
GGG
G
G
GG

GGGG
G
G
GGGG T TT

T
T
TT

TTTTT
T
T
TT

T

Geometry &
Topology

msp

Volume 27 (2023)

A calculus for bordered Floer homology

JONATHAN HANSELMAN

LIAM WATSON





msp
Geometry & Topology 27:3 (2023) 823–924

DOI: 10.2140/gt.2023.27.823
Published: 8 June 2023

A calculus for bordered Floer homology
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We consider a class of manifolds with torus boundary admitting bordered Heegaard
Floer homology of a particularly simple form; namely, the type D structure may be
described graphically by a disjoint union of loops. We develop a calculus for studying
bordered invariants of this form and, in particular, provide a complete description
of slopes giving rise to L–space Dehn fillings as well as necessary and sufficient
conditions for L–spaces resulting from identifying two such manifolds along their
boundaries. As an application, we show that Seifert-fibred spaces with torus boundary
fall into this class, leading to a proof that, among graph manifolds containing a single
JSJ torus, the property of being an L–space is equivalent to non-left-orderability of
the fundamental group and to the nonexistence of a coorientable taut foliation.
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1 Introduction

This paper is concerned with developing Heegaard Floer theory with a view to better
understanding the relationship between coorientable taut foliations, left-orderable
fundamental groups and manifolds that do not have simple Heegaard Floer homology.
Recall that manifolds with simplest possible Heegaard Floer homology, calledL–spaces,
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824 Jonathan Hanselman and Liam Watson

are rational homology spheres Y for which dim cHF.Y /D jH1.Y IZ/j (all Heegaard
Floer–theoretic objects in this work will take coefficients in Z=2Z). On the other hand,
a group G is left-orderable if there exists a nonempty set P � G, called a positive
cone, that is a closed subsemigroup of G and gives a partition of the group in the
sense that G D P qf1gqP�1. This auxiliary structure is equivalent to G admitting
an effective action on R by order-preserving homeomorphisms. The work of Boyer,
Rolfsen and Wiest is a good introduction to left-orderable groups in the context of
three-manifold topology, including the interaction with taut foliations [4]; for closed,
orientable, irreducible, three-manifolds it is conjectured that being an L–space is
equivalent to having a non-left-orderable fundamental group; see Boyer, Gordon and
Watson [3]. This conjecture holds for Seifert-fibred spaces and, as a natural extension
of this case, graph manifolds are a key family of interest; see Boileau and Boyer [1],
Boyer and Clay [2], Clay, Lidman and Watson [5], Hanselman [8; 9] and Mauricio [21].
Towards establishing the conjecture for graph manifolds, we prove:

Theorem 1.1 Suppose that Y is a graph manifold with a single JSJ torus; that is , Y is
constructed by identifying two Seifert-fibred manifolds with torus boundary along their
boundaries. Then the following are equivalent :

(i) Y is an L–space.

(ii) �1.Y / is not left-orderable.

(iii) Y does not admit a coorientable taut foliation.

The equivalence between (ii) and (iii) is due to Boyer and Clay [2]; the focus of this
paper is understanding the behaviour of Heegaard Floer homology in this setting. To do
this, we make use of bordered Heegaard Floer homology, a variant of Heegaard Floer
homology adapted to cut-and-paste arguments. Briefly, this theory assigns a differential
graded module over a particular algebra to each manifold with torus boundary. A chain
complex for the Heegaard Floer homology of the associated closed manifold is obtained
from a pairing theorem due to Lipshitz, Ozsváth and Thurston [20].

Our approach to this problem is to work in a more general setting. We consider a
particular class of differential graded modules which we call loop-type (Definition 3.2),
and introduce a calculus for studying loops; the bulk of this paper is devoted to
developing this calculus in detail. Given a three-manifoldM with torus boundary, M is
called loop-type if its associated bordered invariants are loop-type up to homotopy
(Definition 3.13). Recall that a slope in @M is the isotopy class of an essential simple
closed curve in @M, and denote byM./ the closed three manifold resulting from Dehn

Geometry & Topology, Volume 27 (2023)



A calculus for bordered Floer homology 825

filling along a slope  . The set of slopes may be (noncanonically) identified with the
extended rationals Q[

˚
1
0

	
. Of central interest is the subset LM consisting of those

slopes giving rise to L–spaces after Dehn filling. We prove:

Theorem 1.2 (detection) Suppose that M is a loop-type rational homology torus.
Then there is a complete , combinatorial description of the set LM in terms of loop
calculus. In particular , LM may be identified with the restriction to Q [

˚
1
0

	
of a

connected interval in R[f1g. Moreover , if M is simple loop-type , this interval has
rational endpoints.

We remark that this is the expected behaviour from the foliations/orderability vantage
point, at least for graph manifolds. It is interesting that the analogous behaviour on
the Heegaard Floer side appears to be intrinsic to the algebraic structures that arise.
Namely, this is a statement that makes sense for loop-type bordered invariants, without
reference to any three-manifold. The introduction of the technical notion of a simple
loop (Definition 4.20) also allows us to state and prove a gluing theorem. Let LıM
denote the interior of LM .

Theorem 1.3 (gluing) Suppose that M1 and M2 are simple loop-type rational homol-
ogy tori and neither is solid torus-like. Then , given a homeomorphism h W @M1! @M2,
the closed manifold M1[hM2 is an L–space if and only if , for every slope  in @M1,
either  2 LıM1

or h./ 2 LıM2
.

Note that Theorem 1.3 does not hold if eitherM1 orM2 is a solid torus. IfM1 is a solid
torus with meridian mD @D2 � fptg, then, according to the definition of an L–space
slope, M1[hM2 is an L–space if and only if h.m/ 2 LM2

; equivalently, the statement
of Theorem 1.3 holds if we use LMi

in place of LıMi
. When both M1 and M2 are solid

tori, this simply amounts to the construction of lens spaces interpreted in our notation.
More generally, however, there are bordered invariants that arise in the loop setting
that behave just like solid tori with respect to gluing. We will need to deal with these
explicitly; this amounts to defining a class of manifolds and loops which are referred
to as solid torus-like (Definition 3.20).

Theorems 1.2 and 1.3 follow from working with loops in the abstract. Towards the
proof of Theorem 1.1, and in the interest of establishing an existence result, a key class
of loop-type manifolds is provided by Seifert-fibred spaces.

Theorem 1.4 Suppose M is a rational homology solid torus admitting a Seifert-fibred
structure. Then M has simple loop-type bordered Heegaard Floer homology.
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826 Jonathan Hanselman and Liam Watson

Let N denote the twisted I–bundle over the Klein bottle, and recall that the rational
longitude � for this manifold with torus boundary may be identified with a fibre in a
Seifert structure over the Möbius band. As a Seifert-fibred rational homology solid
torus, N is a simple loop-type manifold; compare [3]. The twisted I–bundle over the
Klein bottle allows for an alternative detection statement for L–space slopes.

Theorem 1.5 (detection via the twisted I–bundle over the Klein bottle) Suppose that
M is a loop-type rational homology torus. Then  2 LıM if and only if N [hM is an
L–space , where h.�/D  .

This answers a question of Boyer and Clay in the case of connected boundary; compare
[2, Question 1.8]. In particular, our notion of detection aligns precisely with the
characterization given by Boyer and Clay [2]. Indeed, we prove that, more generally,
the twisted I–bundle over the Klein bottle used in Theorem 1.5 may be replaced with
any simple loop-type manifold for which every nonlongitudinal filling is an L–space;
see Theorem 7.3. There are many examples of these provided by Heegaard Floer
homology solid tori; for more on this class of manifolds, see Hanselman, Rasmussen
and Watson [12, Section 1.5].

Note that the interior of LM , denoted by LıM , is the set of strict L–space slopes. The
complement of LıM , according to Theorem 1.5, corresponds to the set of non-L–space
(NLS) detected slopes in the sense of Boyer and Clay [2, Definition 7.16].

According to Theorem 1.4, the exterior of any torus knot in the three-sphere gives an
example of a simple loop-type manifold (indeed, this follows from work of Lipshitz,
Ozsváth and Thurston [20]). More generally, ifK is a knot in the three-sphere admitting
an L–space surgery (an L–space knot), then S3X�.K/ is a simple loop-type manifold.
In this setting it is well known that LM is (the restriction to the rationals of) Œ2g�1;1�,
where g is the Seifert genus of K, whenever K admits a positive L–space surgery.
Specializing Theorem 1.3 to this setting, we have:

Theorem 1.6 Let Ki be an L–space knot and write Mi D S
3 X �.K/ for i D 1; 2.

Given a homeomorphism h W @M1! @M2, the closed manifoldM1[hM2 is a L–space
if and only if h.LıM1

/[LıM2
ŠQ[

˚
1
0

	
.

Note that this solves [2, Problem 1.11] by resolving (much more generally and in the
affirmative) one direction of [9, Conjecture 1] (a special case of [2, Conjecture 1.10]
or [5, Conjecture 4.3]). It should also be noted that, owing to the existence of hy-
perbolic L–space knots, Theorem 1.6 provides additional food for thought regarding
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[2, Question 1.12]. Namely, one would like to know if the order-detected/foliation-
detected slopes in the boundary of the exterior of an L–space knot K coincide with
the complement of LıM , where M D S3 X �.K/. For integer homology three-spheres
resulting from surgery on a knot in S3, there has been considerable progress in this
vein; see Li and Roberts for foliations [18], Boileau and Boyer for left-orders [1], and
also Hedden and Levine for splicing results [14].

Related work

Nonsimplicity is somewhat sporadic; however, it can be shown explicitly that nonsimple
graph manifolds exist. On the other hand, it is clear from examples that certain graph
manifolds with torus boundary do not give rise to loop-type bordered invariants, at least
not in any obvious way. These subtleties seem particularly interesting when contrasted
with the behaviour of foliations and orders: for more complicated graph manifolds,
more subtle notions of foliations and orders (relative to the boundary tori) need to
be considered [2]. On the other hand, it is now clear from work of Rasmussen and
Rasmussen [27] that simplicity (for loops) is more than a convenience: the class of
simple loop-type manifolds is equivalent to the class of (exteriors of) Floer-simple knots;
see Hanselman, Rasmussen, Rasmussen and Watson [10, Proposition 6] in particular. As
a result, Theorem 1.3 may be recast in terms of Floer-simple manifolds [10, Theorem 7].
This observation gives rise to an extension of Theorem 1.1 to the case of general graph
manifolds; this is the main result of a joint paper of the authors with Rasmussen
and Rasmussen [10], illustrating a fruitful overlap between these two independent
projects. We note that the methods used by Rasmussen and Rasmussen are different
from those used in our work. They appeal to knot Floer homology instead of bordered
Heegaard Floer homology. This leads to somewhat divergent results and emphasis:
while Rasmussen and Rasmussen give a clear picture of the interval of L–space slopes
in terms of classical invariants, our machinery is better suited to gluing results.

Structure of the paper

Section 2 collects the essentials of bordered Heegaard Floer homology and puts in
place our conventions. In particular, the definitions of L–space and strict L–space
slope are found here.

Section 3 is devoted to defining loops and loop calculus. This represents the key tool;
loop calculus provides a combinatorial framework for studying bordered Heegaard
Floer homology. Note that we define and work in an a priori broader setting of abstract
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828 Jonathan Hanselman and Liam Watson

loops. It seems likely that many of the loops considered do not represent the type D
structure of any bordered three-manifold. This calculus is applied towards two distinct
ends: detection and gluing.

Section 4 gives characterizations of L–space slopes and strict L–space slopes in the
loop setting. In particular, we prove Theorem 1.2. The proof of the second part of
this result — identifying the set of L–space slopes as the restriction of an interval with
rational endpoints — requires a detailed study of non-L–space slopes. While interesting
in its own right, this fact is essential to the gluing results that follow.

Section 5 proves Theorem 1.3 by first establishing the appropriate gluing statements
for abstract loops. The section concludes with a complete characterization of L–
spaces resulting from generalized splices of L–space knots in the three-sphere, proving
Theorem 1.6.

Section 6 turns to the study of loop-type manifolds. We describe an algorithm for
constructing rational homology sphere graph manifolds by way of three moves, and
determine the effect of these moves on bordered invariants. Using this, we establish
a class of graph manifold rational homology tori, subsuming Seifert-fibred rational
homology tori, for which we now have a complete understanding of gluing in Heegaard
Floer homology according to the material in the preceding two sections.

Section 7 collects all of the forgoing material in order to prove our main results. This
section includes the proofs of Theorems 1.4 and 1.5, and from these results we prove
Theorem 1.1.

Addendum: additional context and further developments

This paper was first posted to arXiv on August 22, 2015. In the intervening years there
have been many closely related developments, depending on or growing directly out of
this project. In hopes that this aids the present-day reader while maintaining the paper
in its original form, we will expand on these here.

As described at the start of the paper, the genesis for this work was an interest in
understanding the so-called L–space conjecture in the presence of an essential torus
[2; 3]. While a comprehensive list of references detailing the support for this conjecture
now seems too long to compile, we point to Dunfield [6] for more recent computational
evidence. Theorem 1.1 provided a first step towards establishing the conjecture for
graph manifolds. Indeed, the synchronous work of Rasmussen and Rasmussen [27]
provided a key result that allowed the “simple loop-type” hypothesis to be replaced by
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“Floer-simple”; then the proof of Theorem 1.1, which is the focus of Section 7, provides
the scaffold used in our four-author project to establish theL–space conjecture for graph
manifolds in full [10]. (Note that S Rasmussen gave a different, independent proof [28].)

One idea that is central to this work, but perhaps somewhat hidden from view, is the
following: given a property of a bordered invariant that is unchanged under Dehn twists,
one obtains a property associated with a three-manifold. This is used in Section 3, where
we establish our class of interest, namely loop-type three-manifolds; see Definition 3.13.

Our strategy, at the beginning of this project, was to ignore the pathology of possible non-
loop-type manifolds — based on empirical evidence that such manifolds never arose.
The result of this, on the one hand, was the presence of an annoying technical assumption,
but, on the other, provided the correct lens through which to view the bordered invariants
for a manifold with torus boundary. Indeed, on completing this project and [10], it
became clear that bordered invariants, subject to the loop-type condition, could be
interpreted as immersed curves in a once-punctured torus. Moreover, gluing could now
be stated in terms of Lagrangian intersection Floer homology in a once-punctured torus,
giving rise to a gluing theorem that was then best-possible: Theorem 1.3 is restated
for Floer-simple manifolds in [10, Theorem 7], and then further upgraded to loop-type
manifolds with no simplicity hypothesis at all in the initial arXiv version of [11].

When viewed in these terms, loop calculus can be extended to general bordered in-
variants, giving rise to a graphical interpretation of the box tensor product in terms of
intersections between train tracks — these latter are immersions of the graphs considered
in this paper into the torus. Combined with new work of Haiden, Katzarkov and
Kontsevich [7], this indicated that in the general setting our curves should carry local
systems, which provides a means of handling graphs that cannot be converted to curves.
So, once interpreted in the bordered setting, the loop-type hypothesis is simply the
restriction to the trivial local system case. This is explained in detail in [12]. Note that
it remains unclear what the role local systems play in general is — we are still not aware
of an explicit example. (It is worth noting that local systems do play a role in Khovanov
homology, which admits an analogous immersed curves description for decompositions
along Conway spheres; see Kotelskiy, Watson and Zibrowius [16].) Nevertheless, these
are easy to manage in practice, and up to minor modifications proofs go through. In
particular, an alternative graphical approach to our work in Sections 4 (compare [11,
Section 5]) and 5 (compare [11, Section 6]) now exists.

Despite these advances, however, it remains the case that, given a bordered invariant,
one needs an algebrocombinatorial tool in order to work with and/or feed it into a
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830 Jonathan Hanselman and Liam Watson

computer. And, indeed, some operations are still only manageable using the tools
described here. This is the case for annular gluing, for example, as this uses the “merge”
described in Section 6, which can be adapted to the non-loop-type setting (that is, to
handle nontrivial local systems). This is explained in more recent work, and, as an
application, we establish a complete description of the effect of cabling on bordered
invariants for knots in S3 in terms of immersed curves in [13]. The proofs depend on
the merge operation and loop calculus in an essential way.

As described in Section 3, then, “loop calculus” is meant to describe the tools needed to
study bordered invariants for manifolds with torus boundary. In particular, we view this
calculus as a toolkit for studying type D structures over the torus algebra in general.
With hindsight, this is a viable algebrocombinatorial machinery for working with
objects in the Fukaya category of the once-punctured torus. This was our attempt to
standardize the seemingly ad hoc techniques that appear in earlier work of the authors;
see [3; 9], for example.
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2 Background and conventions

We begin by briefly recalling the essentials of bordered Heegaard Floer homology; for
details see [20]. We restrict attention to compact, orientable three-manifolds M with
torus boundary. Let F denote the two-element field.

2.1 Bordered structures

A bordered three-manifold, in this setting, is a pair .M;ˆ/ where ˆ W S1 �S1! @M

is a fixed homeomorphism satisfying ˆ.S1 � fptg/ D ˛ and ˆ.fptg � S1/ D ˇ for
slopes ˛ and ˇ in @M satisfying �.˛; ˇ/D 1. Recall that a slope in @M is the isotopy
class of an essential simple closed curve in @M or, equivalently, a primitive class
in H1.@M IZ/=f˙1g. The distance �. � ; � / is measured by considering the minimal
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geometric intersection between slopes; thus, the requirement that �.˛; ˇ/D 1 ensures
that the pair f˛; ˇg, having chosen orientations, forms a basis for H1.@M IZ/.

As a result, any bordered manifold .M;ˆ/ may be represented by the ordered triple
.M; ˛; ˇ/, with the understanding that .M; ˛; ˇ/ and .M; ˇ; ˛/ differ as bordered
manifolds (that is, these represent different bordered structures on the same underlying
manifold M ). We will adhere to this convention for describing bordered manifolds as
it makes clear that bordered manifolds come with a pair of preferred slopes.

Definition 2.1 For a given bordered manifold .M; ˛; ˇ/, the slope ˛ is referred to as
the standard slope and the slope ˇ is referred to as the dual slope.

2.2 The torus algebra

The torus algebra A is generated (as a vector space over F ) by elements

�0; �1; �1; �2; �3; �12; �23; �123

with multiplication defined by

�1�2 D �12; �2�3 D �23; �1�23 D �123 D �12�3

(all other products �I�J vanish) and

�0�1 D �1 D �1�1; �1�2 D �2 D �2�0; �0�3 D �3 D �3�1;

so that �0C �1 is a unit. Denote by I the subring of idempotents in A generated by
�0 and �1. This algebra has various geometric interpretations; see [20]. The bordered
Heegaard Floer invariants of .M; ˛; ˇ/ are modules of various types over A, as we now
describe.

2.3 Type D structures

A (left) type D structure over A is an F–vector space N equipped with a left action of
the idempotent subring I so that N D �0N ˚ �1N, together with a map

ı1 WN !A˝I N

satisfying a compatibility condition with the multiplication on A [20]. The compatibility
ensures that the map

@ WA˝I N !A˝I N; a˝ x 7! a � ı1.x/;
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promotes A˝N to a left differential module over A (in particular, @2 D 0), where
a � .b˝ y/ D ab˝ y. While we will generally confuse type D structures and their
associated differential modules, the advantage of the type D structure is in an iterative
definition

ık WN !A˝k˝I N;

where ıkC1 D .idA˝k ˝ı1/ ı ık for k > 1. The type D structure is bounded if all ık

are identically zero for sufficiently large k.

Given a basis for N, this structure may be described graphically. An A–decorated graph
is a directed graph with vertex set labelled by f�; ıg and edge set labelled by elements
of A consistent with the edge orientations. The labelling of the vertices specifies the
splitting of the generating set according to the idempotents, while the edge set encodes
the differential. For example, the A–decorated graph

�

ı ı

�3 �1

�23

encodes the fact that there is a single generator x in the �0–idempotent with ı1.x/D
�1˝uC�3˝v (or @.x/D �1uC�3v). The higher maps in the typeD structure can be
extracted from following directed paths in the graph; for example, in the graph above
we have ı2.x/D �3˝ �23˝u. By convention we drop the label on edges labelled by
the identity element of A.

