when the tubular neighborhoods
of the C 1

i are removed from C2, their parametrization is induced from C2. When we
blow up and take proper transforms of C 1

i , the parametrization of tubular neighborhoods
is induced by the Lefschetz fibration structure on the blown-up manifold. These two
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parametrizations are different in the two settings, affecting the choice of the meridian of
the tubular neighborhood of a line and the framing of the boundary of the corresponding
hole.

4 The Lefschetz fibration for the Artin smoothing

4.1 The Scott deformation

We can now use a specific deformation to describe the monodromy of the open book
decomposition of .Y; �/. We will use a canonical deformation, called the Scott deforma-
tion in [27], which yields a smoothing in the Artin component. This deformation yields
a particularly nice arrangement of curvettas where the associated Lefschetz vanishing
cycles are disjoint. This in turn yields a model factorization for the monodromy of
the boundary open book decomposition. In Proposition 6.7, we will show that the
corresponding Stein filling is uniquely recognizable from its combinatorics. Recall that
tang.Ci ;Cj / stands for the order of tangency between branches Ci and Cj of C, and
t.Ci/Dmaxj tang.Ci ;Cj /.

Proposition 4.1 Let .X; 0/ be a rational surface singularity with reduced fundamental
cycle , and .C; w/ one of its decorated reducible plane curve germs with m smooth
irreducible components. Let .Y; �/ be the contact link of .X; 0/. Then .Y; �/ has
a planar open book decomposition whose page is a disk with m holes h1; : : : ; hm,
corresponding to the branches of C. The open book monodromy admits a factorization
into disjoint positive Dehn twists with the following properties:

(1) For any two branches Ci and Cj , the corresponding holes hi and hj are enclosed
by exactly tang.Ci ;Cj / of these Dehn twists.

(2) There are w.Ci/� t.Ci/ > 0 boundary Dehn twists around the hole hi .

(3) There is at least one positive Dehn twist about the outer boundary component of
the page.

Proof We use the picture deformation of .C; w/ referred to as the Scott deformation in
[27, Proposition 1.10]. This deformation arises from iteratively applying the following
procedure. (We refer the reader to [27; 1] for details, including the explanation why
the procedure below can be actually realized by a 1–parameter deformation.)

The input of the procedure is an isolated singular point p of a plane curve C with
multiplicity m. In our case C is a union of smooth components, and the multiplicity m
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is the number of components through the point p. The output of the procedure is a
deformation C 0 whose singularities are

(I) one m–fold point where m branches intersect transversally, and

(II) the collection of singularities occurring on the proper transform of C in the
blow-up of C2 at p.

The idea of the deformation is to blow up at p, perform a small deformation of the curves
so that the singularities of the proper transform become disjoint from the exceptional
divisor, and then blow down the exceptional divisor to return to the plane and obtain
the curve C 0.

We demonstrate this process in an example in Figure 4. The initial configuration in the
bottom left consists of five curves. The curves C1 and C2 are tangent with multiplicity 3,
and these two curves are tangent to C3 with multiplicity 2. The curves C4 and C5

are transverse to C1, C2 and C3 but tangent to each other with multiplicity 4. After
blowing up at the common intersection point, we obtain the proper transforms together
with an exceptional divisor as shown in the top left of Figure 4. Now C1 and C2 are
tangent with multiplicity 2 and transversally intersect C3 at the same point on the
exceptional divisor. The curves C4 and C5 become disjoint from C1, C2 and C3, and
they are tangent to each other with multiplicity 3 at another point on the exceptional
divisor. Next we perform the deformation of the curves, fixing the exceptional divisor,
but translating the proper transforms zC1; zC2; : : : ; zC5 of the curvettas slightly so that
the intersection of the exceptional divisor with the proper transforms now occurs away
from the intersections of the proper transforms with each other, as shown in the top
right of Figure 4. Finally, we blow down the exceptional divisor, which results in
a transverse intersection of the resulting curvettas C s

1
;C s

2
; : : : ;C s

5
together with the

singularities (intersections) of the proper transforms, as required.

Since the multiplicity of the orders of tangency between components decreases each time
we take the proper transform, applying this procedure iteratively to the singularities
of type (II) eventually yields a deformation to a plane curve with only transverse
intersections. See Figure 5 for the iterations of the Scott deformation in our example,
until all of the singularities are transverse intersection points. When working with a
decorated germ .C; w/, with the marked points of w initially concentrated at 0, the
same blow-up procedure will separate the marked points. Indeed, if there are additional
marked points which increase the weight, they can be separated by additional iterations
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C1

C2

C3

C4 C5

zC2

zC3

zC1

zC5

zC4

C s
1

C s
2

C s
3

C s
4

C s
5

Figure 4: One iteration of the Scott deformation in an example.

of the blow-ups and translations, so that at the end all marked points are disjoint.
(In this sense the scheme ws is reduced.) Note that the total weight w.Ci/ of each
component is equal to the total number of marked points on that component (including
the intersection points).

When the components of C are smooth, the result of this deformation is as follows. If
some components of C were tangent to order r1 before the deformation, they will all

Figure 5: A Scott deformation applied iteratively until all intersections are transverse.
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pass through the same r1 transverse multipoints pi1
; : : : ;pir1

. If another component
of C intersects these components with multiplicity r2 < r1 before the deformation, this
component will pass through r2 of these points afterwards. The total number of inter-
section points appearing on the Scott deformation of a component Ci is precisely t.Ci/,
the highest possible order of tangency between Ci and another branch in the original
germ C. In this sense, the intersection points are used as efficiently as possible. The
number of additional marked points on Ci is w.Ci/� t.Ci/.

Now, consider the Lefschetz fibration constructed from the Scott deformation via
Lemma 3.2. We claim that up to a curve isotopy, the vanishing cycles of this fibration
are disjoint curves on the planar page. The reason for this is built into the iterative
nature of the Scott deformation, which results in a nesting of the vanishing cycles as
follows.

Consider the equivalence relations on the components C1; : : : ;Cm of the germ C defined
by Ci �l Cj if Ci and Cj intersect at 0 with multiplicity at least l . The transitivity of
this relation comes from the fact that if C1 intersects C2 with multiplicity r at 0 and
C2 intersects C3 with multiplicity s at 0, then C1 must intersect C3 with multiplicity at
least minfr; sg. These equivalence relations induce partitions of the components of C,
and �l refines �l 0 for l > l 0.

If we apply the Scott deformation procedure iteratively, on the first iteration, we obtain
one transverse intersection of all of the branches (the singularity of type (I)), which
groups the components of C according to the (unique) block of the partition induced
from �1. Applying the Scott deformation procedure to all the singularities of type (II)
generates a transverse multipoint of type (I) for every block in the partition induced
by �2. Iterating this procedure, for l � 1 we obtain a transverse intersection for every
block of each partition Pl induced by �l . For sufficiently large l , each block will
consist of a single smooth component, and thus no new transverse intersections of
type (I) will result from the procedure. When a block contains a single element, there
may or may not be additional marked points placed. Instead of using the partition and
Scott deformation to place additional marked points, we can simply use the formula
that Ci must have w.Ci/� t.Ci/ total additional marked points.

Recall that there is one vanishing cycle in the Lefschetz fibration for each marked point
of the Scott deformed curve, and this vanishing cycle encircles the punctures/holes
corresponding to the components of curves which pass through the given marked
point. Because the equivalence relations �l refine each other as l increases, the subsets
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of Ci which intersect at the .lC1/st iteration are nested within the subsets of Ci which
intersect at the l th iteration. Moreover, because the isotopy in the blow-up procedure can
be made arbitrarily small, we can assume that there is no braiding of the components Ci

between the l th and .lC1/st iterations; see Section 5 for more details on how braiding
of the curves can occur and be understood in general. More specifically, observe that in
the Scott deformation procedure, as in Figure 4, the deformation from right to left in the
blow-up (at the top of the figure) can be performed by an arbitrarily small translation
of the exceptional divisor. By making the translation sufficiently small, we can ensure
that in each subset intersecting at the .lC1/st iteration, the curves stay close together
and do not interact with another such subset. (In the language of Section 5, nontrivial
braiding would correspond to a crossing of the wires, and a small translation ensures
that the wires cannot cross in between the singularities produced iteratively by the Scott
deformation.) Then, the vanishing cycles corresponding to the intersections of type (I)
which are introduced at the .lC1/st iteration will be nested inside (and thus disjoint
from) the vanishing cycles corresponding to the intersections of type (I) introduced
at the l th iteration. We can also assume that any two vanishing cycles introduced in
this way at the l th iteration are disjoint, because the application of Lemma 3.2 to the
Scott deformation actually realizes these Lefschetz singularities simultaneously in the
same fiber (we can later perturb so they arise in different fibers if desired). Finally, the
additional marked points at smooth points of the Ci correspond to vanishing cycles
which are boundary parallel to the i th hole, and thus can be realized disjointly from each
other and all other vanishing cycles. Thus we conclude that the Scott deformation yields
a Lefschetz fibration with disjoint vanishing cycles. This means that the compatible
planar open book for the link .Y; �/ has monodromy which is a product of positive
Dehn twists about the disjoint curves described above. Because at the first step we get
a transverse intersection of all deformed curvettas, the corresponding vanishing cycle
encloses all holes, ie we have a Dehn twist about the outer boundary component of the
page.

4.2 Symplectic resolution and Lefschetz fibrations

It is noted in [27] that the Scott deformation corresponds to the Artin smoothing,
which in this situation is diffeomorphic to the resolution of the singularity. In fact,
we can see more directly, through symplectic topological means, that the Lefschetz
fibration corresponding to this Scott deformation gives a plumbing which necessarily
corresponds to the resolution of the singularity.
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We recall the procedure of [18, Theorem 1.1]. Starting with the plumbing graph G,
this procedure produces a planar Lefschetz fibration compatible with the symplectic
resolution of a rational singularity with reduced fundamental cycle. (The symplectic
structure on the plumbing can be deformed to the corresponding Stein structure.) In
fact, [18, Theorem 1.1] applies to a wider class of singularities (see Section 4.3 below),
but we first describe it for this particular case. To construct the fiber of the Lefschetz
fibration, take a sphere Sv for each vertex v 2 G and cut �a.v/� v � v � 0 disks out
of this sphere. (As before, a.v/ is the valency of the vertex v; the number of disks
is nonnegative by (2-1).) Next, make a connected sum of these spheres with holes
by adding a connected sum neck for each edge of G. For a sphere Sv corresponding
to the vertex v, the number of necks equals the number of edges adjacent to v, ie its
valency a.v/. The resulting surface S has genus 0 because G is a tree. See the top of
Figure 6 for an example.

Proposition 4.2 [18, Theorem 1.1] The surface S constructed above is the fiber of a
Lefschetz fibration on a symplectic neighborhood of symplectic surfaces intersecting
!–orthogonally according to the graph G. The vanishing cycles are given by the curves
parallel to the boundaries of the holes (one curve for each hole) and the cores of the
necks of the connected sums.

Let zX be the Milnor fiber of the Artin smoothing component for a rational .X; 0/ with
reduced fundamental cycle; zX is a Stein filling for the contact link .Y; �/. We now have
several different Lefschetz fibration structures on zX . First, because zX is diffeomorphic
to the minimal resolution of .X; 0/, a Lefschetz fibration is produced by the Gay–Mark
construction of Proposition 4.2. Second, for each choice of the decorated germ .C; w/
with smooth branches, the proof of Proposition 4.1 also gives a Lefschetz fibration
on zX . All these Lefschetz fibrations have planar fibers. In our construction of the
Lefschetz fibration from the curvetta arrangement, the general fiber has a distinguished
“outer” boundary component coming from the fibration � W B!C on the Milnor ball
B DDx �Dy �C2. In the Gay–Mark construction, there is no distinguished boundary
component of the fiber. On the other hand, the decorated germ is not uniquely defined:
recall from Proposition 2.4 that there are mult X choices of decorated germs with smooth
branches representing .X; 0/, where some of these germs may coincide due to symme-
tries in the extension of the resolution graph. Of course, since the link of the singularity
is independent of the choice of curvetta germs, the Stein filling arising from the Artin
smoothing should not depend on these choices. We now show that the choice of curvettas
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Figure 6: An example demonstrating different choices of curvettas corre-
spond to different choices of outer boundary component for the fiber of
the Lefschetz fibration. At the top we have the resolution configuration
and the corresponding Gay–Mark Lefschetz fiber with vanishing cycles. The
resolution configuration is augmented with red .�1/ curves and blue curvettas.
For each choice of curvettas we delete exactly one of these red .�1/ curves
and the corresponding curvetta. We show the resulting curvettas, their Scott
deformation, and the corresponding planar Lefschetz fibration obtained from
Lemma 3.2 in the cases of excluding the .�1/ curves labeled 2, 3, and 5.
Note that because of symmetries in the graph, the exclusion of 1 or 2 yield
very similar looking cases, and similarly with the exclusion of 4 or 5.

corresponds precisely to the choice of the outer boundary component, so this choice
only affects the presentation of the Lefschetz fibration. See Figure 6 for an example.

Lemma 4.3 Let L be the planar Lefschetz fibration on zX provided by Proposition 4.2.
Then the mult X different choices of smooth curvetta germs for .X; 0/ produce , via
the Scott deformation , planar Lefschetz fibrations on zX with a distinguished boundary
component of the fiber. The choices of smooth curvetta germs are in one-to-one
correspondence with the different choices of outer boundary component of the general
fiber of L.

Geometry & Topology, Volume 27 (2023)



1126 Olga Plamenevskaya and Laura Starkston

Proof As before, we associate to each vertex of the resolution graph G for the singular-
ity the quantities v �v for the self-intersection and a.v/ for the valency. In the Gay–Mark
Lefschetz fibration L, each vertex v 2G contributes �v �v�a.v/ boundary components
to the fiber. On the other hand, recall from the proof of Propositions 2.2 and 2.4
that the germ C of smooth curvettas is obtained from an extension of the resolution
graph G to a graph G0. We attach �v � v � a.v/ vertices with self-intersection �1

and valency 1 to each vertex v to obtain a graph G00, and then delete exactly one of
these .�1/ vertices to get the graph G0. This shows that the number of choices for
the germ matches the number of boundary components of the fiber of L, and this
number is exactly mult X D�

P
.v � vC a.v//. The curvetta branches of the germ C

are obtained by taking disks dual to the remaining .�1/ vertices and considering their
proper transform after blowing down all exceptional divisors; thus the curvettas are
in one-to-one correspondence with the .�1/ vertices of G0. In turn, in the Lefschetz
fibration constructed by Lemma 3.2, the “inner” boundary components of the fiber
are in one-to-one correspondence with the curvettas. The deleted .�1/ vertex in G00

still corresponds to a boundary component in the fiber of the Gay–Mark Lefschetz
fibration L, thus we can say that it corresponds to the outer boundary component of
the fiber of the planar Lefschetz fibration produced by Lemma 3.2. Note also that if we
enumerate the .�1/ vertices of the graph G0 by 1; 2; : : : ;mDmult X � 1, we get an
enumeration of the components of C, which in turn gives an enumeration of the holes
of the fiber.

Recall from Remark 2.6 that there may be different analytic types of singularities with
the same link .Y; �/. These singularities are all topologically equivalent and have the
same graph G, so that decorated germs for each of these singularities are obtained
from extensions of G. A particular choice of extension gives topologically equivalent
decorated germs for all singularities with link Y. Topologically equivalent germs yield
the same open book decompositions of .Y; �/ as in Proposition 4.1, since the weights
and the orders of tangency between branches are encoded by the topological type.
Together with the previous proposition, this gives:

Corollary 4.4 Let .Y; �/ be a link of surface singularity with reduced fundamental
cycle. Then for any singularity .X; 0/ whose link is Y, and any choice of the decorated
germ C for .X; 0/with smooth branches , the open book decomposition of .Y; �/ defined
by C is the same; namely, the open book induced by the Gay–Mark Lefschetz fibration.
Different extensions G0 of the resolution graph G used to construct C correspond to
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different choices of the outer boundary of the page of the open book. Enumeration of the
branches of C (or equivalently, of the .�1/ vertices of G0) corresponds to enumeration
of the holes in the page.

It is interesting to note that the Milnor fiber of the Artin smoothing is the only Stein
filling with disjoint vanishing cycles in its Lefschetz fibration.

Proposition 4.5 Suppose a planar Lefschetz fibration has disjoint vanishing cycles ,
with at least one boundary parallel vanishing cycle for each boundary component.
Then this is a Lefschetz fibration for the Artin smoothing of a rational singularity with
reduced fundamental cycle. In particular , the induced open book decomposition on the
boundary supports the contact link of a rational singularity with reduced fundamental
cycle.

Proof As in [18], if the vanishing cycles are disjoint, we can realize all Lefschetz
singularities simultaneously in the same fiber. The unique singular fiber is thus a
configuration of spheres intersecting transversally according to a graph. Note that the
boundary parallel twists are important to ensure that the only nonclosed components of
the singular fiber are disks which retract to a point. (These disks come from the small
annuli around the holes.) The nonsingular fibers provide a regular neighborhood for
the configuration, so the entire 4–manifold is a symplectic plumbing. This 4–manifold
gives a symplectic filling for a contact structure supported by a planar open book, thus
by [15] its intersection form is negative definite, ie the plumbing graph G is negative
definite. Thus, the graph can be thought of as the resolution graph of a normal surface
singularity .X; 0/.

As in [18], �v � v � a.v/ for each vertex v 2G, so .X; 0/ is a rational singularity with
reduced fundamental cycle. To see this, observe that each vertex v 2G corresponds to
a closed component ySv of the singular fiber. Alternatively, ySv can be viewed as the
union of a component Sv of the complement of the vanishing cycles in a regular fiber
capped off by thimbles for each of its boundary vanishing cycles. Then, v � v D ySv � ySv
equals the negative number of thimbles in ySv, or equivalently the negative number of
vanishing cycles on the boundary of Sv; see [19, Proposition 2.1]. The valency a.v/ is
the number of other spheres in the singular fiber intersecting ySv . Put differently, a.v/ is
the number of closed surfaces ySv0 , v0¤ v, such that Sv and Sv0 share a vanishing cycle
in their boundaries; thus a.v/ is the number of the vanishing cycles in @Sv that are not
adjacent to a boundary component in the fiber. Then �v � v � a.v/ is the number of
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vanishing cycles adjacent to a boundary component in @Sv, so �v � v � a.v/ � 0, as
required. Note also that v � v � �2, as each Sv has at least 2 vanishing cycles on the
boundary, so G is the graph of the minimal resolution.

The above discussion implies that if we run the construction of Proposition 4.2 for
the graph G, we recover the given Lefschetz fibration. It follows that our Lefschetz
fibration is compatible with the symplectic structure on the minimal resolution. For
a rational singularity, the resolution is diffeomorphic to the Milnor fiber of the Artin
smoothing (and the symplectic structure on the symplectic plumbing deforms to the
corresponding Stein structure). This shows that the Lefschetz fibration produces the
same filling as the Artin smoothing.

4.3 A digression: some nonrational singularities and potential unexpected
fillings

Although we stated Proposition 4.2 for rational singularities, Theorem 1.1 of [18] is
more general: the same construction works when the normal crossings resolution has
exceptional curves of higher genus, as long as condition (2-1) is satisfied. The fiber of
the corresponding Lefschetz fibration is formed by taking the connected sum of surfaces
given by the exceptional curves and cutting �v � v � a.v/ � 0 holes in the surface
corresponding to v 2 G. As before, the vanishing cycles are given by the boundary
parallel curves around the holes and the curves around the connected sum necks. We
can use this construction together with monodromy factorizations of [7] to construct
infinite collections of Stein fillings for links of certain nonrational singularities.

Indeed, suppose that a normal surface singularity .X; 0/ has a good resolution such that
one of the exceptional curves has genus g� 2 and self-intersection �d , with d � 2g�4.
As before, we assume that the resolution graph has no bad vertices, ie satisfies (2-1).
Then the fiber of the Lefschetz fibration from [18, Theorem 1.1] has a subsurface of
genus g with some necks and holes, and a vanishing cycle around each neck and each
hole. (See Figure 7.) The total number of these vanishing cycles is d . We can cut
out this subsurface along the curves parallel to the vanishing cycles to get a surface
of genus g with d holes, so that the product of the Dehn twists around the vanishing
cycles is the boundary multitwist. For d � 2g� 4, [7, Theorem A] establishes that the
boundary multitwist has infinitely many positive factorizations as products of Dehn
twists about nonseparating curves. These factorizations can consist of arbitrarily many
Dehn twists. It follows that the monodromy of the corresponding open book on the
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Figure 7: The Gay–Mark Lefschetz fibration for the resolution of a non-
rational singularity which admits infinitely many unexpected fillings. The
subsurface of genus 4 with d D 4 used to produce infinitely many monodromy
factorizations is shaded. Vanishing cycles are drawn in blue.

link .Y; �/ has infinitely many positive factorizations, each of which produces a positive
allowable Lefschetz fibration (see [2]) and thus a Stein filling; these Stein fillings can
have arbitrarily high Euler characteristic. We ask:

Question 4.6 Does the above construction produce any unexpected Stein fillings?

To answer this question, one would need to contrast these Stein fillings and the Milnor
fibers of all surface singularities with the given link. Each fixed singularity can only have
finitely many Milnor fibers. (Indeed, the Milnor fibers correspond to the components
of the base of miniversal deformation; the base is a germ of an analytic space, and as
such it can only have finitely many components; see eg [56, Theorem 4.10 and the
discussion in Section 7].) However, because of the presence of a higher-genus surface
in the resolution, every singularity as above is not (pseudo)taut [32], which means that
there exist infinitely many analytic types of singularities with the same dual resolution
graph, and thus the same contact link. We are interested in the Stein topology of the
Milnor fibers, which is more coarse than the analytic type; in principle, it is possible
that the infinite collection of analytic types of the singularity would only give rise to
finitely many Stein homotopy types for the Milnor fibers. Thus, we have the following
dichotomy: either

(1) there are only finitely many Stein homotopy types (or diffeomorphism types) of
the Milnor fibers, which would imply existence of unexpected fillings, or

(2) an infinite collection of possible analytic types gives rise to an infinite collection
of pairwise distinct Stein fillings.
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Establishing either outcome would be extremely interesting, even for a single example.

It should also be noted that in the nonrational case, one should in principle consider
nonnormal singularities as well, as these might generate additional Stein fillings;
see [55] for a detailed discussion of this issue (which doesn’t arise in the rational case).

Remark 4.7 In a related direction, it is interesting to take a closer look at a family of
examples given by cones over curves. Consider a normal surface singularity whose
resolution has a unique exceptional curve of genus g � 2 with self-intersection �d

for d > 0. The resolution is the total space of the complex line bundle of degree d

over the corresponding Riemann surface, and the singularity can be thought of as cone
point. The link is a circle bundle over the genus g surface, with Euler number �d .
The canonical contact structure is the Boothby–Wang structure, which has an open
book decomposition as described above: the page is a genus g surface with d boundary
components, and the monodromy is the boundary multitwist.

As explained above, for d � 2g � 4 we have an infinite collection of Stein fillings,
produced by factorizations of the multitwist. Interestingly, this method no longer
applies when d > 4gC 4: in that range, the boundary multitwist admits no nontrivial
positive factorizations, again by [7, Theorem A]. The singularity given by a cone over
a projective curve is nonsmoothable when d > 4gC 4 by [62]; in fact, it is also known
that the resolution gives the unique Stein filling in this case [49, Proposition 8.2].

Similarly, for cones over elliptic curves, ie g D 1, the singularity is nonsmoothable for
d > 9 [53], and the only Stein filling is indeed given by the resolution, while for d � 9,
all Stein fillings are given by smoothings and resolutions [50].

5 Every symplectic filling comes from a symplectic
deformation of curvettas

5.1 Braided wiring diagrams

A braided wiring diagram is a generalization of a braid in R �C (where the braid
condition means that the curves should be transverse to each ftg �C). In a wiring
diagram, instead of only looking at smooth braids, we allow the strands to intersect.
Let �R WR�C!R denote the projection to the first coordinate. We will also use the
natural projection from C to R sending a complex number to its real part.
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Definition 5.1 A braided wiring diagram is a union of curves j W R ! R � C,
j D 1; : : : ; n, each of which is a section of the projection �R W R�C! R, ie each
“wire” is given by j .t/D .t; hj .t/C iwj .t//. Different wires j may intersect; in this
article we will assume that they are not tangent at intersections.

We say a braided wiring diagram is in standard form if there are disjoint intervals
I1; : : : ; IN �R such that I` �C contains a unique intersection point of some subcol-
lection of the curves j , and in I`�C, the wires are given as j .t/D .t; kj tCajCibj /.
If j does not pass through the intersection point, we require kj D 0.

Note that any braided wiring diagram can be isotoped through braided wiring diagrams
to be in standard form.

We can encode a braided wiring diagram by projecting the union of the images of
the j to R�R and denoting the crossings of the projection as in a knot diagram.

A braided wiring diagram can be encoded by a sequence

.ˇ0;J1; ˇ1;J2; : : : ; ˇm�1;Jm; ˇm/;

where each ˇi is a braid and Ji D fki ; ki C 1; : : : ; ki C `ig is a consecutive sequence
of integers indicating the local indices of the strands involved in the i th intersection
point. For brevity, we will say that Ji is a consecutive set.

Conventions Strands in a wiring diagram are numbered from bottom to top. The
convention in [12] is to draw this sequence of braids and intersections from right to
left. If one thinks of composing words in the braid group using group notation (left to
right) instead of functional notation (right to left), then one will need to read off the
braid words from left to right — this is the convention used in [12]. However, in our
case since we are always thinking of braids as diffeomorphisms of the punctured plane,
we will use functional notation to compose braid words, and thus read everything —
the intersections and the braid words — from right to left.

Example 5.2 The braided wiring diagram shown in Figure 8 corresponds to the
sequence

.id; f2; 3g; id; f3; 4g; ��1
1 ı �

�1
2 ; f3; 4g/:

Braided wiring diagrams were introduced in [12] (inspired by foundational work of [40]
and generalized from diagrams of [21]) to study configurations of complex curves,
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Figure 8: Braided wiring diagram.

particularly line arrangements, and the fundamental groups of their complements. The
definition works just as well to study configurations of smooth graphical disks in C2.
As in Section 3, let .x;y/ be complex coordinates on C2, and let �x be the projection
to the first coordinate. Let �1; : : : ; �m be smooth disks in C2 which are graphical with
respect to the projection to x, so �i D fyDfi.x/g. Assume that all the intersections
between the �i are transverse and positive (with respect to the natural orientation on
the graphical disks projecting to C).

Definition 5.3 For a graphical configuration � D f�1; �2; : : : ; �ng of smooth disks
in C2, a braided wiring diagram is obtained as follows. Choose a (real) embedded
curve � W Œ0; 1�!C which passes once through the projection of each singular point
of the configuration and whose real part Re � is nonincreasing. The preimage of the
curve � under �x in C2 is diffeomorphic to Œ0; 1��C, and the intersection of this copy
of Œ0; 1��C with the configuration � is the braided wiring diagram.

The transversality of each smooth disk �j to the projection �x ensures that the wiring
diagram curves are transverse to the projection �R WR�C!R. Note that different
choices of � may result in different braided wiring diagrams, which are related by
certain generalized Markov moves. See for example [12] for more details. We will show
in Section 5.3 that one can always construct a configuration � with a given braided
wiring diagram; moreover, the components �j of � can be chosen to be symplectic.

5.2 Braided wiring diagrams to vanishing cycles

Given a configuration � D f�1; �2; : : : ; �mg in C2 as above, Lemma 3.2 produces
an associated Lefschetz fibration. Recall that a Lefschetz fibration is completely
determined by its fiber and an ordered list of vanishing cycles. (Critical points are
assumed to have distinct critical values.) The fiber in this situation is planar with
m boundary components, where m is the number of curves in the configuration. If we
are given a braided wiring diagram of � , we can explicitly determine the vanishing
cycles, as follows.
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To describe the vanishing cycles of a Lefschetz fibration L WM ! C, we first need
to fix certain data. Choose a regular fiber F0 WDL�1.p0/ as the reference fiber. Let
p1; : : : ;pn denote the critical values of L. Choose paths �j connecting p0 to pj in
the complement of the pj , such that the paths �j are ordered counterclockwise from
1 to n locally around p0. Then the j th vanishing cycle Vj is the simple closed curve
in F0 which collapses to a point under parallel transport along the path �j .

When given a braided wiring diagram, we can construct the paths �j in a systematic
manner and compute the vanishing cycles Vj in terms of the braided wiring data. The
wiring diagram lies over a curve � W Œ0; 1�!C whose real part Re � is always decreasing.
The Lefschetz fibration from Lemma 3.2 comes from the composition L WD � ı˛ of
the blow-down map ˛ WC2 #n CP2!C2 with the projection map �x WC2!C. One
then takes the complement of the sections given by proper transforms of the curves
�1; �2; : : : ; �m in C2 #n CP2, so that each �j corresponds to a hole in the planar fiber.
Thus the j th hole corresponds to the wire j in the diagram, and in the standard form
the holes are arranged vertically in the fiber, labeled 1; : : : ;m, consecutively. Each
consecutive set Ji corresponds to a subcollection of holes contained in a convex subset
of C. The Lefschetz critical points occur in C2 #n CP2 above the intersection points
of the braided wiring diagram. Let 0 < t1 < � � � < tn < 1 denote the times at which
the j th intersection point of the wiring diagram lies over �.tj /. We will choose our
reference fiber to lie over the right endpoint p0 D �.0/ of the curve � in C. Strictly
speaking, we need a compact version of this construction, which is obtained by working
in a closed Milnor ball and taking complements of tubular neighborhoods of the � i ,
but for simplicity we omit the Milnor ball from the notation.

We will choose paths �j W Œ0; tj �!C given by �j .t/D�.t/�"j�j .t/i , where �j W Œ0; tj �!

Œ0; 1� is a bump function which is 0 near t D 0 and t D tj , and 1 outside a small
neighborhood of 0 and tj , and 0< "1 < "2 < � � �< "n < ". See Figure 9.

Figure 9: The vanishing paths �j chosen to identify the vanishing cycles in
the fiber over p0 relative to the wiring diagram path �.
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Our local model for the Lefschetz fibration in Lemma 3.2 shows that the curve which
collapses to a point in the fiber L�1.�j .tj � ı// (for small ı > 0) is a convex curve
enclosing the holes in the set Jj . To determine the vanishing cycle in our reference fiber
F0 D L�1.p0/, we need to track the monodromy over the path �j for t 2 Œ0; tj � ı�.
This is the monodromy of the braid given by the intersection of the configuration
with the slice of C2 which projects to �j . (Note that this intersection is indeed a
braid over the interior of �j , because each curve �j is disjoint from the critical points
away from its endpoints.) By assuming " to be sufficiently small, we see that this
braid agrees with corresponding portion of the braided wiring diagram, except when
passing near an intersection point. When �j passes an interval near tk for k < j , the
braid resolves the intersection by separating the strands. The strands are ordered from
bottom to top in decreasing order by slope in the projection R�C!R�R (the most
positive slope is the lowest strand in the crossing). This can be verified by checking
the local model for the complexification of real lines because all of our intersections
are positive and transverse; see [40]. After resolving an intersection of the strands in
the set Jk D fik ; ik C 1; : : : ; ik C lkg, the element of the mapping class group which
corresponds to this portion of the braid from right to left is��1, where� is the positive
half-twist of the strands ik ; ikC1; : : : ; ikClk . (In terms of the standard generators of the
braid group, �Jk

D .�ik
� � � �ikClk�1/.�ik

� � � �ikClk�2/.�ik
�ikC1/.�ik

/.) Therefore,
the braid lying above �j is given by

�j D ǰ�1 ı�
�1
j�1 ı � � � ıˇ1 ı�

�1
1 ıˇ0;

where �k denotes the positive half-twist of the strands in the set Jk . Namely, �k is the
diffeomorphism supported in a neighborhood of the disk convexly enclosing the holes
in the set Jk , which acts by rotating the disk by � counterclockwise. The j th vanishing
cycle is the curve which is taken to the convex curve Aj enclosing the holes in the
set Jj under the braid lying above �j . Therefore, Vj D �

�1
j .Aj /.

Remark 5.4 We can encode blow-ups at “free” points (as is allowed by Lemma 3.2)
by adding marked points in our braided wiring diagram indicating “intersection points”
that involve only a single strand (so the corresponding J will have jJ j D 1).

The total monodromy of the curve configuration around a circle enclosing all of the
critical points can now be calculated in two different ways:

(1) Using the total monodromy of the curve configuration encoded by the braided
wiring diagram.

(2) Taking the product of positive Dehn twists about the induced vanishing cycles.
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Figure 10: Vanishing cycles corresponding to the braided wiring diagram
of Figure 8. The circled crossings correspond to intersections in the wiring
diagram. Uncircled crossings come from braiding between intersections.

To reassure the reader that our formulas and conventions are consistent, we verify that
these two different ways of calculating the monodromy agree.

The total monodromy encircling a braided wiring diagram

.ˇ0;J1; ˇ1; : : : ; ˇn�1;Jn; ˇn/

is given by following the diffeomorphisms induced by a counterclockwise rotation
around the wiring interval. Such a counterclockwise circle is obtained by connecting
an upward push-off of the wire interval oriented right to left with a downward push-off
oriented left to right as in Figure 11. The intersections between the strands of Jj are
resolved as the positive half-twist �j in the upward push-off (right to left). In the
downward push-off the intersection is resolved as the negative half-twist ��1

j right
to left, but since we pass through the downward push-off from left to right, each such
segment contributes �j to the monodromy. The braids contribute ǰ when traversed
right to left, and ˇ�1

j when traversed left to right. See Figure 11. The total monodromy
is therefore

ˇ�1
0 ı�1 ıˇ

�1
1 ı�2 ıˇ

�1
2 ı � � � ıˇ

�1
n�2 ı�n�1 ıˇ

�1
n�1 ı�

2
n ıˇn�1 ı�n�1 ıˇn�2

ı � � � ıˇ2 ı�2 ıˇ1 ı�1 ıˇ0:

ˇn �n ˇn�1 �n�2 ˇn�2 ˇ2 �2 ˇ1 �1 ˇ0

ˇ�1
0

�1ˇ�1
1

�2ˇ�1
2ˇ�1

n�2
�n�1ˇ�1

n�1
�nˇ�1

n

Figure 11: The total monodromy about a braided wiring diagram.
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On the other hand, each vanishing cycle is given as

Vj D �
�1
j .Aj /D . ǰ�1 ı�

�1
j�1 ı � � � ıˇ1 ı�

�1
1 ıˇ0/

�1.Aj /:

Therefore a Dehn twist �Vj
about Vj is equal to

�Vj
D ��1

j ı�2
j ı�j

because �Aj
D�2

j and in general ��.C / D � ı �C ı�
�1. Thus, the total monodromy of

the Lefschetz fibration given by the product of positive Dehn twists about the vanishing
cycles is

��1
n ı�

2
n ı�n ı�

�1
n�1 ı�

2
n�1 ı�n�1 ı � � � ı�

�1
1 ı�

2
1 ı�1:

We can simplify �j ı�
�1
j�1

as

. ǰ�1ı�
�1
j�1ı� � �ıˇ1ı�

�1
1 ıˇ0/ı.ˇ

�1
0 ı�1ıˇ

�1
1 ı� � �ı�j�2ıˇ

�1
j�2/D ǰ�1ı�

�1
j�1:

Therefore �Vn
ı � � � ı �V1

is equal to

��1
n ı�

2
n ı .ˇn�1 ı�

�1
n�1/ ı�

2
n�1 ı � � � ı .ˇ1 ı�

�1
1 / ı�2

1 ıˇ0;

which equals

ˇ�1
0 ı�1 ıˇ

�1
1 ı � � � ı�n�1 ıˇ

�1
n�1 ı�

2
n ıˇn�1 ı�n�1 ı � � � ıˇ1 ı�1 ıˇ0:

This coincides with the total monodromy of the braided wiring diagram given above,
as required.

5.3 Wiring diagrams to symplectic configurations

Given any braided wiring diagram, we interpret it as a collection of intersecting curves
in R�C. We will extend each of these curves to a symplectic surface in C �C.

Proposition 5.5 Given a braided wiring diagram
S

j j �R�C in standard form , there
exists a configuration of symplectic surfaces

S
j �j in C �C such that �j extends j ,

that is , �[
j

�j

�
\ .R� f0g �C/D

[
j

j ;

and all intersections �j \�k lie in the original wiring diagram in .R� f0g �C/ and
are transverse and positive.
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Figure 12: The graph of � WR! Œ0; 1�. The marked points on R are the ti .

Proof Let t1D�R.p1/; : : : ; tnD�R.pn/ denote the R coordinates of the intersection
points p1; : : : ;pn in the wiring diagram. Braid crossings in the wiring diagram can be
viewed as additional intersections that appear in the image of the diagram under the
projection R�C!R�R. Choose ı > 0 sufficiently small that there are no crossings
in the braided wiring diagram in ��1

R .Œti � 4ı; ti C 4ı�/ (except the intersection at pn).
Let �i WR! Œ0; 1� be a smooth bump function such that

�i.t/D

�
1 for t 2 Œti � ı; ti C ı�;

0 for t 62 .ti � 2ı; ti C 2ı/:

Let �D
Pn

iD1 �i . See Figure 12.

Let � > 0. Let � WR! Œ��; �� be a smooth function such that

�.s/D

8<:
�� for s � �2�;

s for � 1
2
�� s � 1

2
�;

� for s � 2�;

�0.s/� 0 for all s 2R:

See Figure 13.

For each wire, we will define its extension to a symplectic surface. Suppose the wire is
parametrized as

j .t/D .t; hj .t/C iwj .t// 2R�C:

Define �j .t; s/ WR2!C2 by

�j .t; s/D
�
t C is; hj .t/C i.wj .t/C �.t/�.s/h

0
j .t//

�
:

Figure 13: The graph of � WR! Œ��; ��.
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The tangent space of the image of �j is spanned by

@�j

@t
D d�j

�
@

@t

�
and

@�j

@s
D d�j

�
@

@s

�
:

The previous formulas use complex coordinates .x;y/ on C2; now we pass to real
coordinates .x1;x2;y1;y2/, so that x D x1C ix2, y D y1C iy2. In these coordinates,
the standard symplectic form is given by ! D dx1 ^ dx2C dy1 ^ dy2. We have

@�

@t
D

@

@x1
C h0j .t/

@

@y1
C
�
w0.t/C �0.t/�.s/h0j .t/C �.t/�.s/h

00
j .t/

� @
@y2

;

@�j

@s
D

@

@x2
C �.t/�0.s/h0j .t/

@

@y2
:

Evaluating the symplectic form gives

!