An A–decorated graph determines a type D structure with respect to a particular basis.
In general we do not have a preferred choice of basis and we care about type D
structures only up to homotopy equivalence, so there are many A–decorated graphs
which we should deem to be equivalent. Choosing a different basis for N leaves the
vertex set unchanged and changes the arrows in a predictable way; for example, the
basis change replacing x with xC y adds an arrow out of the vertex labelled by x for
each arrow out of the vertex labelled by y, and an arrow into the vertex labelled by y
for each arrow into the vertex labelled by x. We can also replace an A–decorated graph
with one for a homotopy equivalent type D structure by using edge reduction (or its
inverse) as described for example by Levine [17, Section 2.6]. Briefly, any segment of
a graph of the form

� ı ı �
�I �J

may be replaced by a single edge

� �
�I�J

Geometry & Topology, Volume 27 (2023)
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where the edge is simply deleted if the product �I�J vanishes (we have chosen specific
vertex labelling for illustration only). Again, we follow the convention that an unlabelled
edge represents an edge labelled by the identity element of A. Note that, by repeatedly
cancelling such edges, we may always find a graph with no unlabelled edges.

Definition 2.2 An A–decorated graph is reduced if no edge is labelled by the identity
element of A.

It turns out that any two A–decorated graphs for homotopy equivalent typeD structures
can be related by a sequence of basis changes and edge reductions or insertions.

Given a bordered three-manifold .M; ˛; ˇ/, Lipshitz, Ozsváth and Thurston define a
type D structure bCFD.M; ˛; ˇ/ over A that is an invariant of the bordered manifold up
to quasi-isomorphism [20]. As explained above, we will sometimes regard this object
as a differential module over A. This invariant splits over spinc structures of M ; that
is,

bCFD.M; ˛; ˇ/D
M

s2Spinc.M/

bCFD.M; ˛; ˇI s/:

Note that Spinc.M/ can be identified with H 2.M/'H1.M; @M/.

2.4 Type A structures

A (right) type A structure over A is an F–vector space M equipped with a right action
of the idempotent subring I so that M DM�0˚M�1, together with maps

mk�1 WM ˝I A˝k!M

satisfying the A1 relations; see [20]. That is, a type A structure is a right A1–module
over A. A type A structure is bounded if the mk vanish for all sufficiently large k.
Given a bordered three-manifold .M; ˛; ˇ/, Lipshitz, Ozsváth and Thurston define a
type A structure bCFA.M; ˛; ˇ/ over A that is an invariant of the bordered manifold up
to quasi-isomorphism.

There is a similar graphical representation for type A structures. Indeed, owing to a
duality between type D and type A structures for three-manifolds, bCFA.M; ˛; ˇ/ may
be deduced from the graph describing bCFD.M; ˛; ˇ/ by appealing to an algorithm
described by Hedden and Levine [14]. This algorithm takes subscripts 1 7! 3 and
3 7! 1 while fixing 2, with the convention that a conversion of the form 23 7! 21 must
be parsed as 2; 1 (this example is shown below, as it occurs in the conversion of the
sample graph shown previously). In this type A context, sequences of directed edges
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must be concatenated in order to obtain all of the multiplication maps. For example,
labelling the generators as before, the graph

�

ı ı

�1 �3

�2;�1

encodes operations m2.x; �3/D v, m2.x; �1/D u and m3.u; �2; �1/D v, as well as
m3.x; �12; �2/D v.

2.5 Pairing

Consider a closed, orientable three-manifold Y decomposed along a (possibly essential)
torus so that Y DM1[hM2 for some homeomorphism h W @M1! @M2. If h has the
property that h.˛1/Dˇ2 and h.ˇ1/D˛2, then we will write this decomposition as Y D
.M1; ˛1; ˇ1/[ .M2; ˛2; ˇ2/. The reason for this convention is to ensure compatibility
with the paring theorem established by Lipshitz, Ozsváth and Thurston [20]. In
particular, they prove thatcCF.Y /Š bCFA.M1; ˛1; ˇ1/� bCFD.M2; ˛2; ˇ2/;

where cCF.Y / is a chain complex with homology cHF.Y /. As a vector space over F,
this chain complex is generated by tensors (over I 2 A) of the form x˝I y, where
x 2 bCFA.M1; ˛1; ˇ1/ and y 2 bCFD.M2; ˛2; ˇ2/, with differential

@�.x˝I y/D

1X
kD0

.mkC1˝ id/.x˝I ı
k.y//;

which is a finite sum provided at least one of the modules in the pairing is bounded.

As a particular special case, consider the pairing theorem in the context of Dehn filling.
Given a three-manifoldM with torus boundary, writeM.˛/ for the result of Dehn filling
M along the slope ˛; that is, M.˛/D .D2 �S1/[hM, where the homeomorphism h

is determined by h.@D2 � fptg/D ˛. In particular,cCF.M.˛//Š bCFA.D2 �S1; l; m/� bCFD.M; ˛; ˇ/;

where mD @D2 � fptg. In this context, any choice of slopes l dual to m and ˇ dual
to ˛ will do, since the family .D2�S1; lCnm;m/ are all homeomorphic as bordered
manifolds. This is due to the Alexander trick; the Dehn twist along m in @.D2 �S1/
extends to a homeomorphism of D2 �S1.
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Since every bordered manifold is equipped with a preferred choice of slopes, it will be
important to distinguish between the two Dehn fillings along these slopes.

Definition 2.3 Let .M; ˛; ˇ/ be a bordered three-manifold. The standard filling is the
Dehn filling

M.˛/D .D2 �S1; l; m/[ .M; ˛; ˇ/

(that is, m 7! ˛) and the dual filling is the Dehn filling

M.ˇ/D .D2 �S1; m; l/[ .M; ˛; ˇ/

(that is, m 7! ˇ).

It is easy to compute cHF of these two fillings from bCFD.M; ˛; ˇ/. There is a represen-
tative of bCFA.D2 �S1; `;m/ which has a single generator x with idempotent �0 and
operations of the form m3Ci .x; �3; �23; : : : ; �23; �2/D x, where there are i � 0 copies
of �23. It follows that cCF.M.˛// is generated by the �0–generators of bCFD.M; ˛; ˇ/
with a differential coming from any chain of the form

� ı ı ı ı� � � �
�3 �23 �23 �2

Similarly, bCFA.D2 � S1; m; `/ has a representative with a single generator y with
idempotent �1 and operations of the form m3Ci .y; �2; �12; : : : ; �12; �1/ D y, where
there are i �0 copies of �12. It follows that cCF.M.˛// is generated by the �1–generators
of bCFD.M; ˛; ˇ/ with a differential coming from any chain of the form

ı � � � �� � � ı
�2 �12 �12 �1

More generally, given .M; ˛; ˇ/, we would like to compute cHF.M.// for any slope 
expressed in terms of ˛ and ˇ. In particular, we will always make a choice of orientations
so that ˛ �ˇDC1, resulting in slopes of the form  D˙.p˛Cqˇ/2H1.@M IZ/=f˙1g.
As is familiar, the fixed choice f˛; ˇg gives rise to an identification of the set of slopes
and the extended rational numbers yQ WDQ[

˚
1
0

	
. Our convention is that the slope

p˛C qˇ is identified with p=q 2 yQ. We will return to a detailed description of the
pairing theorem for an arbitrary Dehn filling in the next section, since the following
definition will be of central importance:

Definition 2.4 An L–space is a rational homology sphere Y for which dim cHF.Y /D
jH1.Y IZ/j. An L–space slope is a slope  in @M for which the result of Dehn filling
M./ is an L–space. For anyM with torus boundary, let LM denote the set of L–space
slopes in @M.

Geometry & Topology, Volume 27 (2023)



836 Jonathan Hanselman and Liam Watson

We will need to distinguish certain L–space slopes. To do this, consider the natural
inclusion

yQ ,! yRDR[
˚
1
0

	
arising from orienting the basis slopes so that ˛ � ˇ D C1, and endow yQ with the
subspace topology. With this identification, LM � yQ.

Definition 2.5 The set of strict L–space slopes, denoted by LıM , is the interior of the
subset LM .

Recall that, if a; b 2 yQ, then the subsets .a; b/ \ yQ and Œa; b� \ yQ are open and
closed, respectively, in yQ. By abuse, we will write simply .a; b/ and Œa; b� with the
understanding that these describe subsets of yQ.

A key example to consider is that of the exterior of a nontrivial knot K in S3, with
M D S3 X �K. In this case it is well known that, if M admits a nontrivial L–space
filling, then LM is either Œ2g � 1;1� or Œ1; 1 � 2g� relative to the preferred basis
consisting of the knot meridian � (corresponding to 1=0) and the Seifert longitude �
(corresponding to 0), where g denotes the Seifert genus of K. Notice that � and
.2g� 1/�C� are nonstrict L–space slopes by definition. On the other hand, if K is
the trivial knot then M ŠD2�S1 and LM D LıM D yQXf0g since these are precisely
the fillings that give lens spaces.

Every bordered manifold comes with a preferred identification of the set of slopes
with yQ; in particular, the notation p=q 2 L.M; ˛; ˇ/ should be understood to mean
the slope ˙.p˛ C qˇ/ 2 LM . We will adhere to this convention, and use the two
interchangeably where there is no potential for confusion.

2.6 Gluing via change of framing

In the interest of determining the set LM we will need a means of describing any
slope  in @M in terms of a fixed basis of slopes f˛; ˇg. Suppose .M; ˛; ˇ/ is given;
we would like to calculate cHF.M.p˛C qˇ//. Then, according to the pairing theorem,cCF.M.p˛C qˇ//Š bCFA.D2 �S1; m; l/� bCFD.M; r˛C sˇ; p˛C qˇ/;

where
�
q p
s r

�
2 SL2.Z/. Notice that pD 0 recovers a chain complex for the dual filling.

Fixing a basis so that
�
1
0

�
represents the standard slope and

�
0
1

�
represents the dual

slope, notice that the Dehn twist along ˛ carrying ˇ 7! ˛Cˇ is encoded by the matrix�
1 1
0 1

�
. Call this the standard Dehn twist and denote it by Tst. Similarly, the Dehn twist

along ˇ carrying ˛ 7! ˛Cˇ is encoded by the matrix
�
1 0
1 1

�
. Call this the (negative)
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dual Dehn twist and denote it by T �1du . Associated with each Dehn twist is a mapping
cylinder and to this Lipshitz, Ozsváth and Thurston assign a bimodule. Bimodules are
defined similarly to type D and type A structures, except that there are two separate
actions which may each be either type D or type A, so that bimodules can have type
DD, DA, AD or AA; see [19]. For the Dehn twists T˙1st and T˙1du , we use yT˙1st

and yT˙1du to denote the corresponding type DA bimodules.1

We can take box tensor products of bimodules or of a module and a bimodule by
pairing one type D action with one type A action. The convention is that type D
actions are always left actions while type A actions are always right actions, and since
the sidedness of the actions is unambiguous we will use the ordering of modules in
a product to indicate which actions are involved. That is, for (bi)modules N and M
we will understand N �M to mean the result of pairing the last action on N with the
first action on M, even if the former is a left action and the latter is a right action. In
practice this will be clear from the context.

Given an odd-length continued fraction expansion p=q D Œa1; a2; : : : ; an�, we obtain a
decomposition according to Dehn twists,�

q p

s r

�
D

�
1 1

0 1

�an

� � �

�
1 0

1 1

�a2
�
1 1

0 1

�a1

:

The bordered manifold .M; r˛Csˇ; p˛Cqˇ/ is obtained from .M; ˛; ˇ/ by attaching
the mapping cylinder of a homeomorphism h with representative h� D

�
q p
s r

�
, and so

bCFD.M; r˛C sˇ; p˛C qˇ/Š yT an
st � � � �� yT �a2

du � yT a1
st � bCFD.M; ˛; ˇ/;

where yT nst D
yTst � � � �� yTst„ ƒ‚ …

n

.

More generally, given bordered manifolds .M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/, we can
calculate

bCFA.M; ˛1; ˇ1/� bCFD.M; r˛2C sˇ2; p˛2C qˇ2/

by considering a homeomorphism h as above. This gives a complex computing cHF.Y /,
where

Y ŠM1[hM2 Š .M1; ˛1; ˇ1/[ .M2; r˛2C sˇ2; p˛2C qˇ2/

and h W @M1! @M2 is specified by

˛1 7! r˛2C sˇ2; ˇ1 7! p˛2C qˇ2:

1In the notation of [19, Section 10], we have yTst D1CFDA.�m/ and yTdu D1CFDA.��1
`
/.
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With these gluing conventions in place, we make an observation that will be of use in
the sequel:

Proposition 2.6 Given type D modules N1 and N2, let N 01 D yT
n

st �N1 and N 02 D
yT �ndu �N2 for some n 2 Z. There is a homotopy equivalence

N1� 1CFAA.I/�N2 ŠN
0
1� 1CFAA.I/�N 02;

where 1CFAA.I/ is the type AA identity bimodule.

Remark 2.7 The type AA identity bimodule is defined in [19] and, in particular,
gives rise to bCFA.M; ˛; ˇ/Š1CFAA.I/� bCFD.M; ˛; ˇ/. This observation leads to the
algorithm described in Section 2.4.

Proof of Proposition 2.6 The right-hand side of the claimed equivalence can be
written as

. yT nst �N1/� 1CFAA.I/� yT �ndu �N2:

The DA–bimodule yTst is homotopy equivalent to the AD–bimodule

1CFAA.I/� yTdu � 1CFDD.I/:

To see this, note that the Heegaard diagram for Tst D �m in [19, Figure 25] can be
obtained from the Heegaard diagram for Tdu D �l by rotating 180 degrees. Thus the
right side above simplifies to

N1� .1CFAA.I/� yTdu � 1CFDD.I//n� 1CFAA.I/� yT �ndu �N2

ŠN1� 1CFAA.I/� yT ndu � yT �ndu �N2

ŠN1� 1CFAA.I/�N2:

Remark 2.8 If N1 D bCFD.M1; ˛1; ˇ1/ and N2 D bCFD.M2; ˛2; ˇ2/, the homotopy
equivalence above corresponds to the fact that, with the gluing conventions described
above,

.M1; ˛1; ˇ1/[ .M2; ˛2; ˇ2/Š .M1; ˛1; ˇ1Cn˛1/[ .M2; ˛2Cnˇ2; ˇ2/

for any n 2 Z.

2.7 Grading

We conclude this discussion with a description of the relative .Z=2Z/–grading on the
bordered invariants, summarizing the discussion in [9, Section 2.2]. For more details
and developments, see [15; 26]
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The torus algebra A may be promoted to a graded algebra by defining gr.�1/ D
gr.�3/D 0 and gr.�2/D 1, and extending according to gr.�I�J /� gr.�I /C gr.�J /
reduced modulo 2 (we will always drop this reduction from the notation). In particular,
the grading is 1 on all the remaining nonzero products �12, �23 and �123.

The relative .Z=2Z/–grading on elements x of a type D structure is determined by

gr.�I � x/� gr.�I /C gr.x/ and gr.@x/� gr.x/C 1:

In particular, given a connected A–decorated graph this relative grading is determined
by choosing the grading on a given vertex, and then noting that only edges labelled by
�1, �3 or the identity element of A alter the grading.

The relative .Z=2Z/–grading on elements x of a type A structure is determined by

gr.mkC1.x; �I1
; : : : ; �Ik

//� k� 1� gr.x/C
kX

jD1

gr.�Ij /:

Notice that, given a typeD structure with a choice of relative grading, a relative grading
on the associated typeA structure is obtained by switching the grading of each generator
with idempotent �0.

If Y Š .M1; ˛1; ˇ2/[.M2; ˛2; ˇ2/, choices of relative .Z=2Z/–gradings on each of the
objects bCFA.M1; ˛1; ˇ2/ and bCFD.M2; ˛2; ˇ2/ give rise to a relative grading on cCF.Y /
via the pairing theorem and the rule gr.x˝y/Dgr.x/Cgr.y/. This agrees with the usual
relative .Z=2Z/–grading on cCF.Y /, so that, in particular, j�.cCF.Y //j� jH1.Y IZ/j for
any rational homology sphere Y. At the level of homology, it follows immediately that
Y is an L–space if and only if every generator of cHF.Y / has the same grading. More
generally, the rule gr.x˝y/D gr.x/C gr.y/ determines the relative .Z=2Z/–grading
on tensor products involving bimodules.

Where required, we will make use of an additional marking on the vertices of an A–
decorated graph by f�C; ��; ıC; ı�g to indicate a choice of relative .Z=2Z/–grading
on the underlying differential module. In addition, given a type D structure N with a
choice of relative .Z=2Z/–grading, we define the idempotent Euler characteristics

��.N /D �.�0N/ and �ı.N /D �.�1N/:

Note that �� and �ı are well defined on homotopy classes of type D structures, since
changing the basis of N leaves the vertex set of the corresponding graph unchanged
and edge reduction removes a pair of �–vertices or a pair of ı–generators with opposite
gradings.
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The following lemma records how �� and �ı change under reparametrization of the
boundary:

Lemma 2.9 Let
�
q p
s r

�
2 SL2.Z/. Then

˙�� bCFD.M; r˛C sˇ; p˛C qˇ/D r�� bCFD.M; ˛; ˇ/C s�ıbCFD.M; ˛; ˇ/;

˙�ıbCFD.M; r˛C sˇ; p˛C qˇ/D p�� bCFD.M; ˛; ˇ/C q�ıbCFD.M; ˛; ˇ/:

Here the˙ choice depends on the choice of absolute .Z=2Z/–grading on bCFD.M; ˛; ˇ/
and bCFD.M; r˛C sˇ; p˛C qˇ/.

Proof This is true when r D q D 1 and s D p D 0. Assuming the claim is true for
given r , s, p and q, we check that it is true when p and q are replaced by pC r and
qC s by examining the effect of the standard Dehn twist. The relevant bimodule yTst is
pictured in Figure 2. It has three generators: one pairs with �0–generators to produce
�0–generators, one pairs with �1–generators to produce �1–generators, and one pairs
with �0–generators to produce �1–generators. All three generators have the same relative
.Z=2Z/–grading; we will assume they have grading 0. It follows that

�� bCFD.M; r˛Csˇ; .pCr/˛C.qCs/ˇ/D ��. yTst � bCFD.M; r˛Csˇ; p˛Cqˇ//

D �� bCFD.M; r˛Csˇ; p˛Cqˇ/

D r�� bCFD.M; ˛; ˇ/Cs�ıbCFD.M; ˛; ˇ/;

�ıbCFD.M; r˛Csˇ; .pCr/˛C.qCs/ˇ/

D �ı. yTst � bCFD.M; r˛Csˇ; p˛Cqˇ//

D �ıbCFD.M; r˛Csˇ; p˛Cqˇ/C�� bCFD.M; r˛Csˇ; p˛Cqˇ/

D .pCr/�� bCFD.M; ˛; ˇ/C.qCs/�ıbCFD.M; ˛; ˇ/:

Similarly, we check the claim for when r and s are replaced with r �p and s� q by
considering the dual Dehn twist bimodule yTdu (pictured in Figure 4). This bimodule
has three generators with relative .Z=2Z/–gradings 0, 0 and 1: the first pairs with
�0–generators to produce �0–generators, the second pairs with �1–generators to produce
�1–generators, and the third pairs with �1–generators to produce �0–generators. It
follows that

�� bCFD.M; .r�p/˛C.s�q/ˇ; p˛Cqˇ/

D��. yTdu � bCFD.M; r˛Csˇ; p˛Cqˇ//

D�� bCFD.M; r˛Csˇ; p˛Cqˇ/��ıbCFD.M; r˛Csˇ; p˛Cqˇ/

D .r�p/�� bCFD.M; ˛; ˇ/C.s�q/�ıbCFD.M; ˛; ˇ/;
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�ıbCFD.M; .r�p/˛C.s�q/ˇ; p˛Cqˇ/D�ı. yTdu � bCFD.M; r˛Csˇ; p˛Cqˇ//

D�ıbCFD.M; r˛Csˇ; p˛Cqˇ/

Dp�ıbCFD.M; ˛; ˇ/Cq�ıbCFD.M; ˛; ˇ/:

The argument extends easily to multiples and inverses of Dehn twists. The claim
follows by decomposing an arbitrary element of SL2.Z/ into Dehn twists.

For rational homology spheres, we will be interested in a distinguished slope, referred
to as the rational longitude. Given a bordered structure .˛; ˇ/ for M, this slope
 D p˛C qˇ is characterized by the property that some collection of like-oriented
copies of  bounds a surface in M. This slope is recorded by the fraction p=q, and the
.Z=2Z/–grading allows us to recover this data from bCFD.M; ˛; ˇ/ as follows:

Proposition 2.10 Fix a spinc–structure s on a bordered manifold .M; ˛; ˇ/, and
let �� and �ı denote the Euler characteristics of bCFD.M; ˛; ˇI s/ in the appropriate
idempotent. If �� D �ı D 0, then M is not a rational homology solid torus. Otherwise ,
M is a rational homology solid torus , the nullhomologous curves in @M are the
multiples of �ı˛���ˇ, and , in particular , the rational longitude is ��ı=��.

Proof Let s0 be a spinc–structure on M.p˛C qˇ/ that restricts to s on M. The Euler
characteristic �cHF.M.p˛Cqˇ/I s0/ is nonzero if and only ifM.p˛Cqˇ/ is a rational
homology sphere [24, Proposition 5.1]. The closed manifold M.p˛C qˇ/ is the dual
filling of .M; r˛C sˇ; p˛C qˇ/ for any r and s with rq�ps D 1. Thus, up to sign,
�cHF.M.p˛C qˇ/I s0/ is

�ıbCFD.M; r˛C sˇ; p˛C qˇI s0/D p��C q�ı

by applying Lemma 2.9. Note that if �� and �ı are both zero, then M.p˛Cqˇ/ is not
a rational homology sphere for any p=q and hence M is not a rational homology solid
torus. Otherwise,M.p˛Cqˇ/ is a rational homology sphere unless p=qD��ı=��2 yQ.
It follows that when M is a rational homology solid torus the slope of the rational
longitude is ��ı=��.

For the remainder of the proof, let p=q D��ı=��, where p and q are relatively prime.
The multicurve np˛C nqˇ is nullhomologous in M for some n > 0. To determine
the smallest such n consider the standard filling of .M; r˛C sˇ; p˛C qˇ/ for some r
and s with rq �ps D 1. This manifold is obtained from M by adding a solid torus
identifying the longitude l with p˛Cqˇ; the resulting first homology group is a direct
sum of H1.M; @M/ and H1.D2�S1/ (which is generated by the longitude l) with the
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relation nl D np˛Cnqˇ D 0. Since H1.M; @M/ indexes the spinc–structures on M,
for each spinc structure s on M, there are n elements of H1.M.r˛C sˇ//. It follows
that �cHF.M.r˛C sˇ/I s0/D n for each s0. By Lemma 2.9, we have

nD �� bCFD.M; r˛C sˇ; p˛C qˇI s0/D r��C s�ı;

which may be combined with the fact that nD nqr �nps. So, up to sign, .��; �ı/D
.nq;�np/ and hence the minimal nullhomologous multicurve in @M is �ı˛���ˇ, as
claimed.

Remark 2.11 The minimal integer n appearing in this proof, multiplied by the number
of spinc structures, corresponds to the constant cM associated with M described in
[29, Section 3.1].

3 Loop calculus

A focus of this work is the development of a calculus for studying bordered invariants.
This will be achieved by restricting to a class of manifolds whose bordered invariants
can be represented by certain valence two A–decorated graphs, which we will call loops.

3.1 Loops and loop-type manifolds

Towards defining loops, consider the following arrows which may appear in an A–
decorated graph:

�

�

�

�123

�12

�1

I�

�

�

�

�12

�2

�3

II�

ı

ı

ı

�1

�23

�2

Iı

ı

ı

ı

�123

�23

�3

IIı

We will be interested in valence two A–decorated graphs subject to the following
restriction:

(?) Each �0–vertex is adjacent to an edge of type I� and an edge of type II�, and
each �1–vertex is adjacent to an edge of type Iı and an edge of type IIı.

Definition 3.1 A loop is a connected valence two A–decorated graph satisfying .?/.

Since any loop describes a differential module over A, a loop may be promoted to a
graded loop via the .Z=2Z/–grading described in Section 2.7. In particular, where
needed, the vertex set will be extended to f�C; ��; ıC; ı�g.
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As abstract combinatorial objects loops provide a tractable structure to work with; this
section develops a calculus for doing so. The results derived from this calculus apply
to the following class of bordered invariants:

Definition 3.2 The bordered invariant bCFD.M; ˛; ˇ/ is said to be of loop-type if, up
to homotopy, it may be represented by a collection of loops, that is, by a (possibly
disconnected) A–decorated valence two graph satisfying .?/. For simplicity, in this
paper we will make the additional assumption that the number of connected components
of the valence two graph describing bCFD.M; ˛; ˇ/ coincides with jSpinc.M/j.

We will refer to the bordered manifold .M; ˛; ˇ/ being of loop-type when the associated
bordered invariant has this property. Some motivation for this definition is provided by
the following:

Proposition 3.3 Let H be a bordered Heegaard diagram describing .M; ˛; ˇ/ and
suppose bCFD.M; ˛; ˇ/ D bCFD.H/ is reduced and represented by a valence two A–
decorated graph having a single connected component per spinc–structure. Then
bCFD.M; ˛; ˇ/ is loop-type.

Proof The hypothesis bCFD.M; ˛; ˇ/D bCFD.H/ allows us to use the notion of gener-
alized coefficient maps developed in [20, Section 11.6], which force restrictions on the
type D modules that can occur as invariants of manifolds with torus boundary. Briefly,
generalized coefficient maps are extra differentials obtained by counting holomorphic
curves that run over the basepoint. The torus algebra is extended with additional Reeb
chords: �0, �01, �30, �012, �301, �230, �0123, �3012, �2301 and �1230. With these
additional differentials, @2 D 0 is no longer satisfied. However, we have instead that

@2.x/D �1230xC �3012x for any x in �0 bCFD.M; ˛; ˇ/;

@2.x/D �2301xC �1230x for any x in �1 bCFD.M; ˛; ˇ/:

Let x be a generator with idempotent �0. Since @2.x/ contains the term �1230x, @.x/ con-
tains the term �I1

y and @.y/ contains the term �I2
x for some y 2 bCFD.M; ˛; ˇ/

and some (generalized) Reeb chords �I1
and �I2

such that �I1
�I2
D �1230. Since

we assumed that bCFD.M; ˛; ˇ/ is reduced, I1 and I2 are not ∅. It follows that
I1 2 f1; 12; 123g and, in the graphical representation, the vertex corresponding to x
has an incident edge of type I�.

Since @2.x/ contains the term �3012x, @.x/ contains the term �I1
y and @.y/ contains

the term �I2
x for some y 2 bCFD.M; ˛; ˇ/ and some (generalized) Reeb chords �I1

and �I2
such that �I1

�I2
D �3012. It follows that either I1 D 3 or I2 2 f2; 12g and,
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in the graphical representation, the vertex corresponding to x has an incident edge of
type II�. Since any vertex has valence two by assumption, the vertex corresponding
to x must have exactly one edge from each of I� and II�.

The argument when x has idempotent �1 is similar. Since @2.x/ contains the term
�2301x, it follows that the vertex corresponding to x is adjacent an edge of type Iı;
and since @2.x/ contains the term �0123x, it follows that the corresponding vertex is
adjacent to an edge of type IIı.

Remark 3.4 While this argument required a particular choice of Heegaard diagram,
it seems likely that this hypothesis is not a necessary. However, for the purposes of this
work the more general statement will not be required — we simply restrict to the graphs
satisfying .?/ by definition — and leave developing the necessary algebra to future work.

It is important to note that loops in the abstract need not be related to three-manifolds: it
is not necessarily true that every loop (or disjoint union of loops) arises as the bordered
invariant of some three-manifold with torus boundary. This section concludes with an
explicit example for illustration.

3.2 Standard and dual notation

It is natural to decompose a loop into pieces by breaking along vertices corresponding
to one of the two idempotents; the constraint .?/ suggests that the pieces resulting
from such a decomposition are quite limited. Indeed, breaking along generators with
idempotent �0, five essentially different chains are possible and these possibilities are
listed in Figure 1, left. Since .?/ also puts restrictions on how these segments can be
concatenated, each piece is depicted with puzzle-piece ends. For instance, a type a
piece can be followed by a type b piece, but not by a type c piece. Any given piece
may also appear backwards; we denote this with a bar.

Segments of type a and b behave differently from the other segment types in several
ways. We will call type a and b segments stable chains and type c, d and e segments
unstable chains. This terminology comes from [20, Theorem 11.26], where the notion
of unstable chains was introduced in order to describe a procedure for extracting the
bordered invariants from knot Floer homology. Three types of unstable chains were
described, which correspond precisely to our type c, d and e segments. Type a and b
segments also appeared as the segments coming from horizontal arrows and vertical
arrows, respectively, in knot Floer homology. The motivation for this terminology is
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� ı ı �
�3 �23 �2ak „ ƒ‚ …

k

� �
�3 �12 �123a�

k „ ƒ‚ …
k

ı ı
�123 �23 �1bk „ ƒ‚ …

k

ı � � ı
�2 �12 �1b�

k „ ƒ‚ …
k

� ı ı
�3 �23 �1ck „ ƒ‚ …

k

� � ı
�3 �12 �1c�

k „ ƒ‚ …
k

ı ı �
�123 �23 �2dk „ ƒ‚ …

k

ı � �
�2 �12 �123d�

k „ ƒ‚ …
k

�
�12eDd0 ı

�23e�Dd�0

Figure 1: Possible segments: Standard notation (left) is obtained by breaking
a loop along �0 idempotents (�–vertices) and dual notation (right) is obtained
by breaking a loop along �1 idempotents (ı–vertices). Note that the integer k
records the number of interior vertices, so that the �23 (for standard notation)
or �12 (for dual notation) appears k� 1 times.

that, as we will see in Section 3.4, stable chains are preserved by certain Dehn twists
while unstable chains are not.

Denote the standard alphabet by

AD fai ; bi ; cj ; dj g;

where i 2 ZX f0g and j 2 Z. The letters in the standard alphabet correspond directly
to the segments depicted in Figure 1, with the relationships

a�i D Nai and b�i D Nbi
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for i > 0 as well as
c�j D Ndj and d�j D Ncj

for j � 0 with d0 D e D Nc0 and Nd0 D Ne D c0. Throughout this paper we will always
assume these shorthand relationships and, by abuse, we will often not distinguish
between segments and letters. For instance, the symbols d0 and e will be used inter-
changeably and may refer either to a letter in the standard alphabet or the corresponding
A–decorated graph segment. As a result of this equivalence, the notation Ns makes sense
for any standard letter s, with the understanding that NNs D s.

We will be interested in the set of cyclic words WA on the alphabet A that are consistent
with the puzzle-piece notation of Figure 1, which encodes the restriction .?/. Thus,
for example, the cyclic word c1 is an element of WA while the cyclic word a1 is not.
Another immediate restriction is that an element of WA must contain an equal number
of a–type letters and b–type letters.

Proposition 3.5 A loop ` with at least one �0–generator may be represented as a cyclic
word w` in WA. Moreover , this representation is unique up to overall reversal of the
word w` , that is , writing w` with the opposite cyclic ordering and replacing each letter
s with Ns.

Proof This is immediate from the definitions.

As a result, we will be interested in the equivalence class that identifies w` and xw` ,
where xw` denotes the reversal of w` . Denote this equivalence class of cyclic words
by .w` /; by abuse we will continue referring to .w` / as a cyclic word. By Proposition
3.5, this sets up a one-to-one correspondence `$ .w` / between loops with at least
one �0–decorated vertex and (equivalence classes of) cyclic words in WA.

Definition 3.6 When ` is represented by a cyclic word .w` / using the standard
alphabet, we say ` is written in standard notation.

A loop cannot be written in standard notation if it does not contain an �0–decorated
vertex. This suggests it will sometimes be useful to break a loop along �1–decorated
vertices. There are again five types of chains possible, as listed in Figure 1, right. As
before, the first two types will be referred to as stable chains and the rest as unstable
chains. Denote the dual alphabet by

A� D fa�i ; b
�
i ; c
�
j ; d

�
j g
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(i 2 ZXf0g and j 2 Z), where, as before, a�
�i D Na

�
i , b�
�i D

Nb�i (for i > 0), c�
�j D

Nd�j ,
d�
�j D Nc

�
j (for j � 0) and d�0 D e

� D Nc�0 . Proceeding as before, let WA� denote the set
of cyclic words in the alphabet A� which are consistent with the puzzle-piece notation.

Proposition 3.7 A loop ` with at least one �1–generator may be represented as a cyclic
word w�

`
in WA� . Moreover , this representation is unique up to overall reversal of the

word w�
`

.

Proof This is immediate from the definitions.

Again, we denote by .w�
`
/ the equivalence class identifying w�

`
and xw�

`
, and remark

that this gives rise to a second one-to-one correspondence `$ .w�
`
/ for loops ` with

at least one �1–decorated vertex.

Definition 3.8 When ` is represented by a cyclic word .w�
`
/ using the dual alphabet,

we say ` is written in dual notation.

Collecting these observations, notice that, whenever ` contains instances of both
idempotents, the pair of correspondences .w�

`
/$ ` $ .w` / sets up a natural map

between the standard representation and the dual representation. In particular, this
allows us to set .w` /

� D .w�
`
/ in a well-defined way; we refer to .w` /

� as the dual
of .w` / and remark that .w` /

�� D .w` /.

This description of loops as cyclic words is the essential starting point for loop calculus.
A typical loop will have vertices in both idempotents, so it is expressible in both
standard and dual notation; switching between the two will be a key part of the loop
calculus. We now make this process explicit.

First notice that, given .w` / representing a loop ` in standard notation, there is a
natural normal form .w` /D .u1v1u2v2 : : :unvn/, where

(N1) the subword ui is a standard letter with subscript ki ¤ 0; and

(N2) the subword vi is ni � 0 consecutive copies of either d0 or c0 (here ni may be
zero).

This normal form makes sense for any w` that does not consist only of d0 D e or
c0 D Ne letters; we may safely ignore these sporadic examples since, in these cases, `

has no �1–decorated vertices and cannot be expressed in dual notation.

Now the dual word w�
`

is obtained as follows:

Geometry & Topology, Volume 27 (2023)



848 Jonathan Hanselman and Liam Watson

(D1) Replace each vi by a dual letter with subscript ni C 1 and type2 determined by
(the types of) the ordered pair fui ;uiC1g (written uiuiC1 for brevity) from the
subword uiviuiC1 according to the rules

Nab; Nad; Ncb; Ncd ! a�; Nba; Nbc; Nda; Ndc! Na�;

a Nb; a Nc; d Nb; d Nc! b�; b Na; b Nd; c Na; c Nd ! Nb�;

Na Nb; Na Nc; Nc Nb; Nc Nc! c�; ba; bc; ca; cc! Nc�;

ab; ad; db; dd ! d�; Nb Na; Nb Nd; Nd Na; Nd Nd ! Nd�:

Note that indices are taken mod n, so unC1 is identified with u1.

(D2) Replace each ui with the subword consisting of ki � 1 consecutive d�0 letters if
ki > 0 or 1� ki consecutive c�0 letters if ki < 0.

To convert from dual notation to standard notation, we use exactly the same proce-
dure (interchanging the words standard and dual and adding/removing stars where
appropriate in the discussion above). Note that letters in dual (resp. standard) notation
correspond to consecutive pairs of letters in standard (resp. dual) notation after we ignore
letters with subscript 0. We make the following observation about this correspondence:

Observation 3.9 Stable chains in dual (resp. standard ) notation correspond precisely
to consecutive pairs of letters in standard (resp. dual ) notation , ignoring letters with
subscript 0, whose subscripts have opposite signs.

With the forgoing in place we will not distinguish between loops in standard or in dual
notation; for a given loop ` containing (vertices decorated by) both idempotents, it is
always possible to choose a representative for ` in either of the alphabets A or A�. In
summary: We will regard a loop as both a graph-theoretic object and as an equivalence
class of words .w` / and .w�

`
/ modulo dualizing. In particular, we will adopt the abuse

of notation that ` is such an equivalence class of words, where convenient, and think
of loops as graph-theoretic objects and word-theoretic objects interchangeably. In
particular, we will let the notation ` stand in for a choice of cyclic word representative
(in either alphabet).

We will often refer to a subword w of a given loop ` , so the notation .w/ indicating
the cyclic closure of a word (when it exists) will be used to distinguish subwords from

2Recall that a letter of type a, b, c or d with negative subscript can also be written as a letter of type Na,
Nb, Nd or Nc with positive subscript. Here the type of a standard letter (other than d0 and c0) refers to the
element of fa; Na; b; Nb; c; Nc; d; Ndg corresponding to the representation with positive subscript. Similarly, a
dual letter other than d�0 and c�0 has a well-defined type in fa�; Na�; b�; Nb�; c�; Nc�; d�; Nd�g.
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(equivalence classes of) cyclic words. The length of a subword is the number of pieces
(or letters) in the word.

To conclude with a particular example, let M denote the complement of the left-hand
trefoil and consider the bordered manifold .M;�; �/, where � is the knot meridian
and � is the Seifert longitude. Following [20, Chapter 11], bCFD.M;�; �/ is described
by a loop, as shown in

�ı�

ı

� ı

ı

�3�2

�123

�1

�2

�23

�123

We may express this in standard notation as .a1b1 Nd2/ or in dual notation as .a�1e
�b�1
Nd�1 /.

In particular, according to the discussion above, this pair of words is a represen-
tative of the same equivalence specifying the loop ` shown. That is, we regard
` � .a1b1 Nd2/ � .a

�
1e
�b�1
Nd�1 /. More generally, the homotopy type of the invariant

bCFD.M;�; �� .2C n/�/ is represented by the loop .a1b1cn/ for n 2 Z, following
the convention that c0 D Ne and cn D Nd�n when n < 0.

3.3 Operations on loops

We now define two abstract operations on loops: T and H. These operations are easy to
describe for loops in terms of standard and dual notation, respectively, and we will see
in the next subsection that they correspond to important bordered Floer operations.

If a loop ` cannot be written in standard notation (that is, it is a collection of only e�

segments), then T.`/D ` . Otherwise, express ` in standard notation and consider the
operation T determined on individual letters via

T.ai /D ai ; T.bi /D bi ; T.cj /D cj�1; T.dj /D djC1

for any i 2 ZX f0g and j 2 Z. For collections of loops, we also define T.f ìg
n
iD1/D

fT. ì /g
n
iD1. The operation T is invertible; denote the inverse by T�1.

Note that the letters ai and bi are fixed by T. As a result, these are sometimes referred to
as stable chains (or standard stable chains). The (standard) unstable chains are the letters
cj and dj . This is consistent with the notion of stable and unstable chains from [20].
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The operator H is defined similarly, but with respect to dual notation. If a loop ` cannot
be written in dual notation, then H.`/D ` . Otherwise, express ` in dual notation and
consider the operation H on ` defined on individual dual letters via

H.a�i /D a
�
i ; H.b�i /D b

�
i ; H.c�j /D c

�
j�1; H.d�j /D d

�
jC1

for any i 2 ZX f0g and j 2 Z. For collections of loops, we also define H.f ìg
n
iD1/D

fH. ì /g
n
iD1. As with T, H is an invertible operation with inverse H�1.

Note that a�i and b�i are fixed by H. When we have need for it, a�– and b�–type letters
will be referred to as dual stable chains, while c�– and d�–type letters will be referred
to as dual unstable chains.