�
@�j

@t
;
@�j

@s

�
D 1C �.t/�0.s/.h0j .t//

2 > 0;

so the image of �j is a symplectic surface.

To verify that these extensions do not intersect outside of the original intersections of
the wiring diagram, we observe that any intersection between �j and �k would occur
at the same parameters .t0; s0/ and must have

hj .t0/D hk.t0/ and wj .t0/C �.t0/�.s0/h
0
j .t0/D wk.t0/C �.t0/�.s0/h

0
k.t0/:

If hj .t0/D hk.t0/, this means that the wires j and k project to the same point under
the projection R�C!R�R. This means there is either a crossing or an intersection
between wires j and k at t0.

If t0 is an intersection point of the wires, wj .t0/ D wk.t0/. Additionally, at t0, the
projections of the wires have different slopes, so h0j .t0/¤h0

k
.t0/. We also have �.t/�1

near t0. Using this, the intersection assumption that

wj .t0/C �.t0/�.s0/h
0
j .t0/D wk.t0/C �.t0/�.s0/h

0
k.t0/

implies that
�.s0/.h

0
k.t0/� h0j .t0//D wj .t0/�wk.t0/D 0:

Therefore, �.s0/D 0, so s0 D 0 by definition of �.

If t0 is a crossing between wires, wj .t0/¤wk.t0/. Because � is supported only near the
intersection times, and we assume the crossings occur outside of these intervals, �� 0.
Therefore, the assumption that wj .t0/C�.t0/�.s0/h

0
j .t0/Dwk.t0/C�.t0/�.s0/h

0
k
.t0/

gives a contradiction.
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Finally, we check that �j and �k intersect positively. If we assume that the wiring
diagram is in standard form near the intersection points hj .t/D kj t C aj and constant
coordinate wj .t/� bj , then near .ti ; 0/ where �.t/� 1 and �.s/� s, we have that

�j .t; s/D .t C is; kj t C aj C i.bj C kj s//;

so the image of �j agrees with the complex line yDkj xCajCbj i , and the intersection
of �j and �k locally agrees with an intersection of complex lines.

5.4 Stein fillings correspond to symplectic configurations

Given a contact structure supported by a planar open book, a theorem of Wendl [65] says
that every Stein filling is symplectic deformation equivalent to a Lefschetz fibration with
the same planar fiber; Niederkrüger and Wendl [48] extend this result to minimal weak
symplectic fillings. Thus, Stein fillings are essentially in one-to-one correspondence
with positive factorizations of the monodromy of the given planar open book (and the
same is true even for weak symplectic fillings, up to blow-up). The following statement
is equivalent to Theorem 1.5.

Proposition 5.6 Let .Y; �/ be the link of a rational singularity .X; 0/ with reduced
fundamental cycle. Fix a decorated germ .C; w/ for .X; 0/, with smooth branches
C1;C2; : : : ;Cm.

Then every Stein filling of .Y; �/ is supported by a Lefschetz fibration built from a
configuration of m symplectic disks f�1; �2; : : : ; �mg in C2 with marked points , via
Lemma 3.2.

Proof Because the contact manifold is planar, any Stein filling is supported by a
planar Lefschetz fibration with the same fiber. We will reverse-engineer the required
configuration of symplectic disks. Let F0 be a fixed identification of the planar fiber,
where the holes are lined up vertically and labeled by numbers 1; 2; : : : ;m. Let
V1; : : : ;Vn be the ordered list of vanishing cycles for the Lefschetz fibration. We
begin by producing a collection . 0; : : : ;  n�1/ of diffeomorphisms  i WF0!F0 and
.J1; : : : ;Jn/ of consecutive subsets of f1; : : : ;mg. Here, “consecutive” means that
Jj D fi; i C 1; : : : ; i C kg for some i and k.

Choose a diffeomorphism ˇ0 W F0! F0 so that ˇ0.V1/ is isotopic to a curve convexly
enclosing a consecutive collection of holes; let J1 be the corresponding consecutive
subset. Let �1 be the counterclockwise half-twist of the convex disk that contains
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precisely the holes indexed by J1. Recursively, choose a diffeomorphism ǰ WF0!F0

such that ǰ ı�
�1
j ı � � �ıˇ1 ı�

�1
1
ıˇ0.VjC1/ is isotopic to a curve convexly enclosing

a consecutive collection of holes that corresponds to the set JjC1, and let �jC1 denote
the corresponding half-twist.

Consider the braided wiring diagram determined by .ˇ0;J1; ˇ1;J2; : : : ; ˇn�1;Jn/. By
Proposition 5.5, we can construct a configuration of symplectic surfaces �1; : : : ; �m

in C2 extending this diagram. Using Lemma 3.2, we obtain a planar Lefschetz fibration.
We need to use the compact version of the construction to get a fibration whose general
fiber is a disk with m holes; for this, we start with a Milnor ball of the form BDDx�Dy ,
such that Dx is a neighborhood of �, and Dy is a disk of sufficiently large radius to
include the wires above Dx .

As explained in Section 5.2, the vanishing cycles of this Lefschetz fibration will be
given by

V 0j D . ǰ�1 ı�
�1
j�1 ı � � � ıˇ1 ı�

�1
1 ıˇ0/

�1.Aj /

for j D 1; : : : ; n, where Aj is a convex curve enclosing the consecutive holes in the
set Jj . The choice of the ǰ ensures that these vanishing cycles are identical to our
original ones: V 0j D Vj .

Along with the symplectic disk configuration f�1; : : : ; �mg, we also obtain a collection
of marked points on these disks. The marked points include all the intersections as
well as additional free marked points, as in Remark 5.4. Each free marked point
can be chosen anywhere on the corresponding disk, as long as all marked points are
distinct. As in Lemma 3.4, counting multiplicities of pairwise Dehn twists in the
monodromy shows that the number of marked points on each disk �j is the same as the
weight w.Cj / of the corresponding curvetta Cj of the defining decorated germ .C; w/

of the singularity.

Remark 5.7 The diffeomorphisms ǰ are not unique. Any choice will suffice to
produce an appropriate braided wiring diagram and corresponding symplectic configu-
ration.

To show that every Stein filling is generated by a symplectic analog of the de Jong–
van Straten theorem, it remains to prove that different symplectic configurations with
the same monodromy are related by deformations. The role of de Jong and van Straten’s
picture deformations is played by graphical homotopies.
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Proposition 5.8 Let .X; 0/ be a rational singularity with reduced fundamental cycle ,
and .C; w/ its decorated plane curve germ with smooth branches C1; : : : ;Cm. Let
.Y; �/ be the contact link of .X; 0/. Suppose that � D f�1; �2; : : : ; �mg is a configura-
tion of symplectic disks with marked points p1; : : : ;pn, constructed for a given Stein
filling of .Y; �/ as in Proposition 5.6. Then .�; fpj g/ can be connected to .C; w/ by a
smooth graphical homotopy.

Lemma 5.9 Suppose C 0
1
; : : : ;C 0

m and C 1
1
; : : : ;C 1

m are two configurations of graph-
ical disks in a Milnor ball B D Dx �Dy , such that @C 0

j D @C
1

j for j D 1; : : : ;m.
Then there is a family of graphical disks C t

1
; : : : ;C t

m (potentially with negative in-
tersections) interpolating between these two configurations with fixed boundary link
@C t

1
[ � � � [ @C t

m � @B. Here , @C t
j D C t

j \ @B D C t
j \ .@Dx �Dy/.

Proof Because we are not limiting the behavior of the intersections of the components,
it suffices to check that there is a family C t

j interpolating between C 0
j and C 1

j for
one component. For simplicity of notation we will drop the j . For this, because
both C 0 and C 1 are graphical, we can write them as C s D f.x; f s.x//g for s D 0; 1.
Then since @C 0 D @C 1, we have that f 0.x/ D f 1.x/ for x 2 @Dx . Let C t D

f.x; tf 1.z/C .1� t/f 0.x/g. Then C t interpolates smoothly between C 0 and C 1, and
its boundary is fixed.

Lemma 5.10 Suppose C1 [ � � � [ Cm is a configuration of graphical disks , so its
boundary @C1 [ � � � [ @Cm is a braid. Let L1; : : : ;Lm be the components of a braid
L1[� � �[Lm which is braid isotopic (with corresponding indices) to @C1[� � �[@Cm.
Then there is a homotopy of graphical disks C t

1
; : : : ;C t

m such that C 0
j D Cj and

@C 1
j DLj .

Proof If C1; : : : ;Cm are graphical over a disk Dx , choose a larger disk D0x contain-
ing Dx . Then we can extend C1; : : : ;Cm to graphical disks C 0

1
; : : : ;C 0m over D0x so

that @C 0
1
; : : : ; @C 0m is the braid Lj , by realizing the trace of the braid isotopy over

the annulus D0x nDx . Next, we can shrink D0x to Dx continuously via a family of
embeddings �t W D

0
x ! D0x where �0 D id, �1.D

0
x/ D Dx , and �1 identifies points

in @D0x with points in @Dx according to the same identification used to realize the trace.
Then if C 0j D f.x; fj .x//g for x 2D0x , we can let

C t
j D f.�t .x/; fj .x/ j x 2D0xg\ .Dx �C/:

Then C 0
j D Cj and @C 1

j DLj , as required.
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Proof of Proposition 5.8 When we fix the germ .C; w/ and apply the method of
Proposition 5.6 to a given Stein filling for .Y; �/, we first consider the open book
on .Y; �/ induced by the decorated germ as in Proposition 4.1. The Stein filling
then carries a Lefschetz fibration that induces the same open book on the boundary,
and the arrangement .�; fpj g/ is constructed from the monodromy of this Lefschetz
fibration. The smooth disks �1; : : : ; �m are contained in the Milnor ball B for C and are
transverse to its boundary S3, so that S3\ .�1[ � � � [�m/ is a braid. By Lemma 3.3,
the monodromy of this braid is the image of the monodromy of the open book under the
projection MCG.Pm/!MCG.Cm/ of the mapping class group of the compact disk
with holes to the mapping class group of the punctured plane, so the two braids are braid-
isotopic. Therefore, we can apply Lemma 5.10 to perform a graphical homotopy to
�1; : : : ; �m so that its boundary agrees with that of C1; : : : ;Cm. Next, apply Lemma 5.9
to continue the graphical homotopy from C1; : : : ;Cm to �1; : : : ; �m.

Remark 5.11 For our construction of a Lefschetz fibration, it is not important that the
C t

i are symplectic disks, we only care that they are graphical. However, by performing a
rescaling in the y direction, we can ensure that all of the graphical disks are symplectic
if the partial derivatives of the function f are sufficiently small. More specifically, if
C D f.x; f .x//g, where x D x1C ix2 andˇ̌̌̌

@f

@x1

ˇ̌̌̌
;

ˇ̌̌̌
@f

@x2

ˇ̌̌̌
<

p
2

2
;

then C will be symplectic. This bound is sufficient although not necessary; it can be
achieved by rescaling f , which itself is a graphical homotopy. Moreover, if f 0 and
f 1 both satisfy these bounds, then their convex combination tf 0 C .1� t/f 1 also
satisfies the bound for all t 2 Œ0; 1�, so the interpolation between the two disks will also
be symplectic.

6 Incidence matrix and topology of fillings

6.1 Basic topological invariants

It is shown in [27] that the basic topological invariants of the Milnor fibers obtained
from the picture deformations can be easily computed from the deformed curvetta
arrangement. Moreover, the incidence matrix of the arrangement can be reconstructed
from the Milnor fiber [44]. We now review these facts briefly and adapt and generalize
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them in our context: the goal is to show that exactly the same results hold for more
general Stein fillings, constructed from smooth disk arrangements as in Section 5.

As we have shown in Section 5, every Stein filling W can be described by an ar-
rangement � D f�ig of symplectic curvettas with marked points fpj g

n
jD1

, related
to the plane curve germ C D C1 [ � � � [ Cm by a smooth graphical homotopy. We
always assume that curvettas intersect positively. We also treat the components of
C as labeled, so the ordering of components C1; : : : ;Cm is fixed. The set of marked
points fpj g

n
jD1

contains all intersection points between the �i and possibly a number
of free points. The incidence matrix I.�; fpj g/ has m rows and n columns, defined
so that its entry aij at the intersection of the i th row and the j th column equals 1 if
pj 2 �i , and 0 otherwise. Note that there is no canonical labeling of the points pj ,
so the incidence matrix is defined only up to permutation of columns. We will say
that two arrangements .�; fpj g/ and .� 0; fp0j g/ are combinatorially equivalent if their
incidence matrices coincide (up to permutation of columns, ie up to relabeling of the
marked points).

Let L be the Lefschetz fibration constructed for the arrangement .�; fpj g/ as in
Lemma 3.2. Its general fiber is a disk with m holes that correspond to the curvettas
�1; : : : ; �m of �; in particular, the number of holes equals the number of rows in the
matrix I.�; fpj g/. The vanishing cycles of L correspond to the marked points fpj g

n
jD1

and enclose sets of holes that correspond to curvettas passing through that point: if
�i1
; : : : ; �ik

are all curvettas that intersect at pj , the vanishing cycle Vj encloses the
holes hi1

; : : : ; hik
. It follows that homology classes of the vanishing cycles of L can

be determined from the incidence matrix I.�; fpj g/, and we have:

Proposition 6.1 Let L be the Lefschetz fibration for the arrangement .�; fpj g/ with in-
cidence matrix I.�; fpj g/. If the j th column of I.�; fpj g/ has 1s in rows i1; i2; : : : ; ik ,
the corresponding vanishing cycle Vj of L encloses the holes hi1

; : : : ; hik
in the fiber.

Corollary 6.2 Let .�; fpj g/ and .� 0; fp0j g/ be two combinatorially equivalent arrange-
ments , and L and L0 the corresponding Lefschetz fibrations. Then the vanishing cycles
of L and L0 are in one-to-one correspondence , so that the two vanishing cycles that
correspond to one another are given by homologous curves in the fiber.

Because smooth graphical homotopies do not allow intersections to escape through the
boundary, the number of pairwise intersections of �i and �j is given by tang.Ci ;Cj /D

�.vi ; vj I v0/; see Remark 2.6. The weight of �i (the total number of intersection points
and the free marked points on �i) is given by w.Ci/D 1C l.v0; vi/. The intersections
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between �i and �j correspond to the points among p1;p2; : : : ;pn contained in both
lines, and each such point gives a 1 in the same column for the i th row and the j th row
of the incidence matrix. Therefore we have:

Lemma 6.3 Let .C; w/ be a decorated germ corresponding to .X; 0/, with branches
C1;C2; : : : ;Cm. Consider any arrangement f�ig

m
iD1

of smooth curvettas encoding a
Stein filling of the link of .X; 0/. The incidence matrix I.�; fpj g/ has the following
properties:

(i) The number of 1s in the i th row of I.�; fpj g/ is w.Ci/D 1C l.v0; vi/.

(ii) The number of 1s which appear in the same columns for the i th row and the
j th row is tang.Ci ;Cj /D �.vi ; vj I v0/.

Here , l.v0; vi/ and �.vi ; vj I v0/ are the length and overlap functions on the resolution
graph G, defined in Remark 2.6, and v0 is the choice of root.

We now describe how the incidence matrix I.�; fpj g/ determines basic algebraic
topology of the filling W , namely H1.W /, H2.W /, the intersection form of W , and
the first Chern class c1.J / of the Stein structure. (Homology is taken with Z coefficients
throughout.) The statements about the homology and the intersection form of W are
proved in [27, Section 5] for the algebraic case, but the proofs are entirely topological
and apply in the more general settings as well. Alternatively, the same invariants can
be computed from the vanishing cycles of the Lefschetz fibration [6, Lemma 16]. For
Lefschetz fibrations with planar fiber, detailed proofs for the intersection form and c1.J /

calculations are given in [19]. We write Zhfpj gi for the free abelian group generated
by fpj g

n
jD1

, and Zhf�igi is defined similarly. The incidence matrix I.�; fpj g/ defines
a map between the corresponding lattices.

Proposition 6.4 There is a short exact sequence

0!H2.W /! Zhfpj gi
I
�! Zhf�igi !H1.W /! 0:

Proof Let W be the total space of a Lefschetz fibration over a disk D, with planar
fiber P . (We always assume that W , P and D are compatibly oriented.) If D0 �D

is a small disk that contains no critical points, then W is obtained from P �D0 by
attaching 2–handles to copies of the vanishing cycles contained in the vertical boundary
P � @D0, so that distinct handles are attached along knots contained in distinct fibers.

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1145

We use the exact sequence of the pair .W;P �D0/; since P �D0 retracts onto P , we
can replace the former with the latter. Notice also that H1.W;P /D 0, so we get

0!H2.W /
j�
!H2.W;P /

@�
�!H1.P /!H1.W /! 0:

The group H2.W;P / is freely generated by the cores of the attached 2–handles;
we can identify these generators with the vanishing cycles. By construction of the
Lefschetz fibration, each vanishing cycle corresponds to a blow-up at some marked
point, so we can identify the vanishing cycles with the set fpj g. The free abelian
group H2.W;P / is then identified with the lattice Zhfpj gi. The generators for the
free abelian group H1.P / can be given by loops around the holes in the planar fiber.
The holes correspond to the branches of C, thus H1.P / can be identified with the
lattice Zhf�igi. The map @� is evaluated as follows: to compute @�.pj /, we take the
boundary of the core of the corresponding 2–handle, given by the vanishing cycle
associated with pj , and express this vanishing cycle in terms of the generators of
H1.P /D Zhf�igi. Since the vanishing cycle is a simple closed curve on the planar
page, its first homology class equals the sum of the boundaries of the holes it encloses,
which in turn correspond to the branches �i passing through pj . Therefore, @�.pj / is
given precisely by the j th column of the incidence matrix I.�; fpj g/, as required.

Remark 6.5 Since the link Y of a rational singularity .X; 0/ is always a rational
homology 3–sphere, a standard argument shows that b1.W /D 0 for any Stein filling
W of Y. Indeed, W has no 3–handles, so H 3.W IQ/D 0; then for the pair .W;Y /D

.W; @W / we have

0DH1.@W IQ/!H1.W IQ/!H1.W; @W IQ/ŠH 3.W IQ/D 0:

It follows that the matrix I.�; fpj g/ always has full rank.

Note that H2.W / is isomorphic to Im j�, which in turn equals ker @�. So H2.W / can
be identified with null-homologous linear combinations of vanishing cycles (thought
of as 1–chains in P ). One can explicitly describe an oriented embedded surface in W

representing a given second homology class, as follows [19, Section 2]. First, one
constructs an oriented embedded surface in P � D0 whose boundary is the given
null-homologous linear combination of the vanishing cycles, and then the vanishing
cycles are capped off in W. A similar construction is given in [27] without Lefschetz
fibrations, for Milnor fibers obtained by blowing up the 4–ball at the marked points
and taking the complement of the proper transforms of curvettas; exactly the same
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argument works for a smooth curvetta arrangement .�; fpj g/. After blowing up the
4–ball B at the points p1;p2; : : : ;pn, we have the 4–manifold zB, the blow-up of B,
with generators of H2. zB/ given by the fundamental classes Epi

of the exceptional
divisors. We identify H2. zB/ D Zhfpj gi. The intersection form of zB is standard
negative definite in the given basis, as Ep �Ep D �1. The manifold W is obtained
from zB by removing the tubular neighborhoods Ti of the proper transforms z�i of
the curvettas �i . The inclusion induces a map H2.W /! H2. zB/, which is in fact
the same map as j� above, under obvious identifications. Every homology class in
H2.W / is represented by an embedded oriented surface which can be constructed by
taking the collection of the corresponding exceptional spheres Epi

, punctured at their
intersections with z�j , and connected by tubes running inside the cylinders Ti . The
intersection of two such surfaces can be computed by taking the intersections of the
corresponding collections of exceptional spheres, as the tubes can be arranged to be
disjoint. For the Stein structure J on W associated to the given Lefschetz fibration,
we can compute c1.J / using the same inclusion H2.W / ! H2. zB/. Indeed, J is
homotopic to the restriction of the complex structure j on zB, and c1.j /ŒEpi

�D 1 for
every Epi

. Therefore we have:

Proposition 6.6 The intersection form on H2.W /� Zhfpj gi is the restriction of the
standard negative definite form given by pi �pj D �ıij for i; j D 1; : : : ; n. The first
Chern class c1.J / of the Stein structure is the restriction of the linear form on Zhfpj gi

given by c1Œpi �D 1 for i D 1; : : : ; n.

See also [19, Propositions 2.1 and 2.4] for a detailed calculation (in terms of the
vanishing cycles) of the intersection form and c1.J / for an arbitrary Lefschetz fibration
.W;J / with planar fiber.

6.2 Uniqueness of the Artin filling and proof of Theorem 1.2

In general, the topology of the filling might not be fully determined by the incidence
matrix of the corresponding curvettas arrangement; Proposition 6.1 gives the homology
classes of the vanishing cycles but not their isotopy classes. However, it turns out that
the incidence matrix completely determines the smoothing for picture deformations
that are combinatorially equivalent to the Scott deformation, so that one gets the Artin
smoothing component [27, Cases 4.13]. We prove that an analogous result holds for
Stein fillings as well. Note that the argument in [27] uses simultaneous resolutions and

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1147

only works in the algebraic setting, while we work with mapping class groups instead.
Our argument works because the Artin filling has a Lefschetz fibration with disjoint
vanishing cycles in the fiber.

Proposition 6.7 Let .X; 0/ be a rational surface singularity with reduced fundamental
cycle , with contact link .Y; �/ and decorated germ .C; w/. Let � be an arrangement of
smooth graphical curves with positive intersections and marked points fpj g, related to
the germ .C; w/ by a smooth graphical homotopy , so that .�; fpj g/ gives rise to a Stein
filling W of .Y; �/.

Suppose that .�; fpj g/ is combinatorially equivalent to the Scott deformation .Cs; ws/

of .C; w/. Then the Stein filling given by .�; fpj g/ is Stein deformation-equivalent to
the Artin filling of .Y; �/.

Proof Let L be the Lefschetz fibration for .�; fpj g/, constructed as in Lemma 3.2,
and let LA be the Lefschetz fibration for the Artin smoothing, given in Proposition 4.2.
We know that LA is given by the monodromy factorization as in Proposition 4.1; let �
denote the monodromy of the open book as in the lemma.

Both fibrations L and LA have the same fiber S , and the fibration L corresponds to some
factorization of the same monodromy �. By Corollary 6.2, the vanishing cycles fVj g

and fV A
j g of the two fibrations are in one-to-one correspondence, so that the curves Vj

and V A
j are homologous in the fiber. We need to show that Vj and V A

j are isotopic.

There are two types of vanishing cycle in the fibration LA: (1) boundary-parallel
curves that enclose a single hole each, and (2) the curves that go around the necks
connecting the spheres, as shown at the top of Figure 6. The isotopy class of a boundary-
parallel curve in the fiber is uniquely determined by its homology class, so if V A

j is
boundary-parallel, then Vj D V A

j . Now, because the total monodromy of L and LA is
the same, and the Dehn twists around the boundary-parallel curves are in the center
of the mapping class group of the fiber, we see that the products of the Dehn twists
around the vanishing cycles homologous to necks are the same for both L and LA. In
other words, if N denotes the set of vanishing cycles homologous to necks, we have

(6-1)
Y

Vj2N

�Vj
D

Y
V A

j
2N

�V A
j
:

Let  denote the diffeomorphism of the fiber given by the product (6-1).
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To prove that each vanishing cycle Vj is indeed isotopic to the vanishing class V A
j

homologous to Vj , we proceed by induction on the number of necks in the fiber S (this
is the same as the number of edges in the dual resolution graph G). Equivalently, we
can induct on the number of vertices, since G is a tree. When G has only one vertex,
there are no necks, so all the vanishing cycles are boundary-parallel, and Vj D V A

j for
all pairs of vanishing cycles. Assume that the claim is established for all graphs with
k vertices or fewer. Consider a graph G with kC 1 vertices and pick a leaf vertex v
of G. We will be able to remove v to reduce the question to a graph G0 with k vertices.

In the Lefschetz fibration of Proposition 4.2, the leaf v corresponds to the sphere Sv

with holes, connected to the rest of the fiber S by a single neck. The fibration LA has
a vanishing cycle V A that goes around this neck, and L has a vanishing cycle V in the
same homology class. Since v is a leaf, Sv is separated from its complement S nSv by
the curve V A. Observe that all the other nonboundary parallel vanishing cycles of LA

lie outside Sv. A priori, nonboundary parallel vanishing cycles of L may belong to
different isotopy classes and intersect Sv; we want to show that they can be isotoped to
lie outside Sv.

If the self-intersection v � v D �2, then in fact V A encloses only one hole, so it is
boundary-parallel, and we can immediately conclude that V and V A are isotopic, and
Sv is a boundary-parallel annulus disjoint from all the other vanishing cycles.

Suppose now that v � v � �3, so that V A encloses r D�1� v � v > 1 holes. Connect
these holes by r � 1 disjoint arcs ˛1; : : : ; ˛r�1 in the sphere Sv, so that if the fiber S

is cut along these arcs, the r holes will become a single hole; see Figure 14.

By construction, the arcs ˛1; : : : ; ˛r�1 are disjoint from all nonboundary parallel
vanishing cycles V A

j of LA. It follows that each ˛i is fixed by the diffeomorphism  .
As in [7, Proposition 3] and [17, Section 2], we now make the following key observation:
after an isotopy removing nonessential intersections, all arcs ˛1; : : : ; ˛r�1 must be also
disjoint from all non-boundary-parallel vanishing cycles Vj of L. To see this, we recall
that each right-handed Dehn twist is a right-veering diffeomorphism of the oriented
surface S [25]. If ˛ and ˇ are two arcs with the same endpoint x 2 @S , we say that
ˇ lies to the right of ˛ if the pair of tangent vectors . P̌; P̨ / at x gives the orientation
of S . The right-veering property of a boundary-fixing map � W S ! S means that for
every simple arc ˛ with endpoints on @S , the image �.˛/ is either isotopic to ˛ or
lies to the right of ˛ at both endpoints, once all nonessential intersections between
˛ and �.˛/ are removed. Now, suppose that L has a vanishing cycle Vj 2 N that
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S

V A

˛1

˛2

˛3

Sv cut
S 0

V A

V AS 0

G0G

�n

�5
v

�n

Figure 14: After cutting the fiber S , the vanishing cycle V A becomes
boundary-parallel in S 0.

essentially intersects one of the arcs, say ˛1. Then the curve �Vj
.˛1/ is not isotopic to ˛

(see eg [16, Proposition 3.2]), so �Vj
.˛1/ lies to the right of ˛1. Since the composition

of right-veering maps is right-veering, we can only get curves that lie further to the
right of ˛ after composing with the other nonboundary parallel vanishing cycles of L.
However, the composition  D

Q
Vj2N �Vj

fixes ˛1, a contradiction.

Once we know that no vanishing cycles of L or LA intersect any of the arcs ˛1; : : : ; ˛r�1,
we can cut the fiber S along these arcs, and consider the image of the relation (6-1)
in the resulting cut-up surface S 0. In S 0, V A becomes a boundary-parallel curve, and
since V lies in the same homology class, we see that V and V A are isotopic in S 0 (and
therefore in S ). We then haveY

Vj2N;Vj¤V

�Vj
D

Y
V A

j
2N;V A

j
¤V A

�V A
j
:

Now observe that cutting up S along the arcs as above has the same effect as remov-
ing the sphere Sv with its neck from the set of subsurfaces forming the fiber S in
Proposition 4.2. Then the cut-up fiber S 0 with its non-boundary-parallel vanishing
cycles fVj g and fV A

j g corresponds to the fibrations for the graph G0 obtained by deleting
the leaf v and its outgoing edge from the graph G. By the induction hypothesis, we can
conclude that all pairs of homologous vanishing cycles Vj ;V

A
j are isotopic in S 0, and
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thus in S . It follows that the Lefschetz fibrations L and LA are equivalent, and therefore
the Stein filling given by L is Stein deformation equivalent to the Artin filling.

The above results have the following interesting application, related to conjectures of
Kollár on deformations of rational surface singularities. Suppose that a rational singular-
ity .X; 0/ has a dual resolution graph G such that v � v ��5 for every vertex v 2G. In
this case, Kollár’s conjecture asserts that the base space of a semiuniversal deformation
of X has just one component, the Artin component; in particular, there is a unique
smoothing, up to diffeomorphism. In the special case of reduced fundamental cycle,
this conjecture was proved by de Jong and van Straten via their picture deformations
method. We establish the symplectic version of this result, proving Theorem 1.2.

Proof of Theorem 1.2 We can focus on Stein fillings: by [65] and [48], every weak
symplectic filling of a planar contact manifold is a blow-up of a Stein filling, up to
symplectic deformation. By Section 5, Stein fillings are given by arrangements of
symplectic curvettas. The argument in [27, Theorem 6.23] shows that under the given
hypotheses on the resolution of .X; 0/, there is a unique combinatorial solution to
the smoothing problem, namely, any arrangement of curvettas must have the same
incidence matrix as the Artin incidence matrix given by the Scott deformation. The
argument of De Jong and van Straten is somewhat involved, so we will not summarize it
here, but we emphasize that the proof of this fact is completely combinatorial and does
not use the algebraic nature of arrangements. The same claim holds for an arbitrary
smooth arrangement subject to the same hypotheses. The only input used in [27] is the
properties of the incidence matrix determined by the resolution graph as in Lemma 6.3,
together with the following observation: if all vertices of the resolution graph G have
self-intersection �5 or lower, each end vertex of G (except the root) gets at least
three .�1/ vertices attached in the augmented graph G0, so that there are at least three
corresponding curvettas. An important step in the inductive proof is that the matrix
must have a column where all entries are 1, ie all the �i must have a common point.

Once we know that all arrangements corresponding to possible Stein fillings are combi-
natorially equivalent to the arrangement given by the Scott deformation, Theorem 1.2
follows from Proposition 6.7.

In the case where, additionally, the graph G is star-shaped with three legs, uniqueness
of minimal symplectic filling (up to symplectomorphism and symplectic deformation)
was proved by Bhupal and Stipsicz [9]. (They give a detailed proof under the hypothesis
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that the self-intersection of the central vertex is at most �10, but mention that one can
go up to �5 with similar techniques.) Their method relies on McDuff’s theorem [38]
and was previously used by Lisca [34]: one finds a concave symplectic cap which is
a plumbing of spheres that completes an arbitrary filling to a rational surface, which
must be a blow-up of CP2, analyzes possible configurations of .�1/ curves, and then
verifies that the configurations in the image of the cap plumbing under the blow-down
is a pencil of symplectic lines which has a unique symplectic isotopy class. To our
knowledge, this strategy has not been applied to non-star-shaped graphs in the existing
literature. The difficulty in the non-star-shaped case is that there is not an obvious
concave symplectic plumbing which can serve as a cap. Our proof works for completely
arbitrary trees.

6.3 Distinguishing Stein fillings

We now turn to constructions that will be needed in the next section, and explain
how to use incidence matrices to distinguish Stein fillings, at least relative to certain
boundary data. Indeed, as shown by Némethi and Popescu-Pampu [44], the incidence
matrix is “remembered” by the Milnor fiber of the corresponding smoothing, which
allows us to show that certain Milnor fibers are not diffeomorphic (in the strong sense,
ie relative to a boundary marking). The argument in [44] is purely topological, so
we can generalize it to arbitrary Stein fillings. While [44] applies more generally to
sandwiched singularities, we only consider the case of reduced fundamental cycle.

Instead of the boundary marking used in [44], we will keep track of the boundary data
via a choice of a compatible embedded open book for .Y; �/. As in Section 2, we fix a
choice of extension G0 of the dual resolution graph G of a singularity with link .Y; �/, to
fix the topological type of the associated decorated germ .C; w/ with labeled branches
C1; : : : ;Cm. Each branch Cj corresponds to a hole hj of the open book as, explained
in Section 4; fixing the embedded open book, up to isotopy, is equivalent to fixing the
topological type of the decorated germ. In fact, this open book decomposition provides
the data of the “markings” of [44], where the solid tori components of the binding
correspond to “pieces” of the marking data which allow one to fix the gluing of the
smooth cap of [44] to the filling using the open book instead of the markings.

By Wendl’s theorem [65], all Stein fillings of a planar contact 3–manifold are given, up to
symplectic deformation, by Lefschetz fibrations with same fiber, so that these fibrations
are encoded by monodromy factorizations of the fixed open book as above. Suppose
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that Stein fillings W and W 0 arise from symplectic curvetta arrangements .�; fpj g/

and .� 0; fp0j g/ as in Propositions 5.6 and 5.8. On the boundaries @W and @W 0, these
arrangements induce open books which are isomorphic, because both are isomorphic
to the open book induced by the germ .C; w/. Fix these two open books, OB on @W
and OB0 on @W 0, defined up to isotopy; as part of the open book data, we also label
the binding components (with the exception of the outer boundary of the disk, the
boundary components of the page correspond to the branches of the decorated germ).

We will say that W and W 0 are strongly diffeomorphic if there is an orientation-
preserving diffeomorphism W !W 0 whose restriction to @W maps the open book OB
on @W to an open book on @W 0 which is isotopic to the given one, OB0. If the open
book on @W 0 is isotopic to the image of the open book on @W, we can compose the
diffeomorphism W !W 0 with a self-diffeomorphism of W 0 which extends the isotopy
of @W 0 to obtain a diffeomorphism matching the open books. Therefore, we can
equivalently say that W and W 0 are strongly diffeomorphic if there is an orientation-
preserving diffeomorphism W !W 0 that identifies the open books OB on @W and
OB0 on @W 0. This identification is required to preserve the labeling of the binding
components. (We will discuss a slightly weaker condition in Remark 6.9.)

Rephrasing the theorem of [44] in our context, we have:

Proposition 6.8 [44, Theorem 4.3.3] Let .Y; �/ be the contact link of a rational
singularity with reduced fundamental cycle , and fix the isotopy class of an embedded
open book as above. Let two strongly diffeomorphic Stein fillings W and W 0 arise from
arrangements .�; fpj g/ and .� 0; fp0j g/ of symplectic curvettas with marked points , as
in Section 5. Then the incidence matrices I.�; fpj g/ and I.� 0; fp0j g/ are equal , up to
permutation of columns.

Proof We outline the proof briefly, referring the reader to [44] for details, as we use
exactly the same topological argument in a slightly different (in fact, simpler) context.

Let .C; w/ be the decorated germ with labeled smooth branches C1; : : : ;Cm, determined
up to topological equivalence by the open book data for .Y; �/. Unlike [44], we only
work with the case of smooth components of C; therefore, all ı–invariants of the
branches Ci are 0, and the formulas of [44] become simpler.

As in [44], we construct a cap U, which is a smooth manifold with boundary that
can be attached to any Stein filling W of .Y; �/, so that W [ U is a blow-up of a
4–sphere. To construct U, let B �C2 be a closed Milnor ball as in Section 3, so that
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B contains both the branches of the germ C and the arrangement � together with all
intersection points between curvettas �i . Let .B0; C0/ be another copy of this ball with
the germ C inside, with reversed orientation. After an isotopy of the boundaries of the
curvettas �i to match @Ci , we can glue .B; �/ and .B0; C0/ so that the boundary of �i

is glued to the boundary of the corresponding germ branch C 0i . Each disk �i is oriented
as a graph over C, so the result of gluing is a smooth 4–sphere B [B0 containing
the embedded smooth 2–spheres †i D �i [C 0i . Blowing up at the points p1; : : : ;pn,
we get #n

iD1 CP2, represented as the blow-up zB of the ball B glued to B0. Let Ti be a
thin tubular neighborhood of the proper transform of �i in zB. By Lemmas 3.2 and 3.4,
we have W D zBn

Sm
iD1 Ti . Set U DB0

Sm
iD1 Ti , so that we have U [W D #n

iD1 CP2.
As in [44, Lemma 4.2.4], the cap U is independent of W and is determined by the
boundary data. Indeed, to form U , we attach 2–handles to the 4–ball B0. The attaching
circles are given by the boundaries of the �i , and the link

S
i @�i is isotopic to the link

given by the boundaries of the branches of the original decorated germ. The framing for
@�i is �wi , the negative weight on the branch Ci of the decorated germ. The proof of
Lemma 3.4 shows that the weight wi is given by the number of Dehn twists enclosing
the i th hole in (any decomposition of) the monodromy of the open book. Thus, the
cap U and the way it is glued to W is determined by the decorated germ defining the
singularity, together with the fixed open book data of .Y; �/. Finally, as in [44], we
see that there is a unique basis fej g

n
jD1

for H2

�
#n

iD1 CP2
�

of classes of square �1

such that the intersection numbers †i � ej are all positive. It follows that these numbers
depend only on W and the open book data. On the other hand, the numbers†i �ej form
the incidence matrix I.�; fpj g/, as †i � ej D 1 if pj 2 �i , and 0 otherwise. It follows
that the incidence matrices I.�; fpj g/ and I.� 0; fp0j g/ are the same, up to relabeling
the marked points, which amounts to permutation of columns.

Remark 6.9 Our definition of a strong diffeomorphism and the above proof assumes
that the binding components of the open book are labeled, and that the diffeomorphism
preserves this labeling. In other words, we think of the page of the open book(s)
as a disk with holes, where each hole hi corresponds to the i th branch of the fixed
decorated germ; the diffeomorphism matches the i th hole of the page for @W to the
i th hole for @W 0. It is in fact possible to consider a less restrictive definition of strong
diffeomorphism, by allowing permutations of binding components, and to prove a
sightly stronger version of Proposition 6.8 and Theorem 7.8. More precisely, the
proposition still holds if there is a diffeomorphism f WW !W 0 that sends the chosen
open book OB on @W to an open book on @W 0 which is isotopic to OB0, in the sense
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of isotoping the binding and the pages, but the isotopy matches the binding components
in a wrong order. Moreover, it is plausible that the proposition still holds if we only
have a diffeomorphism W ! W 0 whose restriction to @W takes the binding of the
open book OB to an oriented link which is isotopic to the binding of OB0 on @W 0—
because @W D Y is a link of rational singularity, and thus a rational homology sphere,
it seems possible to use [63] to construct an isotopy of pages of the open books if
their bindings are isotopic, perhaps under some mild additional hypotheses. We leave
most of the details to the motivated reader, only indicating below why the proposition
should hold if the identification of the open books permutes the binding components.
It should be emphasized that these arguments would yield only a mild generalization
of Proposition 6.8: fixing appropriate boundary data is crucial for our proof. Note that
by Wendl’s theorem, all Stein fillings of a planar contact manifold fill the same open
book; so in this sense, it is reasonable to think of the boundary open book as fixed.