The operation T is easy to define for loops in standard notation, but it would be difficult
to describe purely in terms of dual letters. Similarly, the operation H is simple to define
in dual notation, but would be complicated in terms of standard letters. This suggests
the need to comfortably switch between the two; in particular, given a loop ` expressed
in standard notation, finding H.`/ in standard notation is a three-step process: dualize,
apply H and dualize again.

We will often need to apply combinations of the operations T and H to a loop. The
composition T ı H�1 ı T, in particular, appears often; it will be convenient to regard
this composition as another loop operation, which we call E. The following lemma
describes the effect of E on a cyclic word in standard notation; this provides a convenient
shortcut compared with computing the operations T, H�1 and T individually. We state
the lemma for general loops, but we will only prove it in a special case.

Lemma 3.10 If ` is written in standard notation , then E.`/ is determined by the
following action of E on standard letters:

E.ak/D a
�
�k; E.bk/D b

�
�k; E.ck/D c

�
�k; E.dk/D d

�
�k :

Proof We give the proof in the special case that ` consists only of dk segments with
k � 0. The general proof is left to the reader.

Let ` D .dk1
dk2

: : : dkn
/, with ki � 0. Then T.`/D .dk1C1 : : : dknC1/. Writing this

in dual notation and applying H�1, we have

T.`/D .d�1 d
�
0 : : : d

�
0„ ƒ‚ …

k1

d�1 d
�
0 : : : d

�
0„ ƒ‚ …

k2

: : : d�1 d
�
0 : : : d

�
0„ ƒ‚ …

kn

/;

H�1 ı T.`/D .d�0 d
�
�1 : : : d

�
�1„ ƒ‚ …

k1

d�0 d
�
�1 : : : d

�
�1„ ƒ‚ …

k2

: : : d�0 d
�
�1 : : : d

�
�1„ ƒ‚ …

kn

/:
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Dualizing and twisting again gives

H�1 ı T.`/D .c2 c1 : : : c1„ ƒ‚ …
k1�1

c2 c1 : : : c1„ ƒ‚ …
k2�1

: : : c2 c1 : : : c1„ ƒ‚ …
kn�1

/;

T ı H�1 ı T.`/D .c1 c0 : : : c0„ ƒ‚ …
k1�1

c1 c0 : : : c0„ ƒ‚ …
k2�1

: : : c1 c0 : : : c0„ ƒ‚ …
kn�1

/;

T ı H�1 ı T.`/D .d�
�k1

d�
�k2

: : : d�
�kn

/:

As suggested by the example of the left-hand trefoil exterior given at the end of the
last subsection, expressing loops as cyclic words gives rise to clean way of describing
a type D structure. This extends to reparametrization: consulting [20, Chapter 11],
whenM is the exterior of the left-hand trefoil, bCFD.M;�; ��.2Cn/�/ is represented
by the loop .a1b1cn/ for n 2 Z. Motivating the next subsection, this loop may be
expressed as T�n.`/, where ` D .a1b1c0/.

3.4 Dehn twists

The operators T and H naturally encode the effect of a Dehn twist on a loop representing
the type D structure of a bordered manifold. Recall that

yT˙1st � bCFD.M; ˛; ˇ/Š bCFD.M; ˛; ˇ˙˛/

and, more generally, for any type D structure N over A the pair of type D structures
yT˙1st �N are well defined.

Proposition 3.11 If ` is a loop with corresponding type D structure N` , then N˙
`
D

yT˙1st �N` is a loop-type module represented by the loop T˙.`/.

Proof We compute the box tensor product yTst �N` by considering the effect on one
segment at a time in a standard representative for ` .

Recall from [19, Section 10] (see Figure 2) that the type DA bimodule yTst has three
generators p, q and r (denoted by �, ı and �, respectively, in Figure 2) with idempotents
determined by p D �0p�0, q D �1q�1 and r D �1r�0. Thus each generator x 2 �1N`

gives rise to a single generator q˝ x 2 yTst �N` , and each generator x 2 �0N` gives
rise to two generators p˝x and r˝x in the box tensor product. There is always a �2
arrow from r ˝ x to p˝ x; that is, @.r ˝ x/ has a summand �2 � .p˝ x/.

If generators x; y 2 �0N` are connected by a single segment s (in the loop `), we will
consider the portion of a loop representing NC

`
between p˝ x and p˝ y and show
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�

� ı

�23˝�23�1˝�1C�123˝�123C�3˝.�3;�23/

�2˝1

�123˝�12

C�3˝.�3;�2/

1˝�3

�23˝�2

�

� ı

�12˝.�123˝�2/ �23˝�23�1˝�1C�123˝�123

�2˝.�23;�2/

�2˝.�3;�2/

�3˝1C�1˝�12

�23˝�3

1˝�2

Figure 2: Graphical representations of the Dehn twist bimodules yTst (left)
and yT �1st (right), following [19, Section 10].

that (up to homotopy equivalence) it is the segment T.s/. To talk about the portion
between, we need a (cyclic) ordering on the elements of NC

`
. This is inherited from a

choice of cyclic ordering on the elements of ` , together with a specified order of p˝x
and r ˝ x for each x 2 �0N` . If there is a segment s from x to y, we say that r ˝ x is
between p˝ x and p˝y if the puzzle piece shape of s on the x end agrees with the
shape of ak , that is, if s is ak , Nak , ck , Ndk or Ne.

Consider first a segment ak from x to y, where x and y are generators of �0N` . The
cases of k D 1 and k � 2 are slightly different; both are pictured in Figure 3. In either
case, the effect of tensoring the segment with yTst is pictured. There is a differential
starting at r ˝ x; after cancelling this differential, the result is a segment of type
ak D T.ak/ from p˝ x to p˝y.

Consider next a segment bk from x to y. Tensoring the segment with yTst, we see that
the portion between p˝ x and p˝y is simply a segment of type bk D T.bk/. Note
that the generators r˝x and r˝y are not included in this new segment; they must be
included in the segments on either side.

If x and y are connected by a segment ck , then there is a differential starting at r ˝ x.
If k > 1, then cancelling this differential leaves a segment from p˝x to p˝y of type
ck�1 D T.ck/. If k D 1, then cancelling the differential produces a new �12 arrow, and
thus there is a segment Ne D T.c1/ from p˝ x to p˝y. If x and y are connected by
segments dk or e, we see in Figure 3 that the portion of NC

`
from x˝p to y˝p is a

segment dkC1 D T.dk/ or d1 D T.e/, respectively.

Segments with the opposite orientation behave the same way. A segment of Ns from
x to y is the same as a segment s from y to x. In the tensor product, this produces a
segment T.s/ from p˝y to p˝ x, or a segment T.s/D T.Ns/ from p˝ x to p˝y.
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� ı ı ı �
�3 �23 �23 �2

+

�

ı

ı ı ı

�

ı

�2 �2
�23 �23

�23

�3

� ı �
�3 �2

+

�

ı

ı

�

ı

�2 �2

�23

�3

� ı ı �
�123 �23 �1

+

�

ı

ı ı

�

ı

�2 �2

�123

�23

�1

� ı ı ı �
�3 �23 �23 �1

+

�

ı

ı ı ı

�

ı

�2 �2
�23 �23

�1

�3

� ı �
�3 �1

+

�

ı

ı

�

ı

�2 �2�1

� ı ı �
�123 �23 �2

+

�

ı

ı ı

�

ı

�2 �2

�123

�23

�23

� �
�12

+

�

ı

�

ı

�2 �2
�123

Figure 3: Illustrating the proof of Proposition 3.11: The effect of box tensor-
ing with yTst on each of the possible segments occurring in a loop expressed
in standard notation. Unmarked edges, which are eliminated using edge
reduction described in Section 2.3, are highlighted.

It remains to check that a loop consisting only of e� segments represents a type D
structure N that is fixed by the action of the standard Dehn twist. This is easy to see,
since in this case the only relevant operation in yTst is

m2.q; �23/D �23 � q:
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�

ı �

�12˝�12�3˝�3C�123˝�123C�1˝.�12;�1/

�2˝1

�123˝�23

C�1˝.�2;�1/

1˝�1

�12˝�2

�

ı �

�23˝.�2˝�123/ �12˝�12�3˝�3C�123˝�123

�2˝.�2;�12/

�2˝.�2;�1/

�1˝1C�3˝�23

�12˝�1

1˝�2

Figure 4: Graphical representations of the Dehn twist bimodules yT �1du (left)
and yTdu (right), following [19, Section 10].

Each generator of �1N D N gives rise to one generator of NC and each �23 arrow
in N gives a �23 arrow in NC.

The case of yT �1st can be deduced from the case of yTst. Let N 0 be a type D module
represented by the loop T�1.`/. We have just shown

yTst �N 0 ŠN

and it follows that
yT �1st �N Š yT �1st � yTst �N 0 ŠN 0

since yT �1st � yTst is homotopy equivalent to the identity bimodule.

Proposition 3.12 If ` is a loop with corresponding type D structure N` , then N�
`
D

yT�1du �N` is a loop-type module represented by the loop H˙.`/.

Proof The proof is similar, with the relevant bimodules yTdu and yT �1du shown in Figure 4.
The result of tensoring yTdu with each type of dual segment is shown in Figure 5. We
see that a� and b� segments are fixed, c�

k
segments become c�

kC1
segments, and d�

k

segments become d�
k�1

segments. In other words, tensoring yTdu with a dual segment s�

gives H�1.s�/. Thus, for a loop ` , yTdu �` is the loop H�1.`/. Since yT �1du is the inverse
of yTdu, we conclude that yT �1du � ` is the loop H.`/.

We conclude this discussion by observing that the notion of a manifold M (with
torus boundary) being of loop-type is now well defined. In particular, since any
reparametrization of a loop gives rise to a loop, it follows that the property of loop-type
(or having loop-type bordered invariants) is independent of the bordered structure and
hence a property of the underlying (unbordered) manifold. Indeed:

Definition 3.13 A compact, orientable, connected three-manifoldM with torus bound-
ary is loop-type if bCFD.M; ˛; ˇ/ is of loop-type for any choice of basis slopes ˛ and ˇ.

Geometry & Topology, Volume 27 (2023)



A calculus for bordered Floer homology 855

ı � � � ı
�2 �12 �12 �1
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ı
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� � �

ı

�

�1 �1
�12 �12

�12

�2

ı � ı
�2 �1

+

ı

�

�

ı

�

�1 �1

�12

�2

ı � � ı
�3 �12 �123

+

ı

�

� �

ı

�

�1 �1

�3

�12

�123

ı � � ı
�3 �12 �1

+

ı

�

� �

ı

�

�1 �1

�3

�12

�12

ı � ı
�2 �123

+

ı

�

�

ı

�

�1 �1�123

�23

ı � � � ı
�2 �12 �12 �123

+

ı

�

� � �

ı

�

�1 �1
�12 �12

�123

�2

ı ı
�23

+

ı

�

ı

�

�1 �1
�3

Figure 5: Illustrating the proof of Proposition 3.12: The effect of the Dehn
twist yTdu on each of the possible segments occurring in a loop expressed in
dual notation. Unmarked edges, which are eliminated using edge reduction
described in Section 2.3, are highlighted.

3.5 Solid tori

As a simple example of the loop operations described above, we now describe the
computation of bCFD of a solid torus with arbitrary framing. By a p=q–framed solid
torus, we will mean a bordered solid torus .D2 �S1; ˛; ˇ/ such that the meridian is
p˛C qˇ. Recall that for the standard (0–framed) and dual (1–framed) solid tori we
have

bCFD.D2 �S1; l; m/D .e/; bCFD.D2 �S1; m; l/D .e�/:

The bordered invariants for solid tori with other framings can be computed by applying
Dehn twists as described in Section 2.6.
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Example 3.14 We compute bCFD of the 7
2

–framed solid torus using the continued
fraction expansion �2

7
D Œ�1; 2;�2; 3�:

bCFD.D2�S1; l; m/ W .e/

+T3

bCFD.D2�S1; l; mC3l/ W .d3/ � .d�1 d
�
0 d
�
0 /

+H�2

bCFD.D2�S1;�2m�5l;mC3l/ W .c1c1c0c1c0/ � .d��1d
�
�2d

�
�2/

+T2

bCFD.D2�S1;�2m�5l;�3m�7l/ W .c�1c�1c�2c�1c�2/� .c��1c
�
�1c
�
�1c
�
0 c
�
�1c
�
�1c
�
0 /

+H�1

bCFD.D2�S1; mC2l;�3m�7l/ W .d�4d�3/ � .c�0 c
�
0 c
�
0 c
�
1 c
�
0 c
�
0 c
�
1 /

It is easy to check mD 7.mC2l/C2.�3m�7l/, and so .D2�S1; mC2l;�3m�7l/
is a 7

2
–framed solid torus. Note that given bCFD of a solid torus we can also check the

framing by using Proposition 2.10. If we choose the .Z=2Z/–grading so that endpoints
of dk chains in standard notation have grading 0 and endpoints of ck chains have
grading 1, it is not difficult to see that the Euler characteristic �� of a loop in standard
notation is the number of dk segments minus the number of ck segments and �ı is
given by the sum of the subscripts. Thus .D2 � S1; mC 2l;�3m� 7l/ has rational
longitude ��ı=�� D��72 .

bCFD for arbitrarily framed solid tori can be computed by a similar procedure. The
result is always a loop of a particularly simple form.

Lemma 3.15 If q ¤ 0, then bCFD.D2�S1; pmCql; rmC sl/ can be represented by
a single loop ` D .dk1

dk2
: : : dkm

/. Moreover , the difference between maxfkig and
minfkig is at most 1.

Proof If p D 0 (this implies that q D r D 1) then

bCFD.D2 �S1; l; mC sl/D yT sst � bCFD.D2 �S1; l; m/� Ts..e//D .ds/:

Otherwise, let Œa1; : : : ; a2n� be an even length continued fraction for q=p and choose
a2nC1 so that Œa1; : : : ; a2nC1� is a continued fraction for s=r . Then

bCFD.D2 �S1; pmC ql; rmC sl/Š yT a2nC1

st � � � �� yT �a2

du � yT a1
st � bCFD.M; l;m/

� Ta2nC1 ı Ha2n ı � � � ı Ha2 ı Ta1..d0//:
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If p=q is positive, we may assume that ai > 0 for all 1 � i � 2n. We will show by
induction on n that Ha2n ı � � � ıHa2 ı Ta1..d0// is a loop in standard notation consisting
only of d0 and d1 chains. The base case of n D 0 is immediate. Assuming that
Ha2n�2 ı � � � ı Ha2 ı Ta1..d0// is a loop in standard notation consisting only of d0 and
d1 chains, applying the twist Ta2n�1 produces a loop consisting of dk chains with only
positive subscripts. In dual notation, such a loop involves only d�0 and d�1 segments.
Applying the twist Ha2n produces a loop consisting of d�

k
segments with positive

subscripts. Switching to standard notation, this loop contains only d0 and d1 segments.
Similarly, if p=q is negative, we assume that ai < 0 for 1 � i � n and observe by
induction that Ha2n ı � � � ıHa2 ı Ta1..d0// is a loop in standard notation consisting only
of d0 and d�1 chains.

Finally, applying the twist Ta2nC1 preserves the fact that the loop consists of type dk
unstable chains. It also preserves the relative differences of the subscripts, so the
difference between the maximum and minimum subscript remains at most one.

3.6 Abstract fillings and abstract slopes

Recall that a loop ` represents a type D structure, which by slight abuse of notation we
denote by ` . Since ` is reduced, there is an associated type A structure as described in
Section 2.4, which we denote by `A. As a result, given loops 1̀ and 2̀ we can represent
the chain complex produced by the box tensor product of the associated modules by
`A1 � 2̀. Since loops are connected A–decorated graphs, the type D and type A struc-
tures associated to a loop have a well-defined relative .Z=2Z/–grading, as described in
Section 2.7. The gradings on `A1 and 2̀ induce a relative .Z=2Z/–grading on `A1 � 2̀.

Consider the loops
�̀
D .e/ and ı̀ D .e

�/. Given any loop ` , we have a pair of chain
complexes

C`

�
1
0

�
D `A
�

� ` and C` .0/D `Aı � ` ;

which, noting that
�̀

and ı̀ represent type D structures of the standard and dual
(bordered) solid torus, respectively, might be regarded as abstract standard and dual
Dehn filings of ` , respectively.

Remark 3.16 We do not need to assume ` is bounded, since, if it is not, it is homotopy
equivalent to a modified loop which is bounded and has the same box tensor product
with `A

�
. Such a modified loop can be obtained by replacing either a �12 arrow with

the homotopy equivalent (but not reduced) sequence

� ı ı �
�1 �2
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or a �123 arrow with
� ı ı �
�1 �23

If ` cannot be written in standard notation — that is, it is a collection of e� segments —
then H�.`A� � `/ must have two generators of opposite grading. To see this, replace
one e� segment with

ı � � ı
�2 �3

to produce a bounded modified loop.

The standard filling picks out the �–idempotent, in practice, and adds a differential for
each type ak chain. The dual filling picks out the ı–idempotent and adds a differential
for each b�

k
chain. For instance, when M is the exterior of the left-hand trefoil and

bCFD.M;�; �/ is represented by ` � .a1b1 Nd2/� .a
�
1e
�b�1
Nd�1 /, the resulting complexescCF.S3/Š cCF.M.�//Š `A

�
� ` and cCF.M.�//Š `Aı � ` are

�ı�

ı

� ı

ı

�3�2

�123

�1

�2

�23

�123

��

�

ı

ı

ı

ı

We regard the chain complexes C`

�
1
0

�
and C` .0/ as the result of abstract Dehn fillings

along a pair of abstract slopes in ` , which we identify with1D 1
0

(corresponding to
the standard filling) and 0 (corresponding to the dual filling). In fact, a given loop `

gives rise to a natural yQ–family of chain complexes: choosing an even-length continued
fraction p=q D Œa1; a2; : : : ; an�, let `p=q D Han ı � � � ı Ta3 ı Ha2 ı Ta1.`/ and define

C`

�
p

q

�
D `A
�

� `p=q:

We will regard the complex C` .p=q/ as an abstract Dehn filling of the loop ` along
the abstract slope p=q 2 yQ.

The reason for this definition is illustrated as follows:

Proposition 3.17 If a given loop ` represents bCFD.M; ˛; ˇ/ for some bordered man-
ifold .M; ˛; ˇ/, the chain complex C` .p=q/ is (homotopy equivalent to) the chain
complex cCF.M.p˛C qˇ//. That is , abstract filling along abstract slopes corresponds
to Dehn filling along slopes whenever ` describes the type D structure of a bordered
three-manifold.
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Proof This follows immediately from the definitions; note that p̀=q represents
bCFD.M; p˛Cqˇ; r˛Csˇ/, where p=qD Œa1; a2; : : : ; an� is an even length continued

fraction and r=s D Œa1; a2; : : : ; an�1�.

Fixing a relative .Z=2Z/–grading for a loop ` , consider the idempotent Euler character-
istics ��.`/ and �ı.`/. If ��.`/ and �ı.`/ are not both 0, then ` has a preferred slope
��ı.`/=��.`/; we call this slope the abstract rational longitude. By Proposition 2.10,
if ` represents bCFD.M; ˛; ˇ/ for a rational homology solid torus .M; ˛; ˇ/, then the
abstract rational longitude for ` is the rational longitude for .M; ˛; ˇ/.

Recall that a slope p=q is an L–space slope for a bordered manifold .M; ˛; ˇ/ if Dehn
filling along the curve p˛C qˇ yields an L–space. We end this section by defining a
similar notion of L–space slopes for loops.

Definition 3.18 Given a loop ` , we say an abstract slope p=q in yQ is an L–space
slope for ` if the relatively .Z=2Z/–graded chain complex C` .p=q/ is an L–space
chain complex in the sense that dimH�.C` .p=q//D j�.C` .p=q//j ¤ 0.

Remark 3.19 With these notions in place, we will now drop the modifier abstract
when treating loops despite the fact that a given loop may or may not describe the
type D structure of a three-manifold. In particular, we will not make a distinction
between slopes and abstract slopes in the sequel.

By considering loops in the abstract, a particular class of loops is singled out.

Definition 3.20 A loop ` is solid torus-like if it may be obtained from the loop
.ee � � � e/ via applications of T˙1 and H˙1.