To consider the case where the diffeomorphism between the fillings permutes the
binding components of the open book, assume that there is an orientation-preserving
self-diffeomorphism � of the page of the open book that commutes with the monodromy.
We do not assume that � fixes the boundary of the page; in particular, we are interested
in the case where � permutes the boundary components. It can be shown that if � acts
nontrivially on the set of boundary components, then the decorated germ and/or the
resolution graph of the singularity has the corresponding symmetry. For example, if �
exchanges holes h1 and h2, these holes must be enclosed by the same number of Dehn
twists (in any positive factorizations of the open book); this implies, in particular, the
equality of weights for the corresponding curvetta branches,

w1 D w.C1/D w.C2/D w2:

Additionally, for any other hole hi , the number of Dehn twists enclosing the pair h1; hi

must be the same as the number of Dehn twists enclosing the pair h2; hi . Because
the Artin factorization is determined by combinatorial data (see Proposition 6.7), it
follows that the Artin factorization admits a symmetry interchanging holes h1 and h2.
Then, we can argue as in Proposition 4.5 to reconstruct the resolution graph of the
singularity, and to see that the graph must have a symmetry, and the corresponding
curvetta arrangement must admit a symmetry interchanging curvettas C1 and C2 (up
to a topological equivalence). Similar reasoning would work for a more general
self-diffeomorphism � ; we do not give the complete argument to avoid setting up
complicated notation. If � exchanges the boundary of a hole with the outer boundary of
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the page (thought of as a disk with holes), there must be a symmetry of the resolution
graphs and the corresponding extended graphs; see Section 2.

Since the self-diffeomorphism � of the page commutes with the monodromy, it induces a
self-diffeomorphism of the supporting 3–manifold Y, which is not necessarily isotopic
to the identity. We will use the same notation for this self-diffeomorphism of Y,
� W Y ! Y.

Now, suppose that fillings W and W 0 are as in Proposition 6.8, and that there is an
orientation-preserving diffeomorphism f W W ! W 0 that maps the open book OB
on W to the open book f .OB/ on W 0 that is isotopic to �.OB0/ rather than to OB0.
As explained above, the decorated germ admits a symmetry induced by � ; in turn, it
follows that the cap U admits a self-diffeomorphism that restricts to the map � W Y ! Y

on the boundary, after an orientation reversal. Using this self-diffeomorphism to glue
the cap to W 0, and comparing W [idU and W 0[�U , we can argue as in Proposition 6.8
to conclude that the incidence matrices I.�; fpj g/ and I.� 0; fp0j g/ are the same.

7 Milnor fibers and unexpected Stein fillings: examples

We now construct examples where the link of a rational singularity with reduced
fundamental cycle has Stein fillings that are not realized by Milnor fibers of any
smoothing.

Our examples build on results of the previous sections: by [27], Milnor fibers of
smoothings correspond to (algebraic) picture deformations of the decorated germ,
while Stein fillings of the link can be constructed from arbitrary smooth graphical
homotopies of the curvettas. During the picture deformation, the decorated germ C is
immediately deformed into an arrangement of curvettas yielding a Milnor fiber, so that
the arrangement appears as the deformation Cs for small s (and for a given deformation,
all values of s close to 0 produce diffeomorphic Milnor fibers and equivalent Lefschetz
fibrations). Indeed, for an algebrogeometric 1–parameter deformation of the germ C,
the general fibers of the deformation all “look the same” (up to diffeomorphism).
By contrast, during the course of a smooth graphical homotopy, we are allowed to
change the topology of the arrangement of curvettas, and thus will produce Stein
fillings whose topology varies during the homotopy. We emphasize that immediate
deformation vs long-term homotopy of the branches of C makes the key difference
between Milnor fillings and Stein fillings of links of rational singularities with reduced
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fundamental cycle. In Section 8, we explain why this is the key aspect and compare
picture deformations and smooth graphical homotopies in more detail. In this section,
we exploit the difference between immediate deformations and long-term homotopies
to produce examples of Stein fillings that are not diffeomorphic (rel boundary) to any
Milnor fibers.

7.1 Arrangements of symplectic lines and pseudolines

To construct links of singularities that admit unexpected Stein fillings, we first consider
decorated germs given by pencils of lines (with weights) and focus on their associated
singularities. In this section, we will use the following terminology: several points
are collinear if they all lie on the same line, and several lines are concurrent if they
all pass through the same point. Concurrent lines form a pencil; we will refer to an
arrangement of concurrent lines as a pencil of lines. We will also talk about concurrent
pseudolines or concurrent smooth disks, with the same meaning.

Note that any two pencils of complex lines in C2 are isotopic through pencils, therefore
the corresponding singularities are topologically equivalent and have contactomorphic
links. Let C D fC1;C2; : : : ;Cmg be a pencil of m complex lines, with each line Ck

decorated by a weight wk D w.Ck/. Consider the surface singularity that corresponds
to the decorated germ .C; w/, and let Y .m; w/ D Y .mIw1; : : : ; wm/ denote its link
with the canonical contact structure �. Note that Y .m; w/ is a Seifert fibered space
over S2 with at most m singular fibers. Indeed, consider the dual resolution graph of
the singularity; the graph gives a surgery diagram for the link. This graph has m legs
emanating from the central vertex. Legs correspond to the lines of the pencil, so that
the k th leg has wk � 1 vertices (including the central vertex).

Note that legs of length 1 consist only of the central vertex and thus will appear
invisible. However, in the examples we focus on, every leg will have length greater
than 1. The central vertex has self-intersection �m� 1, all the other vertices have
self-intersection �2. See Figure 16 for an example. The decorated pencil C can be
recovered from the graph as in Section 2: we add .�1/ vertices at the end of each leg,
take the corresponding collection of curvettas, and blow down the augmented graph.

To construct Stein fillings of Y .m; w/, we will use curvetta homotopies taking the
pencil of complex lines to a symplectic line arrangement in C2. We define these
arrangements as follows.
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Definition 7.1 A symplectic line arrangement in C2 is a collection of m symplectic
graphical disks �1; : : : ; �m in C2 with respect to a projection � WC2!C such that

(i) for every pair i; j 2 f1; : : : ;mg with i ¤ j , �i intersects �j positively transver-
sally exactly once, and

(ii) for R sufficiently large, .�1[� � �[�m/\�
�1.SR/ is isotopic to the braid given

by one full twist on m strands in the solid torus ��1.SR/, where SR �C is the
circle of radius R.

Equivalently, we can view the symplectic line arrangement in a Milnor ball B D

Dx � Dy � C2 containing all intersections. The intersection of the arrangement
with @B is then the braid of one full twist in @Dx �Dy . A symplectic line arrangement
in the closed ball B can always be extended to an arrangement in C2, so we will give
all statements about symplectic line arrangements in C2.

Example 7.2 A pencil of complex lines intersecting at the origin in C2 is a symplectic
line arrangement. Clearly every pair of lines intersects at a single point (the origin)
transversally (and positively because they are complex). That the monodromy in
��1.SR/ is one full twist on m strands can be computed directly from a model as in [40].

More generally, any complex line arrangement of m lines in C2 such that no intersec-
tions between lines occur at infinity (ie every complex line has a different complex
slope) gives a symplectic line arrangement. This can be seen by compactifying the line
arrangement in CP2 and looking at the intersection of the lines with the boundary of a
regular neighborhood of the CP1 at infinity. These intersections form an m component
link with one component for each line, such that the link components are isotopic to
disjoint fibers of the "–neighborhood (which can be identified with a subset of the
normal bundle) of the CP1 at infinity. After changing coordinates from the perspective
of the CP1 at infinity to the perspective of the complementary ball, the components of
the link obtain one full twist. From the Kirby calculus perspective, the boundary of the
"–neighborhood of CP1 is presented as .C1/ surgery on the unknot, and the link is m

parallel meridians of this surgery curve. After reversing orientation to get the boundary
of the complementary ball, the surgery coefficient on the unknot becomes a .�1/ surgery,
and blowing down this surgery curve induces one full twist in the m unknotted meridians.

Since any symplectic line arrangement has the same monodromy as the pencil of
complex lines, Lemmas 5.9 and 5.10 imply they are related to the pencil by a smooth
graphical homotopy.
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Our primary source of examples of noncomplex symplectic line arrangements is given
by pseudoline arrangements as described below. However, symplectic line arrangements
are more general and can include braiding in the associated wiring diagram.

Example 7.3 A pseudoline arrangement is a collection `1; : : : ; `m of smooth graphical
curves in R2 where for every pair i; j , the curves `i and j̀ intersect transversally at
exactly one point. Such a pseudoline arrangement can be considered a braided wiring
diagram as in Definition 5.1, but in the particular case where there is no braiding.
In particular, we can apply Proposition 5.5 to extend the pseudoline arrangement to
an arrangement of symplectic graphical disks �1; : : : ; �m; the extension produces a
symplectic line arrangement. Indeed, condition (i) in the definition of a symplectic
line arrangement is satisfied because any two pseudolines intersect transversally at one
point, and their extensions intersect positively by construction. Condition (ii) follows
from the calculation of the total monodromy as in Section 5.2 and a classical theorem of
Matsumoto and Tits [37] about uniqueness of reduced factorizations in the braid group.

Alternatively, we can refer to the results of [57, Section 6], where pseudoline ar-
rangements in RP2 are extended to symplectic line arrangements in CP2 (extensions
in CP2 are strictly harder to construct than extensions in C2). Additionally, using the
same theorem of Matsumoto and Tits, [57, Proposition 6.4] provides a homotopy of
pseudoline arrangements connecting the given arrangement to the pencil. After applying
Proposition 5.5, we get a homotopy of the corresponding symplectic line arrangements.
Note that by construction, this homotopy of symplectic line arrangements keeps all
intersections positive at all times, whereas the smooth graphical homotopy given by
Lemmas 5.9 and 5.10 may introduce negative intersections.

We use symplectic line and pseudoline arrangements to construct Stein fillings of Seifert
fibered spaces .Y .mIw/; �/ via Lemmas 3.2 and 3.4.

Proposition 7.4 Let .C; w/ be a decorated pencil of m lines. Suppose that � D
f�1; : : : ; �mg is a symplectic line arrangement such that each disk �i has at most wi

distinct intersection points with the other disks of the arrangement. Then , .�; fpj g/

yields a Stein filling of .Y .mIw1; w2; : : : ; wm/; �/.

In particular , a pseudoline arrangement ƒ D f`1; : : : ; `mg gives a Stein filling of
.Y .mIw1; w2; : : : ; wm/; �/ via an extension to a symplectic line arrangement , provided
that `i has at most wi distinct intersection points with the other pseudolines.
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7.2 Unexpected line arrangements yield unexpected fillings

Now we will show that some of the Stein fillings as above do not arise as Milnor fibers.
In the next lemma, we consider analytic deformations of reducible plane curve germs,
associated to a singularity by the de Jong–van Straten theory, and establish a property
that will play a key role in our construction of unexpected arrangements.

The term ı–constant deformation in the next lemma refers to an algebrogeometric
property: the deformation is required to preserve the ı–invariant of a singular plane
curve. We keep this terminology since it is used in [27] and [44]; however, under the
hypothesis that the germ has smooth branches, the ı–constant condition simply means
that the deformation changes the germ componentwise, without merging different com-
ponents. Intuitively, the ı–invariant counts the number of double points “concentrated”
in each singular point [39, Section 10]; for example, an ordinary d–tuple point (where
d smooth components meet transversely) contributes ı D 1

2
d.d � 1/, since it can be

perturbed to 1
2
d.d � 1/ double points. Thus, we can deform a triple point to three

double points by a ı–constant deformation, but we are not allowed to deform two
transversely intersecting lines into a smooth conic (such a deformation would kill a
double point).

Lemma 7.5 Consider the germ of a reducible plane curve C in C2 with m smooth
graphical branches C1;C2; : : : ;Cm passing through 0, and let Cs D

Sm
kD1 C s

k
be a

ı–constant deformation of C. (Here, ı–constant means that each branch of the germ is
deformed individually, ie the deformation is not allowed to merge different branches.)
Suppose that all the branches C1; : : : ;Cm have distinct tangent lines at 0, and that not
all deformed branches C s

1
; : : : ;C s

m are concurrent for s ¤ 0.

Then there exists a complex line arrangement AD fL1; : : : ;Lmg in C2 such that not
all lines in A are concurrent , no two lines are equal , and A satisfies all the incidence
relations of Cs . Namely, for any collection of the deformed branches C s

i1
, C s

i2
, . . . , C s

ik

that intersect at one point , the corresponding lines Li1
;Li2

; : : : ;Lik
also intersect , ie

(7-1) C s
i1
\C s

i2
\ � � � \C s

ik
¤∅ D) Li1

\Li2
\ � � � \Lik

¤∅:

Note that the incidence pattern for branches of Cs is the same for all s ¤ 0, because
the definition of a 1–parameter deformation implies that all nearby fibers “look the
same”. It is important to keep in mind that the complex line arrangement A may satisfy
additional incidences, so that certain intersection points coincide in A but are distinct
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for the arrangement fC s
1
;C s

2
; : : : ;C s

mg. In particular, a pencil of lines would satisfy
incidence relations of any other arrangement, but we postulate that A cannot be a pencil
(the lines in A are not all concurrent).

Proof of Lemma 7.5 Since any two curvettas intersect positively in the original
germ C, any two deformed branches C s

i , C s
j intersect for s ¤ 0. We can make an

s–dependent translation to ensure that the first two branches always intersect at the
origin, C s

1
\ C s

2
D f0g; strictly speaking, this means passing to a slightly different

deformation of the germ C.

All components of the reducible curve C pass through 0 and are graphical analytic disks
with respect to the projection to the x–coordinate. Thus we can define the germ of C
near 0 by an equation of the form

mY
iD1

.aixC ci.x/�y/D 0;

where ci.x/D
P

k�2 ci;kxk are analytic functions in x with ordx ci > 1 at 0. We can
also assume that ai ¤ 0 for all i D 1; : : : ;m.

The 1–parameter deformation Cs is then given, for s close to 0, by an equation of the
form

mY
iD1

.ai.s/xC bi.s/C ci.x; s/�y/D 0:

Here ai and bi are analytic functions in s, and at the origin .0; 0/we have ords aiD0 and
ords bi > 0; additionally, ci.x; s/ is analytic in x and s, and ordx ci > 1. The i th com-
ponent C s

i of the deformed curve at time s is given by ai.s/xCbi.s/Cci.x; s/�yD 0.
Because the branches C s

1
and C s

2
pass through 0 for all s, we have b1 � b2 � 0. At

s D 0 all components pass through the origin, so bi.0/D 0 for all i .

Let r Dmini.ords bi/, where the order is always taken at the origin. Because bi.0/D 0

for all i , we have r > 0, and r D ords bi0
for some 3 � i0 � m. Notice also that

r <C1, since otherwise all the components C s
i would pass through 0 for all s ¤ 0.

We write bi.s/D sr xbi.s/; then xbi0
.0/¤ 0.

Now make a change of variables for s ¤ 0,

x D sr x0 and y D sr y0:
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Since ordx ci.x; s/� 2, we have ci.x; s/D s2rxci.x
0; s/ for some analytic function xci .

Thus, the equation for the deformation becomes
mY

iD0

�
ai.s/s

r x0C sr xbi.s/C s2r
xci.x

0; s/� sr y0
�
D 0:

Equivalently, for s ¤ 0 and i D 1; : : : ;m, the deformed components C s
i are given by

the equations
ai.s/x

0
C xbi.s/C sr

xci.x
0; s/�y0 D 0:

When we pass to the limit as s! 0, the equations become

ai.0/x
0
C xbi.0/�y0 D 0;

so in the limit we obtain an arrangement of straight lines in C2. Not all of these lines
are concurrent, since xbi0

.0/¤ 0 while xb1.0/D xb2.0/D 0.

The curves C s
i satisfy the same incidence relations for all s¤0. Since intersection points

between curves vary continuously with s, the incidence relations must be preserved in
the limit, so (7-1) holds.

Our examples of unexpected Stein fillings are given by pseudoline arrangements with
the following special property.

Definition 7.6 Let ƒD f�1; : : : �mg �R2 be a symplectic line arrangement where
not all lines are concurrent. We say that ƒ is unexpected if the only complex line
arrangements that satisfy all the incidence relations of ƒ are pencils of lines. Namely,
whenever a complex line arrangement AD fL1;L2; : : : ;Lmg �C2 has the property

�i1
\�i2

\ � � � \�ik
¤∅ D) Li1

\Li2
\ � � � \Lik

¤∅;

all the lines L1;L2; : : : ;Lm of A must be concurrent.

If an unexpected symplectic line arrangement comes from a pseudoline arrangement,
we will say that the pseudoline arrangement is unexpected.

Remark 7.7 It is important to note that unexpected symplectic line arrangements
are not the same as symplectic line arrangements not realizable by complex lines.
Being an unexpected arrangement is a stronger condition: we want to rule out not only
complex line arrangements with the same incidence relations as those of ƒ, but also
complex line arrangements that satisfy all the incidence relations of ƒ and possibly
additional incidence relations (without being a pencil). For instance, the pseudo-Pappus
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arrangement (Example 8.1 in the next section) is not realizable by complex lines but
it is not unexpected, because the classical Pappus arrangement has all of the same
incidences and an additional one.

Theorem 7.8 Suppose that � D f�1; : : : ; �mg is an arrangement of smooth graphical
disks with marked points fpj g, related by a smooth graphical homotopy to a decorated
germ .C; w/. Let .Y; �/ be the link of the surface singularity that corresponds to .C; w/.
Suppose that a subcollection of disks f�1; �2; : : : ; �r g of � forms an unexpected
symplectic line arrangement.

Then the Stein filling W given by .�; fpj g/ is not strongly diffeomorphic to any Milnor
filling of .Y; �/. If the weights on C are large enough , W is simply connected.

By Proposition 7.4, unexpected line arrangements yield unexpected fillings of Seifert
fibered spaces of the form Y .m; w/.

Corollary 7.9 Let � D f�1; : : : ; �mg be an unexpected symplectic line arrangement ,
and for k D 1; : : : ;m, let w.�k/ denote the number of intersection points of �k with
the disks �i , i ¤ k. Then for every weight w D .w1; w2; : : : ; wm/ with wk � w.�k/

for k D 1; : : : ;m, the Seifert fibered space .Y .m; w/; �/ has a Stein filling not strongly
diffeomorphic to any Milnor filling. This Stein filling is given by a Lefschetz fibration
constructed from the arrangement � with the appropriate choice of marked points. When
strict inequalities wk > w.�k/ hold for all k, we get a simply connected unexpected
Stein filling.

Proof of Theorem 7.8 Observe that when the number of intersection points on each
�i is smaller than the weight of the corresponding branch of the decorated germ, each
�i has a free marked point. Then the Lefschetz fibration constructed from .�; fpj g/

has a boundary-parallel vanishing cycle around every hole in the disk fiber, so that
the corresponding thimbles kill all generators of �1.fiber/, and therefore, in this case
�1.W /D 0.

Let WM be a Milnor filling that arises from a smoothing of some surface singularity
with the link Y. By Theorem 1.3, WM corresponds to a picture deformation C0s of a
decorated germ C0 D

Sm
iD1 C 0i with weight w, topologically equivalent to .C; w/.

Although the germs C and C0 may differ analytically, they are topologically equivalent
and thus have isotopic boundary braids. Therefore by Lemma 3.4 the open book
decomposition naturally induced by the Lefschetz fibration in Lemma 3.2 for W agrees
with that for WM , so comparing them via strong diffeomorphism makes sense.
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By Proposition 6.8, if W is strongly diffeomorphic to WM , the incidence matrix of
the deformed curvetta arrangement fC 0s

1
; : : : ;C 0smg, s ¤ 0, with its marked points must

be the same as the incidence matrix for the arrangement .�; fpj g/, up to permutation
of columns. In particular, we see that the subarrangement f�1; : : : ; �r g of symplectic
lines satisfies the same incidence relations as the subarrangement fC 0s

1
; : : : ;C 0sr g of the

deformed curvettas of C0. By assumption, in each of these arrangements not all curvettas
are concurrent. Because pairs of curves �1; : : : ; �r intersect algebraically positively
once, C 0

1
; : : : ;C 0r have distinct tangent lines. Now by Lemma 7.5, there exists a complex

line arrangement A that satisfies all the incidence relations of fC 0s
1
; : : : ;C 0sr g, and thus

all the incidence relations of � . This is a contradiction because � is an unexpected
arrangement.

7.3 Constructing unexpected pseudoline arrangements

We now give examples of unexpected pseudoline arrangements; these will yield concrete
examples of unexpected Stein fillings. We start with classical projective geometry
constructions.

Example 7.10 Recall that the classical Pappus arrangement in R2 is constructed as
follows. Take two lines, `1 and `2, and mark three distinct points a; b; c on L1 and
three distinct points A;B;C on `2, avoiding the intersection `1 \ `2. Consider the
following lines through pairs of marked points:

`3 D aB; `4 D aC; `5 D bA; `6 D bC; `7 D cA; `8 D cB:

The Pappus theorem asserts that the three intersection points `3 \ `5, `4 \ `7, and
`6\ `8 are collinear; the classical Pappus arrangement consists of the lines `1; : : : ; `8,
together with the line through these three points. We modify this last line to make an
unexpected pseudoline arrangement, as follows. Let `9 be a line through C , distinct
from `4 and `6. Consider the intersection point `8 \ `9 and let `10 be a pseudoline
passing through points `3 \ `5, `4 \ `7 and `8 \ `9, as shown in Figure 15. Let
P D f`1; `2; : : : ; `10g.

Notice that in this case, it is clear that the pseudoline `10 can be homotoped to the
classical Pappus line through the points `3 \ `5, `4 \ `7 and `6 \ `8. The resulting
arrangement of straight lines in R2 can be homotoped to a pencil by linear homotopy.
(We already know from discussion in Example 7.3 that P is homotopic to the pencil,
but here we have a very simple explicit homotopy.)
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`1

`2

`4 `3
`6 `5

`8 `7
`9

`10

a
b

c

A
B

C

Figure 15: The pseudoline arrangement P D f`1; `2; : : : ; `10g is given by
the black lines, the blue line, and the red line in the figure. The dotted line
in the middle is not included. The dotted line and the eight black lines give
the classical Pappus arrangement. The intersection points `1 \ `2, `3 \ `6,
`3\ `9, `5\ `8 and `5\ `9 are not shown in the figure.

Proposition 7.11 The arrangement P is unexpected.

Proof As already stated, the classical Pappus theorem asserts that for the given arrange-
ment, the intersection points `3\ `5, `4\ `7, and `6\ `8 are collinear. Collinearity
holds both in the real and in the complex projective geometry settings, so that if
L1;L2; : : : ;L7;L8 � C2 are complex lines with given incidences, then L3 \L5,
L4 \ L7, and L6 \ L8 are collinear. From this, we can immediately see that the
arrangement P is not realizable by complex lines fL1;L2; : : : ;L10g: since L6\L8

and L8 \L9 are distinct points on L8, the points L3 \L5, L4 \L7 and L8 \L9

cannot be collinear.

To show that P is unexpected, we need to prove that no complex line arrangement satis-
fies all the incidence relations of P even if some (but not all) of the intersection points
coincide. Indeed, we show that if a complex line arrangement AD fL1;L2; : : : ;L10g

satisfies the incidence relations of P and two of the intersection points coincide, then A
must be a pencil. Remember that we always assume that all the lines in the arrangement
are distinct.

The following trivial fact, applied systematically, greatly simplifies the analysis of cases:

Geometry & Topology, Volume 27 (2023)



Unexpected Stein fillings and plane curve arrangements 1165

Observation 7.12 Let L1;L2;L3;L4 be four lines in C2, which are not necessarily
distinct. Suppose that two of the pairwise intersection points coincide: L1 \L2 D

L3\L4. Then L1, L2, L3 and L4 are concurrent , so that they all intersect at the point
L1\L2 DL1\L3 DL1\L4 DL2\L3 DL2\L4 DL3\L4.

In the case of three lines , if L1\L2DL3\L1, then L2\L3DL1\L2DL3\L1.
Visually , if two vertices of a triangle coincide , the third vertex of the triangle coincides
with the first two.

Assuming that some of the intersection points in Figure 15 coincide, we mark these
points by “O”, and then use Observation 7.12 to chase vertices that coincide: starting
with two marked vertices, we look for additional vertices that coincide with the first
two, further mark these by “O”, and continue. When every line contains a marked
intersection point, we know that all lines in the arrangement are concurrent: they form
a pencil though O.

We begin this process. First, assume that the intersection points L3 \ L5 \ L10

and L4 \L7 \L10 are distinct. By the Pappus theorem, the complex line arrange-
ment A D fL1;L2; : : : ;L10g can satisfy all the incidence relations of P only if
L6\L8DL8\L9\L10. Setting ODL6\L8DL8\L9\L10, by Observation 7.12
we have O D C D L4 \ L6 \ L9 \ L2, then O D B D L8 \ L2 \ L3, then
O D a D L3 \L4 \L1, then O D b D L5 \L6 \L1 and O D c D L7 \L8 \L1.
Now, O appears on every line at least once, so the arrangement degenerates to a pencil.

(This can be seen quickly if in the above diagram, you highlight the lines passing
through intersection points marked by O, in order. You can mark a new intersection
by O if it contains at least two highlighted lines, and then highlight all the lines through
that point O. When all the lines are highlighted, you have a pencil.)

For the second case, assume that the intersection points L3\L5\L10 and L4\L7\L10

coincide. Set ODL3\L5\L10DL4\L7\L10. Then ODaDL3\L4\L1 and OD
ADL5\L7\L2. Then ODcDL7\L8\L1 and ODC DL4\L6\L2\L9. Again,
every line contains a point marked O, so the arrangement degenerates to a pencil.

Corollary 7.13 Let Y D Y .10Iw/ be a Seifert fibered space given by a star-shaped
plumbing graph with 10 legs , as in Figure 16, such that eight of the legs of the graph
have at least 5 vertices each , including the central vertex, and two remaining legs have
at least 4 vertices each. (Equivalently , two components of w are 5 or greater , and the
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w1 � 6

w2 � 5

w3 � 6

w4 � 5

w5 � 6

w6 � 6

w7 � 6

w8 � 6

w9 � 6

w10 � 6

�11

Figure 16: Left, a pencil of 10 lines decorated with weights. Right, the
plumbing graph for Y: the central vertex has self-intersection �11, all the
rest have self-intersection �2. Eight of the legs have at least 5 vertices each
(including the central vertex), and two remaining legs have at least 4 vertices
each.

rest are 6 or greater.) Observe that Y is the link of a rational singularity, and let � be
the Milnor fillable contact structure on Y. Then .Y; �/ admits a Stein filling which is
not strongly diffeomorphic to any Milnor filling.

Proof We count the intersection points on each line in the arrangement P: w.`2/D

w.`4/D5, w.`k/D6 for k¤2; 4. Then for any collection of integersw1; w2; : : : ; w10

such that w2 � 5, w4 � 5 and wk � 6 for k ¤ 2; 4, we can mark the lines of the
arrangement P as required in Corollary 7.9. The corresponding singularity has the dual
resolution graph as shown in Figure 16, with one leg of length wk �1 for each line Lk

in the arrangement, so the link is the Seifert fibered space Y .10; w/. The result now
follows from Corollary 7.9 and Proposition 7.11.

A different example comes from a version of the Desargues theorem; we use complete
quadrangles and harmonic conjugates. The example in Figure 17 was pointed out to us
by Stepan Orevkov. He suggested an approach to proving that this arrangement cannot
appear as an algebraic deformation of a pencil. We are grateful for his input, which
inspired us to define unexpected line arrangements and prove Lemma 7.5.

Example 7.14 In the standard R2 � RP2, we take four vertical lines `1; `2; `3; `4,
three horizontal lines `5; `6; `7, the two parallel diagonal lines `8; `9, and a “bent”
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V

H

P

`1 `2 `3 `4

`0

`6

`5

`7

`8

`9

`10

a

b

c

a0

Figure 17: An arrangement of real pseudolines. The intersection of `0 and
`10 is not shown.

pseudoline `10, as shown in Figure 17. Let `0 be the line at infinity. Note that because
`1; `2; `3; `4 are all parallel in R2, they intersect at a point V on `0. Similarly, the
lines `5; `6; `7 have a common intersection with `0 at a point H , and the lines `8 and
`9 intersect on `0 at a point P. Removing from RP2 a line which is different from all
the `i and intersects them generically, we can consider QD f`ig

10
iD0

as a pseudoline
arrangement in R2. (See Figure 18 for a version where `0 is no longer the line at infinity.)

Proposition 7.15 The pseudoline arrangement Q is unexpected.

Proof Suppose that a complex line arrangement ADL0;L1; : : : ;L10 satisfies all the
incidence relations of Q. This means that for all intersections between the pseudolines in
Figure 17, the corresponding lines of A intersect. We claim that unless A is a pencil, all
of these intersection points must be distinct — that is, no two distinct intersection points
in Figure 17 can coincide for the arrangement A. To see this, we use Observation 7.12
repeatedly, as in Proposition 7.11. Recall that V D L1 \L2 \L3 \L4 \L0 and
H DL5\L6\L7\L0.

If H D V D O, then we have Li \Lj D O for all 1� i � 4 and 5� j � 7, so A is a
pencil.
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If one of the intersection points Li \Lj with 1� i � 4 and 5� j � 7 coincides with
V or H , then we have two intersection points marked with O on a vertical or horizontal
line in Figure 17; then OD V DH , and all lines are concurrent.

If any two intersection points Li \ Lj with 1 � i � 4 and 5 � j � 7 coincide,
Observation 7.12 implies that they will both coincide with at least one of V or H , so
we revert to the previous case.

Finally, if all the points V , H and Li\Lj with 1� i � 4 and 5� j � 7 are distinct, all
remaining intersection points which do not coincide with one of these are necessarily
generic double points (otherwise we would have a pair of lines intersecting more than
once).

Once we know that all the distinct intersections for Q are distinct for A, it remains to
show that Q cannot be realized as a complex line arrangement AD fLig

10
iD0

. Suppose
that it is, for the sake of contradiction.

We will show that the intersection points

aDL2\L5; b DL3\L6 and c DL4\L7

are collinear. (See Figure 18.) Then we can conclude that the points a0 D L1 \L5,
b and c cannot be collinear. Indeed, a¤ a0, since all intersection points in the diagram
are distinct. If all four points a, a0, b and c were collinear, then the line L5 through a

and a0 would coincide with the line L10 through a0, b and c, but we assume that L5

and L10 are distinct.

To see that the points a, b and c are collinear, we will use some notions of classical
projective geometry, namely complete quadrangles and harmonic conjugates. (In
Remark 7.16 below, we also indicate an alternative proof, in the more familiar Euclidean
terms.) Observe that the lines L5, L6, L2, L3, L8 and the line L through a and b

form the four sides and the two diagonals of a complete quadrangle. Then the point
QDL\L0 is the harmonic conjugate of the point P DL8\L0 with respect to the
points V DL2\L3 and H DL5\L6. Now, consider the lines L2, L4, L5, L7, L9

and the line L0 through a and c. Again these form a complete quadrangle, so that the
point Q0 DL0\L0 is the harmonic conjugate of the point P DL9\L0 with respect
to V DL2\L4 and H DL5\L7. Since the harmonic conjugate of P with respect
to V and H is unique, it follows that Q D Q0. Since the lines L and L0 both pass
through QDQ0 and a, we must have LDL0, and so all three points a, b and c lie on
this line.
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QDQ0

L0

VLDL0L10

L5

L6

a0 a

b

c

L7

L8 L1
L9 L2

L3 L4

H

P

Figure 18: An arrangement of lines L0;L1; : : : ;L9 and pseudoline L10 with
incidences as in Figure 17. We show that the line L through a and b and the
line L0 through a and c coincide (with the dotted line shown), so the points a,
b and c are collinear. Therefore a0, b and c cannot be collinear.

Remark 7.16 The above statement also has an easy Euclidean geometry proof, after
some projective transformations. Indeed, we can find an automorphism of CP2 such that

L1\L5 7! .0 W 0 W 1/; L1\L6 7! .1 W 0 W 1/;

L2\L5 7! .0 W 1 W 1/; L2\L6 7! .1 W 1 W 1/:

Then H 7! .1 W 0 W 0/ and V 7! .0 W 1 W 0/, and it is not hard to see that all the lines in
the figure must be complexifications of real lines. The line L0 is the line at infinity;
the remaining lines are (complexifications of) the corresponding real lines in R2. We
use the same notation for the real lines. Now we see that L1;L2;L3;L4 are parallel
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vertical lines, L5;L6;L7 are parallel horizontal lines, etc. So the arrangement looks
like Figure 17. The lines in the figure form a number of triangles that are similar to the
shaded triangle; it then follows that the points a; b; c are collinear, so a0; b; c are not.

Note, however, that the above proof is somewhat incomplete: Figure 17 assumes a
particular position of the lines L3;L4;L7 relative to L1;L2;L5;L6. For a complete
proof, an additional analysis of cases is required, with slightly different figures for
other possible relative positions of the lines. Our projective argument with harmonic
conjugates allows us to avoid this analysis, and also to emphasize the projective nature
of the statement and the proof.

Corollary 7.17 Let Y D Y .11Iw/ be the Seifert fibered space given by a star-shaped
plumbing graph with 11 legs such that two legs have at least 5 vertices each , two legs
have at least 3 vertices , and the remaining 7 legs have at least 4 vertices each (including
the central vertex). In other words , two components of the multiweight w are 4 or
greater , two are 6 or greater , and the remaining seven are 5 or greater. Let � be the
Milnor fillable contact structure on Y. Then .Y; �/ admits a Stein filling which is not
strongly diffeomorphic to any Milnor filling.

Proof Exactly as in Corollary 7.13, this follows from Corollary 7.9 and Proposition
7.15. The picture is similar to Figure 16, with the obvious minor changes. Indeed, the
pseudoline arrangement of Proposition 7.15 has two lines `0 and `3 with weight 4, two
lines `9 and `10 with weight 6, and seven remaining lines with weight 5. Note that
a permutation of the components of w does not change the contact manifold, so we
avoided labeling the components of w in the statement of the corollary.

It is easy to generalize the above examples to star-shaped graphs with higher negative
self-intersection values of the central vertex. Indeed, by Theorem 7.8, we can construct
unexpected Stein fillings from an arbitrary arrangement of smooth graphical disks that
contains an unexpected symplectic line arrangement. We turn to the general case later
in this section; for now, we create more unexpected pseudoline arrangements simply
by adding extra lines.

Lemma 7.18 Suppose that ƒ is an unexpected symplectic line arrangement. Let ` be
a symplectic line that passes through at least one intersection point of two or more lines
in ƒ. Then the pseudoline arrangement ƒ[f`g is also unexpected.
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Proof If there exists a complex line arrangement A[fLg that satisfies all the incidence
relations of ƒ[f`g, and L corresponds to `, then A satisfies all incidences of ƒ, and
so A is a pencil. The line L must pass through the intersection of two or more lines
of A, so A[fLg is also a pencil.

Theorem 7.19 For any m� 10, consider the Seifert fibered space YmD Y .m; w/ with
m � 10, with weights w D .w1; : : : ; wm/ such that wi � m� 1 for all i D 1; : : : ;m.
The space Ym is given by a star-shaped graph with m� 10 legs , such that the length of
each leg is at least m� 1. The central vertex has self-intersection �m� 1, and all other
vertices have self-intersection �2. Let � be the Milnor fillable contact structure on Y.
Then .Y; �/ admits a simply connected Stein filling not strongly diffeomorphic to any
Milnor fiber.

Proof We can add lines to the arrangement P to form unexpected arrangements of
m � 10 pseudolines. Since any pseudolines intersect at most once, each pseudoline
has at most m� 1 intersections with other lines. By Corollary 7.9, Y D Y .n; w/ is an
unexpected Stein filling if wi �m� 1 for all i D 1; : : : ;m, which is simply connected
if all inequalities are strict.

Varying the positions of the additional lines and/or applying a similar procedure to
different arrangements such as P and Q, it is possible to construct a variety of pairwise
nonhomeomorphic Stein fillings of the same link, so that none of the Stein fillings
is strongly diffeomorphic to a Milnor filling. We give one such construction below
to prove the first part of Theorem 1.1. The second part of Theorem 1.1 follows from
the discussion at the end of this section, where we extend star-shaped graphs that
correspond to unexpected arrangements to a much wider collection of graphs of rational
singularities with reduced fundamental cycle.

Theorem 7.20 For every N > 0 there exists a rational singularity with reduced
fundamental cycle whose link .Y; �/ admits at least N pairwise nonhomeomorphic
simply connected Stein fillings , none of which is strongly diffeomorphic to any Milnor
fiber. The link Y is given by a Seifert fibered space Y DY .2N C5; w/ with sufficiently
large weights w.

Proof We will start with the arrangement Q of Figure 17 and augment it to other unex-
pected arrangements, using Lemma 7.18. First, we add more “vertical” and “horizontal”
lines to the arrangement, so that it has N vertical and N horizontal lines, creating a
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V

H

P

V

H

P

�0 �3

Figure 19: Pseudoline arrangements and fillings with different topology.

grid as shown in Figure 19. (We assume N � 4 as the N D 4 case fulfills the statement
for lower values of N.) All “vertical” lines intersect at the point V, all horizontal lines
intersect at the point H . The two diagonal lines `8 and `9 intersecting at P, the bent
pseudoline `10, and the line at infinity `0 are present as in the arrangement Q. Let
Q0 denote this arrangement. We will now produce N C 1 unexpected arrangements
Q0

k
D Q0 [ �k for k D 0; 1; : : : ;N, by adding to Q0 different additional “diagonal”

pseudolines �0; �1; : : : ; �N passing through P ; see Figure 19. Each arrangement Q0
k

consists of 2N C 5 pseudolines. The pseudoline �0 is taken to be the main diagonal of
the grid formed by the vertical and horizontal lines; it is a straight line in RP2 passing
through the point P. The pseudoline �1 differs from �0 in a small neighborhood
of a single grid intersection: while �0 passes through the chosen intersection point
of a vertical and a horizontal line, �1 intersects these two lines at distinct points.
Similarly, �k differs from �0 in neighborhoods of k grid intersections and meets the
corresponding vertical and horizontal lines at distinct points. Figure 19 shows the
arrangements Q0

0
DQ0[�0 and Q0

3
DQ0[�3.

Now, consider the decorated germ given by a pencil of 2N C 5 lines, each with a
weight greater than 2N C 4. We choose the weights to be greater than the number
of intersection points on each line in any of the arrangements Q0

k
; obviously, taking

weights greater than 2N C4 suffices because each line intersects the other 2N C4 lines
once (in fact, w � 2N C 2 suffices for this arrangement). Let .YN ; �/ be the contact
link of the corresponding singularity. Similarly to the previous examples, YN is the
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Seifert fibered space given by a star-shaped plumbing graph with 2N C 5 sufficiently
long legs, with the central vertex having the self-intersection �2N �6 and all the other
vertices self-intersection �2. By Corollary 7.9, each arrangement Q0

k
yields a Stein

filling Wk of .YN ; �/ which is not strongly diffeomorphic to any Milnor filling.