Note that ��.ee � � � e/ counts the number of e segments appearing and �ı.ee � � � e/D 0
identifies the rational longitude of a solid torus-like loop. In particular,

�̀
(representing

bCFD.D2 �S1; l; m/) is solid torus-like. Justifying the chosen terminology, we have
the following behaviour:

Proposition 3.21 If ` is solid torus-like with �ı.`/D0, then `A�`0Š
L
��.`/

`A
�

�`0

for any loop `0.

Proof Recall that `A
�

has a single generator x and operations

m3Ci .x; �3; �23; : : : ; �23„ ƒ‚ …
i times

; �2/D x;
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so that, for generators x˝ u; x˝ v 2 `A
�

� `0, with x˝ v a summand of @.x˝ u/,
there must be

ıiC2.u/D �3˝ �23˝ � � �˝ �23„ ƒ‚ …
i times

˝�2˝ v

in the type D structure for `0. Now consider the type A structure described by `A.
This has nD ��.`/–generators x0; : : : ; xn�1 and operations

m3Ci .xj ; �3; �23; : : : ; �23„ ƒ‚ …
i times

; �2/D xiCjC1;

where the subscripts are understood to be reduced modulo n. (Note that the cyclic
ordering on the generators is determined by m3.xj ; �3; �2/D xjC1.) So, given gener-
ators u and v in the type D structure for `0 as above, xiCjC1˝ v is in the image of
@.xj ˝u/ for each j 2 f0; : : : ; n� 1g. This achieves the desired splitting.

Corollary 3.22 Suppose ` is solid torus-like with �ı.`/ D 0. Then `A � `0 is an
L–space complex if and only if 1 is an L–space slope for the loop `0.

As a result, with respect to gluing, solid torus-like loops will need to be treated like
solid tori. Consequently, manifolds with solid torus-like invariants (should they exist)
will need to be singled out.

Definition 3.23 A loop-type manifold M is solid torus-like if it is a rational homology
solid torus and every loop in the representation of bCFD.M; ˛; ˇ/ is solid torus-like.

We conclude this section with an explicit example, demonstrating that not every abstract
loops arises as the type D structure of a bordered three-manifold. Consider the loop ` ,
described by the cyclic word .a1b1 Na1 Nb1/,

�ı�

ı

� ı

ı

�

�3�2

�123

�1

�2 �3

�1

�123

Suppose that ` describes the invariant bCFD.M; ˛; ˇ/ for some orientable three-manifold
with torus boundary M. Then the abstract Dehn filling `A

�
�` yields the chain complexcCF.M.˛//. However, observe that H�.`A� � `/ D 0 (in particular, this slope is not

an L–space slope according to Definition 3.18). This shows that no such M exists:
in general, for a closed orientable three-manifold Y, cHF.Y / does not vanish [24].
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However, we remark that this particular loop arises as a component of the graph
describing bCFD.M;�; �/, where M D S3 X �.K/ and K is any thin knot in S3 that
does not admit L–space surgeries; see [25].

4 Characterizing slopes

We now turn to an application of the loop calculus developed above. For a given
loop ` we give an explicit description of the L–space and non-L–space slopes. As a
consequence, we will prove the following:

Theorem 4.1 Given a loop ` , the set of non-L–space slopes is an interval in yQ, that
is , the restriction of a connected subset in yR. As a result , if M is a loop-type manifold
then there is a decomposition yRD U [ V into disjoint , connected subsets U; V 2 yR
such that LM D U \ yQ and LcM D V \ yQ.

Remark 4.2 The subset U determining LM in this statement may be empty.

4.1 L–space slopes

A loop ` has two preferred slopes, 0 and1; we begin by giving explicit conditions on
the loop ` (in terms of its representatives in standard or dual notation) under which
these are L–space slopes.

Proposition 4.3 Given a loop ` ,1 is an L–space slope if and only if ` can be written
in standard notation with at least one dk letter and no ck letters (where k can be any
integer). Similarly, 0 is anL–space slope if and only if ` can be written in dual notation
with at least one d�

k
letter and no c�

k
letters. Moreover , by reversing the orientation of ` ,

the statements hold with the roles of dk and ck (or the roles of d�
k

and c�
k

) reversed.

Proof The slope1 is an L–space slope if C
�
1
0

�
D `A
�

� ` is an L–space complex,
that is, if H�

�
C
�
1
0

��
is nontrivial and each generator of H�

�
C
�
1
0

��
has the same

(Z=2Z)–grading.

Recall that `A
�

has a single generator x with idempotent �0 and operations

m3Ci .x; �3; �23; : : : ; �23„ ƒ‚ …
i times

; �2/D x

for each i � 0. The box tensor product of this module with ` is easy to describe if
` is written in standard notation. There is one generator x˝ y for each �–vertex y
in ` (by abuse y is both the vertex in the loop ` and the corresponding generator
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in the type D structure corresponding to `). Given a cyclic word representing ` in
standard notation, each letter represents a chain between adjacent �–vertices; for each
type ak chain from y1 to y2 there is a differential from x ˝ y1 to x ˝ y2. Since
sequential occurrences of type a chains are impossible in any loop, the differentials
on C

�
1
0

�
are isomorphisms mapping single generators to single generators. Therefore,

the contribution to H�.`A� � `/ (with relative (Z=2Z)–grading) is simply given by the
�–vertices of ` which are not an endpoint of a type a segment.

The (Z=2Z)–grading on C
�
1
0

�
can be recovered as follows: the generators correspond-

ing to two adjacent �–vertices in ` have the same grading if the vertices are connected
by an unstable chain and opposite gradings if the vertices are connected by a stable
chain. It follows that endpoints of chains of type dk all have the same grading and
endpoints of chains of type ck all have the opposite grading. This is because dk
segments must be separated from each other by an even number of stable chains, and
from ck segments by an odd number of stable chains.

Suppose ` can be written in standard notation with at least one dk and no ck . Every
generator of C

�
1
0

�
either comes from an endpoint of a dk or from the common endpoint

of two stable chains. The latter generators vanish in homology, since one of the two
stable chains must be type a, and the former generators all have the same (Z=2Z)–
grading. Thus, in this case, C

�
1
0

�
is an L–space complex.

Suppose now that ` contains both dk and ck segments. For any unstable chain, at
least one of the two endpoints must correspond to a generator of C

�
1
0

�
that survives in

homology, since an unstable chain can be adjacent to a type a chain on at most one
side. Since endpoints of type dk and type ck unstable chains produce generators of
opposite grading, it follows that C

�
1
0

�
has generators of both gradings that survive in

homology, and thus C
�
1
0

�
is not an L–space complex.

If ` has no unstable chains when written in standard notation, then it has only stable
chains, which alternate between types a and b. In this case every �–vertex is the
endpoint of a type a chain. Thus H�

�
C
�
1
0

��
is trivial, and C

�
1
0

�
is not an L–space

complex. Finally, if ` cannot be written in standard notation, then it consists only of
e� segments. H�.`A� � `/ has two generators with opposite gradings; it follows that
1 is not an L–space slope.

The proof for 0–filling is almost identical: `Aı has a single generator x with idempo-
tent �1 and operations

m3Ci .x; �2; �12; : : : ; �12„ ƒ‚ …
i times

; �1/D x
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for each i � 0. The box tensor product of this module with ` has one generator for each
generator y of ` with idempotent �1 (that is, each ı–vertex) and a differential for each
type a� segment. Expressing ` in dual notation, the contribution to H�.`Aı � `/ (with
relative (Z=2Z)–grading) is given by the �0–generators of ` which do not lie at the end
of a type a� segment. If bCFD.Y; s/ is a loop that cannot be written in dual notation —
that is, it is a collection of e segments — then the contribution to H�.`Aı � `D/ is two
generators of opposite grading.

Since a� and b� segments change the (Z=2Z)–grading while c� and d� segments do
not, the rest of the proof is completely analogous to the proof for the1–filling.

Combining the two conditions in Proposition 4.3 gives a stronger condition on the loop.

Proposition 4.4 Given a loop ` , both1 and 0 are L–space slopes if and only if the
following equivalent conditions hold :

(i) ` can be written in standard notation with at least one dk letter and no ck letters
(with k 2 Z/, and ` contains a subword from exactly one of the sets

ACDfbiaj ; aie
nbj ; aie

ndj ; die
nbj ; die

ndj ; d`; a`; b` j i; j �1; n�0; `�2g;

A�Dfbiaj ; aie
nbj ; aie

ndj ; die
nbj ; die

ndj ; d`; a`; b` j i; j �1; n�0; `�2g:

We will say that ` satisfies condition .i/˙ if it satisfies condition (i) with a
subword in A˙.

(ii) ` can be written in dual notation with at least one d�
k

letter and no c�
k

letters
(with k 2 Z/, and ` contains a subword from exactly one of the sets

A�C D
˚
b�i a
�
j ; a
�
i .e
�/nb�j ; a

�
i .e
�/nd�j ; d

�
i .e
�/nb�j ; d

�
i .e
�/nd�j ; d

�
` ; a
�
` ; b
�
`

j i; j � 1; n� 0; `� 2
	
;

A�� D
˚
b�i a
�
j ; a
�
i .e
�/nb�j ; a

�
i .e
�/nd�j ; d

�
i .e
�/nb�j ; d

�
i .e
�/nd�j ; d

�
` ; a
�
` ; b
�
`

j i; j � 1; n� 0; `� 2
	
:

We will say that ` satisfies condition .ii/˙ if it satisfies condition (ii) with a
subword in A�

˙
.

Moreover , condition .i/C is equivalent to condition .ii/C and condition .i/� is equiva-
lent to condition .ii/�.

Proof By Proposition 4.3, 0 and1 are both L–space slopes for ` if and only if `

contains either dk segments or ck segments in standard notation, but not both, and `

contains either d�
k

segments or c�
k

segments in dual notation, but not both. Reading
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a loop with the opposite orientation takes type d segments to type c segments, so,
possibly after switching the orientation on ` , we may assume such a loop contains
dk segments and not ck segments in standard notation. Similarly, up to switching the
orientation on ` , we could arrange that there are d�

k
segments and no c�

k
segments in

dual notation. Note however that we cannot ensure both of these simultaneously, as it
will be convenient to choose standard notation and dual notation representatives for `

with respect to the same orientation on the loop.

First assume that ` contains standard unstable chains of type dk but not ck . Under this
assumption, the set AC is precisely the subwords in standard notation that dualize to
give a d�

k
chain. This follows from the discussion on dualizing in Section 3.2. A d�nC1

segment with n � 0 arises from a subword aienbj , aiendj , dienbj or diendj with
i; j � 1. A segment d�

�n�1 arises from a subword bi Nenaj , bi Nencj , ci Nenaj or ci Nencj
with i; j �1; since we assume that ` contains no ck segments, including NeDc0, the only
relevant case is biaj . Finally, a d�0 D e

� segment arises from a standard letter of type
a`, b`, c`, or d` with subscript ` > 1; we can ignore the case of c` by assumption. By
similar reasoning, we can check that, under the assumption that ` contains no ck letters,
the set A� is precisely the subwords in standard notation that dualize to give c�

k
chains.

If we instead assume that ` contains dual unstable chains of type d�
k

but not c�
k

, the
argument is similar. Note that the sets A�

˙
are the same as the sets A˙ with stars added

to each letter, and the process for switching from dual to standard notation is the same
as the process for switching from standard to dual (up to adding/removing stars from
letters). We have immediately that A�

C
is the set of subwords in that dualize to give a

dk letter, and A�� is the set of subwords that dualize to give a ck letter.

We have shown that conditions (i) and (ii) are both equivalent to ` containing an
unstable chain of exactly one of the two types in both standard notation and dual
notation, and this is equivalent to both 0 and1 being L–space slopes. Finally, if `

satisfies condition .i/C then ` contains both a dk segment and a d�
k

segment (with
respect to the same orientation of the loop). It follows that ` satisfies condition .ii/C.
If ` satisfies condition .i/� then it contains both a dk segment and a c�

k
segment. After

reversing the orientation of ` , it contains a ck segment and a d�
k

segment; thus `

satisfies condition .ii/�.

Corollary 4.5 If 0 and 1 are L–space slopes for a loop ` , then the set of L–space
slopes for ` contains either all positive slopes (that is , the interval Œ0;1�) or all negative
slopes (that is , the interval Œ�1; 0�).
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Proof Let LC be the set of loops satisfying condition .i/C and .ii/C in Proposition 4.4,
and let L� be the set of loops satisfying conditions .i/� and .ii/�. It is not difficult
to see that condition .i/C is preserved by the operation T since, for any w 2 AC,
T.w/ is in AC or contains an element of AC as a subword. Similarly, condition .ii/C
is preserved by the operation H. Therefore the set LC is preserved by T and H. In the
same way, the set L� is preserved by T�1 and H�1.

If p=q > 0, let Œa1; : : : ; an� be a continued fraction for p=q of even length with all
positive terms. To see if p=q is an L–space slope, we reparametrize by

Han ı � � � ı Ta3 ı Ha2 ı Ta1

taking the slope p=q to the slope 1. It follows that, if a loop is in LC, then any
p=q > 0 is an L–space slope, since the reparametrized loop is also in LC.

If p=q < 0, let Œ�a1; : : : ;�an� be a continued fraction for p=q of even length with all
negative terms. To see if p=q is an L–space slope, we reparametrize by

H�an ı � � � ı T�a3 ı H�a2 ı T�a1

taking the slope p=q to the slope1. It follows that if a loop is in L�, then any p=q <0
is an L–space slope.

4.2 Non-L–space slopes

The goal of this section is to establish easily checked conditions certifying that the
standard and dual slope of a given loop are non-L–space slopes. Our focus will be on
the following result:

Proposition 4.6 Suppose that ` is a loop for which both standard and dual fillings
give rise to non-L–spaces. Then the standard and dual slopes bound an interval of
non-L–space slopes in LcM . That is , one of Œ0;1� or Œ�1; 0� consists entirely of
non-L–space slopes.

The proof of this result is similar to the proof of Corollary 4.5 but is more technical
and will therefore be built up in a series of lemmas.

To begin, note that Proposition 4.3 can be restated in terms of non-L–space slopes:

Proposition 4.7 The slope1 is a non-L–space slope for a loop ` if and only if either

(i) ` contains both ck and dk unstable chains in standard notation ,

(ii) ` contains no unstable chains in standard notation , or

(iii) ` cannot be written in standard notation.
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The slope 0 is a non-L–space slope if and only if either

(i) ` contains both c�
k

and d�
k

unstable chains in dual notation ,

(ii) ` contains no unstable chains in dual notation , or

(iii) ` cannot be written in dual notation.

It will be helpful to give conditions in standard notation under which 0 is a non-L–space
slope. Consider the sets

A1 D fak; bk; ck; cic
n
0cj ; cic

n
0aj ; bic

n
0cj ; bic

n
0aj g;

A2 D fa�k; b�k; d�k; d�id
n
0 d�j ; d�id

n
0 b�j ; a�id

n
0 d�j ; a�id

n
0 b�j g;

A3 D fak; bk; dk; did
n
0 dj ; did

n
0 bj ; aid

n
0 dj ; aid

n
0 bj g;

A4 D fa�k; b�k; c�k; c�ic
n
0c�j ; c�ic

n
0a�j ; b�ic

n
0c�j ; b�ic

n
0a�j g;

where the indices and exponents run over all integers satisfying k > 1, i; j > 0 and
n� 0. These four sets may be interpreted as follows:

Lemma 4.8 A loop ` written in standard notation contains a word in A1[A3 if and
only if it contains d�n in dual notation for some integer n. It contains a word in A2[A4
if and only if it contains c�n in dual notation for some integer n.

Proof We prove the first statement and leave the second to the reader.

First notice that if k > 1 then any letter ak , bk , ck or dk contains at least one instance
ofı ı

�23 , which, in dual notation, gives an e� D d�0 . If i; j > 0 then each word of
the form cic

n
0cj , cicn0aj , bicn0cj or bicn0aj gives an instance of

ı � � ı
�1 �12 �3

which, in dual notation, gives Nc�nC1D d
�
�n�1. Similarly, each word of the form did

n
0 dj ,

did
n
0 bj , aidn0 dj or aidn0 bj gives an instance of

ı � � ı
�2 �12 �123

which, in dual notation, gives d�nC1. For the converse, observe that the segments d�0 ,
d�nC1 and d�

�n�1 with n� 0 in dual notation can only arise from the words mentioned
above in standard notation.

Corollary 4.9 The slope 0 is not an L–space slope for ` if and only if either

(i) ` contains a subword from A1[A3 and a subword from A2[A4,

(ii) ` does not contain a subword from any Ai , or

(iii) ` cannot be written in dual notation.
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Proof This follows immediately from Proposition 4.7 and Lemma 4.8.

Based on this observation, the proof of Proposition 4.6 will reduce to several cases,
which are treated in the following lemmas.

Lemma 4.10 If ` is a loop containing a subword from the set A1 then T�1.`/ and
H�1.`/ also contain a subword from A1. If ` contains a subword from the set A2 then
T�1.`/ and H�1.`/ also contain a subword from A2.

Proof First consider T�1.w/ for any subword w 2 A1. We have T�1.ak/ D ak ,
T�1.bk/Dbk , T�1.ck/DckC1, T�1.ci Ne

ncj /DciC1c
n
1cjC1, T�1.ci Ne

naj /DciC1c
n
1aj ,

T�1.bi Ne
ncj /D bic

n
1cjC1 and T�1.bi Ne

naj /D bic
n
1aj . In each case, T�1.w/ is in A1

or contains a subword in A1. Thus the operation T�1 preserves the property that `

contains a word from A1. On the other hand, revisiting the proof of Lemma 4.8, we
see that each of ak , bk and ck produces at least one e� when dualized, while each
of ci Nencj , ci Nenaj , bi Nencj and bi Nenaj produces a Nc�nC1. Since H�1.e�/ D Nc�1 and
H�1. Nc�nC1/D Nc

�
nC2, it is enough to observe that

fci Ne
ncj ; ci Ne

naj ; bi Ne
ncj ; bi Ne

naj g � A1

is the set of subwords that give rise to a Nc�nC1 under dualizing (where n� 0 and i; j >0).
It follows that the operation H�1 preserves the property that ` contains a word from A1.

Next consider T�1.w/ for any w 2 A2. Proceeding as above, observe that T�1.w/ is
in the set

f Nak; Nbk; NckC1; NciC1 Nc
n
1 NcjC1; NciC1 Nc

n
1
Nbj ; Nai Nc

n
1 NcjC1; Nai Nc

n
1
Nbj g:

Each of these words is inA2 or contains a subword inA2, so the operation T�1 preserves
the property that ` contains a word from A2. Each of Nak , Nbk and Nck produces at least
one Ne� when dualized, while each of Ncien Ncj , Ncien Nbj , Naien Ncj and Naien Nbj produces
a c�nC1. Since T�1. Ne�/D c�1 and T�1.c�nC1/D c

�
nC2, it is enough to observe that

f Ncie
n
Ncj ; Ncie

n Nbj ; Naie
n
Ncj ; Naie

n Nbj g � A2

is the set of subwords that give rise to a c�nC1 under dualizing (where n � 0 and
i; j > 0). It follows that the operation H�1 preserves the property that ` contains a
word from A2.

Lemma 4.11 If ` is a loop containing a subword from the set A3 then T.`/ and H.`/

also contain a subword from A3. If ` contains a subword from the set A4, then T.`/

and H.`/ also contain a subword from A4.

Proof This is analogous to the proof of Lemma 4.10 and left to the reader.
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We next consider the case that ` contains a subword from each of A1 and A4 but does
not contain a subword from A2 or A3. While this third case is ultimately similar to the
two cases we have already treated, it is more technical owing in part to three subcases.

Lemma 4.12 Suppose ` is a loop containing a subword from each of the sets A1
and A4 but that ` does not contain a subword from either of the sets A2 or A3. If `

contains a Nc1 then the loop T�1.`/ contains a subword from each of A1 and A2, while
the loop H�1.`/ either

(i) contains a subword from each of A1 and A2, or

(ii) contains a Nc1 and a subword from each of the sets A1 and A4 but does not contain
a subword from A2 or from A3.

Proof First notice that T�1. Nc1/ D Nc2 2 A2. Since the set A1 is closed under T�1

(compare Lemma 4.10), it follows that T�1.`/ contains a subword from bothA1 andA2.

Turning now to the behaviour under H�1: Since ` does not contain a word from A2,
any occurrence of Nc1 can be preceded only by a1ei or d1ei (for i � 0), and can be
followed only by ej b1 or ejd1 (for j � 0). (Note that instances of ak or bk for k > 1
are ruled out since ` does not contain a word from A3.) Regardless of which arises,
this ensures that a Nc1 is part of a segment in ` of the form

ı � � ı � � ı
�2 �12 �1 �3 �12 �123

and hence a subword b�iC1a
�
jC1 when ` is expressed in dual notation. It follows that

the property that ` contains a Nc1 is closed under H�1, under the assumption that ` does
not contain a subword from A2 or A3.

Now observe that the set A1 is closed under H�1 by Lemma 4.10, so it must be the
case that H�1.`/ contains subwords from A1 and A2 or, if this is not the case, from
A1 and A4. In the latter case, suppose that H�1.`/ contains a word from A3. Then
H.H�1.`//D ` contains a word from A3 also, which is a contradiction.

Lemma 4.13 Suppose ` is a loop containing a subword from each of the sets A1
and A4 but that ` does not contain a subword from either of the sets A2 or A3. If `

contains a d1 then the loop T.`/ contains a subword from each of A3 and A4, while
the loop H.`/ either

(i) contains a subword from each of A3 and A4, or

(ii) contains a d1 and a subword from each of the setsA1 andA4 but does not contain
a subword from A2 or from A3.
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Proof This is similar to the proof of Lemma 4.12. The key observation is that the
instance of d1 is part of a segment in ` of the form

ı � � ı � � ı
�3 �12 �123 �2 �12 �1

which, in dual form, gives a�jC1b
�
iC1. Thus the property that ` contains a d1 implies

that H.`/ contains a d1.

Lemma 4.14 Suppose ` is a loop containing a subword from each of the sets A1
and A4 but that ` does not contain a subword from either of the sets A2 or A3, and
suppose that 1 is a non-L–space filling for ` . If ` contains neither a Nc1 D d�1 nor a
d1 then two cases arise: either ` contains the subword w1 D a1d

n
0
Nb1 or ` contains the

subword w2 D Na1d
n
0 b1 for some n� 1. Regardless of which occurs ,

(i) T.`/ contains subwords from both A3 and A4,

(ii) T�1.`/ contains subwords from both A1 and A2,

(iii) H.`/ either contains subwords A3 and A4 or it contains subwords from A1 and
A4 and contains w1 or w2, and

(iv) H�1.`/ either contains subwords from A1 and A2 or it contains subwords from
A1 and A4 and contains w1 or w2.

Proof Suppose ` contains subwords from A1 and A4 but not from A2 or A3, and
` contains neither d1 nor d�1. By Proposition 4.7, if ` has a non-L–space standard
filling, then either ` contains no standard unstable chains or ` contains both ck and dk
unstable chains. In the former case ` consists of alternating ak and bk segments; in the
latter case, ` must contain a sequence of d0 segments preceded by an a˙1 segment and
followed by a b˙1 segment (since ak , bk and dk are in A2 or A3 for jkj> 1, and by
assumption ` also contains no d˙1 segments). In either case, we see that the subscripts
on the type a and b stable chains must have opposite signs (since aidn0 bj is in A3 and
a�id

n
0 b�j is in A2), and thus that ` contains w1 D a1d

n
0
Nb1 or w2 D Na1d

n
0 b1.

Note then that T.w1/D a1d
n
1
Nb1, which gives a word in A3; T�1.w1/D a1 Nc

n
1
Nb1, which

gives a word in A2; T.w2/ D Na1d
n
1 b1, which gives a word in A3; and T�1.w2/ D

Na1 Nc
n
1b1, which gives a word in A2. Since T preserves the property that there is a

subword from A4 (Lemma 4.11) and T�1 preserves the property that there is a subword
from A1 (Lemma 4.10), we have shown that conclusions (i) and (ii) hold.

Consider the subword w1 D a1d
n
0
Nb1. If a loop ` contains w1, then the graph for `

contains the segment
� ı � � ı �
�3 �2 �12 �1 �123
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It follows that in dual notation ` contains a b�nC1. Moreover, this b�nC1 is preceded by
a segment ending with a �3 arrow (that is, a segment of type Na� or Nc�) and followed by
a segment beginning with a backwards �123 arrow (that is, a segment of type Na� or Nd�).
Thus ` contains w1 in standard notation if and only if it contains one of the following in
dual notation: Na�i b

�
nC1 Na

�
j , Na�i b

�
nC1
Nd�j , Nc�i b

�
nC1 Na

�
j or Nc�i b

�
nC1
Nd�j , where i; j > 0. Note

that the set of such words is closed under the action of H, except for the last two words
if the index i is 1 since then H replaces the Nc1 with Nc0 D e D d0. Thus, if ` contains
one of these subwords, then H.`/ also contains one of these subwords (and thus the
subword w1 in standard notation) or it contains d�0 b

�
nC1. In the latter case, ` contains

a �23 arrow followed by a �2 arrow. This means that ` contains an ak or dk segment
with k > 1, each of which are in A3. Similarly, H�1.`/ either contains w1 in standard
notation or it contains b�nC1 Nd

�
0 , which implies that ` contains a subword in A2.

The details of a similar argument for the subword w2 D Na1d
n
0
Nb1 are left to the reader.

We similarly find that, if ` contains w2, then H.`/ contains either w2 or a subword
in A3 and H�1.`/ contains either w2 or a subword in A2.

Since by assumption ` contains subwords from A1 and A4, H.`/ contains a subword
from A4 and from either A1 or A3 (Lemma 4.13). Since ` also contains a subword w1

or w2, the discussion above implies that H.`/ contains w1, w2 or a subword in A3;
that is, (iii) is satisfied. Similarly, (iv) is satisfied since H�1.`/ contains a subword
in A2 and a subword in either A1 or A3 (Lemma 4.12), and a subword w1 or w2 if
there is no subword from A1.

Lemma 4.15 Suppose ` contains no subwords in any Ai and that ` contains both
a dk segment and a ck segment. Then T�1.`/ contains a subword from each of A1
and A2 and T.`/ contains a subword from each of A3 and A4.

Proof The assumption that ` contains no words from any of the sets Ai implies that
in standard notation ` consists of the segments a˙1, b˙1, c˙1, d˙1, c0 and d0, and
the nonzero subscripts alternate between C1 and �1. By assumption, ` must contain
at least one d1, d0 or d�1 segment. If ` contains d1 then T.`/ contains d2 2 A3.
Moreover, d1 must be preceded by d0, d�1 or a�1 and followed by d0, d�1 or b�1.
It follows that T�1.`/ contains a d0 preceded by a d�1; d�2 or a�1 and followed by
a d�1; d�2 or b�1; thus T�1.`/ contains a subword in A2. Similarly if ` contains d�1
then T�1.`/ contains d�2 2 A2, and, since d�1 must be preceded by d0, d1 or a1 and
followed by d0, d1 or b1, T.`/ contains a subword in A3. Finally, suppose ` contains
a d0 segment but no d1 or d�1. If the d0 segment is adjacent to another d0 segment,
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then T.`/ contains d1d1 2 A3 and T�1.`/ contains d�1d�1 2 A2. Otherwise, ` must
contain either a�1d0b1 or a1d0b�1. It is easy to check that T.`/ contains either d1b1 or
a1d1, both elements of A3, and that T�1.`/ contains either a�1d�1 or d�1b�1 in A2.

A similar argument shows that, if ` contains c1, c0 or c�1, then T.`/ contains a subword
in A4 and T�1.`/ contains a subword in A1. This can also be deduced by reversing
the orientation on ` , which takes dk segments to c�k segments and takes the sets A2
and A3 to A1 and A4.

Proof of Proposition 4.6 Let ` be a loop for which both standard and dual filling gives
a non-L–space. According to Corollary 4.9, the fact that dual filling is a non-L–space
implies that either ` contains a word from A1 or A3 and from A2 or A4, ` contains no
words from any Ai , or ` cannot be written in dual notation. In the last case, ` consists
only of type e segments and it is clear that standard filling is an L–space. Thus we
have the following cases to consider:

(1) ` contains a subword from A1 and from A2.

(2) ` contains a subword from A3 and from A4.

(3) ` contains a subword from A1 and from A4, but not A2 or A3.

(4) ` does not contain a subword from any Ai .

Note that, a priori, there is another case similar to (3) in which ` contains subwords in
A2 and A3; however, this is equivalent to (3) after reversing orientation on ` .

In case .1/, Lemma 4.10 implies that applying any combination of T�1 and H�1 to `

gives rise to a loop `0 which contains a subword in each of A1 and A2, and thus has non-
L–space dual filling. The p=q filling on ` is given by dual filling Tan ı� � �ıHa2 ıTa1.`/,
where Œa1; : : : ; an� is an odd length continued fraction for p=q. For any�1<p=q <0,
we can choose a continued fraction with each ai � 0, and so p=q is not an L–space
slope for ` . Similarly, in case (2) we choose a continued fraction with positive terms
and use Lemma 4.11 to see that any 0 < p=q <1 is a non-L–space.

Case .3/ has three subcases, depending on whether ` contains a Nc1, a d1 or neither. If
` contains a Nc1, then, by Lemmas 4.12 and 4.10, applying any combination of T�1

and H�1 to ` with at least one application of T�1 produces a loop `0 with a subword
in A1 and A2. Given any �1 < p=q < 0 we can choose an odd length continued
fraction Œa1; : : : ; an� for which each ai is strictly negative except that a1 may be 0,
and if a1 D 0 then n� 3. It follows that p=q is a non-L–space slope for ` . Similarly,
if ` contains a d1, then Lemmas 4.13 and 4.11 imply that any 0 < p=q < 1 is a
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non-L–space slope. If ` contains neither a d1 nor a Nc1, then any p=q is a non-L–space
slope by Lemma 4.14.

In case (4), ` has no dual unstable chains. Since dual stable chains are fixed by H˙1,
we have immediately that H.`/ D H�1.`/ D ` . Since 1 is a non-L–space slope,
` must have either no standard unstable chains or unstable chains of both type ck and
type dk . If ` has no standard unstable chains then T.`/D T�1.`/D` ; it follows that any
combination of Dehn twists preserves ` , and so any slopep=q is a non-L–space slope (in
fact in this case any filling of ` has trivial homology). If ` has standard unstable chains
of both types, then Lemma 4.15 implies that any slope p=q is a non-L–space slope.

4.3 Proof of Theorem 4.1

We are now ready to prove that the set of L–space slopes for a loop ` is a (possibly
empty) interval in yQ. We will use the fact that applying T and H to a loop ` changes
the set of L–space slopes in a controlled way: the slope p=q for ` is equivalent to the
slope .p�nq/=q for Tn.`/ and the slope p=.q�np/ for Hn.`/. These transformations
preserve the cyclic ordering on yQ, and thus preserve the connectedness of the set of
L–space slopes.

Remark 4.16 In particular, while Corollary 4.5 and Proposition 4.6 are stated in terms
of the 0 and 1 slopes, analogous statements hold for any two slopes of distance 1
since such pair of slopes can be taken to 0 and1 by a combination of T˙1 and H˙1.
More precisely, for any two slopes of distance 1, if both are L–space slopes then one
of the two intervals between them consists entirely of L–space slopes, and if both are
non-L–space slopes then one of the two intervals between them consists entirely of
non-L–space slopes.

In addition to Corollary 4.5 and Proposition 4.6, we will need the following lemma:

Lemma 4.17 For any loop ` , there do not exist integers n1 < n2 < n3 < n4 such that
n1 and n3 are L–space slopes and n2 and n4 are not L–space slopes , or vice versa.

Proof An integer n is an L–space slope for ` if and only if 0 is an L–space slope
for Tn.`/. By Lemma 4.8, this happens when Tn.`/ contains a word from the set
A1[A3 or from the set A2[A4, but not both. Recall from the proof of Lemmas 4.10
and 4.11 that A1 and A2 are closed under T�1 and A3 and A4 are closed under T.

Suppose that n1 < n2 < n3, where n2 is an L–space slope for ` while n1 and n3 are
non-L–space slopes; we will show that all n < n1 and all n > n3 are non-L–space
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slopes. Up to reversing the loop, we can assume Tn2.`/ contains a word in A1[A3
and not in A2[A4. We consider the case that Tn2.`/ contains a word in A1; the case
that it contains a word in A3 is similar and left to the reader.

By the closure property mentioned above (Lemma 4.10), Tn1.`/ contains a word in A1.
Since n1 is a non-L–space slope, Tn1.`/ must contain a word from A2[A4. It does
not contain a word in A4, since Tn2.`/ does not and the property of containing a word
in A4 is preserved by T (Lemma 4.11), and so it must contain a word in A2. It follows
that, for any n < n1, Tn.`/ contains words in A1 and A2 and thus n is a non-L–space
slope for ` .

Since the property of containing a word in A2 is preserved by T�1 (Lemma 4.10), we
know that Tn3.`/ does not contain a word in A2. We would like to show that Tn3.`/

contains a word in A3, since this would imply it also contains a word in A4; it would
follow that for all n> n3 the loop Tn.`/ contains words from both A3 and A4 and thus
n is a non-L–space slope for ` . Suppose, to the contrary, that Tn3.`/ does not contain
a word in A3. Then we see immediately that Tn2 does not contain a word in A3. It also
does not contain a word in A2, so it must consist only of the segments

fa1; a�1; b1; b�1; d1; d0; d�1; ckg;

where k can be any integer. Moreover, since n2C 1� n3, Tn2C1.`/ does not contain
a word in A3. In particular this implies that Tn2.`/ does not contain d1. Any d�1
cannot be preceded by d�1 or a�1 or followed by a d�1 or b�1, since this would give
a word in A2. The alternative, that d�1 is preceded by a d0 or a1 and followed by a
d0 or b1, is also ruled out since this would produce a word in A3 in Tn2C1.`/; thus
Tn2.`/ does not contain d�1. If Tn2.`/ contains d0, then it contains either a1dm0 b1,
a�1d

m
0 b1, a1dm0 b�1 or a�1dm0 b1. None of these are possible; the first two are words

in A3 and A2, respectively, and the last two give rise to words in A3 in Tn2C1.`/.
We have now shown that Tn2.`/ does not contain any dk segments, but, since it also
does not contain a�1b�1 2 A2 this contradicts the fact that Tn1.`/ has a word in A2.
Therefore, Tn3.`/ contains a word in A3 and a word in A4, and n is a non-L–space
slope for all n > n3.

Proof of Theorem 4.1 Any two distinct slopes r=s and p=q determine two intervals
in yQ; we need to show that if r=s and p=q are L–space slopes then one of these
intervals lies entirely in the set of L–space slopes for ` . By reparametrizing with T and
H as discussed above, we may assume that r=s D 0. We will assume p=q > 0 below;
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similar arguments apply when p=q < 0. If p=qD1, the result holds by Corollary 4.5,
so we will assume p=q <1.

Suppose that 0 and p=q are L–space slopes and there exist non-L–space slopes u 2
.0; p=q/ and v 2 Œ0; p=q�c . To reach a contradiction, we choose a continued fraction
Œa1; : : : ; an� for p=q with a1 � 0 and ai > 0 for i > 1 and proceed by induction on
the length n. In the base case of nD 1, p=q D a1 is an integer. We claim that there
is an integer u0 2 .0; a1/ that is a non-L–space slope. To see this, if u is not an integer,
consider the slopes buc and due. These slopes are distance 1 and both intervals between
them contain non-L–space slopes (u 2 .buc; due/ and v 2 Œbuc; due�c). Thus, by
Corollary 4.5 (taking into account Remark 4.16), at least one of them is a non-L–space
slope. Similarly, if v ¤1 then either bvc or dve is a non-L–space slope. If v D1 is
a non-L–space slope, note that by Proposition 4.3 either ` contains no unstable chains
or both types of unstable chains in standard notation or ` cannot be written in standard
notation. If ` cannot be written in standard notation (in which case it is a collection of
e� segments) or if ` contains no unstable chains in standard notation, then ` is fixed
by T˙1. It follows that all integer slopes behave the same, but this contradicts the fact
that 0 is an L–space slope and u0 is not. Thus ` must contain both types of unstable
chains in standard notation. Applying Tm form sufficiently large produces a loop where
all unstable chains are of type d or Nd (with large index), and there is at least one of
each type. It follows from Corollary 4.9 that m is a non-L–space slope, since dk 2 A3
and Ndk D c�k 2 A4. Thus we have integers 0 < u0 < a1 and v0 < 0 or v0 > a1 such
that 0 and a1 are L–space slopes and u0 and v0 are not; this contradicts Lemma 4.17.

Suppose the continued fraction Œa1; : : : ; an� for p=q has length n > 1 and a1 D 0. We
consider the loop `0 D Ha2.`/. Note that the slope p=q for ` corresponds to the slope
p0=q0 D p=.q � a2p/ for `0, which has continued fraction Œa3; : : : ; an�. The slope
0 for ` corresponds to 0 for `0, and the slopes u and v for ` correspond to slopes
u0 and v0 for `0. Thus `0 has L–space slopes 0 and p0=q0 and non-L–space slopes
u0 2 .0; p0=q0/ and v0 2 .�1; 0/[ .p0=q0;1�. Since p0=q0 has a continued fraction
of length n� 2, this produces a contradiction by induction.

Suppose p=q has continued fraction Œa1; : : : ; an� of length n> 1 with a1>0. Consider
the distance 1 slopes a1 D bp=qc and a1C 1D dp=qe; both intervals between these
slopes contain L–space slopes (either 0 or p=q), so by Proposition 4.6 one of them
must be an L–space slope. First suppose that a1 is an L–space slope. By the base
case of induction, we cannot have both u 2 .0; a1/ and v 2 Œ0; p=q�c � Œ0; a1�c , and
so we must have u 2 .a1; p=q/. Consider the loop `0 D Ta1.`/. The slopes 0 and
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p0=q0 D p=q� a1 are L–space slopes for `0 while the slopes u0 D u� a2 2 .0; p0=q0/
and v0 D v� a2 2 Œ0; p0=q0�c are non-L–space slopes. A continued fraction for p0=q0

is Œ0; a2; : : : ; an�; as shown above, this produces a contradiction.

Finally, suppose instead that a1 is a non-L–space slope for ` and a1C1 is an L–space
slope. The base case of induction rules out the possibility that v 2 Œ0; a1 C 1�c , so
we must have v 2 .p=q; a1 C 1/. Consider the loop `0 D Ha2�1 ı Ta1C1.`/. The
slope a1 for ` corresponds to the slope 0 for `0, and the slope p=q corresponds to a
slope p0=q0 with continued fraction Œ�1; 1; a3; : : : ; an�� Œ0;�a3; : : : ;�an�. There are
non-L–space slopes for `0 in both intervals between 0 and p0=q0. By induction (using
the analogue of the above cases when p=q < 0), this is a contradiction.

This proves that the set of L–space slopes for a loop ` is an interval. To prove the
statement for bordered manifolds .M; ˛; ˇ/ of loop-type, we simply observe that if
M is a loop-type manifold, M.p˛C qˇ/ is an L–space if and only if p=q is an L–
space slope for each loop ` in bCFD.M; ˛; ˇ/. The set of L–space slopes for M is the
intersection of the intervals of L–space slopes for each loop, and hence an interval.

4.4 Strict L–space slopes

The notion of L–space slope is fairly natural, however, in the context of the theorems
in this paper, it is not quite the right condition. We will be interested primarily in
slopes that are not only L–space slopes but are also surrounded by a neighbourhood of
L–space slopes.

Definition 4.18 A slope in the boundary of a three-manifold M with torus boundary
is a strict L–space slope if it is an L–space slope in the interior of LM . Denote the set
of strict L–space slopes by LıM .