Finally, we argue that all fillings W0;W1; : : : ;WN have different Euler characteristic.
Each Wk has the structure of a Lefschetz fibration with the same planar fiber (a disk
with 2N C 5 holes), but these Lefschetz fibrations have different numbers of vanishing
cycles. Every time we replace a triple intersection of pseudolines in the arrangement
by three double points (and arrange the marked points on the lines accordingly), the
number of vanishing cycles decreases by 1. Indeed, three double points correspond
to three vanishing cycles in the Lefschetz fibration (each enclosing two holes), while
a triple intersection together with an additional free marked point on each of three
lines corresponds to four vanishing cycles (one vanishing cycle enclosing three holes,
the remaining three enclosing a single hole each). Thus, replacing a triple point
by three double points corresponds to a lantern relation monodromy substitution,
which in turn corresponds to a rational blow-down of a .�4/ sphere. Therefore,
�.W0/ > �.W1/ > � � �> �.WN /, as required.

7.4 Generalizations

All our previous examples were given by singularities with star-shaped graphs where
most vertices have self-intersection �2. It is not hard to obtain examples with much
more general graphs, using the full power of Theorem 7.8: we add more smooth disks
to an unexpected symplectic line arrangement.

Example 7.21 In the arrangement Q of Figure 17, replace the line `3 by several
pseudolines that all pass through the same four intersection points. Note that because of
multiple intersections, the result is no longer a pseudoline arrangement, but we still have
a braided wiring diagram and can apply Proposition 5.5 to extend it to an arrangement
of symplectic disks. In Figure 20, we take three curves replacing `3. In the decorated
germ, the complex line corresponding to `3 will be replaced by 3 curvettas that are
tangent to order 4 (and transverse to the other 10 branches of the germ). By (2-2),
the weight of each new curvetta must be 5 or greater. We take the weights to be
exactly 5 for the three new curvettas. Consider the symplectic curve arrangement given
by the extension of the diagram in Figure 20, with marked points at all intersections
and one additional free marked point on each of the three new curves (to account
for higher weights). The resolution graph for Q is star-shaped with 11 legs. The
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�12

�4

�12

�4

Figure 20: The pseudoline arrangement Q of Figure 17 is modified: the
pseudoline `3 is replaced by three smooth curves with 4 intersections, as
shown. There are 3 free marked points, one on each of the new curves;
the rest of the marked points are the intersections in the diagram. The
germ of the corresponding singularity has three curvettas tangent to order 4,
each of weight 5, replacing one of the lines. The resolution graph of the
corresponding singularity is shown in the middle of the figure. If the weights
of the three tangent curvettas are taken to be higher, the graph will have
additional branching as shown on the right. All unlabeled vertices have self-
intersection �2.

self-intersection of the central vertex is �12 and all other self-intersections are �2.
The legs of the resolution graph for Q with minimal weights had two legs of length 3,
two of length 5, and seven of length 4. For this revised arrangement, the corresponding
singularity has an augmented graph. Specifically, one of the legs of length 3 (which
corresponded to `3) gains an additional vertex of self-intersection �4. If the three
tangent curvettas have higher weights, so they have additional free marked points in the
deformed arrangement, the �4 vertex becomes a branching point with 3 additional legs
(each vertex on these legs has self-intersection �2). See Figure 20. By Theorem 7.8,
the links of the corresponding singularities have unexpected Stein fillings.

In general, if we replace `3 with k curves commonly intersecting at the four points
where `3 intersected other pseudolines as above, the additional vertex will have self-
intersection�k�1 and increased weights will yield k additional legs with .�2/ vertices.

Further, we can replace each of the k pseudolines by a bundle of curves that go through
the same intersections.
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�12
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�3

�3
�3`5

`6

`7

Figure 21: In the pseudoline arrangement Q of Figure 17, we replace `3 with a
bundle of curves passing through the existing intersections of `3 with `5, `6, `7

and `0. (Only part of the arrangement is shown.) The additional curves create
no extra intersections with the pseudolines of Q. All the intersection points are
marked, and there are additional free marked points that correspond to higher
weights. In the resolution graph of the singularity, the leg corresponding to `3 is
replaced by a tree with additional branching, as shown. All unlabeled vertices
have self-intersection �2.

Example 7.22 Figure 21 shows a possible bundle replacing `3, instead of the bundle
of three curves in the previous arrangement of Figure 20. All the new curves run
C 1–close to and are isotopic to the original pseudoline, and they pass through the
same intersection points with the other pseudolines. Within each bundle, the curves
may have additional intersections, which lead to higher-order tangencies between the
corresponding curvettas in the decorated germ. In particular, for the arrangement in
Figure 21, the bundle of curves replacing `3 will have three subbundles of curves
intersecting each other 4 times, and intersecting each of the other pseudolines once.
One of these subbundles has four curves which intersect each other a total of 5 times,
another has two curves which intersect a total of 7 times, and the third has two curves
intersecting each other a total of 6 times, with an additional curve intersecting these
two 5 times.

The corresponding decorated germ (with the weights given by the number of intersection
points in the disk arrangement) encodes the singularity whose graph has more branching
and some vertices with higher negative self-intersections, as shown in Figure 21. If we
vary the incidence pattern of the additional curves (subject to the weight restrictions),
we can obtain a number of unexpected Stein fillings with different topology.
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Example 7.22 demonstrates how, once we have an unexpected symplectic line ar-
rangement � D f�ig, the star-shaped graph G of the corresponding singularity can
be extended to arbitrarily complicated graphs of rational singularities with reduced
fundamental cycle. The following proposition explains how to form these bundles in
general from a given extension of the graph, completing the proof of Theorem 1.1. It
is not hard to see that under the hypotheses of the proposition, the extended graph H

corresponds to a singularity with reduced fundamental cycle.

Proposition 7.23 Let G be the star-shaped resolution graph corresponding to the
surface singularity associated to an unexpected symplectic line arrangement with
minimal possible weights. Let I be the set of leaves of G, and let fGigi2I be a
collection of (possibly empty) negative definite rooted trees; assume that G and Gi

have no .�1/ vertices.

Consider a graph H constructed by attaching to G the rooted trees Gi , i 2 I , so that
the root of Gi is connected to the leaf ui by a single edge. Assume that the resulting
graph H satisfies condition (2-1). Let .Y; �/ be the link of a rational surface singularity
with reduced fundamental cycle whose dual resolution graph is H .

Then .Y; �/ admits a Stein filling which is not strongly diffeomorphic to any Milnor
filling.

Remark 7.24 Proposition 7.23 provides a fairly general class of rational surface
singularities with reduced fundamental cycle which admit unexpected fillings. The
construction can be further generalized to include variations in the bundling structure
and to apply to more general graphs G as the input. Despite all variations, getting
rid of the .�2/ vertices in the resolution graph seems difficult. Indeed, we could
add a curve intersecting `3 only twice in Example 7.22, which would lower the self-
intersection to .�3/ for one of the vertices on the leg of the star-shaped graph G.
However, such a curve would intersect the other pseudolines in the arrangement Q at
new points. This would increase the weights on the curvettas corresponding to these
other pseudolines, producing free marked points and yielding additional .�2/ vertices
elsewhere in the graph. In fact, we already know from Theorem 1.2 that our strategy
must have limitations, as there are no unexpected fillings when each vertex of the
resolution graph has self-intersection �5 or lower.

Proof of Proposition 7.23 The initial unexpected symplectic line arrangement fLig

consists of symplectic lines associated to the legs of the star-shaped graph G. As above,
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let ui denote the valency 1 vertex of the leg that corresponds to Li . Choose a braided
wiring diagram for the symplectic line arrangement such that a symplectic line Li

corresponds to the wire i . The braided wiring diagram should be chosen so that i

contains all the marked points of Li (including free points). We will replace each wire i

with a bundle of curves (with intersections but no braiding between the components of
the bundle) constructed according to the tree Gi , as follows.

All curves in the i th bundle must intersect at all marked points on i . We will specify
the additional intersections and explain how to determine the number of curves and
free marked points in the bundle. The bundle will be described recursively, via its
subbundles and iterative (sub/k–bundles, which we determine by moving through the
graph Gi . We start at the root and move upward in the graph Gi with respect to the
partial order induced by the root, stopping when we either reach either a vertex v0 of
self-intersection number �s0 for s0 � 3, or exhaust the graph Gi .

By condition (2-1), .�2/ vertices can only occur in a linear chain. Thus, if we never
reach a vertex with self-intersection �s0 for s0 � 3, then all vertices of Gi have self-
intersection �2 (and Gi is a linear chain). Suppose there are r0 � 0 such .�2/ vertices.
In that case, the bundle for Gi should consist of only a single curve, but with r0 � 0

additional free points. (The weights of the decorated germ increase accordingly.)

If there exists a vertex v0 of self-intersection �s0 for s0 � 3 after passing through a
linear chain of r0 vertices of self-intersection �2, then the bundle will consist of exactly
s0 � 1 nonempty subbundles. The subbundles will be described as we travel further
along Gi . We require that all curves in the bundle intersect exactly r0 additional times
(where each of these r0 intersection points gets marked) and increase the weight of
each curve by r0C 1, yielding one additional free marked point on each curve. Two
curves in different subbundles will not intersect at any additional points beyond those
specified so far.

Note that v0 can have at most s0� 1 vertices directly above it in Gi , since its valency
is at most s0. In particular, Gi itself is built by attaching s0 � 1 (potentially empty)
trees onto the subgraph fv � v0g � Gi . We associate the s0 � 1 subbundles to these
s0 � 1 rooted trees G1

1
; : : : ;G1

s0�1
, which may be empty or nonempty. (The partial

order on G induced by its root induces a partial order and root on each G1
j .)

Now we will create subbundles and their subsubbundles by iteratively repeating a slight
modification of the process above. For each tree G1

j , we construct a subbundle as
follows. Starting at the root of G1

j , we again have a linear chain of r1 � 0 vertices
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with self-intersection �2, which either exhausts the graph G1
j or ends in a vertex v1

of self-intersection number �s1 for s1 � 3. (Note that r1 and s1 depend on j , but we
drop this index to avoid further notational clutter.) If we are in the first case, where
there is no such vertex v1, the subbundle associated to G1

j will consist of a single curve
with r1 additional free marked points. If we are in the second case, where the chain of
length r1 of .�2/ vertices ends at a vertex v1 with self-intersection �s1 with s1 � 3,
the subbundle itself will be a union of s1� 1 nonempty subsubbundles, intersecting at
r1C 1 additional points. (Accordingly, the weights increase by r1C 1, but no new free
marked points are added.) Two curves in different subsubbundles will not intersect at
any additional points beyond those previously specified.

The s1�1 subsubbundles correspond to the s1�1 potentially empty trees G2
1
; : : : ;G2

s1�1

attached above v1. We determine these subsubbundles by iteratively repeating this
process, where G2

l
takes the role of G1

j and the subsubbundle takes the role of the
subbundle. The (sub/k–bundles will generally have (sub/kC1–bundles, leading to
additional iterations of the procedure. The situation where a (sub/k–bundle does not
have a (sub/kC1–bundle is when the (sub/k–bundle consists of a single component
(as in the first case of the procedure). Since the graph is finite, there will be a finite
number of iterations, so this process will eventually describe the bundle completely.

Having constructed such bundles individually for each Gi , we now superimpose them
onto the wires i as satellites to get a new braided wiring diagram by inserting them
into a small neighborhood of i so that each wire of the bundle is C 1–close to the
original wire i . Recall that all intersection points between wires are marked in the
original diagram, and all curves from the i th–bundle are required to intersect at all
marked points. It follows that curves from the different bundles are allowed to intersect
only at the marked points of the original diagram.

We can apply Proposition 5.5 to extend the new braided wiring diagram to an arrange-
ment � of symplectic disks. We claim that via Lemma 3.2, the resulting arrangement �
provides a Stein filling for the link of the singularity with the resolution graph H . To
check the claim, we need to show that the open book decomposition on the boundary
of the Lefschetz fibration constructed from � supports the canonical contact structure
for the link associated to H . Recall that H is associated to a decorated germ CH

with smooth branches, by attaching .�1/ vertices and curvettas and blowing down.
We will show that � is related by a smooth graphical homotopy to another decorated
germ C, which is topologically equivalent to CH. The topological type of C will be
determined by the intersections and marked points in �: the order of tangency between
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two components in C is equal to the number of intersections between the corresponding
components of � . The weight on each curve is the total number of marked points on
the corresponding disk of � , including intersections and free marked points. After
showing that � and C are related by a smooth graphical homotopy, we will verify that
C and CH are topologically equivalent (with corresponding weights), to conclude that
the open book decompositions are equivalent.

To relate � and C, we first construct a smooth graphical homotopy from � to a “pencil
of the bundles”. In the pencil of the bundles, all curves will intersect at one point, and
curves from different bundles do not intersect anywhere else, but curves from the same
bundle may intersect at other points along the corresponding line. We can use a smooth
graphical homotopy of the original symplectic line arrangement fLig to a pencil as a
guide to build the required homotopy of � , because each bundle is C 1–close to the
corresponding symplectic line inside the chosen Milnor ball. Essentially, at this step
we treat each bundle as a whole, bringing different bundles together without perturbing
curves inside each bundle. More precisely, we satellite the bundle onto the family of
wiring diagrams corresponding to the smooth graphical homotopy of the symplectic
lines to the pencil. The intersection points within a bundle will remain distinct in this
smooth graphical homotopy. At intermediate times during the homotopy, we allow
many additional intersection points in the arrangement, as curves from different bundles
will intersect outside the common marked intersections.

Next, we show that each bundle can be homotoped so that all the intersections come
together to high-order tangencies. Let � i denote the i th bundle constructed above, and
let Ci denote the curves in the germ C corresponding to those in � i . To show that � i

and Ci are related by a smooth graphical homotopy, it suffices to check that they have
the same boundary braid. To verify this, we observe that the subbundling structure
looks like the nested structure produced by the Scott deformation of Ci as in the proof
of Proposition 4.1. The bundle, as drawn in R2, provides a wiring diagram which is
planar isotopic to the wiring diagram of the Scott deformation, and thus their braid
monodromy is the same. As a consequence, each bundle � i is related by a smooth
graphical homotopy to Ci. Applying these homotopies to all bundles, we see that � is
related to C by a smooth graphical homotopy, and their induced open books agree.

Now, we need to check that C and CH are topologically equivalent. To this end, we
will compare the weights and the pairwise orders of tangency between curvettas in the
two germs. For C, these quantities are computed from the intersections and marked
points in � , while Remark 2.6 shows how to compute them from the graph H .
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First, we make a few observations to relate the curvettas on the graph H to the bundling
construction above. Before the star-shaped graph G is extended, the lines Li correspond
to the legs of the graph. For each i , the i th leg is a chain of .�2/ vertices, with an end
vertex ui . We attach a single .�1/ vertex to ui and put a curvetta on this vertex; this
curvetta gives rise to the line Li . By Remark 2.6, the weight of Li is 1C l.u0;ui/,
where u0 is the root of G. In this case, the root has been chosen to be the center of the
star-shaped graph.

When Gi is nonempty, the symplectic line Li is replaced by a collection of mi curves
(we compute mi below) in the germ associated to H . These new curves come from
curvettas on the additional .�1/ vertices attached to Gi . For each v 2Gi , .v �vCa.v//

additional .�1/ vertices are attached to v, and each .�1/ vertex has a curvetta attached,
thus

mi D�

X
v2Gi

.v � vC a.v//;

as in Proposition 2.4. Note that mi agrees with the number of curves in the bundle �i

constructed above for the graph Gi . This is because the subbundling process terminates
when you reach a (sub/k–bundle which is a single component. This occurs when
the (sub/k–bundle corresponds to a (sub/k–tree consisting of only r � 0 vertices of
self-intersection �2. When r > 0, this means that there is a .�2/ vertex leaf which
contributes one to mi , and when r D 0, this means there is a .�s/ vertex v with fewer
than .s�1/ branches above it, and there are correspondingly �.v �vCa.v//D s�a.v/

such (sub/k–bundles, each consisting of a single curve.

Now, let Cx be one of the curvettas for the graph H , and let zvx be a vertex of G such
that Cx intersects a .�1/ vertex attached to zvx . According to Remark 2.6, the weight
of Cx according to the graph H is 1C l.zvx;u0/, where l.zvx;u0/ counts the number of
vertices in the path from the root u0 of G to the vertex zvx . This path consists of several
parts. From the original graph G, the path contains the l.ui ;u0/ vertices connecting
the root u0 to the vertex ui where Gi is attached. Next, there are vertices from Gi ,
which can be organized into .KC1/ chains as shown in Figure 22. For 0� k �K�1,
the k th chain consists of rk � 0 vertices of self-intersection .�2/, followed by a vertex
of self-intersection �sk < �2. Finally, there may be a last chain of .�2/ vertices, of
length rK � 0, such that zvx is its last vertex. (If zvx � zvx <�2, then rK D 0.) Therefore,

1C l.zvx;u0/D 1C l.ui ;u0/C rK C

K�1X
kD0

.rk C 1/:
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Figure 22: How to compute the weights from the graph G following the
proof of Proposition 7.23.

On the other hand, in the construction of the bundle, the initial weight on each curve
begins at 1C l.ui ;u0/. For each iterative (sub/k–bundle it is included in, the weight
is increased by rk C 1, until we reach a stage K where the (sub/K graph consists of
rK � 0 vertices, all of self-intersection �2. For this Kth stage, the weight is increased
by rK (the increase is associated to free marked points). Therefore, the total weight
on Cx will be

w.Cx/D 1C l.ui ;u0/C rK C

K�1X
kD0

.rk C 1/;

which agrees with 1C l.zvx;u0/, as required.

Next, we compare the orders of tangency between the curves. According to Remark 2.6,
the order of tangency between two components Cx and Cy is �.zvx; zvy Iu0/, the number
of common vertices in the path from zvx to u0 with the path from zvy to u0. By
condition (2-1), the vertex vL where these two paths diverge has self-intersection
�sL for s � 3. See Figure 23. The path from u0 to vL includes the path from u0

to ui in G. This contributes l.ui ;u0/ vertices. The path continues into Gi , with
sequential chains of rk vertices of self-intersection .�2/, each ending in a vertex vk of
self-intersection �sk < �2, for 0� k �L. Therefore,

�.zvx; zvy I v0/D l.ui ;u0/C

LX
kD0

.rk C 1/:

On the other hand, in the bundle construction, the curves Cx and Cy lie in two distinct
(sub/LC1–bundles created for two of the distinct trees lying above vertex vL. No
intersections between Cx and Cy will be created after the Lth stage. At the beginning
of the bundle construction, all curves are required to intersect 1C l.ui ;u0/ times. All
other intersections between Cx and Cy are created in the procedure above at some
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G

w0

�m� 1

wi

r0

�s0
v0

r1

�s1
v1

rL

�1

zvy

vL

�sL

zvx

�1

Figure 23: How to compute the tangencies from the graph G following the
proof of Proposition 7.23.

iteration k, 0� k �L. At the k D 0 stage, we add r0 intersections between Cx and Cy .
At stage k for 1� k �L, we add additional rk C 1 intersections between Cx and Cy .
Therefore the total number of intersections between Cx and Cy is

1C l.u0;ui/C r0C

LX
kD1

.rk C 1/;

which agrees with �.zvx; zvy I vr /.

To complete the proof, observe that the arrangement � contains the original unexpected
symplectic line arrangement as a subarrangement (choose a single component of each
bundle). By Theorem 7.8, we obtain unexpected Stein fillings of the link of the
singularity corresponding to the graph H .

8 Further comments and questions on curvetta homotopies

In the previous section we showed that Stein fillings of the link of a singularity do not
always arise from the Milnor fibers, even for the simple class of rational singularities
with reduced fundamental cycle. Our examples of unexpected Stein fillings come
from curvetta arrangements that do not arise as picture deformations of the decorated
germ representing the singularity, although these arrangements are still related to the
decorated germ through a smooth graphical homotopy. In this section, we make a
detailed comparison of de Jong and van Straten’s picture deformations (Definition 2.7)
with smooth graphical homotopies (Definition 3.1). Observe that the two notions differ
in several essential ways. Indeed, the curvetta branches are required to be algebraic in
the former, and just smooth in the latter; positivity of all intersections and the weight
restrictions must hold at all times during a picture deformation but only at the end of a
graphical homotopy; the topology of the arrangement may change at nonzero times
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smooth graphical homotopy picture deformation

type of curvetta branch C t
j smooth graphical disk disk given by (germ of)

algebraic curve

topology of curvetta
arrangement

may change with time remains the same

weight restrictions: C t
j has

at most wj intersections
only hold for final arrangement,
may be violated during homotopy

hold at all times

positivity of intersection
points: C t

i �C
t
j > 0

only hold for the final arrangement,
may be violated during homotopy

hold at all times

Table 1

during graphical homotopy but not during a picture deformation. This is summarized
in Table 1. We will explore each of these aspects and their role in differentiating Stein
fillings from Milnor fibers. The most important aspect seems to be the topology of the
curvetta arrangement, and whether it is allowed to vary during the homotopy.

8.1 Algebraic versus smooth

The first difference between picture deformations and homotopies is that a smooth
graphical homotopy includes curvettas which need not be complex algebraic curves,
either during the course of the homotopy or at the end of the homotopy. It turns out
that this is not the key aspect contributing to the difference between Milnor fillings
and Stein fillings in our examples. Indeed, adding higher-order terms, one can produce
some surprising curvetta arrangements. Because the curvettas are open algebraic disks,
possibly given by high-degree algebraic equations, curvetta arrangements can be more
general than arrangements of complex lines or global algebraic curves. To illustrate,
we recall the example of the pseudo-Pappus arrangement from [27]; see Figure 24.

p
q r

Figure 24: The pseudo-Pappus arrangement.
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Example 8.1 [23; 27] The classical Pappus arrangement consists of 9 lines; we have
already discussed this arrangement in Example 7.10. By the Pappus theorem, the points
p, q, r in the middle of Figure 24 are collinear. In the pseudo-Pappus arrangement, the
line through these three points is replaced by a bent pseudoline that passes through two
points but not through the third. The pseudo-Pappus arrangement cannot be realized by
complex lines. However, the bent pseudoline can be given by a graph of a high-degree
polynomial whose additional intersections with the other lines occur sufficiently far
outside the ball we restrict to. Thus, the pseudo-Pappus arrangement can be realized by
higher-degree open algebraic curves. In fact, as mentioned in [27], the pseudo-Pappus
arrangement arises as a picture deformation of the pencil of 9 lines, with the weights
of each line given by the number of intersection points on the corresponding line in the
arrangement. The picture deformation can be obtained by adding small higher-order
terms to the linear deformation of the pencil to the classical Pappus arrangement.
Thus, the pseudo-Pappus arrangement gives rise to Milnor fibers of smoothings of the
singularities given by the corresponding decorated pencil of 9 lines.

In fact, all of the fillings produced via arrangements of real pseudolines can be obtained
from an algebraic curvetta arrangement which can be deformed by a polynomial
homotopy (through algebraic curves) to a pencil of lines. (However, this family does
not constitute a picture deformation because the topology may vary at different t ¤ 0,
and the weight constraints may fail at intermediate times.) Note that we only consider
a portion of the algebraic curves in a chosen ball surrounding the origin. In particular,
the algebraic curves may intersect additional times outside of this ball, but we do not
need to count such intersections in the incidence data of our arrangement.

Proposition 8.2 Let ƒD f`1; : : : ; `mg be an arrangement of real pseudolines in R2.
Then there exists a family of complex algebraic curves f� t

1
; : : : ; � t

mg, given by polyno-
mial equations

� t
i D fyDp.x; t/g

and a smoothly embedded closed 4–ball B�C2, such that f� t
1
; : : : ; � t

mg is a symplectic
line arrangement in B (with intersections in the interior of B) for every t 2 Œ0; 1�, where

� B \ .�0
1
[ � � � [�0

m/ has the incidences of a pencil of lines , and

� B\.�1
1
[� � �[�1

m/ is isotopic in B to the symplectic extension of the pseudoline
arrangement `1[ � � � [ `m given by Proposition 5.5.

Before proving the proposition, we discuss its consequences.
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Remark 8.3 Consider an arbitrary pseudoline arrangement `1; : : : ; `m and the corre-
sponding symplectic line arrangement f�1; : : : ; �mg. By Proposition 7.4, this arrange-
ment gives Stein fillings of the spaces .Y .mIw1; : : : ; wk/; �/ whenever the weights
satisfy inequalities wk � w.�k/ for k D 1; : : : ;m. Let � t D f� t

1
; : : : ; � t

mg be a
polynomial homotopy between a pencil of lines and the arrangement f�1; : : : ; �mg;
such a homotopy always exists by Proposition 8.2. A priori, the homotopy may
violate the weight constraints: at some moment t , the number of intersections may
increase, so that w.� t

k
/ > wk . (In fact, the homotopy constructed in Proposition 8.2

converts all multiple intersections into double points and thus creates a lot of additional
intersections.) However, since � t

k
intersects each of the other m�1 components exactly

once, w.� t
k
/ will never exceed m� 1. Thus, if wk �m� 1 for all k, any homotopy as

above will satisfy the weight constraints. By construction, intersections between any
two components � t

i and � t
j remain positive for all t . Thus, the homotopy � t satisfies

the requirements of the first, third and fourth lines in Table 1, sharing these properties
with picture deformations, but it changes the topology of the arrangement. Accordingly,
the arrangement f� t

1
; : : : ; � t

mg gives a Stein filling Wt of .Y .mIw1; : : : ; wk/; �/ for
every t , and Wt carries a Lefschetz fibration as in Lemma 3.2, but the topology of the
fillings Wt changes with t . Note also that for small t > 0, the defining polynomials
for � t

k
give an unfolding, and thus a 1–parameter deformation of C. Equipped with

marked points, this gives a picture deformation. Therefore, for small t > 0 the Stein
filling Wt is given by a Milnor fiber. As t increases and the topology of the arrangement
changes, we obtain new fillings Wt , which may not be realizable by Milnor fibers. We
will consider a specific example of such a topology change in Section 8.3.

The conclusion we wish to draw here is that the difference between algebraic curves
and smooth curves is not essential to our counterexamples, as we can realize the
corresponding symplectic line arrangements by complex algebraic curves and construct
polynomial homotopies. The positivity of intersections and the weight constraints can
often be trivially satisfied, although we further discuss the role of weights in Section 8.4.
In fact, the important difference comes from the second aspect in Table 1, namely
smooth graphical homotopies can vary their topology and singularities in various
different ways during the homotopy, whereas picture deformations must maintain the
same topology for all nonzero parameters t .

We now turn to the proof of Proposition 8.2. Given any pseudoline arrangement, it
can be isotoped in R2 to be in a standard wiring diagram form, with the following
properties. Each pseudoline is graphical, `i D fyDfi.x/g. Away from intersection
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points, each pseudoline is horizontal with fi.x/D 2ın for some integer 1� n�m and
a fixed constant ı > 0. There are disjoint intervals .a1; b1/; : : : ; .ar ; br / at which fi.x/

is nonconstant, such that there is a unique point in each interval .ak ; bk/ at which `i

intersects other pseudolines. Furthermore, we ask that fi and fj are linear whenever
jfi.x/� fj .x/j < ı, and each fi.x/ is monotonic in each interval .ak ; bk/. We will
assume after a planar isotopy of ƒ that our pseudoline arrangement is initially given
in this form. To construct our algebraic family, we first require a smooth family of
pseudolines connecting this given pseudoline arrangement in standard wiring diagram
form to a pencil, and satisfying a quantitative transversality property, as follows.

Lemma 8.4 Let ƒ D f`1; : : : ; `mg be an arrangement of real pseudolines in R2 in
standard wiring diagram form with constant ı, such that all intersections occur in
Œ�M;M ��R. Then there exist smooth functions fi W Œ�M;M �� Œ0; 1�!R with the
following properties:

(1) `i D fyDfi.x; 1/g, ie at time 1 the graphs of the functions give the chosen
pseudoline arrangement.

(2) fi.x; 0/D cix, ie at time 0 the graphs of the functions give a linear pencil.

(3) For any t0 2 Œ0; 1� and any i ¤ j , there is a unique point xx 2 Œ�M;M � such that
fi.xx; t0/D fj .xx; t0/ and an interval .a; b/ � Œ�M;M � containing xx such that
jfi.x; t0/�fj .x; t0/j< ı if and only if x 2 .a; b/, ie the pseudolines remain at
least distance ı apart except in a neighborhood of their unique intersection.

(4) For any t0 2 Œ0; 1� and any x0 2 Œ�M;M � such that jfi.x0; t0/�fj .x0; t0/j< ı,
we have that ˇ̌̌̌

@fi

@x
.x0; t0/�

@fj

@x
.x0; t0/

ˇ̌̌̌
> � WD

ı

2M
;

ie whenever the pseudolines become close enough to intersect , their slopes are
quantitatively far enough from each other to ensure isolated transverse intersec-
tions.

Proof Note that when the original pseudoline arrangement f`ig is in standard wiring
diagram form, it does satisfy property (4) of the lemma when t0 D 1. This is because
whenever jfi.x; 1/� fj .x; 1/j< ı, the function fi � fj is linear, and it interpolates a
height difference greater than ı over an interval smaller than 2M, so its slope is greater
than �.
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2ı
ı

Figure 25: Key move used to construct a family of pseudolines, slightly
modified from [57].

It was proven in [57, Proposition 6.4] that any arrangement of pseudolines in standard
wiring diagram form can be related through a family of pseudolines to a pencil. In
that paper, what is needed is that the pseudolines maintain transverse intersections
throughout the family, whereas we need a quantitative measure of this transversality.
We demonstrate here that this stronger condition is in fact satisfied by the family in [57].

We briefly recall the key aspects in the construction of the family and refer the reader
to [57, Proposition 6.4] for further details. This family is graphical and thus can be
written as `t

i DfyDfi.x; t/g for i D 1; : : : ;m, where `1
i D `i . The key move to modify

the pseudoline arrangement into a pencil through a family is shown in Figure 25; this
figure is a slight modification of that appearing in [57, Figure 8]. This move is used
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Figure 26: First reordering move.

iteratively to break up k–tuple points into a sequence of double points in a particular
order. This procedure can be reversed to form an m–tuple point from a collection of
appropriately ordered double points at the end to obtain a pencil. The order of the
double points can be modified through the moves shown in Figures 26 and 27, by a
classical theorem of Matsumoto and Tits [37].

If a pseudoline arrangement satisfies the transversality property (4) before the move
in Figure 27, then it will continue to satisfy the same property throughout the move,
because the relative slopes remain the same; only the interval where they occur is
translated.

For the move from Figure 26, this can be realized using Figure 25 once in reverse to
form a triple point, and then again in the forwards time direction, but mirrored to break
up the triple point in the opposite manner; see [57, Figure 10]. Therefore it suffices
to ensure that property (4) is satisfied throughout the move shown in Figure 25. Indeed,
throughout this move, whenever a pair of pseudolines have height difference less than ı
(recall that the spacing between the heights of the strands at the left and right ends of
the figure is 2ı), both pseudolines are linear in this interval. The difference of pairwise
slopes whenever jfi.x; t/�fj .x; t/j<ı is always greater than � throughout this family,
because each crossing changes the difference in fi�fj by at least 2ı across the interval,
whereas the interval has length at most 2M. Moreover, this move preserves the property
that there is a unique interval at which a given pair satisfies jfi.x; t/�fj .x; t/j< ı.

Proof of Proposition 8.2 We use the functions ffi.x; t/g, representing a family of
pseudolines through their graphs at a fixed time t , and approximate these by real
polynomials intersecting in somewhat controlled ways. We assume that x 2 Œ�M;M �

and that M � 1. Our final pseudoline arrangement is given by `i D fyDfi.x; 1/g. Let
x1; : : : ;xn be the points at which fi.xk ; 1/D fj .xk ; 1/ for some i ¤ j .

Figure 27: Second reordering move.
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Let " > 0. Let � Dminf1;mini¤j fjxi �xj jgg. In particular, � � 1.

Using the Stone–Weierstrass approximation theorem, choose polynomials zpi.x; t/ such
that ˇ̌̌̌

@fi

@x
.x; t/� zpi.x; t/

ˇ̌̌̌
<

"�n�1

4n2.2M /n
:

Then by integrating zpi.x; t/ and shifting by a constant, we can find xpi.x; t/ such that
.@ xpi=@x/.x; t/D zpi.x; t/ and

j xpi.x; t/�fi.x; t/j<
"�n�1

4n2.2M /n�1
:

Now for k D 1; : : : ; n let

ai
k D

.fi.xk ; 1/� xpi.xk ; 1//

.xk �x1/ � � � .xk �xk�1/.xk �xkC1/ � � � .xk �xn/
:

Let ai
0
D xpi.0; 0/. Define

pi.x; t/D xpi.x; t/C ai
0.t � 1/C ai

1t.x�x2/ � � � .x�xn/

C ai
2t.x�x1/.x�x3/ � � � .x�xn/C � � �C ai

nt.x�x1/ � � � .x�xn�1/:

Then for every k D 1; : : : ; n, we have that pi.xk ; 1/ D fi.xk ; 1/ and pi.0; 0/ D

pj .0; 0/ D 0 for all i and j . In particular, for every multi-intersection point of
the pseudolines `1; : : : ; `m, there is a multi-intersection point of the corresponding
fp1.x; 1/D0g; : : : ; fpm.x; 1/D0g. We will show that the curves  t0

1
WDfp1.x; t0/D0g,

: : : ; 
t0
m WD fpm.x; t0/D0g form a pseudoline arrangement at each time t0 (namely

every pair of components intersects exactly once). In particular, this suffices to show
that at t0 D 1, the algebraic arrangement has the same intersections as the smooth
pseudoline arrangement. For this, we use the bounds

jpi.x; t/�fi.x; t/j � jpi.x; t/� xpi.x; t/jCj xpi.x; t/�fi.x; t/j

� ai
0C

nX
kD1

ai
k.2M /n�1

C
"�n�1

4n2.2M /n�1

�
"�n�1

4n2.2M /n�1
C

nX
kD1

"

4n2.2M /n�1
�.2M /n�1

C
"�n�1

4n2.2M /n�1

< ":

We can similarly bound the difference of the derivatives with respect to x,ˇ̌̌̌
@pi

@x
.x; t/�

@fi

@x
.x; t/

ˇ̌̌̌
� ai

0C

nX
kD1

ai
kn.2M /n�2

C
"�n�1

4n2.2M /n�1
< ":
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Now we want to show that the graphs �t
i WD fyDpi.x; t/ j x 2 Œ�M;M �g provide

a family of algebraic pseudoline arrangements whose incidences agree with those
of f`ig at t D 1, and agree with the incidences of a pencil at t D 0. We will use the
intersection and quantitative transversality properties of Lemma 8.4 to verify that for
each time t0 2 Œ0; 1�, there is a unique transverse intersection between �t0

i and �t0

j where
pi.x; t0/D pj .x; t0/ for x 2 Œ�M;M �.

Since we could choose " > 0 arbitrarily in the argument above, we now set " D
min

˚
1
3
ı; 1

3
�
	
. For each t0 2 Œ0; 1� and each pair i ¤ j , there is an interval .a; b/ such

that for x 2 Œ�M;M � n .a; b/, we have jfi.x; t0/ � fj .x; t0/j � ı. By the triangle
inequality, for x 2 Œ�M;M � n .a; b/,

jpi.x; t0/�pj .x; t0/j � jfi �fj j � jfi �pi j � jpj �fj j> ı� 2"� 1
3
ı > 0:

Therefore pi.x; t0/¤ pj .x; t0/ for x 2 Œ�M;M �n .a; b/. Now for x 2 .a; b/, we have
that jfi.x; t0/�fj .x; t0/j< ı, so by the last property of Lemma 8.4,ˇ̌̌̌

@fi

@x
.x; t0/�

@fj

@x
.x; t0/

ˇ̌̌̌
> �:

Again by the triangle inequality and the bounds above we get thatˇ̌̌̌
@pi

@x
.x; t0/�

@pj

@x
.x; t0/

ˇ̌̌̌
> 1

3
�:

Since the difference of the derivatives is bounded away from zero, this implies that
there can be at most one value x 2 .a; b/ such that pi.x; t0/D pj .x; t0/.

Because fi.x; t0/ and fj .x; t0/ intersect once in the interval .a; b/ and their distance
is ı at the endpoints a and b, up to switching i and j , we have fi.a; t0/�fj .a; t0/D ıD

fj .b; t0/�fi.b; t0/. Since jpi.x; t/�fi.x; t/j<
1
3
ı and jpj .x; t/�fj .x; t/j<

1
3
ı, this

implies that pi.a; t0/ > pj .a; t0/ and pj .b; t0/ > pi.b; t0/. Therefore there must exist
at least one value x 2 .a; b/ such that pi.x; t0/Dpj .x; t0/. Therefore the arrangement
f�

t0

i g
m
iD1

is a pseudoline arrangement for all t0 2 Œ0; 1�.

Finally, view x as a complex variable. Let B D Œ�M;M � � i Œ�˛; ˛� �DR � C2,
where DR is a disk of sufficiently large radius R so that all jpi.x; t/j < R for x 2

Œ�M;M �� i Œ�˛; ˛�. We consider the locus
˚Qm

iD1.y �pi.x; t//D0
	
� B for each

t 2 Œ0; 1�, and label its irreducible components as � t
i Dfy�pi.x; t/D0 j .x;y/2Bg. If

˛> 0 is chosen sufficiently small, then all of the intersections where pi.x; t/Dpj .x; t/

with x 2 Œ�M;M �� i Œ�˛; ˛� occur at real values of x. Therefore this complexification
of the �t0

i restricted to B gives an algebraic family of curves, which for any t0 2 Œ0; 1�
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is a symplectic line arrangement, at t0 D 0 has the incidences of a pencil, and at t0 D 1

has the incidences of the original pseudoline arrangement f`ig.