We will give a geometric interpretation of strict L–space slopes in Section 7. For
now, we will use loop notation and the results in this section about L–space slopes to
determine when an L–space slope is strict.

Proposition 4.19 Given a loop ` :

(1) The slope1 is a strict L–space slope for ` if and only if ` can be written in
standard notation using only the subwords

dk; b1a�1 and b�1a1;

where k can be any integer , with at least one dk and such that b1a�1 is never
adjacent to b�1a1.
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(2) The slope 0 is a strict L–space slope for ` if and only if ` can be written in dual
notation using only the subwords

d�k ; b�1a
�
�1 and b��1a

�
1 ;

where k can be any integer , with at least one d�
k

and such that b�1a
�
�1 is never

adjacent to b�
�1a
�
1 .

Proof Suppose1 is a strict L–space slope. In particular, it is an L–space slope, so,
by Proposition 4.3, ` can be written in standard notation with no ck and at least one dk .
Since it does not contain ck , ` can be broken into pieces of the form dk or biaj for
any integer k and nonzero integers i and j, with at least one dk . We also have that
n and �n are L–space slopes for sufficiently large n. Equivalently, 0 is an L–space
slope after we apply Tn or T�n for sufficiently large n. The twist Tn has the effect of
replacing all unstable chains with chains of type dk for k� 0, while the twist T�n

replaces all unstable chains with dk for k� 0.

Consider a loop consisting of the pieces dk with k� 0 and biaj with any nonzero
integers i and j, with at least one dk . Referring to the discussion of dualizing in
Section 3.2, note that the loop certainly contains d�0 D e

�, since it contains dk with
k > 1. Thus, by Proposition 4.3, 0 is an L–space slope if and only if the loop contains
no c�

k
segments. The loop contains c�

k
with k > 0 if and only if it contains aibj with

i; j < 0. It contains c�
k

with k < 0 if and only if it contains biaj with i; j < 0. It
contains c�0 D Ne

� segments if and only if it contains a` or b` with ` < �1.

Similarly, consider a loop consisting of the pieces dk with k� 0 and biaj with any
nonzero integers i and j, with at least one dk . The loop contains c�0 D Ne

�, so 0 is an
L–space slope if and only if the loop contains no d�

k
segments. Moreover, the loop

contains d�
k

if and only if it contains biaj or aibj with i; j > 0 or a` or b` with ` > 1.

Therefore, given a loop for which1 is an L–space slope, n and �n are also L–space
slopes for all sufficiently large n if and only if the loop contains no chains of type ak
or bk with k > 1, a1 segments are never adjacent to b1 segments, and a�1 segments
are never adjacent to b�1 segments.

The proof of part .2/ is completely analogous. Given that 0 is an L–space slope, we
must check that 1=n and �1=n are L–space slopes for sufficiently large n, which is
equivalent to checking that1 is an L–space slope after applying Hn or H�n. These
twists have the effect of replacing unstable chains in dual notation with d�

k
segments

with either k� 0 or k� 0. The rest of the proof is identical to the proof above after
adding/removing stars on each segment.
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4.5 Simple loops

We will often restrict to a special class of loops, which we call simple.

Definition 4.20 A loop ` is simple if there is a loop `0 consisting only of unstable
chains such that ` can be obtained from `0 using the operations T˙1 and H˙1. A
collection of loops f ìg

n
iD1 is said to be simple if, possibly after applying a sequence

of the operations T˙1 and H˙1, every loop consists only of unstable chains.

Remark 4.21 In the above definition, we do not specify whether the unstable chains
are in standard or dual notation. In fact, it does not matter: if ` contains only unstable
chains in standard notation then Tn.`/ contains only unstable chains in dual notation
for sufficiently large n, and if ` contains only dual unstable chains then Hn.`/ contains
only standard unstable chains. Definition 4.20 can be stated in terms of standard
notation only (compare [10, Definition 4]), but it is sometimes convenient to check the
condition in dual notation.

The notion of simple loops gives rise to a refinement of loop-type manifolds: M is
said to be of simple loop-type if it is loop-type and, for some choice of ˛ and ˇ, the
loops representing bCFD.M; ˛; ˇ/ consist only of unstable chains. Equivalently, M is
of simple loop-type if, for any choice of ˛ and ˇ, bCFD.M; ˛; ˇ/ is represented by a
simple collection of loops.

Note that solid torus-like loops (Definition 3.20) are examples of simple loops. Although
we do not give an explicit description of all simple loops, we prove the following useful
property:

Proposition 4.22 If ` is simple then , up to reorienting the loop , ` has no ak or bk
segments with k < 0.

The proof makes use of the following two observations.

Lemma 4.23 If ` contains no ak , bk or dk segments with k < 0, then the same is true
for T.`/ and H.`/.

Proof Recall that an ak segment with k < 0 corresponds to a segment of type Na,
a bk with k < 0 corresponds to type Nb, and a dk with k < 0 corresponds to type Nc.
The statement for T.`/ is obvious, since T fixes ak and bk segments and increases the
subscript on dk segments by one. For the second, we observe that ` contains no a�i , b�i
or c�i segments in dual notation with i > 0. Indeed, an a�i or a c�i contains a backwards
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�3 arrow, which in standard notation implies the presence of a segment of type Na or Nc
(equivalently, a segment of type ak or dk with k < 0), and a b� segment contains a
forward �1 segment, which implies the presence of type Nb or Nc segment (equivalently,
of a bk or dk with k < 0). It is clear that this property is preserved by H, which fixes a�

and b� segments and decreases the index on c� segments. Since H.`/ has no a�i , b�i
or c�i segments with i > 0, it is straightforward to check that H.`/ has no forward �1
arrows or backward �3 arrows, and thus it does not contain any ak , bk or dk segments
with k < 0.

Lemma 4.24 If ` contains no ak , bk or ck segments with k < 0, then the same is true
for T�1.`/ and H�1.`/.

Proof The proof is completely analogous to the previous lemma.

Proof of Proposition 4.22 Since ` is simple, there is some `0 consisting of only
unstable chains such that ` is obtained from `0 by a sequence of Dehn twists. That
sequence of Dehn twists determines an element of the mapping class group, which can
be represented by the matrix

�
p q
r s

�
. Let Œk1; : : : ; k2n� be a continued fraction for p=q

of even length; the element of the mapping class group above can be decomposed as
the sequence of Dehn twists

Tm ı Hk2n ı Tk2n�1 ı � � � ı Hk2 ı Tk1 ;

where m is an integer. Let

`00 D Hk2n ı Tk2n�1 ı � � � ı Hk2 ı Tk1.`/:

First suppose that p=q is positive. We may assume that each ki is positive for 1� i �2n.
Then `0 can be written with no ak , bk or dk segments with k < 0, and, by Lemma 4.23,
this property is closed under all positive twists, so `00 can also be written with no ak ,
bk or dk segments with k < 0. It follows that ` D Tm.`00/ can be written with no ak
or bk segments with k < 0.

If instead p=q is negative, we may chose a continued fraction with each ki negative.
Then `0 can be written with no ak , bk or ck segments with k < 0, and, by Lemma 4.24,
the same is true for `00. It follows that ` D Tm.`00/ can be written with no ak or bk
segments with k < 0.

The argument above can be repeated in dual notation, taking a continued fraction for
r=s instead of p=q, to prove the following:
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Proposition 4.25 If ` is simple then , up to reorienting the loop , ` has no a�
k

or b�
k

segments with k < 0.

The main advantage of restricting to simple loops is that it greatly simplifies the
conditions under which a given slope is a strict L–space slope. Recall that, by
Proposition 4.19,1 is a strict L–space slope for ` if and only if ` can be decomposed
into words of the form dk , b1a�1 or b�1a1. If ` is a simple loop, then the last two
words cannot appear by Proposition 4.22, and 1 is a strict L–space slope if and
only if ` consists only of unstable chains in standard notation. Equivalently (using
Observation 3.9),1 is a strict L–space slope if and only if ` does not contain both
positive and negative subscripts in dual notation. Similarly, 0 is a strict L–space slope
if and only if ` consists only of unstable chains in dual notation, which is equivalent to
` having only nonnegative or only nonpositive subscripts in standard notation.

We conclude this section by refining Theorem 4.1 in the case of simple loops. Theorem
4.1 states that set of L–space slopes for a loop ` is a (possibly empty) interval in yQ;
the endpoints of this interval could be irrational, a priori, but we find that only rational
endpoints are possible.

Proposition 4.26 Let ` be a simple loop. The set of L–space slopes for ` is either

(i) identified with Q (in practice , every slope other than the rational longitude); or

(ii) the restriction to yQ of a closed interval U in yR with rational endpoints.

Proof Note that applying the twist operations T and H to a loop preserves the cyclic
ordering on abstract slopes, and so properties (i) and (ii) are preserved under these
operations. Given an arbitrary simple loop ` , we will describe an algorithm for applying
twists to produce a loop `0 with one of the following properties:

(1) `0 contains only d0 segments;

(2) `0 contains only d1, d0 and d�1 segments, with d1 and d�1 segments alternating
(ignoring d0 segments); or

(3) `0 contains only dk segments with k � �1, including at least one d�1 segment,
such that each d�1 is followed by .d0/jdk for some j � 0 and k > 0, and `0

does not satisfy .2/.

By definition, some sequence of twists produces a loop 1̀ which can be written in
standard notation using only type dk segments. We may assume that the minimum
subscript for the dk segments in 1̀ is 0. Given ì (starting with i D 1), the algorithm
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proceeds as follows: If the subscripts in ì are all 0, then ì satisfies .1/ and the algorithm
stops. Otherwise, consider the loop T�1. ì /; this loop consists of dk segments with
k � �1 including at least one d�1. If T�1. 1̀/ satisfies .2/ or .3/, the algorithm stops.
Otherwise, consider the loop E. ì /, which by Lemma 3.10 contains only d�

k
segments

with k � 0 in dual notation. It follows that E. ì / contains only ck segments with k � 0
in standard notation; reversing the loop, we have that E. ì / can be written with only dk
segments with k � 0 in standard notation. Let mi denote the minimum subscript for a
dk segment in E. ì /, and define ìC1 to be T�mi ı E. ì /. Note that ìC1 consists of dk
segments with k� 0, including at least one d0. We now repeat the algorithm using ìC1.

To see that this algorithm terminates, let �i denote the number of d0 segments in the
loop ì . Observe that d0 segments in ìC1 come from minimal subscripts in E. ì /,
which come from maximal sequences of d0’s in ì ; in particular, there is at least one
d0 in ì for each d0 in ìC1, and so �iC1 � �i . Moreover, the inequality is strict unless

ì has no consecutive d0 segments. If T�1. ì / satisfies .2/ or .3/ then the algorithm
terminates; otherwise, ì must contain d0.d1/jd0 for some j � 0. Let �i denote the
minimal such j. As observed above, if �i D 0 then �iC1 < �i . If �i > 0, then the
subword d0.d1/�id0 in ì gives rise to the subword d�2.d�1/�i�1d�2 in E. ì / and the
subword d0.d1/�i�1d0 in ìC1. Thus, at each step in the algorithm, either �iC1 < �i
or �iC1 D �i and �iC1 < �i . Since �i and �i are nonnegative integers, the algorithm
must terminate after finitely many steps.

Let `0 be the result of the algorithm above. In cases .1/ and .2/, we can easily check
that condition (i) is satisfied. First note that 1 is an L–space slope for `0 since it
contains only unstable chains in standard notation. Moreover, for any n 2 Z, 1=n is an
L–space slope for `0 if and only if1 is an L–space slope for Hn.`0/. But Hn.`0/D `0

since `0 either cannot be written in dual notation (case .1/) or contains only stable
chains in dual notation (case .2/). Since the set of L–space slopes is an interval and it
contains slopes arbitrarily close to 0 on both sides, it must be all of yQnf0g. In case .3/,
note that writing `0 in dual notation produces stable chains, but each b� segment is
immediately followed by an a� segment. Moreover, since `0 does not satisfy .2/, it
has at least one unstable chain in dual notation. It follows from Propositions 4.3 and
4.19 that 0 is an L–space slope for `0 but not a strict L–space slope. Thus 0 must be a
boundary of the interval of L–space slopes. Since `0 was obtained from ` by applying
a finite number of twists, the slope 0 for `0 can be expressed as a rational slope for ` .

In case .3/, we have found one rational boundary of the interval of L–space slopes. In
fact, we can check that it is the left boundary. In this case �ı.`0/ and ��.`0/ have the
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same sign, and so the slope of the rational longitude ��ı=�� is negative. By Corollary
4.5 it follows that the set of L–space slopes for `0 contains Œ0;1�, and so 0 must be the
left boundary of the interval ofL–space slopes for `0. A similar algorithm, with opposite
signs for subscripts in property .3/, shows that the right endpoint is also rational.

The proof of Theorem 1.2 is now complete: it follows from (and is made more precise
by) Theorem 4.1 in combination with Proposition 4.26

5 Gluing results

This section is devoted to proving Theorem 1.3. We first prove the analogous result on
the level of abstract loops, and then deduce the gluing theorem for simple loop-type
manifolds. We end the section with an application to generalized splicing of L–space
knot complements and give the proof of Theorem 1.6.

5.1 A gluing result for abstract loops

We will say that two loops 1̀ and 2̀ are L–space aligned if, for every slope r=s 2 yQ,
either r=s is a strict L–space slope for 1̀ or s=r is a strict L–space slope for 2̀. This
section is devoted to proving the following proposition:

Proposition 5.1 If 1̀ and 2̀ are simple loops which are not solid-torus-like , then
`A1 � 2̀ is an L–space chain complex if and only if 1̀ and 2̀ are L–space aligned.

An essential observation is that 1̀ and 2̀ are L–space aligned if and only if T. 1̀/

and H. 2̀/ are L–space aligned, since T takes the slope r=s to .r C s/=s while H

takes the slope s=r to s=.r C s/. More generally, we can apply a sequence of
twists fTk1 ; Hk2 ; : : : ; Tk2n�1 ; Hk2ng to 1̀ and a corresponding sequence of twists
fHk1 ; Tk2 ; : : : ; Hk2n�1 ; Tk2ng to 2̀ without changing whether or not the pair of loops
is L–space aligned. By Proposition 2.6, the quasi-isomorphism type of `A1 � 2̀ is also
unchanged. Thus, in proving Proposition 5.1, we may first reparametrize the pair of
loops to get a more convenient form.

Proof of Proposition 5.1, “only if” direction Suppose 1̀ and 2̀ are not L–space
aligned; that is, there exists a slope p=q that is not a strict L–space slope for 1̀ and
q=p is not a strict L–space slope for 2̀. In fact, we may assume that p=q D1; if not,
we reparametrize as described above, replacing 1̀ with

`01 D Hk2n ı Tk2n�1 ı � � � ı Hk2 ı Tk1. 1̀/
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so that the slope p=q for 1̀ becomes the slope1 for `01, and replacing 2̀ with

`02 D Tk2n ı Hk2n�1 ı � � � ı Tk2 ı Hk1. 2̀/:

Furthermore, we may assume that 1̀ contains no segments of type dk , Ndk , e or Ne, and
that 2̀ contains no segments of type d�

k
, Nd�
k

, e� or Ne�; if necessary, we replace 1̀ with
T�n. 1̀/ and 2̀ with H�n. 2̀/ for sufficiently large n.

Since1 is not a strict L–space slope for 1̀, the loop 1̀ must contain stable chains in
standard notation (note that, since 1̀ is not solid torus-like, it can be written in standard
notation). In particular, after possibly reversing the loop, 1̀ contains a bk segment.
The corresponding segment in `A1 is

� ı ı �
x1 y1 yk x2

�3;�2;�1 �2;�1 �3

Since 0 is not a strict L–space slope for 2̀, this loop must contain stable chains in dual
notation. In particular it contains an a�

`
segment; we label the corresponding generators

ı � � ı
w1 z1 z` w2

�3 �12 �123

Consider the generator yk in `A1 , which has no outgoing A1 operations. To determine
the possible incoming operations, note that the segment bk must be followed by either
a type c segment or a type a segment. This is because we assumed that 1̀ contains no
Ne or Ndj segments, and 1̀ cannot contain both bk and Naj segments since it is simple. In
either case, x2 has an outgoing �3 labelled arrow in `A1 and no incoming arrows. It
follows that yk has only the incoming A1 operations

m2.x2; �3/D yk;

m2Ci .yk�i ; �2; �12; : : : ; �12; �1/D yk for 1� i < k;

m3Ck.x1; �3; �2; �12; : : : ; �12; �1/D yk;

and possibly more operations whose inputs end with �2; �12; : : : ; �12; �1.

Consider the generator w2 in 2̀. Note that a�
`

must be followed by either a b� segment
or a Nc� segment. It follows that the only incoming sequences of arrows consist of a
�123 or �1 arrow preceded by some number of �12 arrows. Comparing this with the
A1 operations terminating at yk described above, it is clear that the generator yk˝w2
in `A1 � 2̀ has no incoming differentials. It also has no outgoing differentials, since
yk has no outgoing A1 operations. Thus yk˝w2 survives in homology.
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Similarly, consider the generator x1 in `A1 and z1 in 2̀. The generator z1 has no
incoming sequences of arrows, and the only outgoing sequences consist of a single �3
arrow or begin with some number of �12 arrows followed by a �123. Here we use the
fact that the segment a�

`
in the simple loop 2̀ can only be preceded by a b� segment or

a c� segment, so the outgoing �3 arrow cannot be followed by another outgoing arrow.
In `A1 , the segment bk must be preceded by an a segment or a Nc segment. It follows
that, for any nontrivial operation mnC1.x1; �I1

; : : : ; �In
/, we have

� �I1
¤ �123;

� if �I1
D �12, then �Ii

D �12 for 1� i � n� 1 and �In
D �1;

� if �I1
D �3, then n > 1.

We see that no A1 operations starting at x1 match with the ın maps starting at z1.
Thus the generator x1˝ z1 in `A1 � 2̀ has no incoming or outgoing differentials and
survives in homology.

Finally, we observe that gr.z1/Dgr.w2/ since z1 andw2 are connected by only �12 and
�123 arrows, but gr.yk/D gr.y1/D�gr.x1/, since arrows labelled .�2; �1/ preserve
grading but arrows labelled .�3; �2; �1/ flip grading. It follows that yk˝w2 and x1˝z1
have opposite (Z=2Z)–grading. Since both survive in homology, `A1 � 2̀ is not an
L–space complex.

To prove the converse we will use the fact that 1̀ and 2̀ are L–space aligned to put
strong restrictions on the segments that may appear in the loops 1̀ and 2̀. Once again,
we can apply twists to 1̀ and 2̀ to obtain `01 and `02 with convenient parametrizations,
such that `01 and `02 are still L–space aligned and `A1 � 2̀ is homotopy equivalent to
.`01/

A � `02. The set of strict L–space slopes for 2̀ is some nonempty open interval
in yQ. This interval is either all of yQ except the rational longitude or it has distinct
rational endpoints; see Proposition 4.26. In the latter case, we can reparametrize so that
for `02 these boundaries have slope 0 and p=q for some 1 < p=q �1. To see this, take
p > 0 and choose n so that 0� qCnp < p and 1 < p=.qCnp/�1; we can replace
p=q with p=.qCnp/ by applying dual twists, in particular, leaving the slope 0 fixed.
Now the set of strict L–space slopes for `02 is exactly .0; p=q/. The fact that `01 and `02
are L–space aligned then implies that the set of strict L–space slopes for `01 contains
Œ�1; q=p�. If the set of strict L–space slopes for 2̀ is all of yQ except the rational
longitude, then we can choose a parametrization such that the rational longitude of `02
is 0 and such that the set of strict L–space slopes for `01 contains Œ�1; 0�.
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Lemma 5.2 If q=p 2 Œ0; 1/ and ` is a simple loop for which the interval of strict
L–space slopes contains Œ�1; q=p�, then ` consists only of segments c�

k
with 0 �

k � dp=qe.