Remark 8.5 To prove Proposition 8.2, we started with a particular smooth homotopy
between the given pseudoline arrangement and the pencil; this homotopy was provided
by Lemma 8.4. The same argument applies to an arbitrary smooth graphical homotopy
that has the properties stated in Lemma 8.4. In many examples such as those in Section 7,
a homotopy with the required properties can be easily constructed directly, thus we
can find its polynomial approximation without resolving all multiple intersections into
double points as required by the algorithm of Lemma 8.4. However, we are unable to
do the polynomial approximation while preserving all the incidence relations during the
homotopy (we only guarantee the required incidences agree with those of the homotopy
for t D 0 and t D 1 but not for 0< t < 1).

8.2 Smooth graphical homotopies imitating picture deformations

Even without the algebraic condition, we can define a subclass of smooth graphical
homotopies which produce Stein fillings constrained in a similar way as Milnor fibers.
We now isolate these key properties of a picture deformation needed to detect the
examples of unexpected Stein fillings in Section 7.

We can describe a smooth graphical homotopy with branches C t
k
�C2 via equations

(8-1) fk.x1;x2; t/�y D 0;

where .x;y/ are the complex coordinates on C2, x D x1 C ix2, and t is the real
homotopy parameter. At t D 0, we assume that

Sk
iD1 C 0

k
D C is the germ of a

complex algebraic curve where each branch passes through the origin. In particular,
fk.0; 0; 0/ D 0 for all k. Additionally, any two branches of C have positive total
algebraic intersection number, so any two deformed branches C t

i and C t
j intersect for

small t > 0. Composing the homotopy with a t–dependent translation, we can also
assume that the first two branches always intersect at the origin, C t

1
\C t

2
D 0.

As before, we will assume that the deformed branches C t
k

are not all concurrent for
t > 0. This means that for t > 0, at least one of the functions fk.0; 0; t/, with k > 2,
is nonzero. We need a nondegenerate version of nonconcurrence:

(8-2)
@rfk

@tr
.0; 0; 0/¤ 0 for some k 2 f3; : : : ;mg and r > 0:
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In other words, if we set

ordt fk Dmin
n
r W
@rfk

@tr
.0; 0; 0/¤ 0

o
;

then ordt fk is finite for at least some values k D 3; : : : ;m. Intuitively, this condition
says that the branches move away from being concurrent at the infinitesimal level.

In addition to the above nondegeneracy hypothesis, assume that for all t > 0 the
arrangements fC t

1
;C t

2
; : : : ;C t

mg are topologically equivalent. It follows that each
curvetta C t

i has a finite number of intersections with the other curvettas C t
j , i ¤ j ; the

incidence pattern, and the number of intersections, remain constant during the homotopy.
We can add decorations so that all intersection points on

Sm
iD1 C t

i are marked; as for
picture deformations, we allow free marked points as well. Let wk be the total number
of marked points on the branch C t

k
for any t > 0, and set w D .w1; w2; : : : ; wm/. We

will use the term small smooth deformation to refer to a smooth graphical homotopy of
the decorated germ .C; w/ with special properties as above. Small smooth deformations
mimic picture deformations in the smooth category, using smooth graphical instead of
algebraic curvettas: they preserve the topology of the curvetta arrangement and satisfy
the same weight restrictions and positivity of intersection properties.

Proposition 8.6 Lemma 7.5 holds for small smooth deformations of plane curve
germ C with smooth branches.

Proof The proof remains almost the same, but we have to use Taylor approximations
of smooth functions instead of power series for analytic functions.

In complex coordinates .x;y/ on C2, the complex tangent line to Ck at 0 has the form
akx�y D 0 for ak 2C. Setting x D x1C ix2 and identifying C2 with R2 �C, the
complex tangent line becomes the 2–plane akx1Ciakx2�yD0. Set bk.t/Dfk.0; 0; t/

and gk.x;y; t/D fk.x;y; t/� akx1 � iakx2 � bk.t/. Since gk.0; 0; t/D 0 for all t ,
we have

@gk

@t
.0; 0; 0/D 0

for all  ; additionally,
@gk

@x
.0; 0; 0/D 0 and

@gk

@y
.0; 0; 0/D 0:

Equation (8-1) for the deformed branch C t
k

becomes

(8-3) akx1C iakx2C bk.t/Cgk.x1;x2; t/�y D 0:

Using (8-2), we have r D mink ordt bk.t/ D ordt bk0
.t/ < C1, and write bk.t/ D

tr xbk.t/ for all k.
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We now use the Taylor formula for each function gk.x1;x2; t/ at .0; 0; 0/, writing out
the terms up to r th order, followed by the remainder. This gives

(8-4) akx1C iakx2C tr xbk.t/C
X

1<˛CˇC�r
˛>0 or ˇ>0

@˛CˇCgk

@x˛
1
@x
ˇ
2
@t

.0; 0; 0/x˛1 x
ˇ
2

t

C

X
˛CˇCDr
˛>0 or ˇ>0

hkI˛;ˇ; .x1;x2; t/x
˛
1 x

ˇ
2

t C hkI0;0;r .0; 0; t/t
r
�y D 0:

The remainder function hkI˛;ˇ; is continuous for each .kI˛; ˇ;  /, and we have that
hkI˛;ˇ; .x1;x2; t/! 0 when .x1;x2; t/! .0; 0; 0/. Now make a change of variables

x1 D tr x01; x2 D tr x02; y D tr y0:

It is not hard to see that, as in Lemma 7.5, after the change of variables we can divide
equation (8-4) by tr for t ¤ 0 and take the limit as t! 0. The result is an arrangement
of nonconcurrent complex lines given by equations akx0C xbk.0/�y0 D 0. Since we
have assumed that the incidence relations for C t

1
; : : : ;C t

m remain the same for all t ¤ 0,
the same relations must hold for the lines.

As a consequence, small smooth deformations cannot produce the unexpected symplec-
tic line arrangements that gave unexpected Stein fillings in Section 7. In such examples,
to obtain deformations which produce only Milnor fibers, the algebraic condition on
the curves and deformation is less important than keeping the topology of the curves
constant for t ¤ 0. For rational singularities with reduced fundamental cycle, small
smooth deformations give a symplectic analogue of smoothings, picking out the Stein
fillings which are “closest” to the singularity and its resolution.

8.3 Smooth graphical homotopies changing topology

The key difference between picture deformations and smooth graphical homotopies in
Table 1 is that the topology of the union of the curves is allowed to change multiple
times during a smooth graphical homotopy — for picture deformations, the only change
happens at time 0. In other words, the types of singularities where the curves intersect
can vary during the homotopy.

Here we provide an explicit example to illustrate the topology change in the family of
Lefschetz fibrations. Our example is related to the configuration Q from Example 7.14,
but with a careful choice of weights.
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algebraic deformation

line-bending homotopy

line-bending
homotopy

Figure 28: A long-term homotopy from a pencil of lines to Q.

Example 8.7 Consider the pencil of 11 lines indexed from 0 to 10, with weightsw0D4,
w1Dw2Dw3Dw4Dw5Dw7D 5, w6Dw8Dw9D 6 and w10D 8. Observe that
any arrangement of straight lines is related to the pencil by linear deformation (scaling
the constant terms of the linear equations to 0). Using such a deformation, let Qt0

be the
arrangement shown in Figure 28, where `10 is a straight line. Unlike the arrangement Q,
`10 does not pass through the intersection point b of `3, `6 and `9. The corresponding
picture deformation of the weighted pencil gives a deformation of the surface singularity.
We can extend the picture deformation to a smooth graphical homotopy which for
t0 < t < 1 bends the pseudoline `10 towards the intersection `3\ `6\ `9, and at t D 1

realizes the configuration Q. (We implicitly use Proposition 5.5 to symplectify the
family of pseudolines to a smooth graphical homotopy of symplectic line arrangements.)
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Figure 29: The Stein filling W is related to the Milnor fibers Wt by the
monodromy substitution as shown.

Now, consider the Stein fillings Wt correspond to the arrangements Qt , 0� t � 1. For
0 < t < 1, the Stein fillings are diffeomorphic to Milnor fibers of the corresponding
smoothings of the singular complex surface. Indeed, the Lefschetz fibrations given
by Lemma 3.2 are all equivalent, and for t close to 0 the smooth graphical homotopy
is a picture deformation. When t D 1, Corollary 7.17 says that the Stein filling W

arising from Q is not strongly diffeomorphic to any Milnor fiber. The topology of W is
different from that of Wt : as a smooth manifold, Wt for t < 1 is obtained from W by
rational blow-down. The corresponding Lefschetz fibrations are related via the positive
monodromy substitution given by the daisy relation [14]; see Figure 29.

8.4 Violating positivity of intersections and weight constraints

Although we have seen that we can produce many examples of unexpected Stein fillings
using smooth graphical deformations which satisfy positivity of intersections and the
weight constraints, we also can construct examples where a Stein filling arises from
a configuration of curves such that every smooth graphical homotopy from the germ
curvetta violates the weight constraints.

Example 8.8 Consider again the configuration Q, from Example 7.14, of 11 symplectic
lines fLkg

11
kD1

. We compare this to a pencil of lines with weights

(8-5) w0Dw3D 4; w1Dw2Dw4Dw5Dw6Dw7Dw9D 5; w8Dw10D 6:

These are chosen such that wk D w.Lk/, so they are the minimal possible weights
satisfying the hypotheses of Corollary 7.9. We can show that there is no smooth
graphical homotopy from this pencil to Q satisfying these weight constraints.

Proposition 8.9 The arrangement Q cannot be obtained from the pencil of lines by a
smooth graphical homotopy satisfying the weight constraints as above if we consider
homotopies that are analytic in t or satisfy a nondegeneracy condition such as (8-2).
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This statement follows from the following lemma, which shows that for combinatorial
reasons, there are no “intermediate” arrangements between the pencil and Q, so if a
homotopy existed, it would have to deform the pencil immediately into an arrangement
with the same incidence relations as Q.

Lemma 8.10 Let Qt D
S10

kD0 Lt
k

be a smooth graphical homotopy such that Q0 is a
pencil of 11 lines , and Q1 DQ (after an appropriate choice of coordinates). Suppose
that all intersections Lt

i �L
t
j are positive , and each Lt

k
has no more than wk intersection

points at all times t 2 Œ0; 1�. Then , the homotopy Qt immediately deforms the pencil
of lines into an arrangement combinatorially equivalent to Q, perhaps after restricting
to a smaller time interval : there exists � � 0 such that Q� is a pencil , and Qt is
combinatorially equivalent to Q for all t 2 .�; 1�.

Proof Any two lines in the pencil have algebraic intersection number 1. Since
intersections remain inside the Milnor ball during the homotopy and remain positive at
all times, throughout the homotopy any two components Lt

i and Lt
j of Qt intersect

exactly once. This allows us to work with Qt as with pseudoline arrangements in
Proposition 7.15.

We examine possible combinatorics of an arrangement with the weight restrictions
as above. The analysis below works at any time t . For each individual line Lk , we
write Lt

k
for its image under the homotopy at time t . For t D 0, the lines L0

k
form a

pencil; for t D 1, we have QD
S

L1
k

.

In the arrangement Q, the line L0 contains 4 intersection points. These are points
where L0 meets the pencil L1;L2;L3;L4 of vertical lines, the pencil L5;L6;L7 of
horizontal lines, the two diagonal lines L8;L9, and the bent line L10. The weight
condition then implies that Lt

0
can never have more than 4 intersection points. Note

that L3 also has only 4 intersection points, so the same is true for Lt
3
. It follows that

at most one intersection point on Lt
0

can have multiplicity 5 or greater: if there were
two such points, there would be two pencils of 5 or more lines. Even if Lt

3
is in one

of these pencils, it would intersect the lines of the other pencil in 5 or more distinct
points, a contradiction. Next, observe that no line has more than 6 intersection points,
so no pencil can contain more than 6 lines unless all the lines are concurrent. We
conclude that Lt

0
must have at least 3 intersection points for all t , because it is not

possible to distribute the 10 other lines into two intersection points on L0 subject to
these conditions.
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Observe that Qt must be combinatorially equivalent to Q for t close to 1. Indeed, for t

sufficiently close to 1, the four distinct intersection points on L0 remain distinct on Lt
0
.

Similarly, for t close to 1, each of Lt
5
, Lt

6
and Lt

7
have at least 5 distinct intersection

points with the other curves in the arrangement Qt . On the other hand, due to weight
restrictions, each of these curves has at most 5 intersection points. It follows that Lt

5
,

Lt
6

and Lt
7

have exactly 5 intersection points each, and the curves of Qt meeting at
each intersection have the same incidence relations as the corresponding lines in Q.
Thus, the incidences involving Lt

0
, as well as the incidences for the “grid” intersections

between Lt
1
;Lt

2
;Lt

3
;Lt

4
and Lt

5
, Lt

6
, Lt

7
, are the same as in Q for t close to 1. All

the remaining intersections in Qt are double points, and they cannot merge with other
intersections if t is sufficiently close to 1.

The above argument shows that ft 2 Œ0; 1� WQt is combinatorially equivalent to Qg is
open. Now, suppose that Qt is equivalent to Q for t > t0. We examine the combinatorial
possibilities for Qt0

, assuming that this arrangement is not a pencil. Consider two cases:

(1) L
t0

0
has 4 distinct intersection points.

(2) L
t0

0
has 3 distinct intersection points.

In the first case, it follows that Qt0
must be combinatorially equivalent to Q. This

is because all the incidence relations valid for t > t0 still hold by taking a limit as
t ! t0. As in the proof of Proposition 7.15, we see that no two intersection points can
collapse (if they do, all the curves must be concurrent). It follows that in this case, all
the incidence relations in Qt0

are the same as in Q.

In the second case, there are 3 intersection points on L0. Again, because all incidences
hold after taking limits as t ! t0, the arrangement Qt0

satisfies all the incidence
relations of Q. Additionally, two of the intersection points on L0 collapse. It follows
from the proof of Proposition 7.15 that in this case Qt0

must be a pencil, contradicting
the assumption that L

t0

0
has 3 distinct intersection points.

We conclude that if Qt is combinatorially equivalent to Q for all 1� t > t0, and Qt0

is different, then Qt0
must be a pencil.

We have just seen that there are examples of Stein fillings arising from graphical
smooth homotopies which do not satisfy the weight constraint (and such that there is
no possible graphical smooth homotopy which does satisfy the weight constraint). On
the other hand, we do not have examples of Stein fillings associated to a configuration
of graphical curves which cannot be related to the curvetta germ by a smooth graphical
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homotopy satisfying positivity of intersections between the curve components. We
suspect that in fact, there may always be a smooth graphical homotopy maintaining
positivity of intersections.

Question 8.11 Suppose C 0DfC 0
1
;C 0

2
; : : : ;C 0

mg and C 1DfC 1
1
;C 0

2
; : : : ;C 1

mg are two
collections of symplectic disks in B4

r such that C t
i intersects C t

j positively transversally
or with a local holomorphic model. Further assume that the boundaries of C 0 and C 1

are isotopic braids in S3
r . Does there exist a continuous family fC t

1
;C t

2
; : : : ;C t

mg of
symplectic disks, all with isotopic boundary braid for t 2 Œ0; 1�, extending this pair of
arrangements, such that for each t , C t

i and C t
i0 have positive intersections?

To prove existence of such a homotopy, one could realize C 0 and C 1 as J0– and
J1–holomorphic curves, respectively, for almost complex structures J0 and J1 which
are compatible with the standard symplectic structure, with appropriate convexity
conditions at the boundary of the ball. One could connect J0 and J1 through a
family Jt of almost complex structures with the same properties, and then try to find
a family C t

i of Jt –holomorphic disks interpolating between C 0
i and C 1

i for each i .
The difficulty arises in analyzing the moduli spaces of J–holomorphic curves with
appropriately chosen boundary conditions (either using an SFT set-up or a totally real
boundary condition). Compactness issues in the moduli space must be overcome to
obtain a positive answer to Question 8.11. Because such techniques are far beyond the
scope of this article, and the answer to the question is not central to our investigations,
we leave this open.

Remark 8.12 If a smooth graphical homotopy fails to satisfy the weight constraints
or positivity of intersections, we cannot construct a sequence of Stein fillings using
Lemma 3.2. However, we can “connect” the singular complex surface .X; 0/ to the
Stein filling W via a family of achiral Lefschetz fibrations; see [20, Section 8.4].

Consider Example 8.8. We will use the homotopy of pseudoline arrangements given in
Example 8.7. For 0< t < 1, the pseudolines `3, `6, `9 and `10 have more intersection
points than the weights (8-5) allow. We need to compensate for the higher weights to
obtain the required open book monodromy, so we place negative free marked points
on these lines: `3, `6, `9 need one negative marked point each to compensate for
one extra positive intersection, and `10 needs 2 negative points. In the open book
monodromy, every negative marked point contributes a negative Dehn twist around the
corresponding hole. It follows from the proof of Lemma 3.4 that with these additional
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negative twists, the resulting open book supports .Y; �/. The corresponding vanishing
cycles determine an achiral Lefschetz fibration. The negative Dehn twists correspond
to a “negative” blow-up in the smooth category (the 4–manifold changes by taking a
connected sum with CP2).
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[25] K Honda, W H Kazez, G Matić, Right-veering diffeomorphisms of compact surfaces
with boundary, Invent. Math. 169 (2007) 427–449 MR Zbl

[26] T de Jong, D van Straten, On the deformation theory of rational surface singularities
with reduced fundamental cycle, J. Algebraic Geom. 3 (1994) 117–172 MR Zbl

[27] T de Jong, D van Straten, Deformation theory of sandwiched singularities, Duke
Math. J. 95 (1998) 451–522 MR Zbl

[28] A Kaloti, Stein fillings of planar open books, preprint (2013) arXiv 1311.0208
[29] J Kollár, Toward moduli of singular varieties, Compos. Math. 56 (1985) 369–398 MR

Zbl
[30] J Kollár, Flips, flops, minimal models, etc., from “Surveys in differential geometry”

(C-C Hsiung, S-T Yau, editors), Lehigh Univ., Bethlehem, PA (1991) 113–199 MR Zbl
[31] H B Laufer, Normal two-dimensional singularities, Ann. of Math. Stud. 71, Princeton

Univ. Press (1971) MR Zbl
[32] H B Laufer, Taut two-dimensional singularities, Math. Ann. 205 (1973) 131–164 MR

Zbl
[33] H B Laufer, On � for surface singularities, from “Several complex variables, I” (R O

Wells, Jr, editor), Proc. Sympos. Pure Math. 30, Amer. Math. Soc., Providence, RI
(1977) 45–49 MR Zbl

[34] P Lisca, On symplectic fillings of lens spaces, Trans. Amer. Math. Soc. 360 (2008)
765–799 MR Zbl

Geometry & Topology, Volume 27 (2023)

http://euclid.nmu.edu/~joshthom/Teaching/MA589/farbmarg.pdf
http://msp.org/idx/mr/2850125
http://msp.org/idx/zbl/1245.57002
http://msp.org/idx/arx/1905.13026
http://dx.doi.org/10.4310/JSG.2013.v11.n3.a3
http://msp.org/idx/mr/3100798
http://msp.org/idx/zbl/1281.53077
http://aif.cedram.org/item?id=AIF_2020__70_4_1791_0
http://aif.cedram.org/item?id=AIF_2020__70_4_1791_0
http://msp.org/idx/mr/4245589
http://msp.org/idx/zbl/1468.57025
http://dx.doi.org/10.1090/gsm/020
http://msp.org/idx/mr/1707327
http://msp.org/idx/zbl/0933.57020
http://dx.doi.org/10.1016/0012-365X(80)90096-5
http://msp.org/idx/mr/588905
http://msp.org/idx/zbl/0444.05029
http://dx.doi.org/10.1090/pspum/040.1/713090
http://msp.org/idx/mr/713090
http://msp.org/idx/zbl/0535.32004
http://dx.doi.org/10.1090/gsm/103
http://msp.org/idx/mr/2510707
http://msp.org/idx/zbl/1205.51003
http://dx.doi.org/10.1090/conm/572/11359
http://msp.org/idx/mr/2953827
http://msp.org/idx/zbl/1317.57009
http://dx.doi.org/10.1007/s00222-007-0051-4
http://dx.doi.org/10.1007/s00222-007-0051-4
http://msp.org/idx/mr/2318562
http://msp.org/idx/zbl/1167.57008
http://msp.org/idx/mr/1242008
http://msp.org/idx/zbl/0822.14004
http://dx.doi.org/10.1215/S0012-7094-98-09513-8
http://msp.org/idx/mr/1658768
http://msp.org/idx/zbl/0958.14004
http://msp.org/idx/arx/1311.0208
http://www.numdam.org/item?id=CM_1985__56_3_369_0
http://msp.org/idx/mr/814554
http://msp.org/idx/zbl/0666.14003
http://www.intlpress.com/site/pub/files/_fulltext/journals/sdg/1990/0001/0001/SDG-1990-0001-0001-a003.pdf
http://msp.org/idx/mr/1144527
http://msp.org/idx/zbl/0755.14003
http://dx.doi.org/10.1515/9781400881741
http://msp.org/idx/mr/0320365
http://msp.org/idx/zbl/0245.32005
http://dx.doi.org/10.1007/BF01350842
http://msp.org/idx/mr/333238
http://msp.org/idx/zbl/0281.32010
http://msp.org/idx/mr/0450287
http://msp.org/idx/zbl/0363.32009
http://dx.doi.org/10.1090/S0002-9947-07-04228-6
http://msp.org/idx/mr/2346471
http://msp.org/idx/zbl/1137.57026


Unexpected Stein fillings and plane curve arrangements 1201

[35] S Lisi, C Wendl, Spine removal surgery and the geography of symplectic fillings,
Michigan Math. J. 70 (2021) 403–422 MR Zbl

[36] D Margalit, J McCammond, Geometric presentations for the pure braid group, J.
Knot Theory Ramifications 18 (2009) 1–20 MR Zbl

[37] H Matsumoto, Générateurs et relations des groupes de Weyl généralisés, C. R. Acad.
Sci. Paris 258 (1964) 3419–3422 MR Zbl

[38] D McDuff, The structure of rational and ruled symplectic 4–manifolds, J. Amer. Math.
Soc. 3 (1990) 679–712 MR Zbl

[39] J Milnor, Singular points of complex hypersurfaces, Ann. of Math. Stud. 61, Princeton
Univ. Press (1968) MR Zbl

[40] B Moishezon, M Teicher, Braid group technique in complex geometry, I: Line
arrangements in CP2, from “Braids” (J S Birman, A Libgober, editors), Contemp.
Math. 78, Amer. Math. Soc., Providence, RI (1988) 425–555 MR Zbl

[41] B Moishezon, M Teicher, Braid group technique in complex geometry, II: From
arrangements of lines and conics to cuspidal curves, from “Algebraic geometry” (S
Bloch, I Dolgachev, W Fulton, editors), Lecture Notes in Math. 1479, Springer (1991)
131–180 MR Zbl

[42] A Némethi, Five lectures on normal surface singularities, from “Low dimensional
topology” (K Böröczky, Jr, W Neumann, A Stipsicz, editors), Bolyai Soc. Math. Stud.
8, János Bolyai Math. Soc., Budapest (1999) 269–351 MR Zbl

[43] A Némethi, Some meeting points of singularity theory and low dimensional topology,
from “Deformations of surface singularities” (A Némethi, A Szilárd, editors), Bolyai
Soc. Math. Stud. 23, János Bolyai Math. Soc., Budapest (2013) 109–162 MR Zbl

[44] A Némethi, P Popescu-Pampu, On the Milnor fibers of sandwiched singularities, Int.
Math. Res. Not. 2010 (2010) 1041–1061 MR Zbl

[45] A Némethi, P Popescu-Pampu, On the Milnor fibres of cyclic quotient singularities,
Proc. Lond. Math. Soc. 101 (2010) 554–588 MR Zbl

[46] A Némethi, M Tosun, Invariants of open books of links of surface singularities, Studia
Sci. Math. Hungar. 48 (2011) 135–144 MR Zbl

[47] W D Neumann, A calculus for plumbing applied to the topology of complex surface
singularities and degenerating complex curves, Trans. Amer. Math. Soc. 268 (1981)
299–344 MR Zbl

[48] K Niederkrüger, C Wendl, Weak symplectic fillings and holomorphic curves, Ann.
Sci. École Norm. Sup. 44 (2011) 801–853 MR Zbl

[49] H Ohta, K Ono, Symplectic fillings of the link of simple elliptic singularities, J. Reine
Angew. Math. 565 (2003) 183–205 MR Zbl

[50] H Ohta, K Ono, Simple singularities and symplectic fillings, J. Differential Geom.
69 (2005) 1–42 MR Zbl

Geometry & Topology, Volume 27 (2023)

http://dx.doi.org/10.1307/mmj/1594260053
http://msp.org/idx/mr/4278702
http://msp.org/idx/zbl/1476.53099
http://dx.doi.org/10.1142/S0218216509006859
http://msp.org/idx/mr/2490001
http://msp.org/idx/zbl/1187.20048
http://msp.org/idx/mr/183818
http://msp.org/idx/zbl/0128.25202
http://dx.doi.org/10.2307/1990934
http://msp.org/idx/mr/1049697
http://msp.org/idx/zbl/0723.53019
http://dx.doi.org/10.1515/9781400881819
http://msp.org/idx/mr/0239612
http://msp.org/idx/zbl/0184.48405
http://dx.doi.org/10.1090/conm/078/975093
http://dx.doi.org/10.1090/conm/078/975093
http://msp.org/idx/mr/975093
http://msp.org/idx/zbl/0674.14019
http://dx.doi.org/10.1007/BFb0086269
http://dx.doi.org/10.1007/BFb0086269
http://msp.org/idx/mr/1181212
http://msp.org/idx/zbl/0764.14014
http://msp.org/idx/mr/1747271
http://msp.org/idx/zbl/0958.32026
http://dx.doi.org/10.1007/978-3-642-39131-6_4
http://msp.org/idx/mr/3203577
http://msp.org/idx/zbl/1325.32001
http://dx.doi.org/10.1093/imrn/rnp167
http://msp.org/idx/mr/2601064
http://msp.org/idx/zbl/1191.14006
http://dx.doi.org/10.1112/plms/pdq007
http://msp.org/idx/mr/2679701
http://msp.org/idx/zbl/1204.32020
http://dx.doi.org/10.1556/SScMath.2010.1159
http://msp.org/idx/mr/2868183
http://msp.org/idx/zbl/1274.32019
http://dx.doi.org/10.2307/1999331
http://dx.doi.org/10.2307/1999331
http://msp.org/idx/mr/632532
http://msp.org/idx/zbl/0546.57002
http://dx.doi.org/10.24033/asens.2155
http://msp.org/idx/mr/2931519
http://msp.org/idx/zbl/1239.53101
http://dx.doi.org/10.1515/crll.2003.100
http://msp.org/idx/mr/2024651
http://msp.org/idx/zbl/1044.57008
http://dx.doi.org/10.4310/jdg/1121540338
http://msp.org/idx/mr/2169581
http://msp.org/idx/zbl/1085.53079


1202 Olga Plamenevskaya and Laura Starkston

[51] P Ozsváth, Z Szabó, On the Floer homology of plumbed three-manifolds, Geom.
Topol. 7 (2003) 185–224 MR Zbl

[52] H Park, J Park, D Shin, G Urzúa, Milnor fibers and symplectic fillings of quotient
surface singularities, Adv. Math. 329 (2018) 1156–1230 MR Zbl

[53] H C Pinkham, Deformations of algebraic varieties with Gm action, Astérisque 20,
Soc. Math. France, Paris (1974) MR Zbl

[54] O Plamenevskaya, On Legendrian surgeries between lens spaces, J. Symplectic Geom.
10 (2012) 165–181 MR Zbl

[55] P Popescu-Pampu, On the smoothings of non-normal isolated surface singularities,
J. Singul. 12 (2015) 164–179 MR Zbl

[56] P Popescu-Pampu, Complex singularities and contact topology, Winter Braids Lect.
Notes 3 (2016) art. id. 3 MR Zbl

[57] D Ruberman, L Starkston, Topological realizations of line arrangements, Int. Math.
Res. Not. 2019 (2019) 2295–2331 MR Zbl

[58] S Schönenberger, Determining symplectic fillings from planar open books, J.
Symplectic Geom. 5 (2007) 19–41 MR Zbl

[59] L Starkston, Classifications and applications of symplectic fillings of Seifert fibered
spaces over S2, PhD thesis, University of Texas at Austin (2015) Available at
https://www.math.ucdavis.edu/~lstarkston/Dissertation

[60] A I Stipsicz, On the geography of Stein fillings of certain 3–manifolds, Michigan Math.
J. 51 (2003) 327–337 MR Zbl

[61] M Symington, Symplectic rational blowdowns, J. Differential Geom. 50 (1998)
505–518 MR Zbl

[62] S Tendian, Surfaces of degree d with sectional genus g in P dC1�g and deformations
of cones, Duke Math. J. 65 (1992) 157–185 MR Zbl

[63] W P Thurston, A norm for the homology of 3–manifolds, Mem. Amer. Math. Soc. 339,
Amer. Math. Soc., Providence, RI (1986) 99–130 MR Zbl

[64] G N Tyurina, Locally semi-universal flat deformations of isolated singularities of
complex spaces, Izv. Akad. Nauk SSSR Ser. Mat. 33 (1969) 1026–1058 MR In
Russian; translated in Math. USSR-Izv. 33 (1969) 967–999

[65] C Wendl, Strongly fillable contact manifolds and J–holomorphic foliations, Duke
Math. J. 151 (2010) 337–384 MR Zbl

Department of Mathematics, Stony Brook University
Stony Brook, NY, United States
Mathematics Department, University of California, Davis
Davis, CA, United States
olga@math.stonybrook.edu, lstarkston@math.ucdavis.edu

Proposed: András I Stipsicz Received: 21 July 2020
Seconded: Dan Abramovich, Paul Seidel Revised: 14 June 2021

Geometry & Topology Publications, an imprint of mathematical sciences publishers msp

http://dx.doi.org/10.2140/gt.2003.7.185
http://msp.org/idx/mr/1988284
http://msp.org/idx/zbl/1130.57302
http://dx.doi.org/10.1016/j.aim.2018.03.002
http://dx.doi.org/10.1016/j.aim.2018.03.002
http://msp.org/idx/mr/3783436
http://msp.org/idx/zbl/1390.14018
http://numdam.org/item/AST_1974__20__1_0/
http://msp.org/idx/mr/0376672
http://msp.org/idx/zbl/0304.14006
http://dx.doi.org/10.4310/JSG.2012.v10.n2.a1
http://msp.org/idx/mr/2926993
http://msp.org/idx/zbl/1247.57021
http://dx.doi.org/10.5427/jsing.2015.12l
http://msp.org/idx/mr/3317148
http://msp.org/idx/zbl/1312.14008
http://dx.doi.org/10.5802/wbln.14
http://msp.org/idx/mr/3707744
http://msp.org/idx/zbl/1430.53002
http://dx.doi.org/10.1093/imrn/rnx190
http://msp.org/idx/mr/3942162
http://msp.org/idx/zbl/1445.57012
http://dx.doi.org/10.4310/JSG.2007.v5.n1.a4
http://msp.org/idx/mr/2371183
http://msp.org/idx/zbl/1136.53062
https://www.math.ucdavis.edu/~lstarkston/Dissertation
https://www.math.ucdavis.edu/~lstarkston/Dissertation
http://dx.doi.org/10.1307/mmj/1060013199
http://msp.org/idx/mr/1992949
http://msp.org/idx/zbl/1043.53066
http://projecteuclid.org/euclid.jdg/1214424968
http://msp.org/idx/mr/1690738
http://msp.org/idx/zbl/0935.57035
http://dx.doi.org/10.1215/S0012-7094-92-06506-9
http://dx.doi.org/10.1215/S0012-7094-92-06506-9
http://msp.org/idx/mr/1148988
http://msp.org/idx/zbl/0774.14033
http://dx.doi.org/10.1090/memo/0339
http://msp.org/idx/mr/823443
http://msp.org/idx/zbl/0585.57006
http://mi.mathnet.ru/eng/izv2190
http://mi.mathnet.ru/eng/izv2190
http://msp.org/idx/mr/0252685
https://doi.org/10.1070%2FIM1969v003n05ABEH000814
http://dx.doi.org/10.1215/00127094-2010-001
http://msp.org/idx/mr/2605865
http://msp.org/idx/zbl/1207.32022
mailto:olga@math.stonybrook.edu
mailto:lstarkston@math.ucdavis.edu
http://msp.org
http://msp.org


msp
Geometry & Topology 27:3 (2023) 1203–1272

DOI: 10.2140/gt.2023.27.1203
Published: 8 June 2023

A smooth compactification of the space
of genus two curves in projective space:

via logarithmic geometry and Gorenstein curves

LUCA BATTISTELLA

FRANCESCA CAROCCI

We construct a modular desingularisation of M2;n.P r ; d/main. The geometry of
Gorenstein singularities of genus two leads us to consider maps from prestable admis-
sible covers; with this enhanced logarithmic structure, it is possible to desingularise
the main component by means of a logarithmic modification. Both isolated and
nonreduced singularities appear naturally. Our construction gives rise to a notion of
reduced Gromov–Witten invariants in genus two.
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1 Introduction

Modern enumerative geometry is based on a series of compactifications of the moduli
space of smooth embedded curves of genus g and curve class ˇ 2 HC

2
.X;Z/ in a

smooth projective variety X, and on their virtual intersection theory. The boundary of
M Kontsevich’s space of stable maps represents maps from nodal curves, including
multiple covers and contracted components. The genus zero theory of projective space
provides a smooth compactification with normal crossing boundary. In higher genus,
instead, contracted subcurves and finite covers may give rise to boundary components
of excess dimension. Even though this moduli space satisfies R Vakil’s Murphy’s law,
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1204 Luca Battistella and Francesca Carocci

a desingularisation of the main component certainly exists after H Hironaka’s work
on resolution of singularities. The main application of the methods developed in this
paper is an explicit modular desingularisation of the main component of the moduli
space of stable maps to projective space in genus two and degree d � 3.

Theorem There exists a logarithmically smooth and proper DM stack VZ2;n.P
r ; d/

over C, with locally free logarithmic structure (and therefore smooth ) and a birational
forgetful morphism to M2;n.P

r ; d/main, parametrising the following data:

� A pointed admissible hyperelliptic cover

 W .C;DR;x1; : : : ;xn/! .T;DB;  .x1/; : : : ;  .xn//;

where C is a prestable curve of arithmetic genus two , DR and DB are length six
(ramification and branch ) divisors , and .T;DB;  .x// is a stable rational tree.

� A map f W C ! P r .

� A bubbling destabilisation C  zC and a contraction zC ! C to a curve with
Gorenstein singularities such that f factors through Nf W C ! P r , and the latter
is not special on any subcurve of C.

More generally, for any smooth projective variety X, we construct a proper moduli space
VZ2;n.X; ˇ/ admitting a perfect obstruction theory and defining reduced Gromov–
Witten invariants. When X is a projective complete intersection, they satisfy the
quantum Lefschetz hyperplane principle. In general, we expect them to have a simpler
enumerative content compared to standard Gromov–Witten invariants.

1.1 Main and boundary components

The moduli space of stable maps to X (see Kontsevich [47]) represents f W C ! X,
where C is a prestable (nodal and reduced) curve such that every rational component
of C contracted by f contains at least three special points (markings and nodes).

When X D P r , f is equivalently determined by the data of a line bundle L on C and
r C 1 sections of L that do not vanish simultaneously on C. Forgetting the sections,
we obtain a morphism to the universal Picard stack, parametrising pairs .C;L/ of a
prestable curve and a line bundle on it,

Mg;n.P
r ; d/!PicCg;n=Mg;n

:

Obstructions lie in H 1.C;L/; see Wang [78]. This implies that M0;n.P
r ; d/ is smooth.

On the other hand, for g � 1, boundary components may arise where L restricts to

Geometry & Topology, Volume 27 (2023)
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a special line bundle on a subcurve of C. When d > 2g� 2, we can identify a main
component: the closure of the locus of maps from a smooth source curve.

In genus one, the generic point of a boundary component has a contracted subcurve of
genus one, together with k � r tails of positive degree; see Vakil [74].

In genus two, two types of boundary phenomena occur:

� a subcurve of positive genus is contracted, or

� the restriction of f to the minimal subcurve of genus two (core) is the hyper-
elliptic cover of a line in P r .

As an example of the second phenomenon, the main component of M2.P
3; 5/ has

dimension 20; but the locus of maps from a reducible curve C DZ [q R, with Z of
genus two covering a line two-to-one and R' P1 parametrising a twisted cubic, has
dimension 21.

We stress that M2;n.P
r ; d/main has no natural modular interpretation, since it is

obtained by taking the closure of the nice locus. Moreover, its singularities along the
boundary can be nasty; see Vakil [75]. In [12], we draw the consequences of the present
construction, analysing the locus of smoothable maps in M2.P

2; 4/, a moduli space
with more than twenty irreducible components.

1.2 Good factorisation through a Gorenstein curve

Our approach to the desingularisation of the main component takes off from a simple
observation: a line bundle of degree at least 2g� 1 on a minimal Gorenstein curve of
genus g has vanishing h1; we have already used this implicitly for nodal curves in the
discussion of the irreducible components of Mg;n.P r ; d/. The Gorenstein assumption
makes this fact a straightforward consequence of Serre duality. Minimality is a weaker
notion than irreducibility, but it is needed to ensure that the line bundle has sufficiently
positive degree on every subcurve.

This observation raises a natural question: is it possible to replace every f W C ! P r

with a “more positive”/ “less obstructed” Nf WC !P r by “contracting” the higher-genus
subcurves on which f �OP r .1/ is special? The answer is “no”, since every such map
is smoothable, ie it can be deformed into a map from a smooth curve.1

1The answer could also be “yes”: it has been shown by M Viscardi [77] in genus one that maps from
Gorenstein curves satisfying certain stability conditions give rise to irreducible compactifications of
M1;n.P

r ; d/; yet, their deformation theory is hard to grasp, because such is the deformation theory of
the singularities that are involved [68].

Geometry & Topology, Volume 27 (2023)



1206 Luca Battistella and Francesca Carocci

This, on the other hand, gives us a strategy to study the main component:

(1) Construct a universal contraction C !C to a Gorenstein curve, by collapsing the
subcurves of C on which f has low degree. This Gorenstein curve will not be
ready available on Mg;n.P r ; d/, because the contraction map C!C has moduli
(called crimping spaces by van der Wyck [80] and moduli of attaching data by
D I Smyth [68]); we first need to introduce a modification of Mg;n.P r ; d/ along
the boundary.

(2) Take only those maps that admit a factorisation through C : as we have discussed,
these are all smoothable, so the moduli space is at the very least irreducible. It
provides a birational model of Mg;n.P r ; d/main, with the advantage of admitting
a modular interpretation.

Moreover, this space is unobstructed over a base that can be assumed to be smooth in the
low-genus examples that we have at our disposal: those of D Ranganathan, K Santos-
Parker and J Wise [63], where the base is a logarithmic modification of the moduli space
of prestable curves; and those of this paper, where the base is a logarithmic modification
of the moduli space of hyperelliptic admissible covers. Once such a moduli space is con-
structed, the proof of smoothness for target P r is entirely conceptual; furthermore, the
same methods can be employed to approach the study of different targets (eg products of
projective spaces, toric varieties, flag varieties) and stability conditions (eg quasimaps).

While point (2) was essentially established for us by Ranganathan, Santos-Parker and
Wise, point (1) is at all open for g � 2. Here we make a hopefully meaningful step in
this direction.

1.3 Logarithmic geometry and singularities

The moduli space of prestable curves has a natural logarithmic structure induced by
its boundary divisor, thus keeping track of the nodes and their smoothing parameters;
see F Kato [43]. This induces a logarithmic structure on the moduli space of maps
as well. It is a natural question whether the desingularisation of the main component
can be achieved by means of a logarithmic modification; it is indeed the case in genus
one [63], but not in our construction. We think that the following are truly high-genus
phenomena.

1.3.1 Augmenting the logarithmic structure: admissible covers Our first most
relevant finding is that, instead, in genus two it is necessary to enrich the logarithmic

Geometry & Topology, Volume 27 (2023)
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structure of the base by passing to a moduli space of admissible covers; see J Harris
and D Mumford [37].

Every smooth curve of genus two is hyperelliptic, ie the canonical class induces
a two-to-one cover of a line branched along six points. The hyperelliptic cover is
essentially unique, but, when the curve becomes nodal and in the presence of markings,
the uniqueness is lost. It can be restored by making it part of the moduli functor.
The resulting space of admissible covers is as nice as the moduli space of curves,
but it has the advantage of encoding the Brill–Noether theory of the curve in the
logarithmic structure; see S Mochizuki [55]. The necessity of such enrichment can be
understood already by looking at the isolated Gorenstein singularities of genus two
(see Battistella [11]): there are two families of these, basically corresponding to the
choice of either a Weierstrass point or a conjugate pair in the semistable model. In
order to tell these two cases apart logarithmically, in the construction of C ! C, we
start by considering stable maps from the source of an admissible cover.

1.3.2 Realisable tropical canonical divisors This points to our second finding. The
line bundle giving the contraction C ! C 0 (the first step towards C ) is a vertical
twist of the relative dualising line bundle. The twist is indeed logarithmic, and the
piecewise-linear function on trop.C / determining it is nothing but a tropical canonical
divisor satisfying certain requirements of compatibility with the admissible cover, and
in particular realisable; see Möller, Ulirsch and Werner [57]. Pulling back from the
target of the admissible cover, which is a rational curve, allows us to simplify several
computations. The subdivision of the tropical moduli space according to the domain of
linearity of such function should therefore be thought of as parametrising all possible
Gorenstein contractions of C compatible with the degree of f.

1.3.3 Nonisolated singularities Finally, we underline that nonreduced curves appear
as fibres of C, which requires a careful study of what we call tailed ribbons, and further
distinguishes our work from its genus one ancestor. This should not come as a surprise:
first, nonreduced curves can still be Gorenstein if the nilpotent structure is supported
along one-dimensional components, rather than isolated points; second, ribbons were
introduced in the 1990s as limits of smooth canonical curves when the latter tend to
the hyperelliptic locus in moduli; see Fong [31]. They appear naturally in our work at
the intersection of the main component with the hyperelliptic ones. It is possibly less
expected that they show up as well when the core is contracted, as a way of interpolating
between isolated singularities whose special branches differ. The construction of C is
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concluded by gluing in C 0 the hyperelliptic cover of a genus two subcurve supported
along a boundary divisor.

For future investigation, we remark that we perform both the contraction C ! C 0 and
the pushout C 0! C in sufficiently general families. We wonder whether a pointwise
construction might be possible, realising both steps as special instances of a more
general pushout of logarithmic subcurves, in the spirit of S Bozlee [18].

1.4 Relation to other work and further directions

1.4.1 Local equations and resolution by blowing up It is always possible to find a
local embedding of Mg;n.P r ; d/ in a smooth ambient space by looking at

Tot.��L/˚rC1
� Tot.��L˝OC .n//

˚rC1

over the Picard stack, where OC .1/ is a relative polarisation for the universal curve
� WC!Picg;n [25, Section 3.2]. If the polarisation is chosen carefully, the embedding is
given by�g local equations, repeated rC1 times. An approach to the desingularisation
of the main component is by blowing up according to these local equations; see Y Hu,
J Li and J Niu [38; 39; 40]. Possibly the hardest task is to provide a compatible global
description of the blow-up centres and their sequence. This method is close in spirit to
the original construction of Vakil and A Zinger [84; 76] (in particular, it involves an
iterated blow-up procedure and a good deal of bookkeeping), and it has the advantage of
simultaneously “desingularising” the sheaves ��L˝k ; k � 1, on the main component,
making them into vector bundles. This in turn makes the theory of projective complete
intersections accessible via torus localisation; see Zinger [83] and Popa [62].

Hu, Li and Niu [40] carry out this strategy in genus two. For the reader’s benefit, we
provide a brief conversion chart: in round 3, phase 3 of their routine, they blow up loci
in the Picard stack, where the line bundle is required to restrict to the canonical bundle
on the core; this part is subsumed in our work by starting from a birational model of the
moduli space of weighted curves, namely the space of admissible covers. In round 1

they blow up loci in Mwt
2

that correspond explicitly to the boundary phenomena that we
have summarised in Section 1.1. In rounds 2 and 3 they further blow up loci contained in
the exceptional divisor of the previous rounds; these loci often depend on the attaching
points of some rational tails being Weierstrass, or conjugate. In the language we
have adopted, all of the blow-up centres are encoded in the domain of linearity of
a certain piecewise-linear function — a tropical canonical divisor — while the Brill–
Noether theory of the curve is built in the moduli space at the level of admissible covers
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already. Our construction is thus more intrinsic. We remark, for example, that the
genus one phenomena (corresponding to round 1, phases 2–4 in [40]) are addressed
uniformly within this language, with the tropical canonical divisor resembling the
function “distance from the core” that is at the base of [63]. The desingularisation of
Hu, Li and Niu seems more efficient than ours, in the (vague) sense that the information
encoded by the admissible cover far from the special branch is useless for the rest of
our construction. Their procedure appears to select a “special branch” to start with
in round 1, and then continue blowing up accordingly only “around that branch”; the
price to be paid seems to be a certain noncanonicity of the blow-up procedure, with
subdivisions appearing that are not quite natural from our perspective (when the core
is reducible; see Example 3.39).

In [41], Hu and Niu reconstruct the blow-up by gluing projective bundle strata indexed
by treelike structures and level trees; these data are reminiscent of piecewise-linear
functions on tropical curves, though missing both the slope and the metric data. These
authors have already pointed out the similarities between their indexing set and the
combinatorial data appearing in the moduli space of multiscale differentials due to
Bainbridge, Chen, Gendron, Grushevsky and Möller [9]. This relation certainly deserves
further attention; we think that canonical divisors on tropical curves could provide the
right language to talk about it, and the geometry of Gorenstein curves could be the
informing principle of further investigations. We expect a crucial ingredient for an
all-genus desingularisation will be a good compactification of canonical curves.

1.4.2 Computations in Gromov–Witten theory Naive computations of what we
may now expect to coincide with our reduced invariants have made seldom appearances
in the literature, for example, with Zinger’s enumeration of genus two curves with
a fixed complex structure in P2 and P3 [81], and the computation of characteristic
numbers of plane curves due to T Graber, J Kock and R Pandharipande [33]. To make
the relation with the latter work precise, we should first extend our methods to the
analysis of relative and logarithmic stable maps (compare with Battistella, Nabijou and
Ranganathan [13] and Ranganathan, Santos-Parker and Wise [64] in genus one).

VZ2;n.X; ˇ/ is only the main component of a moduli space of aligned admissible
maps A2;n.X; ˇ/, which dominates M2;n.X; ˇ/ and is virtually birational to it. The
virtual class of A2;n.X; ˇ/ is expected to split as the sum of its main and boundary
components; the contribution of the latter should be expressible in terms of genus
zero and reduced genus one invariants via virtual pushforward; see Manolache [52].
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This would deliver an extension of Li and Zinger’s formula to genus two (see Li and
Zinger [51], Zinger [82] and Coates and Manolache [26]). Together with a localisation
computation of reduced invariants, as mentioned in the previous section, this would
provide an alternative proof of the genus two mirror theorem for the quintic threefold;
see Guo, Janda and Ruan [35] and Chang, Guo and Li [24]. Along the same lines,
it would ease the computation of genus two Gromov–Witten invariants of Fano and
Calabi–Yau complete intersections in projective space.

1.4.3 Logarithmic maps to toric varieties and tropical realisability In [64], Ran-
ganathan, Santos-Parker and Wise apply their techniques to desingularising the space
of genus one logarithmic maps to a toric variety with respect to its boundary. As an
application, they are able to solve the realisability problem for tropical maps of genus
one (see Speyer [69]): which of them arise as the tropicalisation of a map from a smooth
genus one curve to an algebraic torus? With Ranganathan, we are working towards
a similar result in genus two — where, as far as we know, there is at the moment no
reasonable guess as to what the full answer should be, although a clear understanding
of the moduli space of tropical curves has been obtained by Cueto and Markwig [27].

1.4.4 Birational geometry of moduli spaces of curves In [11], the first author
produces a sequence of alternative compactifications of M2;n based on replacing genus
one and two subcurves with few special points by isolated Gorenstein singularities.
Although we do not discuss it here, the techniques we develop also provide a resolution
of the rational maps among these spaces. Moreover, the universal Gorenstein curve
constructed here unveils the possibility of defining new birational models of M2;n

by including nonreduced curves as well — contrary to M2;n.m/, these models could
respect the Sn–symmetry in the markings. It would be interesting to compare them with
the work of Johnson and Polishchuk [42], and to establish their position in the Hassett–
Keel program of Alper, Fedorchuk, Smyth and van der Wyck [68; 7]. Recently, Bozlee,
B Kuo and A Neff [19] have classified all the compactifications of M1;n in the stack
of Gorenstein curves with distinct markings — it turns out that there are many more
than envisioned by Smyth, although the numerosity arises more from combinatorial
than geometric complications. It would be interesting if all compactifications of M2;n

could be classified by a mixture of our techniques.

Plan of the paper

In Section 2, we establish some language and background material concerning logarith-
mic curves, their tropicalisation and the use of piecewise-linear functions; admissible
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covers and their logarithmic structure; and Gorenstein curves, with both isolated
singularities and nonreduced structures, including a number of useful properties and
formulas, the classification of isolated singularities of genus one (due to Smyth) and
two (due to the first author), and a novel study of the nonisolated singularities of genus
two with nonnegative canonical class.

In Section 3, we introduce the key player: a subdivision of the tropical moduli space of
weighted admissible covers based on aligning (ordering) the vertices of the tropical
curve with respect to a piecewise-linear function constructed from tropical canonical
divisors. This subdivision induces a logarithmically étale model of the moduli space of
weighted admissible covers. It is on this model that we are able to construct a universal
family of Gorenstein curves. This process consists of two steps: first, a birational
contraction C ! C 0; then, a pushout/normalisation C 0! C.

In Section 4, we apply these methods to desingularise M2;n.P
r ; d/main. To be more

precise, we repeat the contraction/pushout process twice: first, to ensure that any curve
of positive genus has weight at least one; then, to exclude the possibility that the map
is hyperelliptic on a genus two subcurve. The intermediate space, although not being
smooth, is already interesting in that its invariants satisfy quantum Lefschetz; see
Lee [50].

Notation and conventions

We work throughout over C.

By trait we mean the spectrum � of a discrete valuation ring. It only has two points;
the closed one is often denoted by s (or 0), and the generic one by �.

Curves will always be projective and S1, ie without embedded points, but they may
be nonreduced. Subcurves are not supposed to be irreducible, but they are usually
connected. We call core the minimal subcurve of genus two. We may refer to subcurves
C 0 � C that intersect the rest of C and the markings in only one (resp. two) at worst
nodal point(s) — or markings — as tails (resp. bridges).

The dual graph � of a nodal curve C has a vertex for every irreducible component, an
edge for every node, and a leg for every marking (labelled or not); it is endowed with a
genus function g W V .�/! Z, and the genus of the graph is given by

g.�/D h1.�/C
X

v2V .�/

g.v/:
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The graph � may be further weighted with a function w W V .�/! Z, which should be
thought of as recording the degree of a line bundle on C.

A graph with no loops is called a tree; its valence one vertices are called leaves
(sometimes one of them plays a different role and it is therefore named the root). A
tree with only two leaves is a chain.

A tropical curve is a graph metrised in a monoid M (most basically, R�0), ie a graph �
as above together with a length function ` WE.�/!M on the set of edges (legs are
considered to be infinite, instead).

A logarithmic space is denoted by X D .X ;MX / with logarithmic structure ˛ WMX !

.OX ; � / (also simply indicated by exponential/logarithmic notation). MX is a sheaf in
the étale topology of X. We assume that logarithmic structures are FS, ie fine (they
admit an atlas of finitely generated and integral charts) and saturated. Let MX denote
the characteristic sheaf MX =˛

�1.O�
X
/. This is a constructible sheaf of abelian groups.

A logarithmic space X gives rise to a cone stack trop.X / via tropicalisation. In the
case of logarithmically smooth curves, the tropicalisation is a tropical curve in the
above sense. We abide to the rule that the tropicalisation of C should be denoted by
the corresponding piecewise-linear character @.

We have quite a few families of curves; usually we adopt the following notation:

� � WC!S will denote a prestable curve, zC (with Q�) a partial destabilisation of C,
C 0 (with � 0) a (not necessarily Gorenstein) contraction of zC, and C (with x�) a
(not necessarily reduced) Gorenstein curve dominated by C 0.

� f W C !X will denote a (stable) map to (a smooth and projective) X.

�  W C ! T will denote an admissible cover from a genus two to a rational curve,
 0 W C 0! T 0 a double cover (where the curves are not necessarily prestable).
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2 Preliminaries and background material

2.1 Logarithmically smooth curves and their tropicalisations

Let .S;MS / be a logarithmic scheme. A family of logarithmically smooth curves
over S is a proper and logarithmically smooth morphism � W .C;MC /! .S;MS / with
connected one-dimensional (geometric) fibres such that � is integral and saturated.
These hypotheses guarantee flatness and that the fibres are reduced. Logarithmically
smooth curves naturally provide a compactification of the moduli space of smooth
curves.

2.1.1 Characterisation of logarithmically smooth curves Kato proved in [43] that
logarithmically smooth curves have at worst nodal singularities; moreover, he provided
the following local description. For every geometric point p 2 C, there exists an étale
local neighbourhood of p in C with a strict étale morphism to:

� Smooth point A1
S

with the log structure pulled back form the base.

� Marking A1
S

with the log structure generated by the zero section and ��MS .

� Node OS Œx;y�=.xyD t/ for some t 2OS , with semistable log structure induced
by the multiplication map A2

S
!A1

S
and t W S !A1.

In the last case, the class of log.t/ in MS is called a smoothing parameter for the node.

At times, we may have to consider more general logarithmic orbicurves [60].

2.1.2 Minimal logarithmic structures For every prestable curve � W C ! S , there
is a minimal logarithmic structure M can

S
on S together with a logarithmically smooth

enhancement � W .C ;M can
C
/! .S ;M can

S
/ such that any other logarithmically smooth
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enhancement of � is pulled back from the minimal one. If S Dfsg is a geometric point,
the characteristic sheaf of the minimal structure is freely generated by the smoothing
parameters of the nodes of Cs:

M can
S DN#E.�.Cs//:

More generally, the concept of minimality — introduced by W D Gillam [32] — serves
the purpose of describing which stacks X over .LogSch/ are induced by ordinary
stacks X over .Sch/ endowed with a logarithmic structure ˛ WMX ! .OX ; � /. Gillam
defines a minimal object x of X to be one such that, for every solid diagram

y0 x

y
i j

with i and j over the identity of underlying schemes, there exists a unique dashed
arrow in X making the diagram commutative. He then shows that X is induced by an
.X ;MX / if and only if

(1) for every object z of X, there exist a minimal x, and z! x covering the identity
of underlying schemes;

(2) for every w! x with x minimal, the corresponding morphism of logarithmic
schemes is strict if and only if w is minimal as well.

From this discussion, it follows that the stack of logarithmically smooth curves over
.LogSch/ is induced by a logarithmic stack over .Sch/. It can be identified as the Artin
stack of prestable (marked) curves endowed with the divisorial logarithmic structure
corresponding to its normal crossings boundary.

2.1.3 Tropicalisation The combinatorial structure of an FS logarithmic space X is
encoded by its Artin fan AX [2; 5]. An Artin fan is a logarithmic stack that looks
like the quotient of a toric variety by its dense torus ŒV =T � locally in the strict étale
topology. The morphism X ! Log classifying the logarithmic structure on X [59]
factors through X !AX . The 2–category of Artin fans is equivalent to the 2–category
of cone stacks, ie stacks over the category of rational polyhedral cone complexes [21,
Theorem 6.11]. The latter should be thought of as a generalisation of the category of
rational polyhedral cone complexes, where cones are allowed to be glued to themselves
via automorphisms. In this way, we can associate to the logarithmic stack X a cone
stack trop.X / known as its tropicalisation, which is nothing but another incarnation
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of the Artin fan. When X is a scheme with Zariski logarithmic structure (without
monodromy), it is the generalised (standard) cone complex

trop.X /D
� a

x2X

Hom.MX ;x;R�0/

�.
�;

where x runs through the schematic points of X and gluing takes place along the face
inclusions induced by the specialisation morphisms [34, Appendix B]. The language
developed in [21] allows us to talk about the tropicalisation map within the category of
logarithmic stacks. See also [1; 72; 73].

For a logarithmically smooth curve .C;MC / over a geometric point .S;MS /, the
tropicalisation @ consists of its dual graph �.C / metrised in MS ; the length function
` WE.�.C //!MS associates to each edge the smoothing parameter of the correspond-
ing node. More precisely, vertices correspond to irreducible components weighted
by their geometric genus, and there are (labelled) infinite legs corresponding to the
markings. The tropicalisation of C is thus a family of classical (ie metrised in R)
tropical curves over the cone Hom.MS ;R�0/. The construction can be generalised to
more general base logarithmic schemes [21, Section 7]. It induces a (strict, smooth,
surjective) morphism

M
log
g;n!

�Mtrop
g;n;

where the latter is the lift of the stack of tropical curves to the category of logarithmic
schemes through the tropicalisation map.

2.1.4 Piecewise-linear functions and line bundles The characteristic monoid at a
node q 2 C is the amalgamated sum

MC;q DMS;�.q/˚N N˚2;

where the map N !MS;�.q/ is the smoothing parameter ıq and N ! N˚2 is the
diagonal. It has been noticed in [34] that

M
gp
C;q
' f.�1; �2/ 2M

gp;˚2

S;�.q/
j �2��1 2 Zıqg:

If @ is a tropical curve metrised in M, a piecewise-linear (PL) function on @ with
values in M gp is a function � from the vertex set of @ to M gp such that, for any two
adjacent vertices v1 and v2 connected by an edge eq , we can write

�.v2/��.v1/D s.�; eq/ıq

for some s.�; eq/ 2 Z (called the slope of � along eq , outgoing from v1), where ıq is
the smoothing parameter of the node q in M.
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Over a geometric point (or, more generally, if MS and @ are constant over S — in
particular, if no nodes are smoothed out) the previous observation, together with a
similar analysis at the markings, shows (see [21, Remark 7.3]) that

H 0.C;M
gp
C
/D fPL functions on @ with values in M

gp
S
g:

Similarly, every section of ��MC =MS is described by the collection of slopes of a
rational function on @.

The exact sequence
0! O�C !M

gp
C
!M

gp
C
! 0

shows that to every section � 2 �.C;M gp
C
/ there is an associated O�

C
–torsor (or,

equivalently, a line bundle) of lifts of � to M
gp
C

. Under the assumption that MS and @
are constant over S, every vertex v of @ determines an irreducible component of C, and
the restriction of OC .��/ to Cv is given explicitly by [63, Proposition 2.4.1]

OCv .�/' OCv

�X
s.�; eq/q

�
˝��OS .�.v//;

where s.�; eq/ denotes the outgoing slope of � along the edge corresponding to q

(either a marking or a node of C ).

If we started from �2�.C;MC /, the associated line bundle OC .��/ would come with
a cosection OC .��/! OC (induced by the logarithmic structure). Such a cosection is
not always injective, but when it is it defines an effective Cartier divisor on C ; when
it is not, it will vanish along components of C. Nonetheless, the association of this
generalised effective Cartier divisor to � behaves well under pullbacks, and in fact a
useful point of view on logarithmic structures is to consider them as a functorial system
of generalised effective Cartier divisors indexed by MC (see [17] for the details). See
also [18, page 9] for a description in local coordinates.

Finally, we briefly recall the theory of divisors on tropical curves [36]. For this, let @
be a tropical curve over R�0, thought of as its metric realisation. A divisor on @ is a
finite Z–linear combination of points on @; it is said to be effective if all the coefficients
are nonnegative. The tropical canonical divisor is

K@ D

X
v2@

.2g.v/� 2C val.v//v:

It is effective unless the curve has rational tails. To a piecewise-linear function � on (a
subdivision of) @, we can associate a divisor supported on its nonlinearity locus,

div.�/D
X
v2@

� X
e2Star.v/

s.�; e/

�
v:
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Notice that the dependence on � is only up to a global translation by R. Divisors of the
form div.�/ are called principal. Two divisors are linearly equivalent if their difference
is principal. We can define the divisor class group of @ by taking equivalence classes
of divisors on @ modulo linear equivalence. The linear system of a divisor is given by

jDj D fD0 �lin D jD0 � 0g:

We will loosely refer to a member of jK@j as a tropical canonical divisor.

Notice that a tropical linear system is tropically convex, ie it is closed under taking
max and real translations (see [36, Lemma 4]).

Everything here can be restated for tropical curves over a more general base. Sub-
divisions, though, may only make sense after enlarging the base monoid, often corre-
sponding to a subdivision of its dual cone.

If  W@!T is a harmonic morphism of tropical curves [8], both divisors and piecewise-
linear functions can be pulled back from T to @— in both cases, a coefficient accounting
for the expansion factor of  along edges must be included.

2.1.5 Alignments and blow-ups The monoid M induces a partial order on M gp,

m1 �m2 () m2�m1 2M :

Given a logarithmic scheme .S ;MS / with a logarithmic ideal K D .m1; : : : ;mh/, the
logarithmic subfunctor of S defined by requiring that there always be a minimum
among the mi for i D 1; : : : ; h — ie that the ideal be locally principal — is represented
by the blow-up of S in the ideal ˛.K/ [61, Section 3.4]. Tropically, it corresponds to a
subdivision of the cone Hom.MS ;R�0/, and vice versa.

This simple observation has had many fruitful applications in moduli theory, starting
from [53].

2.2 Admissible covers and their logarithmic structure

Admissible covers have been introduced by Harris and Mumford [37] as a compactifi-
cation of Hurwitz spaces. A fully fledged moduli theory for them has been developed
only later by Mochizuki with the introduction of logarithmic techniques [55], and
by D Abramovich, A Corti and A Vistoli with the introduction of twisted curves [3].
They have also been generalised by B Kim [44, Sections 5.2 and 7.2] (he calls them
log-stable �–ramified maps). We will only be concerned with the case of double covers
of P1, ie hyperelliptic curves.
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In order to motivate the construction, we observe that every smooth curve of genus two
is hyperelliptic (under the canonical map) with six Weierstrass points (ie ramification
points for the hyperelliptic cover; this follows from the Riemann–Hurwitz formula).
When the curve is allowed to become nodal, there still exists a degree two map to
the projective line, but it is no longer finite. In this case, it is appropriate to define
Weierstrass points to be limit of Weierstrass points in a smoothing family; the drawback
is that whether a point on a (contracted) rational subcurve is Weierstrass or not may
depend on the choice of the smoothing family. To resolve this ambiguity within the
definition of the moduli problem, a solution is to expand the target, so as to consider
the space of finite morphisms from nodal curves of genus two to rational trees. Here is
a formal definition:

Definition 2.1 A family of admissible hyperelliptic covers over S is a finite morphism
 W .C;DR/! .T;DB/ over S such that

(1) .C;DR/ and .T;DB/ are prestable curves with (unlabelled) smooth disjoint
multisections DR and DB of length 2g C 2, C has arithmetic genus g, and
.T;DB/ is a stable rational tree;

(2)  is a double cover on an open U � T dense over S ;

(3)  is étale on C sm nDR, it maps DR to DB with simple ramification, and it
maps nodes of C to nodes of T so that, in local2 coordinates,

 #
W OS Œu; v�=.uv� s/! OS Œx;y�=.xy � t/

maps u 7! xi , v 7! yi and s 7! t i for i D 1 or 2.

Mochizuki shows that condition (3) can be replaced by requiring that  lift to a
logarithmically étale morphism of logarithmic schemes .C;MC /! .T;MT / over
.S;MS /, so that the image of a smoothing parameter of T is either a smoothing
parameter of C or its double. Moreover there is a minimal logarithmic structure over S

that makes this possible: if p is a node of C that  maps to the node q of T,

M
 �can
S

DM C�can
S ˚O�

S
M T�can

S =�; .0; ıq/� .iıp; 0/;

where i is the local multiplicity defined at the end of (3). In the case of double covers,
this simply means that the minimal logarithmic structure for the admissible cover is the
same as that of the source curve, except that the smoothing parameters of two nodes

2We refer the reader to [55], and in particular Remark 2 of Section 3.9, for a detailed discussion.

Geometry & Topology, Volume 27 (2023)



A smooth compactification of the space of genus two curves in projective space 1219

have been identified if  matches them both with the same node of the target. We thus
obtain a logarithmic Deligne–Mumford stack.

Theorem 2.2 [55, Section 3.22] The moduli stack of admissible hyperelliptic covers
Ag;0;2 is a logarithmically smooth with locally free logarithmic structure (and therefore
smooth ), proper Deligne–Mumford stack , with a logarithmically étale morphism to
M0;2gC2=S2gC2.

To an admissible hyperelliptic cover we can associate a harmonic morphism of degree
two to a metric tree  W @! T. The tropical geometry of hyperelliptic and admissible
covers has been analysed, for instance, in [23; 22].

2.3 Gorenstein curves

2.3.1 Tools and formulas Curves shall always be assumed Cohen–Macaulay, ie S1;
they might still be nonreduced along some subcurve, but they have no embedded points.

Definition 2.3 A curve X is Gorenstein if its dualising sheaf !X is a line bundle.

A fundamental role in the study of singularities is played by the conductor ideal.

Definition 2.4 Let � W zX ! X be a finite and birational morphism. The conductor
ideal of � is

cD AnnOX
.��O zX =OX /DHomX .��O zX ;OX /:

The conductor is the largest OX –ideal sheaf that is also a ��O zX –ideal sheaf. When X

is a reduced curve with finite normalisation — which is always the case over a field —
blowing up the conductor ideal recovers the normalisation [79]. The conductor ideal
admits a further characterisation in terms of duality theory as

cD �!OX D !� :

Remark 2.5 Let us restrict to schemes of finite type over a field. For such an X, the
normalisation X �!X has two universal properties (see eg [16, Tag 035Q]):

(1) It is final in the category of dominant morphisms Y !X with Y normal.

(2) For every finite and birational morphism Y !X, the normalisation of X factors
uniquely through a morphism X �! Y.

Now suppose that X is a Cohen–Macaulay curve. The smooth (possibly disconnected)
curve .Xred/

� is what is normally referred to as the normalisation of X. Notice that
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.Xred/
� can be obtained as a (sequence of) blow-up(s) along a subscheme (points) ı

of Xred. Set X 0 D Blı X and consider the diagram

X X 0 .X 0red/
�

Xred .Xred/
�

�0

f
˛

ˇ

The arrow ˛ exists by the universal property of blowing up (because f �1Iı=X is
principal in O.Xred/� ). Since .Xred/

� is reduced and normal, ˛ factors through .X 0red/
� ;

hence, the arrow ˇ exists. Since it is a finite and birational morphism of normal curves,
ˇ is an isomorphism. Abusing notation, we are going to call X 0 the normalisation
of X. Note that the underlying reduced curve of every irreducible component is regular.
Moreover, the sheaf �0�OX 0=OX is supported along the singular locus of Xred. Suppose
that X 0 contains a ribbon (see Definition 2.17) or, more generally, a multiple curve
in the sense of [29]; the reader should be aware that, if we only ask of a morphism
g W Y !X that the sheaf g�OY =OX be supported at points, we can construct infinitely
many more Y by blowing up X 0 successively at a number of smooth points of Xred.
Indeed, for ribbons, these are essentially all the morphisms that restrict to the identity
on the underlying P1 yet alter the square-zero ideal that defines the double structure
(see [14, Theorem 1.10]).

It is known that, for a nodal curve X, the conductor ideal relates the dualising line
bundle of X to that of its normalisation X � ; more generally [20, Proposition 1.2]:

Proposition 2.6 (Noether’s formula) Let � W zX !X be a finite birational morphism
of Gorenstein curves. Then , viewing c as an ideal sheaf on zX,

! zX D �
�!X ˝ c:

Corollary 2.7 Let X be a Gorenstein curve with Gorenstein normalisation � W zX !X.
The conductor is a principal ideal on zX.

Definition 2.8 For a finite birational morphism � W zX ! X of curves, the coherent
OX –module ��O zX =OX has finite support; its length is called the ı–invariant of �.
When � is the normalisation, we simply call it the ı–invariant of X. When X is reduced,
it is the sum of the local contributions of all the isolated singularities of X.

We review a result of J-P Serre [66, Section 4, Proposition 7] for possibly nonreduced
curves.
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Lemma 2.9 If X is a Gorenstein curve and zX its normalisation , then

(1) length.O zX =c/D 2ı:

Proof Since the normalisation is finite and birational, we may work locally around
the support of ��O zX =OX , which we may therefore assume is a single point. Let
X D Spec.R/ and zX D Spec. zR/. Using c�R� zR, we see that (1) is equivalent to

dimC.R=c/D ı:

Let ! be a local generator of�R; given f 2R, Noether’s formula implies that f! 2� zR
if and only if f 2 c. We therefore get

R=c ,!�R=� zR:

Since �R is free of rank one and ! a generator, the above map is surjective as
well. Finally, applying HomR.�; �R/ to the normalisation exact sequence, we obtain
�R=� zR D Ext1R. zR=R; �R/, and therefore dimC �R=� zR D ı.

Remark 2.10 The converse is true when X is reduced, but may fail otherwise, an
example of which is provided by the subalgebra of CŒŒs; ����CŒŒt �� generated by hs; �; ti,
ie the transverse union of a ribbon with a line, which, though satisfying (1), is not
Gorenstein as a consequence of the following lemma. What seems to be lacking in the
nonreduced case is a good theory of dualising sheaves as rational differential forms on
the normalisation satisfying some residue condition.

Definition 2.11 A curve is decomposable if it is obtained by gluing two curves along
a (reduced closed) point.

Remark 2.12 This is equivalent to [70, Definition 2.1]. Indeed, the fibre product
over C of CŒx1; : : : ;xm�=I1 and CŒy1; : : : ;yn�=I2 is isomorphic to

(2) CŒx1; : : : ;xm;y1; : : : ;yn�„ ƒ‚ …
S

= .I1.x/;y1; : : : ;yn/„ ƒ‚ …
J1

\ .x1; : : : ;xm; I2.y//„ ƒ‚ …
J2

:

On the other hand, with notation as in (2), there is a short exact sequence

0! S=J1\J2! S=J1 �S=J2! S=J1CJ2 'C! 0;

which is exact in the middle because every element there can be represented as a pair
of polynomials in x only (resp. in y only), which is easy to lift.

We review [6, Proposition 2.1] for not necessarily reduced curves.

Lemma 2.13 A decomposable curve may be Gorenstein only if it is a node.
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Proof Let us assume that X is the decomposable union of X1 and X2.

Notice first that, if X is Gorenstein, then so are X1 and X2. Indeed, say we can find
.a1; : : : ; an/�mX a regular sequence such that OX 0DOX =.a1; : : : ; an/ is Gorenstein
of dimension zero, ie HomX 0.C;OX 0/ŠC (and all higher Ext groups vanish, which
is automatic by [54, Theorem 18.1]). Since mX DmX1

˚mX2
, this defines a regular

sequence in the latter as well, and OX1
˚OX2

=.a1; : : : ; an/ŠOX 0
1
˚OX 0

2
is an extension

of k with OX 0 . From this we see that dimC HomX 0
i
.C;OX 0

i
/D 1 for i D 1; 2, which

is to say that X1 and X2 are Gorenstein as well.

Now, X and X1 tX2 have the same normalisation zX, and

(3) ıX D ıX1
C ıX2

C 1:

On the other hand, O zX =OX � O zX =OX1tX2
implies that cX � cX1tX2

(as ideals
of O zX ). We claim that, if X is Gorenstein, the reduced curves underlying X1 and X2

are both smooth:

� If they are both singular, then cX1tX2
� mX1

˚mX2
D mX , so cX D cX1tX2

.
By Lemma 2.9, we obtain 2ıX D dimC.O zX =cX / D dimC.O zX =cX1tX2

/ D

2ıX1
C 2ıX2

, which contradicts (3).

� If X1 is singular and X2 smooth, (3) reduces to ıX D ıX1
C 1. On the other

hand, cX2
D OX2

, and the contradiction comes from 2ıX D dimC.O zX =cX /D

dimC.O zX =cX1
/D 2ıX1

.

Finally, since both underlying curves are smooth, we see from the definition of decom-
posability that

yOX DCŒŒx; �i ;y; �j ��=.xy;x�j ; �iy; �i�j ; �
mi

i ; �
nj
j /iD1;:::;h; jD1;:::;k :

If X1 and X2 are reduced, we recover the node. In all other cases, one can verify that
dimC Hom.C;OX /� 2 (it is generated by xy;x�

m1�1
1

; : : : ).

2.3.2 Isolated singularities Let .X;x/ be (the germ of) a reduced curve with a
unique singular point x, with normalisation � W zX !X. The following is a measure of
how much of the arithmetic genus of a projective curve is hiding in its singularities:

Definition 2.14 [67] If X has m branches at x, the genus of .X;x/ is

g D ı�mC 1:

The classification of isolated Gorenstein singularities of genus one has been carried out
by Smyth [67, Proposition A.3].
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Proposition 2.15 An .X;x/ of genus one with m branches is locally isomorphic to:

� mD 1 The cusp V .y2�x3/�A2
x;y .

� mD 2 The tacnode V .y2�yx2/�A2
x;y .

� m� 3 The union of m general lines through the origin of Am�1.

All of these singularities are smoothable. Choosing a one-parameter smoothing and
passing to a regular semistable model, the semistable tail, ie the subcurve contracted
to the singularity, admits a simple description: if we mark the semistable tail by the
intersection with the rest of the central fibre, then it is a balanced nodal curve of genus
one. This means that it consists of a genus one core — which can be either smooth, or
a circle of rational curves — together with some rational trees supporting the markings,
and the distance between a marking and the core — ie the length of the corresponding
rational chain — is independent of the chosen marking [67, Proposition 2.12].

The classification of isolated Gorenstein singularities of genus two has been carried
out by the first author [11, Section 2].

Proposition 2.16 The unique unibranch Gorenstein singularity of genus two is the
ramphoidal cusp or A4–singularity V .y2�x5/�A2

x;y . For every m� 2, there are
exactly two isomorphism classes of germs of isolated Gorenstein singularities of genus
two; see Table 1.

m type I type II

x1 D t1˚ 0˚ � � �˚ t3
m

x2 D 0˚ t2˚ � � �˚ t3
m

:::

xm�1 D 0˚ � � �˚ tm�1˚ t3
m

xm D 0˚ � � �˚ 0˚ t2
m

x1 D t1˚ 0˚ � � �˚ tm

x2 D 0˚ t2˚ � � �˚ t2
m

:::

xm�1 D 0˚ � � �˚ tm�1˚ t2
m

.y D 0˚ t3
2 if mD 2/

1 x5�y2 (A4)
2 x2.x

3
2
�x2

1
/ (D5) y.y�x3

1
/ (A5)

3 hx3.x1�x2/;x
3
3�x1x2i x1x2.x2�x2

1/ (D6)

�4
hxi.xj�xk/;xm.xi�xj /;x

3
m�x1x2i hx3.x

2
1
�x2/;xi.xj�xk/i

(i¤j¤k2f1; : : : ;m�1g) (1�i<j<k�m�1 or 1<j<k<i�m�1)

Table 1: The isolated Gorenstein singularities of genus two. The first row gives
the parametrisation; the second gives the equation(s) for different values of m.
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It is not hard to see that, for m � 3, every type I singularity is the union of a cusp
with m� 1 lines, and every type II singularity is the union of a tacnode with m� 2

lines; in each case, we refer to the components of the genus one subcurve as the special
branches.

The description of semistable tails is a bit more cumbersome, but enlightening: assuming
that the genus two core is smooth, the special branches are closer to the core and attached
to a Weierstrass point (resp. two conjugate points) in type I (resp. II); all other branches
are equidistant and further away from the core. In fact, the ratio between the length of
the special rational chain and the others is fixed to 1

3

�
resp. 1

2

�
in type I (resp. II). For a

more detailed statement when the core is not smooth, see [11, Propositions 4.3–4.6].

2.3.3 Nonreduced structures Multiple curves were investigated in the 1990s in
connection to Green’s conjecture [14]. Ribbons, in particular, were understood to arise
as limits (in the Hilbert scheme of Pg�1) of canonical curves, as the curve becomes
hyperelliptic [31].

Definition 2.17 A ribbon is a double structure on P1, ie a nonreduced curve R with
Rred D P1 defined by a square-zero ideal IRred=R that is a line bundle on Rred.

Example 2.18 There is only one ribbon of genus two, R2, up to isomorphism: it is
the first infinitesimal neighbourhood of the zero section in TotP1.O.3//. The short
exact sequence

0!IP1=R2
' OP1.�3/! OR2

! OP1 ! 0

is split by restricting the projection TotP1.O.3//! P1 to R2. R2 is therefore called a
split ribbon. In fact, all ribbons of genus at most two are split.

Automorphisms and moduli of multiple curves have been studied in [29]. We are going
to encounter nonreduced structures along singular curves as well.

Example 2.19 The simplest example of a Gorenstein nonreduced structure with
singular underlying curve is given by the union of a ribbon and a line along a double
point. Local equations are CŒŒx;y��=.x2y/. It is easy to see that, for such a curve to
have genus two, the ribbon needs to have ideal IP1=R ' OP1.�2/. Such a curve can
be realised in the linear system j2DCCF j on the Hirzebruch surface F2, where DC

denotes the class of the positive section and F the class of a fibre.
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Example 2.20 More generally, the union of a ribbon, R, with a rational k–fold point
along a double point (representing a generic tangent vector to the k–fold point) is
Gorenstein. Local equations are given by

CŒŒx1; : : : ;xk ;y��=.xixj ; .xi �xj /y/1�i<j�k :

To see that this is Gorenstein, it is enough to find a regular element � such that the
quotient is Gorenstein of dimension zero. Let � D

Pk
iD1 xi � y. The quotient A is

a graded finite-dimensional algebra, with A0 D C, A1 D Chx1; : : : ;xki and A2 D

Chx2
1
D � � � D x2

k
i, having one-dimensional socle A2.

Now we can obtain a Gorenstein projective curve of genus two, C, by gluing a ribbon
together with some ki–fold points (i D 1; : : : ; r ) at distinct (closed) points of the ribbon,
by iterating the local construction above. From the short exact sequence

0! OC ! OR˚

rM
iD1

O
˚ki

P1 !

rM
iD1

.Cki�1
˚CŒ��/! 0;

we can compute the Euler characteristic of R, whose structure sheaf thus satisfies

0! OP1.r � 3/! OR! OP1 ! 0;

depending only on the total number of “noded” points r and not on the number of
branches of each ki–fold point.

Definition 2.21 We call C as in Example 2.20 a .k1; : : : ; kr /–tailed ribbon of genus
two.

Remark 2.22 We can employ Noether’s formula (Proposition 2.6) and adjunction
(on a surface containing the ribbon, ie Tot.OP1.3� r//) to compute the restriction of
the dualising sheaf to every component of a .k1; : : : ; kr /–tailed ribbon C. First, the
“normalisation” is given by

CŒŒx1; : : : ;xk ;y��=.xixj ; .xi �xj /y/1�i<j�k!CŒŒs��Œ��=.�2/�CŒŒt1��� � � � �CŒŒtk ��

xi 7! .�; 0; : : : ; ti ; : : : ; 0/; i D 1; : : : ; k;

y 7! .s; 0; : : : ; 0/:

From this we compute the conductor cD hx2
1
; : : : ;x2

k
;yi. The restriction to a tail is

!C jT ' !T ˝O.2q/' OT :

The restriction to the P1 underlying the ribbon is

!C jRred ' !Rred ˝I _Rred=R
˝ c_Rred

' ORred.�2C .3� r/C r/' ORred.1/:
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g D 2

p1

Np1

p2

Figure 1: Dual graph of the central fibre of a regular semistable model for a
.2; 3/–tailed ribbon with p1 and Np1 conjugate.

For a nodal curve C with core Z, we say that a component D of C cleaves to q 2Z if
D is joined to Z at q through a chain of rational curves.

Lemma 2.23 Regular semistable models of a .k1; : : : ; kr /–tailed ribbon can be classi-
fied. If the core is a smooth curve of genus two , Z, the sets of tails fT i

1
; : : : ;T i

ki
giD1;:::;r

cleave to the same (or to conjugate) point(s) of Z, and are all equidistant from the core
(independently of i and j in T i

j ). The configuration of attaching points on Z is such
that the hyperelliptic cover maps it to the corresponding configuration of noded points
on Rred, up to reparametrisation.

Proof This is a word-by-word repetition of the argument of [11, Proposition 4.3].

See Figure 1 for an example of a semistable tail of a tailed ribbon.

Remark 2.24 The description of the semistable models of a .k1; : : : ; kr /–tailed ribbon
(Lemma 2.23) in case the former has reducible core is more cumbersome. Indeed,
the length of a tree depends on which component of the core it is attached to. See
Proposition 2.26 and Figure 2 for a precise description in terms of piecewise-linear
functions on the tropicalisation. A ribbon arises when the special component (which
we denote pictorially by a red dot) belongs to the core. The piecewise-linear function
then has constant slope 1 on any tree emanating from the core, and in this sense it is
reminiscent of the genus one situation.

Example 2.25 A semistable model of the 1–tailed ribbon C (Example 2.19) can be
computed by taking the pencil

u2
Cf1� tu2

�p5.f1; f2/D 0

on F2 �A1
t , with p5 a generic homogeneous polynomial of degree 5 in two variables.

The resulting smoothing family is singular at six points along the central fibre, including
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the node of C. After blowing them up and normalising, we obtain a genus two curve
covering the ribbon two-to-one; the tail of C is attached to a Weierstrass point. This
appears to be an accident due to the restriction that the smoothing comes from a pencil
on F2.

In order to describe semistable tails in complete generality, there is no better way than
expressing the problem in terms of existence of a certain piecewise-linear function
on the dual graph. We refer the reader to Sections 2.1.4 and 2.2 for background and
notation.

Proposition 2.26 Let C be a Gorenstein curve of arithmetic genus two. Let C !

� be a one-parameter smoothing of C. Let � W C ss ! C be a semistable model
with exceptional locus Z. Then , up to destabilising C ss, there exists a hyperelliptic
admissible cover  W C ss! T and a tropical canonical divisor � W @!R pulled back
along trop. / such that Z is cut out by OC ss.��/, and we have !C ss D ��!C .�/.

Proof The proof in the isolated case has appeared in [11, Section 4.4]. The argument
is insensitive to rational tails away from the core, so we may as well assume that C is
minimal (see Definition 2.29 below). In this case, the canonical linear series gives a
two-to-one map x W C ! P� .��!C /DW P. The general fibre is the hyperelliptic cover
of a smooth curve of genus two. Applying semistable reduction to the target and branch
divisor, we may lift x to a map of nodal curves, thanks to the properness of the moduli
space of admissible covers

C ss T

C P

�

 

�T

x 

The line bundles ��
T

OP .1/ and !T

�
1
2
DB

�
have the same total degree on T , so, since

the latter is a tree, their difference is associated to a piecewise-linear function �T on T.
Pulling back via C, on the other hand, we find

��!C D !C ss.�trop. /��T /:

For the reader’s benefit, Figure 2 provides a pictorial description of such piecewise-linear
functions in case the core is a genus two configuration of rational curves, including
the slopes along the nodes (or rational chains). This is where the admissible functions
of Section 3.2 originate from. The two columns correspond to the two maximally
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0
1
2 1

3
2

0
1
2 1 2

0
1
2 1 0

0
1
2 0

3
2

0
1
2

1
2 0

2 1

0

0

3
2 1

0

0

0 1

0

0

0

2 0

0

Figure 2: Admissible functions on maximally degenerated tropical hyper-
elliptic curves: the dumbbell (left) and the theta graph (right).
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degenerate (stable) tropical curves of genus two. Here, each red vertex corresponds
to a component mapping to a special component of the singularity/ribbon. Blue legs
represent branch points of the admissible cover. Tails are not drawn, but can be
understood by a tropical modification: the corresponding vertices would lie on trees of
slope 1 towards the core, all at the same height, and lower than each red vertex. See
also the conventions set out in Section 3.2.

Remark 2.27 The nonreduced structures of genus two are numerous; indeed, as
opposed to the case of isolated singularities, where the ı–invariant is always related to
the number of branches via the genus, in the nonreduced case a very large ı–invariant
can always be compensated by lowering the genus of the ribbon (which can be negative).

Yet, if we require !C � 0, we find a characterisation of tailed ribbons.

Proposition 2.28 Let C be a Gorenstein curve of genus two , consisting of a ribbon
glued in some way to a number of (possibly singular) rational curves. Assume that the
dualising sheaf is nonnegative , and positive on the ribbon. Then C is a .k1; : : : ; kr /–
tailed ribbon.

Proof We may assume that the normalisation sequence is

0! OC ! OR˚

rM
iD1

O
˚ki

P1 !

rM
iD1

Fi! 0;

where the Fi are sheaves supported at the gluing points; call ıi their lengths. We claim
that ıi � ki ; indeed, this is the minimum number of conditions that we need to impose
to ensure that the values of the functions on different branches agree at the preimage
of the singular point. But in fact we may even assume ıi � ki C 1, by the Gorenstein
assumption and Lemma 2.13.

Now it is easy to compute that, for the genus of C to be two, we need

IRred=R ' OP1

� rX
iD1

.ıi � ki/� 3

�
:

So, by applying Noether’s formula and adjunction as in Remark 2.22, we find

!C jRred ' !P1 ˝I _Rred=R
˝ .cjRred/

_
' OP1

�
1C

rX
iD1

.ki � deg.ci jRred/� ıi/

�
:
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We study the local contributions ki � deg.ci jRred/� ıi around each singular point. We
are then looking for Gorenstein subalgebras A of zADCŒŒs��Œ��.�2/�CŒŒt1���� � ��CŒŒtk ��.
By Corollary 2.7, we know that c is principal as an ideal of zA; up to rescaling the
generators, we may assume that c is generated by the element

.sc
C �sd ; t

c1

1
; : : : ; t

ck

k
/:

Indeed, under our assumptions, the degree of !C has to be one on Rred and zero on
every tail; thus, it is easy to see that c1 D � � � D ck D 2. Now, if d � c, then sc 2 c; if
d < c, then s2c�d 2 c. In the second case,

zA=cD h1; s; �; : : : ; �sd .D�sc/; sdC1; : : : ; sc�1; �sc�1.D s2c�d�1/I 1; t1I : : : I 1; tki:

In any case we find 2ıDdimC
zA=cD2cC2k (by Lemma 2.9), and ıiDki�deg.ci jRred/

for all i .

By assumption (that the reduced subcurve underlying R is smooth), we must have a
generator y of A whose linear part contains sC �p.s/. By Lemma 2.13 and t2

i 2 c,
there must be generators with nontrivial linear part in ti . Up to taking polynomial
combinations of these generators, we may assume they take the form

y D sC �p.s/; xi D �qi.s/˚ ti ; i D 1; : : : ; k;

where p and qi are monomial. Since 1C � Qp.s/ is invertible in zA, we may assume
that y D s. Furthermore, by looking at the conductor ideal, we see that for xi we may
assume qi.s/D qis

c�1, with qi 2C�. Up to blowing zA down (see Remark 2.5), we
may reduce to the case c D 1. Thus, we find the singularities of Example 2.20, with
local equations

CŒŒx1; : : : ;xk ;y��=.xixj ;xiy �xj y/1�i<j�k

and ideal sheaf IRred=R D ORred.r � 3/.

2.4 h1–vanishing

First we describe all the possible cores. Recall the following:

Definition 2.29 A curve is minimal if there is no proper subcurve of the same arithmetic
genus.

Remark 2.30 Up to replacing nodes with rational bridges, minimal curves of genus
one are either irreducible or elliptic m–fold points with rational branches (m� 2).
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Figure 3: Minimal theta and dumbbell configurations (dual graphs).

Proposition 2.31 Up to replacing nodes with rational bridges , a minimal Gorenstein
curve of genus two with isolated singularities is one of the following:

(1) Irreducible.

(2) The nodal union of two minimal curves of genus one (including a dumbbell
configuration of P1s; see Figure 3).

(3) A theta configuration of P1s (see Figure 3).

(4) A genus one singularity with a minimal genus one branch.

(5) A type I singularity with rational branches.

(6) A type II singularity with rational branches.

Lemma 2.32 With numbering as in the previous proposition , the dualising line bundle
of a minimal Gorenstein curve of genus two has

(4) degree 2 on the genus one branch , or on the common branch of the two elliptic
m–fold points;

(5) degree 2 on the special branch ;

(6) multidegree .1; 1/ on the special branches.

Proof This follows from Noether’s formula (Proposition 2.6) and an explicit calcula-
tion.

Now we describe sufficient conditions for the vanishing of higher cohomology of
a line bundle on a minimal curve of genus two. This will allow us to prove the
unobstructedness of the �–aligned admissible maps satisfying the factorisation property.
The proof of the following lemmas boils down to a simple albeit tedious application of
the normalisation exact sequence.

Lemma 2.33 Let C be a minimal Gorenstein curve of genus two with isolated sin-
gularities. A line bundle L on C having nonnegative multidegree , positive degree on
every subcurve of genus one , degree at least two and L¤ !C has vanishing h1.
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Lemma 2.34 Let C be a .k1; : : : ; kr /–tailed ribbon and L a nonnegative line bundle
on it. Then h1.C;L/D 0 if

� L has positive degree on at least two k–fold points; or

� L restricts to OP1.1/ on Rred (where R denotes the component of multiplicity
two), and it has positive degree on at least one k–fold point.

3 Gorenstein curves over aligned admissible covers

Definition 3.1 A weighted admissible cover consists of a hyperelliptic admissible
cover

 W .C;DR/! .T;DB/

with prestable target, together with a weight function w W V .@/!N, such that, with
the induced weight function wT W V .T/!N given by

wT .v/D
X

v02 �1.v/

w.v0/;

the rational tree T is weighted-stable (every weight zero component has at least three
nodes or branch points). We denote by A wt

2
the smooth Artin stack of weighted

admissible covers where C has arithmetic genus two.

3.1 The intuition and strategy

Our goal is to produce a morphism to a Gorenstein curve C ! C such that a line
bundle on C of degree as prescribed by the weight function w would have vanishing
higher cohomology. This would ensure the unobstructedness of the space of maps to
projective space.

Classically, we would look for a vertical divisor Z , supported on the exceptional locus
of C ! C, such that the contraction is associated to a line bundle of the form !C .Z/—
this guarantees that C is Gorenstein. Tropically, Z is replaced by a PL function � on @.
The relevant information encoded by � is a collection of slopes along the edges of @.
These are the objects of the stack Div, introduced in [53, Section 4.2].

Finding � such that !C .�/ is trivial on the exceptional locus of C ! C reduces to
a simple calculation of degrees — as opposed to a more complicated equality in the
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Picard group of a genus two curve — because we impose that � is pulled back from the
target of the admissible cover.

When the weight of the core is zero, basically any of the positive-weight tails can be
elected as the special branch of the Gorenstein singularity C, be it isolated or a ribbon.
The choice of � can be thought of as the choice of a degree one divisor (ie a point)
on the target of the admissible cover. The support of this divisor corresponds to the
special component of the singularity.

Given a standard tropical weighted admissible cover over R�0, the function � is
uniquely determined. It is a member of the tropical canonical linear series on the
maximal subcurve � � @ (making it into a level graph in the sense of [9]) such
that

� the interior �ı contains every subcurve of arithmetic genus g and w � 2g� 2;

� every connected component � of �ı has weight at most 2pa.�/�2, and � has
weight at least 2pa.�/� 1.

For a more general family of tropical curves, this determines a (polyhedral and sim-
plicial) subdivision of the base cone. In order to prove this, we actually define � by
interpolating among finitely many piecewise-linear functions, which we call admissible.
Our definition of admissible functions has been inspired by that of Bozlee’s mesa
curves [18, Section 3]. It could be said that it constitutes a Copernican revolution with
respect to [63].

When the special component has weight 2, if this represents the degree of a map, the
only possibility is that the map restrict on the core to the hyperelliptic cover of a line.
In this case, factorisation through the Gorenstein singularity is not enough to ensure
smoothability. If we again replace the core by a ribbon, imposing a second factorisation
requires the map to satisfy some ramification condition on the nearby branches, which
turns out to be sufficient for the obstructions to vanish.

In order to avoid complications (and nasty singularities) arising from nonfactoring
situations — ie when the core has weight 2, but it cannot possibly be the weight of
the dualising bundle of a Gorenstein singularity — we proceed in two steps: First, in
Section 3.2, we make sure that every subcurve of positive genus has positive weight.
Then, in Section 3.4, we discard the locus where the weight of the core is 1 or 1C 1.
After doing this, we can safely replace any weight two core with a ribbon. We sum up
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the construction of this and the next sections in the diagram of moduli spaces

VZ2;n.X /
zzA2.X / zA2.X /

fact zA2.X / M2.X /

zzA2
zA ı
2

zA2 Mwt
2

C zzC!C 00!C C zC!C 0!C C

� �

3.2 Admissible functions and aligned admissible covers

Let  W .C;DR/! .T;DB/ be a weighted admissible cover over S, endowed with
the minimal logarithmic structure. Let T denote the tropicalisation of the target. T is
therefore a weighted tree, metrised in the monoid MS . The metric structure can be
disregarded for the minute.

It follows from the Riemann–Hurwitz formula that the 1
2
Z–divisor, supported on the

vertices of T,

(4) D0.v/D val.v/� 2C 1
2

deg.DBjv/;

where val.v/ denotes the valence (number of adjacent edges) of the vertex v and
DB is the branch divisor of the cover, pulls back to the canonical divisor of @ (see
Section 2.1.4). The degree of D0 on T is 1.

Let D be another 1
2
Z–divisor of degree 1 on T. Since T is a tree, its Jacobian is trivial,

so any two divisors of the same degree are linearly equivalent (this carries over to
1
2
Z–divisors). Therefore, there exists a unique collection x�T of half-integral slopes on

the edges of T such that
D DD0C div.x�T /:

If D has integral coefficients, we observe that half-integral slopes may only appear
along edges over which trop. / has expansion factor two, so it is possible to think
of x�T as a piecewise-linear function on T with values in M

gp
S

, up to a global translation
of M

gp
S

. In fact, it may be more accurate to think of x�T as a PL function on the
tropicalisation of the orbicurve ŒC=S2�.

If D is effective, the pullback x� of x�T along trop. /, or, rather, the divisor K@Cdiv.x�/,
is an element of the tropical canonical linear system.
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Definition 3.2 Let S be a geometric point. An admissible function x� on @ is a
piecewise-linear function with integral slopes (with values in M

gp
S

, but defined only up
to a global translation by M

gp
S

) such that

� x� is the pullback along trop. / of a (possibly half-integral) x�T on T;

� K@C div.x�/� 0 defines an element of the tropical canonical system, which is
the pullback of an effective, degree 1 divisor D supported on exactly one vertex
of T.

We are going to call special the vertex of T supporting D, or its preimage(s) in @. With
an eye to the future, it will correspond to the special branch(es) of the Gorenstein curve
of genus two.

Remark 3.3 There are only finitely many admissible functions compatible with a
given  . Indeed, they are in bijection with the vertices of T.

When the core is maximally degenerate, ie a configuration of rational curves, all the
possible admissible functions are depicted in Figure 2. The red vertices represent the
ones supporting K@C div.x�/. Missing from the picture is what happens outside the
core, but this is easily explained: there may be any number of rational trees, on which
x� has constant slope 1 towards the core.

For the sake of concreteness, we now look at some examples, adopting the:

Convention 3.4 With the application to stable maps in mind, we think of the source of
an admissible cover as the destabilisation of a weighted-stable curve. In the following,
we represent a component of positive weight by a black circle, and a component of
weight zero by a white one, unless it is unstable (either a rational tail introduced as
the conjugate of a rational tail of positive weight, or a rational bridge introduced by
slicing @), in which case it is represented by a cross and the corresponding edge is dotted.
A red vertex represents the component supporting the divisor D, or its preimages in @.
The blue legs (B–legs) represent the branching divisor DB of  (see Definition 2.1):
the number of B–legs attached to a vertex v of T is the degree of DB \Tv , where Tv

is the irreducible component of T corresponding to v.

Example 3.5 Assume the core is irreducible of weight zero, and there are two tails
of (large) positive weight: one of them (R) is attached to a Weierstrass point of the
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Z
L

xL

2 R

gD 2

Figure 4: A weighted admissible cover with weight zero core.

core; the other one (L) is attached to a general point, so that a weight zero tail (xL)
must be sprouted from the conjugate point in order for the admissible cover to exist
(Figure 4). The tropical cover has expansion factor 2 (in grey) along the rightmost edge,
corresponding to the ramification order of the algebrogeometric map at each branch of
the node.

There are three admissible functions x�i compatible with the given weighted admissible
cover; see Figure 5.

Note that the pullback of D always has degree 2 — although the tropical cover is
injective on the rightmost edge, the expansion factor 2 provides the correct multiplicity.
It may be instructive to compute the multidegree of various tropical divisors on @—
we represent them as vectors in Z4 by ordering the components from left to right,
.xL;L;Z;R/:

div.x�i/ trop. /�D DK@C div.x�i/

(i) .1; 1;�3; 1/ .0; 0; 2; 0/

(ii) .1; 1;�5; 3/ .0; 0; 0; 2/

(iii) .2; 2;�3; 1/ .1; 1; 0; 0/

The canonical K@ gives .�1;�1; 5;�1/.

Definition 3.6 A prealigned admissible cover over a logarithmic scheme .S;MS / is
one for which the values

(5) fx�.v/�x�.v0/ j v; v0 2 V .@/g � .MS ;�/

are comparable for every admissible function x� compatible with  (Definition 3.2).

(i)

1
1

1

2 (ii)

1
1

3

2

(iii)

2
2

1

Figure 5: Admissible functions compatible with Figure 4.
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Prealigned admissible covers form a subfunctor of weighted admissible covers over
.LogSch/. The next lemma follows from the definitions and Section 2.1.2.

Lemma 3.7 The minimal logarithmic structure of a prealigned admissible cover is
obtained , starting from the minimal logarithmic structure of the admissible cover , by
adding in the elements of M

gp
S

indicated in (5) and sharpifying.

Remark 3.8 Aligning determines a subdivision † of the tropical moduli space � D
Hom.MS ;R�0/ or, equivalently, a logarithmic modification of A wt

2
, which will be

denoted by A
pre

2
. See Section 2.1.5.

Let  be a prealigned admissible cover, and fx�1; : : : ; x�sg the set of admissible functions
compatible with  . We are going to choose genuine PL functions �i on @ with values
in M

gp
S

lifting the x�i . A lift determines and is determined by the set of vertices
mapping to 0 in M

gp
S

; let us denote by @�0 (resp. @>0) the set of vertices with values
in MS �M

gp
S

(resp. MS nM �
S

; note that we may assume M �
S
D f0g). In the end, we

are going to define the object of interest as an interpolation/truncation of these lifts.

Definition 3.9 Let S be a geometric point. Define a lift �i 2 �.S; ��M
gp
C
/ of x�i by

requiring that w.@>0/� 0 and w.@�0/� 1.

Definition 3.10 Define a PL function on a subdivision z@ of @ by

�Dmaxf0; �1; : : : ; �sg:

We denote by �ı the support of � (appeared as @>0 before), and by � the minimal
subcurve of arithmetic genus two in z@ containing the closure of �ı.

Remark 3.11 Parallel to the above definition, we denote by �ı
T

the support of �T ,
and by �T the image of � under trop. /.

Since tropical linear systems are tropically convex (see Section 2.1.4), it is still true that
� is the pullback of a PL function �T (with slopes in 1

2
Z) on T, such that D0Cdiv.�T /

is an effective divisor of degree 1 on �T (notice that here, in the definition of D0, the
valence of a vertex is the one in �T and not the one in T). This is clear away from 0,
where � coincides with one of the admissible functions above; at 0, on the other hand,
all the slopes of �T are nonnegative, so the only doubt is for a vertex of valence 1

supporting exactly one B–leg; but such a vertex corresponds to a rational tail in �,
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so it can be included in �T only if the slope of �T along the unique adjacent edge is
strictly positive.

The divisor D DD0C div.�T / need not be supported on a vertex of T, and could be
the sum of two half-points in the locus over which trop. / has expansion factor 2.

Since by Riemann–Hurwitz we have trop. /�.D0/DK�,

(6) trop. /�.D/DK�C div.�/:

Lemma 3.12 On every cone of trop.A pre
2
/, � is well defined as a PL function on a

subdivision of @.

Proof For � to be well defined, we need to argue that, for every vertex v of @, the
values f�i.v/ j i D 1; : : : ; sg are comparable, and there is a unique way of subdividing @
in order to make � piecewise linear. Notice that, a priori, we only know that the values
of a single �i at the vertices of @ are ordered.

It is convenient to work on T. The leaves of T have positive weight due to stability, so
�T necessarily takes the value 0 on them.

In order to prove that the maximum is well defined at every vertex, we can proceed
inductively from the leaves and run through all of T. Assume that �T .v1/ has been
determined. We need to establish the behaviour of �T on the edge e between v1 and v2,
and its value on v2. Upon relabelling, we may suppose that �1 is the function with
maximal slope along e among the ones with �i.v1/D �T .v1/; so �T coincides with �1

in a neighbourhood of v1. If �1 is also the function of maximal slope along e among
all the admissible functions, then �T .v2/D �1.v2/, and we are done.

If not, there must be a function �2 with slope along e greater than that of �1 but
�2.v1/� �1.v1/. First assume that x�1 and x�2 differ only along e, ie D.�1; v2/D 1 and
D.�2; v1/D 1. Then there is a unique way to interpolate between �1 and �2 along e,
namely by solving the equations�

`.e/D `.e0/C `.e00/;

�2.v2/��1.v1/D s.�1; e/`.e
0/C s.�2; e/`.e

00/:

This uniquely determines the subdivision of e on which �T is piecewise linear, and the
values of �T on both v2 and the newly introduced vertex v1;2.

More generally, �1 and �2 will differ along the chain R connecting the support of D1

to that of D2, and containing the edge e. Then �2��1DD2�D1 is a rational function
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�2 < �1 D 0
11

D2

R2

v1

e1

R

v0 D01

ek

v2
R1

�1 < �2 D 0
12

D1

Figure 6: Comparison of �1 and �2.

with constant slope 1 along R. In order to define �T , we need to interpolate between
�1 and �2 along R; see Figure 6.

We will argue that this is possible because we can always inductively reduce to the
above case, for which we have an explicit formula for the interpolation.

We may assume that R2 has zero length, because changing �2 on R2 increases it
without affecting �2 � �1 (in the blue-shaded region), and similarly for R1.

Now let x�0
1

be the function that differs from x�1 only on the last edge ek of R. If
�0

1
.11/ D 0, then �0

1
� �1, so that we can instead compare �0

1
and �2, which is

possible by the inductive assumption. If instead �0
1
.11/ < 0, then �0

1
.10

1
/ D 0 for

some10
1

in the green-shaded region (since �0
1
< �1 on the complement). In fact, it

is easy to see that �0
1
.12/ D 0, so �2.v

0/ D �0
1
.v0/ < �1.v

0/, and we conclude that
�T interpolates between �1 and �2 (equivalently �0

1
) only along ek — which we have

already solved.

Remark 3.13 Over a geometric point, there is no obstruction to defining the lifts �i

of x�i . On the other hand, they are stable under generisation (edge contraction), because
the weight of @>0 stays the same, and the weight of @�0 can only go up. So both the
�i and � define sections of ��MC over any base S.

Definition 3.14 Let †0 be the subdivision of � D trop.A wt
2
/ determined by applying

universal semistable reduction [56, Theorem 2.4.2] to the morphism z@! � .

Let a W zA2! A wt
2

be the corresponding logarithmically étale model.
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l1

1

l2

3

1
2
.3eC 3l1� l2/

1
2
.3eC l1C l2/

e

1
2
.l2� l1� e/

m1
1

m2

1

1
2
.m1Cm2�f /

1
2
.f Cm1�m2/

f

1
2
.f Cm2�m1/

Figure 7: The two situations in which half-integral lengths occur.

It follows from the construction and from [56; 4] that there is a logarithmically smooth
curve zC! zA2, which is a partial destabilisation of a�C , such that z@ is its tropicalisation,
� 2 �. zC ;M zC / and all of its values at vertices of z@ are comparable.

Remark 3.15 †0 is neither finer nor coarser than the subdivision † previously defined
in Definition 3.6. It is not finer, because � is insensitive to the comparison of values
of �i below 0. It is not coarser, because cones of z@ do not map surjectively to cones
of †; see Example 3.39.

Notice also that a is not simply a logarithmic blow-up in general. Indeed, due to the
existence of some simplicial but not smooth cones in the subdivision, in order for the
lattice map to be surjective it may be necessary to perform a Kummer extension of the
base logarithmic structure [17, Section 4]:

MA �M zA �
1
2
M

gp
A ;

as prescribed by the subdivision z@ and the slopes of �; see Figure 7. This operation
should be thought of as a generalised root stack construction, or generalising the
presentation of a simplicial affine toric variety as the coarse moduli of ŒAn=G�, where
G is the finite abelian group encoding the difference between the two lattices at stake.
This is different from the genus one case (it has to do with the appearance of slopes
other than 1 in �), but it is nothing new with respect to [56].

Theorem 3.16 The moduli space zA2 of aligned admissible covers is a logarithmically
smooth stack with locally free logarithmic structure (and therefore smooth ) admitting a
log étale morphism to A wt

2
.

Proof The construction of the minimal logarithmic structure can be traced back to
Definition 3.14. The fact that it is locally free can be justified as follows: � provides us
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with a PL map from z@ to a polyhedral subdivision of R�0. The rank of the logarithmic
structure is the number of finite edges in the polyhedral subdivision of R�0. For every
level, there is at most one edge of z@ mapping to it with expansion factor strictly greater
than 1; the smoothing parameter corresponding to the said edge of z@ can be taken as a
generator of the minimal logarithmic structure.

Logarithmic smoothness follows from that of A wt
2

, since a W zA2!A2 is logarithmically
étale.

Finally, a scheme logarithmically smooth over the trivial log point is smooth if and
only if the stalks of its characteristic sheaf are locally free [58, Lemma 5.2].

3.3 Combinatorial properties of �

In the following, we work over the standard log point, so @ is a graph metrised in R.
To an open subcurve @� � @ there corresponds a proper subcurve C� �C ; for a closed
tropical subcurve, we take its algebrogeometric counterpart to be the closure of the
preimage under tropicalisation. By abuse of notation, we will refer to @� or to C�

interchangeably.

Lemma 3.17 Every component � of �ı has positive genus.

Proof Restricting (6) to �, we find

0� deg.trop. /�.D/j�/D 2pa.�/� 2C

hX
iD1

.1C s.�; ei//;

where e1; : : : ; eh are the edges outgoing from �. Since by assumption s.�; ei/� �1

for every i , we see that pa.�/ cannot be 0.

Lemma 3.18 If D D 1
2
.D1CD2/, then �.D1/D �.D2/D 0.

Proof Since by definition every �i has D supported on a single vertex, this situation
may only occur after interpolating with the zero function.

We first explain how to reduce to the path between D1 and D2. Consider an edge e of
�T outside this path, and denote by�� and�C the connected components of�T nfeg.
Assume that D is entirely supported on �C. Restricting (6) to ��, we find

0D val.��/� 2C 1
2

#DBj�� C div.�T j��/:

We notice that val.��/D 1 and that div.�T j��/ is simply the slope s of �T along e,
oriented away from ��. Then s D 1� 1

2
#DBj�� . Examining the restriction of (6)

to �C, we notice that it is unaltered by contracting e and all the edges in ��.

Geometry & Topology, Volume 27 (2023)



1242 Luca Battistella and Francesca Carocci

Assume by contradiction that �T .D1/ < �T .D2/. By the previous reduction, we may
assume that �T consists of the path between D1 and D2 only. By assumption, there
must be an edge e on this path along which �T has nonzero slope. Contract all the rest.
Once again by (6) it is easy to see that the slope can be 1

2
(resp. 1) from D1 to D2 if

and only if the distribution of B–legs is .2; 4/ (resp. .1; 5/). Now, in order to see the
half-points, the slope should be 1

2
; on the other hand, it has to be the slope of one of

the �i , and we notice that they have integral slope along e if the distribution is .2; 4/.
This is a contradiction, so we conclude that �T .D1/D �T .D2/. The value has to be 0

because half-points can only appear after interpolating with the zero function.

Corollary 3.19 In the situation of the previous lemma , let e be any edge of �T

between D1 and D2. Then each of the connected components of trop. /�1.�T n eı/

has genus one.

Proof Once we know that �T has slope 0 between D1 and D2, this follows from a
straightforward application of (6).

We can now make the following:

Definition 3.20 Let �1 denote the value of � on the special vertex/vertices.

Lemma 3.21 The subcurve @��1
is connected.

Proof Suppose that there are two connected components �1 and �2. Since @ is
path-connected, we can find an oriented path P from �1 to �2. The slope of � must
be negative at the beginning and positive at the end of P, so div.�/jP � 2. Restricting
(6) to P, we find

0D trop. /�.D/jP D 2pa.P /� 2C .div.�/jP C 2/;

or pa.P /� �1, which is a contradiction.

Lemma 3.22 The subcurve @��1
contains the core.

Proof Equivalently, pa.@��1
/D 2. This follows from inspection of Figure 2, but we

give a more formal argument; the following has been suggested by the referee. If �1D0,
there is nothing to prove, because @�0 D @, so let us assume that �1 > 0. Let @<�1;�
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g D 2
g D 1

Figure 8: The top level of � over D1 nD2.

be one of the h connected components of @n@��1
, let e1; : : : ; ek be the edges between

@<�1;� and @��1
, with positive slope s1; : : : ; sk . Restricting (6) to @<�1;�, we find

0D 2pa.@<�1;�/� 2C kC

kX
iD1

si ;

which holds if and only if pa.@<�1;�/D 0, k D 1 and s1 D 1.

Restricting (6) to @��1
we find

2D 2pa.@��1
/� 2C h�

hX
jDi

1;

which gives the desired result.

Corollary 3.23 When � is constant on @��1
, every positive genus subcurve of @��1

supports D. The possible shapes of @��1
are depicted in Figure 8.

Proof Let F be any positive genus subcurve on which �jF � �1. Restricting (6) to F,
we find

deg.trop. /�.D/jF /D 2pa.F /� 2C

kX
iD1

.1C s.�; ei//;

where e1; : : : ; ek are the edges from @nF to F. It follows from the assumption and the
proof above that the slope of � along any ei can only be 0 or �1. The only possibility
for deg.trop. /�.D/jF / to be zero remains that of a genus one curve with all outgoing
slopes �1. But then � would not be constant on @��1

.

By construction, there is always at least one vertex of positive weight on the boundary
of �ı

T
. We make some stronger statements that we will need below.

Lemma 3.24 Suppose that �ı is connected of genus two. If there is only one vertex
of positive weight on the boundary of �ı

T
, then it is the special one.
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Proof Let us call v1 the vertex in the statement. Observe that, by Lemma 3.18
and Corollary 3.19, there has to be a single point of T supporting D. We argue
by contradiction, showing that if v1 did not support D we could find a different
(interpolation of) admissible function(s) greater than �; but the latter is defined as the
maximum. Extend � with slope 1 outside �. Let v0 denote the first vertex of T (not
supporting D) encountered on the path from D to v1, and let `1 denote the distance
from D to v0. Consider the function �1 that is 0 from v1 to v0, has slope 1 from v0 to D,
and has value `1 on D and further away from v1; extend it to T by making it locally
constant outside the path from v1 to D. The function �C�1 > � should still be cut
at �C�1.v1/D 0, unless one (call it v2) of the vertices of positive weight beyond D

has distance `2 < `1 from @�T . In this case, let `2 denote the minimal such length.
Then consider the function �2 that has value `2 on D and beyond, and decreases with
slope 1 towards v1, until it reaches 0 (which happens before v0 since `2 < `1). We
observe that �C�2 > � should still be cut at �C�2.v1/D �C�2.v2/D 0, and it
has two vertices of positive weight on @�T (on two different sides of D). This is a
contradiction unless l1 D 0.

Example 3.25 Figure 9 illustrates the proof of Lemma 3.24 in one example. In these
pictures, the circle delimits the locus where � is positive. Outside the circle, � can be
extended with slope 1. Conjugate branches are not drawn; we leave it to the reader to
complete the picture as necessary.

In the left-most picture — which is the one we start our argument by contradiction
with — the values taken by � are

�.v1/D 0; �.core/D `; �.v0/D `�2`0DmC2`1; �.w/Dm; �.v2/D�`2;

where we have denoted by w the vertex supporting D (it might be arising from the
subdivision of an edge) and by m the distance from w to the circle.

Now we start “moving” D towards v1, as shown in the second picture from the left; if
`2 is long enough, D may reach v0 before v2 reaches @�T . The value of � stays the
same on the core, v1, v0 and v3, but it increases otherwise:

�.w/DmC `1; �.v2/D `1� `2:

We can keep pushing D towards v1 until either D reaches v1, or v2 reaches @�T ,
in which case we are no longer in the hypotheses of the lemma. These are the two
possibilities illustrated in the right-most pictures of Figure 9.
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v1
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Figure 9: A graphical proof of Lemma 3.24.

The following statements are byproducts of the proof given above:

Corollary 3.26 Suppose that �ı is connected of genus two. If D is supported on the
boundary of �ı

T
, the corresponding vertex has positive weight.

Corollary 3.27 Suppose that �ı is connected of genus two. If D is supported in �ı
T

,
then there is at least one vertex of positive weight on the boundary of �ı

T
on either side

of D.

Finally, we deal with a genus one situation.

Lemma 3.28 Let �ı
1

be a connected component of �ı of genus one. Then there is at
least one vertex of positive weight on its boundary.

Proof Let E1 denote the genus one core of �ı
1
. There is an admissible function x�i (at

least one) behaving like the distance from E1: it is the one with D supported on (any
vertex of) the other genus one subcurve E2 of @. Then the vertex of positive weight
closest to E1 can be at most as far as E2, because otherwise �ı would be connected
of genus two. Now � looks like �i in a neighbourhood of E1.

For the sake of concreteness, we notice that, in the situation of the above lemma,
either E2 is on the boundary of �ı

1
, supports D and has positive weight (essentially by

Corollary 3.26), or the path from E1 to E2 crosses the boundary of �ı
1

at a rational
vertex supporting 1

2
D, and proceeds with slope 0 in a neighbourhood.

3.4 The secondary alignment

Lemma 3.29 The locus V where w.�/ is 1, or it is 2 but supported on two non-
conjugate vertices of @, is closed in zA2.
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Proof The statement is of a topological nature. The loci where the combinatorial type
of @ is constant form a constructible stratification of zA2. By Noetherianity, it is enough
to check that the described locus is closed under specialisation for any trait, ie if we
have an edge contraction @s! @� such that the latter is in V, then the former must be
as well. This is easily checked.

Definition 3.30 Let zA ı
2

be the open substack of zA2 defined as the complement of the
locus V described in the previous lemma.

Definition 3.31 Let †00 be the subdivision of trop. zA ı
2
/ defined by

� formally contracting � to a point z;

� aligning the rest of the curve with respect to the distance from z.

Let . zA ı
2
/pre denote the corresponding logarithmic blow-up.

On zA ı
2

the weight of � is at least 2. If it is 2, it is supported on a single vertex v1

of �T . In this case, by Lemma 3.24, � has D supported on v1. By relabelling, assume
that x�1 was the admissible function (Definition 3.2) determined by having v1 as the
special vertex. By Lemma 3.22, the slope of x�1 is always 1 below the level of v1;
hence, the alignment of the previous definition makes sense. We extend � to reach the
next vertex of positive weight.

Definition 3.32 Let S be a geometric point of . zA ı
2
/pre, and suppose that w.�/D 2.

Let �0
1
2 �.S; ��MC / be the lift of x�1 determined by w.@>0/ � 2 and w.@�0/ � 3.

Let
Q�Dmaxf0; �01g:

Lemma 3.33 If a specialisation � s in . zA ı
2
/pre induces an edge contraction @s!@�

such that w.@s;�0/D 2 but w.@�;�0/� 3, then Q� generises to �.

Proof By Lemma 3.24, on the cone of trop. zA ı
2
/ corresponding to the point s, the

function � was a lift of x�1, with a cutoff at the first vertex v1 of positive weight. Extend-
ing it to the second vertex v2 of positive weight makes sense thanks to Definition 3.31.
When an edge contraction makes w.�/ grow, it means in particular that v2 and v1

become at the same height, so Q� coincides with the original �.
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This shows that Q� extends � as a well-defined (continuous) PL function on a subdivision
zz@ of z@ for any S–point of . zA ı

2
/pre, which we think of as an extension of � on certain

cones of trop.. zA ı
2
/pre/.

Definition 3.34 Let zzA2 denote the logarithmic blow-up of zA ı
2

induced by applying
universal semistable reduction to zz@! trop.. zA ı

2
/pre/.

Remark 3.35 The spaces . zA ı
2
/pre and zzA2 are analogous to, respectively, the space of

radially aligned and the space of centrally aligned logarithmic curves in [63].

Similarly to the previous section, we have the following result:

Theorem 3.36 The moduli space zzA2 is a logarithmically smooth stack with locally free
logarithmic structure (and therefore smooth ). There is a logarithmically smooth curve
zzC ! zzA2, which is a partial destabilisation of Qa�C , such that zz@ is its tropicalisation ,
Q� 2 �. zzC ;M zzC

/ and all of its values at vertices of zz@ are comparable.

3.5 Examples of subdivisions

In this section we collect a few examples to show what the subdivisions † and †0 of
a cone � 2 trop.A wt

2
/, the combinatorics of � on the various cones, and the associated

singularities in C look like. The construction of C will be carried out in the next section.

Example 3.37 See Figure 10. The stabilisation of C has smooth core of weight zero,
and two rational tails of high weight, one of which is attached to a Weierstrass point
(compare with Example 3.5). In this case, the subdivisions † and †0 coincide. Notice
that there is a simplicial nonsmooth cone �3; correspondingly, half edge-lengths occur
in a Kummer extension of M zA

.

Example 3.38 See Figure 11. The stabilisation of C has a smooth core of weight
zero, and three rational tails attached to general points. Aligning with respect to all the
admissible functions produces the nonsimplicial subdivision (a); the subdivisions (b)
and (c) are the coarsening in case of high-weight, respectively weight two, tails. We
also represent �T and the associated singularity on some cones of the subdivision; the
other ones can be derived by symmetry. In case (c) the singularity over �2 is replaced
by a (sprouted) ribbon.

Example 3.39 See Figure 12. The core of C consists of two elliptic curves of weight
zero, meeting in a node; each elliptic curve is attached to a high-degree rational tail.
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Figure 10: Tropical admissible cover (top left); the subdivision of trop.A wt
2 /

(bottom left); �T and the Gorenstein singularities (right).

Notice that the central cone �2 is not smooth; again, we need a Kummer extension
(half-lengths). We also remark that the hyperplane l1C l2 Dm does not come from
the alignment, but from the procedure of Definition 3.14.

3.6 The primary construction

We construct a universal morphism zC ! C over zA2, where C is a family of Gorenstein
singularities (both isolated and ribbons) with core of positive weight. We do so in two
steps: first, a contraction informed by �, producing a possibly non-Gorenstein curve.
The image in zA2 of the non-Gorenstein locus is contained in a divisor, which we name
D1 below. We complete the construction of C by gluing in a portion of  over this
locus, thus producing a nonreduced structure along the fibres.
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Figure 11: (a) Subdivision † (nonsimplicial). (b) Subdivision †0 for high-
degree tails. (c) Subdivision †0 for degree two tails.

Geometry & Topology, Volume 27 (2023)



1250 Luca Battistella and Francesca Carocci

l1

l1

l2

l2

m

l1 l22m
T1

T1

T2

T2

m

l1 l2

�1

�3 �2

�1

�2

�3�4

�1 W

1 1 1 1 T1 T2

�1 W

1
1 1

1

T1

T2

�2 W

1 1 1 1

1
2
.l1Cm� l2/

1
2
.l2Cm� l1/

T1 T2

�2 W

1

1

1

T1 T2

�3 W

1

1

1
2

l1�m� l2

mC2l2� l1

T1 T2

�3 W

1

1

2

T1

T2

�4 W

1

1

2

T1
T2

Figure 12: Tropical admissible cover (top left); the subdivision of trop.A wt
2 /

(bottom left); �T and the Gorenstein singularities (right).

Definition 3.40 Let �max denote the maximum value attained by � on @, and let
D � zA2 be the Cartier divisor determined by the ideal sheaf O zA .��max/ ,! O zA .

Definition 3.41 Recall from Definition 3.20 that �1 denotes the value attained by � at
the vertex(ices) supporting K�C div.�/. Let D1 � zA2 be the Cartier divisor cut by
the ideal sheaf O zA .��1/ ,! O zA .
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Note that �1 � �max implies D1 � D. By Lemma 3.22, the subcurve @��1
always

contains the core, so, in particular, pa.�
ı/ D 2 over D1. Ribbons will appear in C

precisely over D1.

Definition 3.42 Let D2 be cut by �max� �1, so that we have an exact sequence

0! OD2
.��1/! OD! OD1

! 0:

The Gorenstein curve C will have only isolated singularities over D2. They may have
genus one or two according to pa.�

ı/.

Definition 3.43 Let Z be the Cartier divisor on zC, supported over D, which is deter-
mined by the inclusion O zC .��/ ,! O zC .

Remark 3.44 Locally, we construct a line bundle on zC that is trivial on Z except
when it contains the special component, and relatively ample elsewhere, as follows.
We pick smooth disjoint sections p1; : : : ;p2d of zC according to the weight function,
namely so that #fi j pi 2

zCvg D 2w.v/. These sections exist only locally, but we will
show that our construction does not depend on this choice; therefore, it glues on the
whole of zA2.

Notation Let � W zC ! zC be the hyperelliptic involution. Let pi denote the multisection
pi C �.pi/, and p D

P
pi . We denote by L the line bundle ! zC = zA .p/.�/ on zC.

Theorem 3.45 The line bundle L is �–semiample. In the diagram

zC C 0 WD Proj zA2

�
��
L

k�0 L˝k
�

zA2

�

�
� 0

the morphism � 0 is a flat family of reduced , projective , Cohen–Macaulay curves of
arithmetic genus two , with Gorenstein fibres outside D1. Moreover , we can perform a
parallel contraction T ! T 0 so that  0 W C 0! T 0 remains finite. Neither C 0 nor T 0

depend on the choice of sections respecting the weight function , as per Remark 3.44.

Remark 3.46 L is symmetric under the hyperelliptic involution, ie it is pulled back
from the target of the admissible cover. Any weight zero branch appearing as the
conjugate of a rational tail (or bridge) of positive weight is therefore not contracted
under �. This ensures that C 0 remains “hyperelliptic”, ie it admits a double cover to a
rational curve, possibly with ordinary m–tuple points. As far as the factorisation of
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the stable map is concerned, all those unstable components of weight zero (different
from the special branches) do not interfere. We could have just as well carried out the
construction without symmetrising the line bundle.

Theorem 3.47 Let Z 0 denote the image of Z under �. Over D1, it is a flat family of
Gorenstein curves of arithmetic genus two , and the image of Z 0 under  0 is a rational
curve T 0Z . Let C be obtained as the pushout of

Z 0D1
C 0

T 0Z

 0

Then C ! zA2 is a flat family of projective , Gorenstein curves of arithmetic genus two.
Moreover , the weight of any subcurve of positive genus is at least one.

The proof of the two theorems above occupies the next two sections.

3.7 First step: the contraction

Lemma 3.48 For k � 2, R1��L
˝k is supported along D2. Moreover , it admits a

two-term resolution that remains such after pullback to a sufficiently generic base; in
particular , if f W S ! zA2 is a morphism such that OS .��max/! OS remains injective ,
then

f ���.L
˝k/! .�S /�.L

˝k
S
/

is an isomorphism.

Proof There are three things to show:

Support Since L˝k is flat on the base, by cohomology and base change it is enough
to show the vanishing of H 1. zCs;L

˝k/ for s 2 zA2 nD2.

By weighted stability, L is relatively ample outside of Z, and in particular over zA2 nD.

For s 2D nD2 we have 0¤ �1 D �max. We note that L � 0 and, by Corollary 3.23,
it has degree two on every positive genus subcurve of zCs . Then it is clear for degree
reasons that h1.L˝k/D 0 for k � 2.

Resolution Note first that the rank of R1��L
˝k is not constant along D2.

Indeed, D2 has two types of irreducible components:

� D2;1, where generically �ı has genus one, and R1��L
˝k has rank one;

� D2;2, where �ı has genus two, and R1��L
˝k has rank two.
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Figure 13: The generic points of D2;1\D2;2.

Away from their intersection, it is easy to find the desired local resolution

0! O˚2
U

�
e�max 0

0 e�max

�
����������! O˚2

U
! O˚2

D2;2\U
! 0

on U � zA2 a neighbourhood of a generic point of D2;2 (assuming �1 D 0), where
e�max denotes a local equation for D. Similarly,

0! OU
e�max
���! OU ! OD2;1\U ! 0

around a generic point in D2;1.

The intersection of D2;1 with D2;2 has two types of irreducible components; see
Figure 13. In order to obtain a local resolution, we adapt an argument of [40]. We
sketch it here for the reader’s benefit.

Locally on the base, there is a section p2dC1 such that !C .�/D OC .p2dC1/, where
p2dC1 D p2dC1C �.p2dC1/, and therefore L D OC

�P2dC1
iD1 pi

�
.

Again locally on the base, we may find disjoint generic sections A1, A2 and B such that
A1 and B pass through E1, and A2 passes through E2. Then L .A1CA2�B/ has van-
ishing h1 on fibres, and therefore, by cohomology and base change, ��L .A1CA2�B/

is a vector bundle. Locally, we can write ��L ' OU ˚ ��L .�B/, and the second
factor is the kernel of the evaluation map

��L .A1CA2�B/! ��.OA1
.A1/˚OA2

.A2//:

The evaluation map can be studied fibrewise, since both sheaves in question have
vanishing h1; moreover, the source can be decomposed into

��L .A1CA2�B/Š

2dC2M
iD1

��O.pi CA1CA2�B/;
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and the evaluation map can be studied componentwise:

evi;j W ��O.pi CA1CA2�B/! ��.OAj .Aj //; i D 1; : : : ; 2d C 2; j D 1; 2:

The cokernel of the latter is H 1.C;OC .pi CA2�j �B//. See [38, Section 4.2].

It follows from an argument similar to that of [38, Proposition 4.13] that the latter is
nonzero precisely when pi stays away from Ej ; therefore, in some local trivialisation
of the line bundles involved,

evi;j D ci;j

Y
q2Œpi ;Aj �

�q;

where ci;j 2 O�
U

, we denote by Œpi ;Aj � the set of nodes separating pi from Aj , and
�q 2 OU is the smoothing parameter of the node q. Thanks to the alignment,

� the smoothing parameter �2 of the node separating E2 from the component
supporting D divides all the expressions of the form evi;2 for i D 1; : : : ; 2dC2;

� if �1 denotes the smoothing parameter of the node separating E1 from E2, the
product �1�2 divides all the expressions of the form evi;1 for i D 1; : : : ; 2d C 2.

(Notice that �1 and �2 should be replaced by some products of smoothing parameters
when the curve degenerates.) We can therefore use the column of the evaluation matrix
associated to a marking pi (up to relabelling, i D 1) on the component supporting D

in order to put the matrix in triangular form. In order to diagonalise it, we need more
refined information, which we borrow from [40, Sections 2.6–2.7] and we restate here
in streamlined form:

Proposition (Hu, Li and Niu) The determinant of the matrix�
c1;1 cj ;1

c1;2 cj ;2

�
is invertible when the markings p1 and pj are not conjugate under  .

Since the component supporting D contains at least three markings (p1, p2dC1

and p2dC2), we can find two nonconjugate ones.

Summing up, the evaluation matrix can be put in the form�
�1 0

0 �1�2

�
(the remaining columns are zero). Noticing that D2;i Df�i D 0g for i D 1; 2, around the
given point, we have thus found the desired local resolution of R1��L

k . In particular,
it follows that ��L˝�2 is a vector bundle on zA2.
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Base change See the proof of [63, Lemma 3.7.5.3]. Note that the evaluation matrix
above is an explicit instance of the Grothendieck–Mumford complex for cohomology
and base change, and �1�2 D e�max is a local equation for D.

Proof of Theorem 3.45 This is analogous to [67, Lemma 2.13; 63, Proposition 3.7.6.1].
We recap for the reader’s convenience.

Flatness This is equivalent to ��L˝k being a vector bundle for k�0 [16, Tag 0D4D].

Basepoint-freeness That is, existence of the morphism �. This is clear outside D,
where L˝k is �–ample. Even on D, we have that L˝k is �–ample outside of Z .
Moreover, from the short exact sequence

0!L .��/˝k
!L˝k

!L j˝k
kZ ! 0

and the vanishing of R1��L .��/˝k (stability), it is enough to show that, for any
x 2 Z , there exists a section of ��L j˝k

kZ around �.x/ which does not vanish in x. By
definition of �, the line bundle L jZ is the pullback along  of a line bundle of degree
one and nonnegative multidegree on TZ ; the latter has enough sections.

Properties of the fibres This can be studied after base change to a generic trait � .
We may assume that the generic point corresponds to a smooth curve and the closed
point maps to D DD1[D2. Thus,

�� W C WD C� ! C 0� DW C
0

is a birational contraction satisfying ��OC DOC 0 . It follows that C 0 is a normal surface.
In particular, the central fibre is S1; it is also generically reduced, being birational to
that of C ; thus, it is reduced (and Cohen–Macaulay).

Finally, we want to argue that the fibres are Gorenstein outside D1. We may assume
that the special point of � maps to D2 nD1. Then L is trivial along Z, which is
therefore contracted to a codimension two locus Z0 of C 0. Outside of Z, � restricts to
an isomorphism. The equality of line bundles

OC 0.1/
�
�

X
pi

�ˇ̌̌
C 0nZ 0

D !C=� jCnZ D !C 0=� jC 0nZ 0 ;

together with the fact that !C 0=� is an S2 sheaf, shows that the latter coincides with
the line bundle OC 0.1/

�
�
P

pi

�
on the whole of C 0 (Hartogs’ theorem). Thus, C 0 is

Gorenstein over � .
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Compatible contraction of T This can be performed using the line bundle

!T .DB/.�T /. .p//;

whose pullback to zC is L .

Well-posedness The construction of C 0 and T 0 is independent of the choice of
markings respecting the weight function by birational rigidity [28, Lemma 1.15].

3.8 Second step: the pushout

Ribbons can be used to interpolate between isolated singularities over D1 — this is
completely natural from the point of view of piecewise-linear functions on the tropical
side, and serves as a correction of the failure of C 0 at being Gorenstein.

Recall that Z 0 was defined as the image of Z under �. First, we prove that the definition
of Z 0 commutes with base change to a generic trait; then, we will show that the pushout
construction commutes with such a base change, and thus we may reduce to the case
of surfaces in order to study the singularities of the fibres.

Proposition 3.49 Let Z 0 be the subscheme of C 0 defined by the ideal sheaf ��OC .��/

and supported on D. Then:

(1) R1��OC .��/D 0; in particular , ��OC .��/D Fitt.��OZ /.

(2) For every generic trait � �
�! zA with generic point mapping to the smooth

locus , the definition of Z 0 commutes with base change , ie ����OC .��/ D

���OC� .��/.

The analogous statements about T 0Z hold as well.

Proof The discussion has been somewhat inspired by [71, Section 1].

(1) Let Cs be a fibre on which �s is not an isomorphism; in particular, �s ¤ 0.
Working locally on the base, we can choose smooth and disjoint sections p1; : : : ;pd

of C respecting the weight function. It is enough to prove that R1��OC .��/.kp/D 0

for k� 0. Indeed, once we know the latter is vanishing, since � is an isomorphism
around p, we have that OC .kp/D ��OC 0.kp0/ and thus

0DR1��OC .��/.kp/DH 1.R��OC .��/.kp//

DH 1.R��OC .��/˝�
�OC 0.kp0//DR1��OC .��/˝OC 0.kp0/;

implying the desired vanishing.
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From the spectral sequence computing R� 0� ıR��, the five-term exact sequence

0!R1� 0���OC .��/.kp/!R1��OC .��/.kp/! � 0�R
1��OC .��/.kp/

ends there, because the next term would involve an R2� 0�.�/, which vanishes as the
fibre dimension is bounded by one.

Notice that if R1��OC .��/.kp/˝k.s/D0 for those s where �s is not an isomorphism,
so is � 0�R

1��OC .��/.kp/˝ k.s/.

On the other hand, R1��OC .��/.kp/ is a coherent sheaf supported on the closed locus
V 0 in C 0 over which the fibre of � has positive dimension. The latter is finite over zA,
and thus � 0�R

1��OC .��/.kp/˝k.s/D 0 implies R1��OC .��/.kp/˝k.x/D 0 for
each x 2 V 0s .

Since R1��OC .��/.kp/ satisfies cohomology and base change, the vanishing can be
checked after restricting to a fibre. Let Zs denote the support of �s , Ci the trees rooted
at the vertices of @�, and ei the first edges encountered in�ı. Taking the normalisation
of Cs at the nodes corresponding to the edges ei , we get

0! OCs
.��/.kp/! OZs

.��/˚
M

i

OCi
.��/.kp/!

M
i

Cei
! 0:

The evaluation map on the nodes ei is clearly surjective at the level of H 0, as the
line bundle restricted to Ci is very ample for k big enough, and the desired vanishing
follows from that of H 1.OZs

.��s//, which can be argued by the definition of � and
Serre duality.

(2) We know by Lemma 3.48 that the construction of C 0 commutes with the given
base change, so the following diagram is Cartesian:

C� C 0
�

C C 0

��

� � �0

�

Furthermore, since the source and target are smooth, � ,! zA is an LCI morphism, and
so are � and �0; it thus follows from [49, Corollary 2.27] that

L�0�R��OC .��/DR���L�
�OC .��/:

On the other hand, the higher pushforward vanishes by the previous point, so

R��OC .��/D ��OC .��/;
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1 1

. . .

1

g D 2

Figure 14: � at the generic point of D1.

and L��OC .��/D OC� .��/ because it is a line bundle; hence, the derived statement
is equivalent to what we want.

Proposition 3.50 The restriction of Z 0 to D1 is a flat family of Gorenstein curves
of genus two. Similarly , T 0Z is a flat family of Gorenstein curves of genus zero (ie at
worst nodal ).

Notice that C 0 is not always Gorenstein over D1; in particular, it can be the decompos-
able union of Z 0 with some lines. For the proof we need the following:

Lemma 3.51 D1 is a reduced divisor.

Proof D1 is a Cartier divisor in a smooth ambient space, so it is enough to check that
it is generically reduced.

The generic point of D1 looks like in Figure 14.

Therefore, a generic trait with uniformiser t will intersect D1 in .t/.

Proof of Proposition 3.50 We may change the base to a generic trait � with closed
point mapping to the given point of D1, ie

C C 0

�

�

� � 0

so C is a smooth surface, � is a birational contraction, which is an isomorphism outside
the divisor Z defined by IZ D OC .��/. Notice that there is a subcurve of Z on
which the line bundle defining the contraction is ample; therefore, Z0 � C 0 has pure
codimension one. We want to show that !Z 0 is a line bundle and that �.!Z 0/D 1 (or
equivalently pa.Z

0/D 2).

Recall that, by Grothendieck duality,

!Z 0 D E xt1
C 0.OZ 0 ; !C 0/DHomC .IZ 0 ; !C 0/jZ 0 :
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By adjunction for the Cartier divisor Z � C, there is a short exact sequence

(7) 0! !C ! !C .�/! !Z ! 0;

which stays exact after pushforward along � by Grauert–Riemenschneider vanishing
[46, Corollary 2.68]. By applying HomOC 0

.�; !C 0/ to the exact sequence

0! ��OC .��/! OC 0 ! OZ 0 ! 0;

we obtain the bottom row of the diagram

0 ��!C ��!C .�/ ��!Z 0

0 !C 0 HomC .��OC .��/; !C 0/ !Z 0 0

By Grothendieck duality (�� a �! and �!!C 0 D!C ) and the snake lemma, we conclude
that the vertical arrows are isomorphisms. This implies that !Z 0 is a line bundle if
��!C .�/ is. Since the sections p are away from Exc.�/, by construction

��!C .�/D OC 0.1/.��.p//

is a line bundle. We have thus proved that Z0 is Gorenstein.

Moreover, ��!Z D !Z 0 . Now, to prove that �.!Z 0/D 1, it is enough to prove that
�.!Z 0/D �.!Z /. Indeed, over D1, the definition of � and adjunction (7) show that
!C .�/ restricts to a line bundle of degree two on Z, which is therefore a curve of
genus two. Since ��OZ D OZ 0 , it is enough to prove the vanishing of R1��OZ . By
Proposition 3.49, R1��OZ 'R1��OC ; therefore, the desired statement is equivalent
to the fact the C 0 has rational singularities. This follows from ��!C D !C 0 ; see for
example [48]. We have thus proved that Z0 has genus two.

In order to prove the flatness of Z 0D1
!D1, it is sufficient to show that

� 0�.OZ 0D1

˝OC 0.n//

is a vector bundle on D1 for n large enough. Since D1 is a reduced divisor (Lemma 3.51),
we only have to show that its rank is constant along D1. It is easy to see that

OC 0.1/jZ 0D1

Š !Z 0D1

:

Since Z 0D1
is a curve of genus two, it follows from Riemann–Roch that

H 0.Z0s; !
˝n
Z 0s
/D 2n� 1;
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so it is enough to show that OC 0.1/jZ 0D1

satisfies cohomology and base change. For
this, we observe the short exact sequence

0 � 0�.��OC .��/˝OC 0.n// � 0�OC 0.n/ � 0�OC 0.n/jZ 0 0

��
�
!˝n
� .np/˝OC ..n� 1/�/

�Š

As C and C 0 are flat over the base, and both !�.p/ and OC 0.1/ are relatively ample,
the first two bundles satisfy cohomology and base change. It follows from a diagram
chase that so does the third. We have thus proved that Z 0 is flat on D1.

The statement about T 0Z can be proven in an analogous (but easier) fashion.

Proof of Theorem 3.47 Noticing that Z 0! T 0Z is finite, the existence of the pushout
as a scheme over zA2 follows from results of D Ferrand [30]. We have already proved
that the construction of C 0, Z 0 and T 0

Z
commutes with pullback to a generic trait. The

pushout does as well in virtue of [16, Tag 0ECK]. So, in order to prove that the fibres
of C are Gorenstein, we may work with fibred surfaces, in which case we may apply
some results of M Reid [65].

Following [65, Section 2.1], x� W C 0! C is the normalisation, with conductor

Ann.x��OC 0=OC /D Ann. �OZ 0=OT 0
Z
/:

Since  is a double cover, it is in particular flat, and  �OZ 0=OT 0
Z

is a line bundle; it
follows from [65, Proposition 2.2] that C is S2.

Moreover, we have seen in the proof of Proposition 3.50 that

!C 0.Z
0/DHomC 0.IZ 0 ; !C 0/

is a line bundle on C 0. Since  W Z0 ! T 0
Z

is a double cover of a rational curve, it
follows that the kernel of the canonical map  �!Z 0 ! !T 0

Z
is a line bundle as well.

The criterion of [65, Corollary 2.8(iv)] allows us to conclude that C is Gorenstein.

Finally, the statement about weights is obvious from the construction of � if its support
is connected. If there are two components of �ı, each of them necessarily of genus
one by Lemma 3.17, the statement follows from Lemma 3.28.
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3.9 The secondary construction

We restrict now to zzA2, defined in Definition 3.34. Thanks to the alignment, we have:

Definition 3.52 Let D2
1
� zzA2 be the logarithmic divisor where the weight of the

subcurve � determined by � is two.

The curve C j zzA2
will be manipulated further to insert ribbons over D2

1
. We could

descend the line bundle OC 0.1/ to C using the results of [30, Theorem 2.2] and proceed
from there. For simplicity we chose instead to work on zzC from Theorem 3.36, so that
the phrasing of the following two theorems is analogous to that of the main theorems
in Section 3.6. The proof goes along the same lines too, so we leave it to the reader to
figure out the details.

Let zL denote the line bundle ! zzC = zzA2
.p/.Q�/ on zzC, where p is a local multisection

compatible with the weight function; see the notation at the beginning of Section 3.6.

Theorem 3.53 The line bundle zL is Q�–semiample. In the diagram

zzC C 00 WD Proj zzA2

�
Q��
L

k�0
zL˝k

�
zzA2

Q�

Q�
� 00

the morphism � 00 is a flat family of reduced , projective , Cohen–Macaulay curves of
arithmetic genus two , with Gorenstein fibres outside D1 [D2

1
. Moreover , we can

perform a parallel contraction T ! T 00 so that  00 W C 00! T 00 remains finite. Neither
C 00 nor T 00 depend on the choice of local sections p.

Let zZ be the logarithmic divisor on zzC defined by O zzC .�
Q�/ ,! O zzC .

Theorem 3.54 Let Z 00 denote the image of zZ under Q�. Over D1 [D2
1

, it is a flat
family of Gorenstein curves of arithmetic genus two , and the image of Z 00 under  00 is
a rational curve T 00Z . Let C be obtained as the pushout of

Z 00D1[D2
1

C 00

T 00Z

 00

Then C ! zzA2 is a flat family of projective , Gorenstein curves of arithmetic genus two.
Moreover , the weight of the minimal subcurve of genus two is at least three.
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Remark 3.55 D1 and D2
1

do not intersect; thus, the flatness of Z 00 can be checked
independently on the two components. To this goal, we notice that OC 00.1/ restricts
to !Z 00D1

=D1
on Z 00D1

(as seen in the previous section) and to !˝3
Z 00D2

1
=D2

1
on Z 00D2

1

. The
pushout construction can be carried out independently on these two loci.

Remark 3.56 We could have extended � to Q� over the whole zA2 by choosing a
different cutoff level whenever w.�/ � 2. In this case, though, we would have had
to deal with the cases that the weight is 1, or 1C 1, or 2 but supported on a different
vertex than v. In these cases, the construction above produces singularities worse than
tailed ribbons. When there are two vertices in �ı on which L has positive degree, the
singularity looks like a chain of two ribbons on an underlying node, with local equations
CŒŒx;y��=.x2y2/. When there are three, if the contraction � acts nontrivially, there may
even be three ribbons with underlying curve an ordinary 3–fold point. We chose to
keep the singularities under control by discarding the bad locus in Definition 3.30. We
shall see below that this forces an intermediate step on us (which can actually have
some interest of its own), but it does not affect the end result.

3.10 Markings

To avoid overloading the notation and the exposition, we have so far considered only
weighted admissible covers without markings. However, with the application to stable
maps in mind, markings are necessary to impose cohomological constraints using the
evaluation maps. Our construction extends to the marked version essentially unchanged.
We can consider:

Definition 3.57 A weighted admissible cover with markings consists of�
 W .C;DR;x/! .T;DB;y D  .x//; w W V .@/!N

�
such that DR and x are separately disjoint (multi)sections of C, and T is weighted-
stable, ie every weight zero component has at least three special (marked, branch or
nodal) points. We denote the moduli space of weighted admissible covers with n

markings by A wt
2;n

.

Markings are represented by infinitely long legs on @. They play no role in the
alignment: admissible functions will have slope 1 along them, and the infinite legs will
be subdivided accordingly. In particular, if a marking is supported on a vertex of �ı,
then we may sprout (blow up) the marking as many times as is necessary for its strict
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transform to be supported on a vertex of @�. (In fact, only one blow-up is necessary if
it is allowed to be weighted.)

Theorem 3.58 There exists a logarithmically étale modification zA2;n!A wt
2;n

(resp.
zzA2;n! A wt

2;n
) parametrising weighted admissible covers with markings and a primary

(resp. secondary) alignment. The moduli space zA2;n (resp. zzA2;n) is a logarithmically
smooth stack with locally free logarithmic structure (and therefore smooth ).

In particular, the strict transform of the markings never touches the singularity.

Theorem 3.59 There is a diagram of flat families of projective , Gorenstein curves of
arithmetic genus two , with n corresponding disjoint sections of the smooth locus:

zC

C C

zA2;n

Qx

Moreover , the weight of every subcurve of positive genus in C is at least one.

Theorem 3.60 There is a diagram of flat families of projective , Gorenstein curves of
arithmetic genus two , with n corresponding disjoint sections of the smooth locus:

zzC

C C

zzA2;n

QQx

Moreover , the weight of the core of C is at least three.

4 A modular desingularisation of M2 ;n.P
r;d/main

4.1 Irreducible components

We draw the weighted dual graph of the general member of all possible irreducible
components of M2.P

r ; d/. Our running convention is that a white vertex corresponds
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to a contracted component, a grey one to a genus two subcurve covering a line two-to-
one, and a black vertex to a nonspecial subcurve. Vertices are labelled with their genus
and weight.

(1) Main is the closure of the locus of maps from a smooth curve of genus two.

(2) D.d1;:::;dk/ D

8̂<̂
: gD 2;d D 0

gD 0;d1

gD 0;dk

gD 0;d2

: : :

9>=>;.

(3) hypD.d1;:::;dk/ D

8̂<̂
: gD 2;d0 D 2

gD 0;d1

gD 0;dk

gD 0;d2

: : :

9>=>;.

(4) d0E .d1;:::;dk/ D

8̂̂<̂
:̂ gD 1;d0

gD 1,
d D 0

gD 0;d1

gD 0;dk

gD 0;d2

: : :

9>>=>>;.

(5) .d1;1;:::;d1;k1
/Ed0E .d2;1;:::;d2;k2

/

D

8̂̂<̂
:̂

gD 1,
d D 0

gD 0;d1;1

gD 0;d1;k1

gD 0;d1;2

gD 0;d0

gD 1,
d D 0

gD 0;d2;1

gD 0;d2;k2

gD 0;d2;2

: : :: : :

9>>=>>; :

(6) brDd0E .d1;:::;dk/ D

8̂̂<̂
:̂

gD 0;d1

gD 0;dk

gD 0;d2

: : :
gD 0;d0

gD 1,
d D 0

9>>=>>;.

This is taken from the first author’s PhD thesis [10], and is implicit in [40].

4.2 Factorisation through a Gorenstein curve

Definition 4.1 Let .X;OX .1// be a polarised variety, and ˇ 2HC
2
.X;Z/ an effective

curve class. The moduli space A2;n.X; ˇ/ of admissible maps to X is defined by the
fibre diagram

A2;n.X; ˇ/ M2;n.X; ˇ/

A wt
2;n

Mwt
2;n

�
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It can be described as a space of maps and admissible covers with the same source

.C;DR;x/ P r

.T;DB;  .x//

 

f

subject to the stability condition that, if � W C ! C is the hyperelliptic involution,

!C .x/˝f
�OX .2/˝ �

�f �OX .2/

is relatively ample.

If we set d D OX .1/ �ˇ, we can restrict to the component of the base where the weight
is d .

Remark 4.2 On the locus of maps from a smooth curve, A2;n.X; ˇ/!M2;n.X; ˇ/

is an isomorphism; therefore, for X D P r , the main components are birational.

Definition 4.3 Let zA2;n.X; ˇ/ denote the fibre product

zA2;n.X; ˇ/ A2;n.X; ˇ/

zA2;n A wt
2;n

�

We call it the moduli space of aligned admissible maps.

Remark 4.4 zA2;n.X; ˇ/ is logarithmically étale over A2;n.X; ˇ/. It comes with
universal structures

zC

C C X

T

p

Qf

f
 

Definition 4.5 Let zA2;n.X; ˇ/
fact� zA2;n.X; ˇ/ be the locus of maps such that Qf W zC!

X factors through a map Nf W C !X. We call it the moduli space of aligned admissible
maps satisfying the first factorisation property.

Remark 4.6 The map f need not factor through the admissible cover  .
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Proposition 4.7 zA2;n.X; ˇ/
fact � zA2;n.X; ˇ/ is a closed substack. If X is smooth ,

there is a perfect obstruction theory

.R�x�� Nf
�TX /

_
! L�

zA2;n.X ;ˇ/fact= zA2;n

endowing zA2;n.X; ˇ/
fact with a virtual fundamental class in Avdim. zA2;n.X; ˇ/

fact/,
where

vdim.VZ2;n.X; ˇ//D 3� dim.X /C n�KX �ˇ:

Proof For the first claim, we refer the reader to [63, Theorem 4.3]. The second claim
goes back to K Behrend and B Fantechi [15, Proposition 6.3].

Although zA2;n.P
r ; d/fact is not necessarily smooth, as it may still have a hyperelliptic

component, it can already be useful to the end of computing the invariants of a projective
complete intersection.

Lemma 4.8 If � WX ,! P r is a complete intersection of degree .l1; : : : ; lh/ (li � 2 for
all i ),

zA2;n.X; ˇ/
fact
� zA2;n.P

r ; ��ˇ/
fact

is cut out by a section of the vector bundle

E.l1;:::;lk/ D x��
Nf �
� hM

iD1

OP r .li/

�
:

In particular , the invariants satisfy the quantum Lefschetz hyperplane principle.

Proof Thanks to the last statement of Theorem 3.47, the pullback f �OP r .1/ has
degree at least one on any subcurve of positive genus. Then the degree has to be at
least two on the minimal subcurve of genus two in order for a nonconstant map to
exist. This implies that Nf �OP r .li/ has vanishing h1 along the fibres of C for li � 2.
Therefore, E.l1;:::;lk/ is a vector bundle by “cohomology and base change”. The virtual
statement follows as in genus zero from [45].

Lemma 4.9 The projection zA2;n.P
r ; d/fact! zA2;n factors through zA ı

2;n
.

Proof See Definition 3.30 for the notation. The key observation is that the only
(nonconstant) maps of degree two from a minimal Gorenstein curve of genus two are
those which factor through the hyperelliptic cover of a line. Hence, we may discard
the locus where the weight of � is two but (partly) supported away from D.

Thanks to this lemma we can make the following:
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Definition 4.10 Let zzA2;n.X; ˇ/ be the moduli space of admissible maps with a sec-
ondary alignment defined by the fibre diagram

zzA2;n.X; ˇ/ zA2;n.X; ˇ/
fact

zzA2;n
zA ı
2;n

�

This space comes with universal structures
zzC

C C X

T

Qp

QQf

f
 

Let VZ2;n.X; ˇ/ �
zzA2;n.X; ˇ/ be the locus of maps such that QQf W zzC ! X factors

through a map NNf W C ! X. We call it the moduli space of aligned admissible maps
satisfying the second factorisation property.3

Definition 4.11 Let evi W VZ2;n.X; ˇ/ ! X denote the evaluation map at the i th

marked point for i D 1; : : : ; n. Let ˛1; : : : ; ˛n 2H�.X / be cohomology classes on the
target manifold. The reduced genus two Gromov–Witten invariants are defined as

h˛1; : : : ; ˛ni
X ;red
2;ˇ;n

D

Z
ŒVZ2;n.X ;ˇ/�vir

ev�1 ˛1[ � � � [ ev�n ˛n:

Theorem 4.12 For d � 3, VZ2;n.P
r ; d/ is a desingularisation of M2;n.P

r ; d/main.

Proof Consider the factorisation

VZ2;n.P
r ; d/!Pic zA2;n

! zA2;n:

Obstructions to the first map can be found in H 1.C ;L/, where L D Nf �OP r .1/. If
there are two disconnected subcurves of genus one, the degree must be positive on
each of them by Theorem 3.59. On the other hand, if the core is a minimal subcurve of
genus two, it must have degree at least three by Theorem 3.60, and either the special
component has positive degree (at least two) by Corollary 3.26, or the special component
is a collapsed ribbon with at least two tails of positive degree by Corollary 3.27. It
follows from Lemmas 2.33 and 2.34 that the obstructions vanish.
3The notation is reminiscent of the celebrated desingularisation of M1;n.P

r ; d/main due to Vakil and
Zinger [76].
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Obstructions to the second map lie in H 2.C ;O/, which vanishes for dimension reasons.
The map is therefore unobstructed. The base is smooth by Theorem 3.36. We conclude
that VZ2;n.P

r ; d/ is smooth as well. Since it is proper and it contains the locus of
maps from a smooth curve as an open dense, VZ2;n.P

r ; d/!M2;n.P
r ; d/main is

birational (see Remarks 4.2 and 4.4).

Remark 4.13 A posteriori, we note that aligning and the factorisation property do not
alter the main component of M2.P

r ; 2/, which therefore is already smooth.
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