Proof Since 0 is a strict L–space slope, ` can be written with only dual unstable
chains. Up to reading the loop in reverse order, we can assume the unstable chains are
c�
k

segments. Moreover, the fact that1 is a strict L–space slope implies that ` cannot
contain c�

k
segments with both positive and negative subscripts. Since the rational

longitude is given by ��ı.`/=��.`/ and falls in the interval .q=p;1/, we must have
that �ı.`/ and ��.`/ have opposite signs. This only happens if ` is composed of c�

k

segments with k � 0. Let nD dp=qe. Observe that ` must contain at least one c�
k

with
0� k < n (recall that c0 D Ne�), since otherwise the rational longitude is less than 1=n.
Finally, the fact that 1=n is a strict L–space slope implies that1 is a strict L–space
slope for the loop Hn.`/. Since ` contains Ne� or c�

k
with k < n, Hn.`/ contains at least

one c�
k

with k < 0 and therefore does not contain any c�
k

with k > 0. Therefore ` does
not contain c�

k
with k > n.

Lemma 5.3 If p=q 2 .1;1� and ` is a simple loop that is not solid torus-like for
which the interval of strict L–space slopes contains .0; p=q/, then ` consists only of
ak , bk , ck and dk segments (for k > 0) and e and Nc1 segments. Moreover ,

� ` contains no two Nc1 D d�1 segments separated only by e D d0 segments ,

� ` contains no ck segments with k < dp=qe� 1, and

� if 0 is not a strict L–space slope for ` then there is at least one Nc1 segment.

Proof Since 1 is a strict L–space slope, T.`/ can be written with no Na, Nb, Nc or Nd
segments. It follows that ` can be written with no Na, Nb, Nd or Ne segments and no Nck
segments with k > 1.

Let n D dp=qe. Since n � 1 < p=q is a strict L–space slope, Tn�1.`/ does not
contain both barred and unbarred segments (ignoring e’s). Suppose ` contains ck
with k < n� 1. Then Tn�1.`/ contains at least one Nd segment and cannot contain
any unbarred segments. Any a, b or ck segments with k > n� 1 in ` produces an
unbarred segment in Tn�1.`/, so we must have that ` consists only of ck segments
with k � n � 1. However, in this case it is easy to see that ��.`/ and �ı.`/ have
opposite signs and j�ı.`/j � .n�1/j��.`/j, which contradicts the fact that the rational
longitude ��ı=�� does not fall in the interval .0; p=q/. Thus ` does not contain ck
with k < n� 1.
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Now ` must contain an ak , bk , ck or dk segment with k > 1 or two segments of type
a1, b1, c1 or d1 separated only by e’s. Otherwise, ` would consist of only Nc1, e and d1
segments with at least one Nc1 for each d1; in this case, ��.`/ and �ı.`/ have opposite
signs and j�ı.`/j � j��.`/j, so the rational longitude falls in .0; 1�. It follows that
in dual notation ` contains Nc�

k
, e� or d�

k
, and thus Hm.`/ contains a d� segment for

sufficiently large m. Since 1=m is a strict L–space slope for sufficiently large m, we
must have that Hm.`/ does not contain a Nd� segment. Therefore ` does not contain any
c�
k

segments, and thus in standard notation it does not have two Nc1 segments separated
only by e’s.

Finally, if 0 is not a strict L–space slope for ` , then ` must contain both barred and
unbarred segments in standard notation; it follows that ` must contain at least one Nc1.

The two previous lemmas only depend on dp=qe. If p=q is not an integer, it is possible
to give further restrictions on subwords that can appear in the loop. We will prove one
such restriction using two properties for a pair of loops. For an integer r � 0, we will
say that two loops 1̀ and 2̀ satisfy property � (or property � for r � 0) if:

.�1/ 1̀ consists only of c�
k

with 0� k � n, for some n, with at least one c�n .

.�2/ 2̀ consists only of ak , bk (k > 0), dk (k � �1) and cl (l � m) segments for
some m> 0, with at least one cm and at least one Nc1 D d�1.

.�3/ There is an integer N > 0 and subscripts ki 2 fN;N � 1g for 1 � i � r such
that 1̀ contains the subword c�N c

�
k1
: : : c�

kr
c�N and 2̀ contains the subword

cN�1ck1
: : : ckr

cN�1.

The integer r � 0 appearing in condition .�3/ is the complexity of the pair . 1̀; 2̀/
satisfying property �; when we appeal to pairs satisfying property � the aim will be to
decrease this complexity. Similarly, two loops 1̀ and 2̀ satisfy property property ��

(or property �� for r � 0) if:

.��1/ 1̀ consists only of Ndk with 0� k � n, for some n, with at least one Ndn.

.��2/ 2̀ consists only of Na�
k

, Nb�
k

(for k > 0), Nc�
k

(for k > �1) and Nd�
l

(for l � m)
segments for some m, with at least one Nd�m and at least one d�1 D Nc

�
�1.

.��3/ There is an integer N > 0 and subscripts ki 2 fN;N � 1g for 1 � k � r such
that 1̀ contains the subword NdN Ndk1

: : : Ndkr
NdN and 2̀ contains the subword

Nd�N�1
Nd�
k1
: : : Nd�

kr

Nd�N�1.

Lemma 5.4 If two simple loops 1̀ and 2̀ satisfy either property � or property ��,
then 1̀ and 2̀ are not L–space aligned.
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1̀ Ne�c�3 c
�
2 c
�
2 c
�
1 c
�
2

2̀ a1 Nc1b1c1c2c1c1

`01
Nd�2 c
�
1 Ne
� Ne� Nd�1 Ne

�

`02a1d1b1 Nd1 Ne Nd1 Nd1
T2

H2

Figure 6: Loops 1̀ and 2̀ satisfying property � for nD 3 and mD 1. The
relevant subwords, with N D r D 2, have been highlighted. Note that this
illustrates the key step in the proof of Lemma 5.4 when n>mC1: one checks
that 0 is not a strict L–space slope for `01 (this loop contains a Nd� segment)
while the set of strict L–space slopes for `02 does not intersect Œ0;1� thus `01
and `02 (and hence 1̀ and 2̀) are not L–space aligned.

Proof Suppose first that property � is satisfied, where n is the maximum subscript
for c�

k
segments in 1̀ and m is the minimum subscript of ck segments in 2̀. Since

1̀ contains c�N and 2̀ contains cN�1 for some N, we have that n�mC 1. Consider
the reparametrized loops `01 D HmC1. 1̀/ and `02 D TmC1. 2̀/; `01 and `02 are L–space
aligned if and only if 1̀ and 2̀ are. We now have:

� `01 consists only of c�
k

with �m� k� n�m�1 with at least one c�n�m�1 (where,
as usual, c�0 D Ne

�).

� `02 consists only of ak , bk (for k > 0), ck (for k � �1) and dl segments with
l �m, with at least one c�1 D Nd1 and at least one dm.

Note that, for `02, 0 is not a strict L–space slope because the loop contains at least one
barred segment, Nd1, and at least one unbarred segment, dm. Note also that1 is not
a strict L–space slope, since `02 contains unstable chains with both orientations. The
slope �1 is a strict L–space slope, since T�1.`02/ has no barred segments (ignoring e’s).
It follows that `02 has no strict L–space slopes in Œ0;1�.

First consider the case that n >mC1. In this case, `01 contains at least one c�
k

segment
with k > 0. If `01 also contains a c�

k
segment with k < 0, then 0 is not a strict L–space

slope for `01. Since1 is not a strict L–space slope for `02, `01 and `02 are not L–space
aligned. If `01 does not contain a c�

k
segment with k < 0, then it consists only of c�

k

segments with k � 0. It follows that the rational longitude ��ı.`01/=��.`
0
1/ is positive.

Since the rational longitude is not a strict L–space slope, and all positive slopes for `02
are not strict L–space slopes, `01 and `02 are not L–space aligned.

In the case that n D mC 1, we have N D n in the statement of property � (with
complexity r) for 1̀ and 2̀. The shifted loops `01 and `02 satisfy an additional condition:
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� There are subscripts k0i 2 f0; 1g for 1� i � r such that `01 contains the subword
Ne� Nd�

k01
: : : Nd�

k0r
Ne� and `02 contains the subword Nd1 Ndk01 : : :

Ndk0r
Nd1, following (as

usual) the convention that Nd0 D Ne and Nd�0 D Ne
�.

The next step is to write `01 in standard notation and `02 in dual notation. First, `01
consists only of Ne� and Nd� segments, so in standard notation it consists only of Ne and
Nd segments. There is some maximum subscript on the Nd segments; call it n0. Note that

this says that `01 and `02 satisfy condition .��1/ for property ��. Dualizing `02 is slightly
harder. Types of segments in dual notation are determined by adjacent pairs of standard
segments (ignoring e’s and Ne’s); see Section 3.2. The possible pairs of segments in `02
are ab, ad , dd , db, ba, bc, b Nd , ca, cc, c Nd , Nda, Ndc and Nd Nd . These correspond to
dual segments d�, d�, d�, d�, Nc�, Nc�, Nb�, Nc�, Nc�, Nb�, Na�, Na� and Nd�, respectively.
Since `02 has no e segments, the subscripts on the d� segments are at most 1. Since the
only bar segments in `02 in standard notation have subscript 1, there are no Ne� segments
in `02. Thus `02 consists only of Na�

k
, Nb�
k

, Nc�
k

, Nd�
k

(for k > 0), e� and d�1 segments. There
is some minimum subscript on the Nd segments; call it m0. Moreover, since `02 contains
at least one dk segment, it also contains at least one d�1 segment. Note that this says
that `01 and `02 satisfy condition .��2/ of property ��.

If n0>m0C1, then we proceed in a similar fashion to the n>mC1 case for property �.
We replace `01 with `001 D T�m

0�1.`01/ and `02 with `002 D H�m
0�1.`02/. We can observe

that `002 contains at least one c�1 segment and at least one Ncm0 segment; thus 0 and1
are not strict L–space slopes for `002 , and in fact no slope in Œ�1; 0� is a strict L–space
slope. We can also observe that `001 consists of c, Ne and Nd segments with at least one Nd .
Thus either 0 is not a strict L–space slope or the rational longitude is negative. In either
case, `001 and `002 are not L–space aligned.

Now assume that n0 D m0 C 1. Consider the sequence k01; : : : ; k
0
r . This sequence

consists of some number of (possibly empty) strings of 0’s each separated by a single 1;
let l1; : : : ; ls be the sequence of the lengths of these strings of 0’s. Note that s is at
most r C 1. Since `02 contains the word Nd1 Ndk01 : : :

Ndk0r
Nd1, it follows that it contains the

dual word Nd�
l1
Nd�
l2
: : : Nd�

ls�1

Nd�
ls

. Similarly, `01 contains the dual word Ne� Nd�
k01
: : : Nd�

k0r
Ne�,

which must be followed and proceeded by more Nd� segments, possibly with additional
Ne� segments in between. It follows that `01 contains the word Ndl 01

Ndl2 : : :
Ndls�1

Ndl 0s , where
l 01 > l1 and l 0s > ls . Since we have assumed that n0 D m0 C 1, we must have that
l 01 D l1C 1 and l 0s D ls C 1, and moreover that l1 D ls and li 2 fl1; l1C 1g for every
other i . Let N 0 D l1C 1, so that `01 contains the subword NdN 0 Ndl2 : : : Ndls�1

NdN 0 and `02
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contains the subword Nd�N 0�1
Nd�
l1
: : : Nd�

ls�1

Nd�N 0�1. In other words, the property .��3/ of
property �� is satisfied with complexity r 0 D s� 2. Note that r 0 < r , since s � r C 1.
We also have that r 0 � 0, since if s D 1 then each k0i is 0 for each 1� i � r ; it would
follow that `02 contains Nd�rC1 and `01 contains a Nd segment with subscript at least rC 3,
and so n0 >m0C 1.

We have shown that if 1̀ and 2̀ satisfy property � (for some integer r � 0), then
either they are not L–space aligned or they can be modified to `01 and `02 which satisfy
property �� (for some integer r 0 � 0), where 0 � r 0 < r . A similar proof shows that
if 1̀ and 2̀ satisfy property �� then either they are not L–space aligned or they can
be modified to `01 and `02 which satisfy property � with 0� r 0 < r . In both cases, the
complexity is reduced, so, by induction on r , we have that 1̀ and 2̀ are not L–space
aligned if they satisfy either property.

Now that we have placed restrictions on loops 1̀ and 2̀ that are L–space aligned, we
can complete the proof of Proposition 5.1 by analyzing the box tensor product segment
by segment. In the proof, we will determine when certain generators in `A1 � 2̀ cancel
in homology. To aid in this, we introduce the following terminology: we refer to
differentials starting or ending at x˝ y in `A1 � 2̀ as being “on the right” or “on the
left” depending on whether the type D operations in 2̀ that give rise to the differential
in the tensor product are to the right or left of y, relative to the cyclic ordering on 2̀. In

�ı�

ı

� ı

ı

�3�2

�123

�1

�2

�23

�123

��

�

`A
� ��

y x˝y

having fixed the loop .d2 Nb1 Na1/ (that is, reading the loop counterclockwise) the generator
x ˝ y cancels on the right when paired with the standard solid torus. (Recall that
this example may be identified with the trivial surgery on the right-hand trefoil.) This
terminology is motivated by picturing the tensor product on a grid with rows indexed
by generators of `A1 and columns indexed by generators of 2̀; compare Figure 7. With
this terminology in place, we observe:

Lemma 5.5 For any loops 1̀ and 2̀ and any generator x˝ y 2 `A1 � 2̀, there is at
most one differential into or out of x˝y on the right , and at most one on the left.
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Proof This follows from examining the arrows of type I�, II�, Iı and IIı introduced in
Section 3.1 and the corresponding type A arrows. For instance, suppose y has a type I�
arrow on the right. A differential on the right of x˝y must arise from an A1 operation
starting at x with inputs starting with �1, �12 or �123. Such A1 operations correspond
to sequences of arrows in `A1 starting at x in which the first arrow is labelled by �1.
There is at most one such arrow from x in `A1 , since the corresponding vertex in 1̀ is
adjacent to only one arrow of type II�. A directed sequence of arrows in `A1 of length k
beginning with this �1 labelled arrow gives rise to a collection of k A1 operations
with first input �1, �12 or �123, each corresponding to the first i arrows in the sequence
for some i � k. We observe that none of these operations have inputs that are the first
n inputs of another operation in the collection. The reason for this is, when reading off
the inputs for an A1 operation from a sequence of arrows following the conventions
in Section 2.4, the effect of adding one more arrow is to leave all but the last input in
the list unchanged, multiply the last input by something nontrivial and possibly add
more inputs at the end of the list. For example, for a sequence of arrows, in `A1 ,

� ı ı �
x

�1 �2;�1 �2

the first arrow yields a contribution tom2.x; �1/, the first two arrows yield a contribution
to m3.x; �12; �1/ and all three arrows yields a contribution to m3.x; �12; �12/. Thus
at most one operation in the collection can pair with a sequence of arrows on the right
of y in 2̀. It follows that x˝y has at most one differential on the right.

Similar arguments show that there is at most one differential on the right if the arrow
on the right of y is type II�, Iı or IIı, and the same is true on the left.

Thus, all differentials in `A1 � 2̀ appear in linear chains and x ˝ y will cancel in
homology if it has an odd length chain of differentials on either side; we say that x˝y
cancels on the right (resp. left) if there is an odd length chain of differentials on the
right (resp. left). Note that if there is an odd length chain of differentials on one side
of x˝ y, successively applying edge reduction to cancel the outermost differential
on that side eventually results in cancelling x˝ y without using the differentials on
the other side. If there is an even length chain, this chain can be removed using edge
reduction leaving no differentials on that side of x˝ y. If x˝ y does not cancel on
the right or the left, we say x˝y does not cancel in homology, since it, or potentially
a linear combination of it with other generators of the same .Z=2Z/–grading, survives
in homology.
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Proof of Proposition 5.1, “if” direction Suppose 1̀ and 2̀ areL–space aligned. Up to
changing parametrization, we can assume that the interval of strictL–space slopes for 2̀

contains .0; p=q/ for some 1<p=q�1 and does not contain 0 and the interval of strict
L–space slopes for 1̀ contains Œ�1; q=p�. By Lemmas 5.2 and 5.3, 1̀ can be written
with only e� and c�

k
segments and 2̀ consists of ak , bk , ck , dk , e and Nc1 segments. We

will fix the .Z=2Z/–grading on each loop so that every generator of `A1 has grading 0
and all �1–generators in 2̀ have grading 0 except those coming from Nc1 segments.

Consider a generator x˝y in `A1 � 2̀. Then x belongs to a segment s1 in `A1 and y
belongs to a segment s2 in 2̀. We will consider cases depending on the type of the
segments s1 and s2 and in each case show that either x˝y has grading 0 or it cancels
in homology. Therefore `A1 � 2̀ is an L–space complex.

First note that gr.x/ is always 0 by assumption. If s2 is an e, dk or bk segment, then y
also has grading 0 and the grading of x˝y is 0. If s1 is Ne� then x is in idempotent �1
and so y must also have idempotent �1. All �1–generators of 2̀ have grading 0 except
those in Nc1 segments, so x˝y has grading 0 if s1 is Ne� and s2 is not Nc1.

Suppose that s1 is c�
k

and s2 is a` with generators labelled by

s1 D � � � ı
x1 x2 xk xkC1

C C C C
�1 �3;�2 �3;�2 �3

s2 D � ı ı ı �
y0 y1 y2 y` y`C1

� C C C C
�3 �23 �23 �2

Every generator in each segment has grading 0 except for y0, so x˝y has grading 0
unless y D y0 and x D xi for i 2 f1; : : : ; kg. For each i , `A1 has the operation

m2Ck�i .xi ; �3; �23; : : : ; �23/D xkC1:

If k� i < `, it follows that in the tensor product there is a differential from xi ˝y0 to
xkC1˝yk�iC1. It is not difficult to check that xkC1˝yk�iC1 does not cancel from
the right; the arrow in 2̀ to the right of yk�iC1 is outgoing and s1 is followed by a
c� or Ne� segment, so xkC1 has only incoming A1 operations. Therefore, in this case
xi ˝y0 cancels in homology. If instead k� i � ` then `A1 has the operation

m2C`.xi ; �3; �23; : : : ; �23; �2/D xiC`

and there is a differential in the box tensor product from xi˝y0 to xiC`˝y`C1. Again
it is not difficult to see that xiC`˝y`C1 does not cancel from the right, since the arrow
in 2̀ to the right of y`C1 must be an outgoing �1, �12 or �123 arrow and xiC` has
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no outgoing A1 operations with first input �1, �12 or �123. Thus xi ˝y0 cancels in
homology.

Suppose that s1 is c�
k

, with generators labelled as above, and s2 is Nc1 with generators
labelled as follows (note that the generator y0 is not actually part of the segment s2):

s2 D � ı �
C � C

y0 y1 y2

�1 �3

The generator y2 has grading 0 and the generator y1 has grading 1, so x ˝ y only
has grading 1 if x D xkC1 and y D y1. In this setting, xkC1˝ y1 has an incoming
differential on the right which starts from xk˝y2. To ensure that xkC1˝y1 cancels
in homology we need to check that xk˝y2 does not cancel on the right. To the right
of y2 in 2̀ is an outgoing sequence of arrows that starts with some number of �12
arrows followed by a �123 arrow (here we use that a Nc1 segment in 2̀ is not followed
by another Nc1 segment with only e’s in between). If k > 1 then xk has no outgoing
A1 operations except m2.xk; �3/D xkC1. If kD 1, then xk has additional operations,
but, since s1 is preceded by some number of Ne� segments and then a c� segment, the
inputs for these operations can only be some number of �12’s followed by a �1. In
either case, it is clear that xk˝y2 does not cancel on the right.

Suppose that s1 is Ne� and s2 is Nc1. In this case, x is the only generator of Ne�, y is
the only generator of Nc1 with idempotent �1, and x ˝ y has grading 1. In 2̀, s2 is
preceded by some number i of e segments, which are preceded by a bk or dk segment.
Thus to the left of y in 2̀ there is an incoming sequence of arrows that ends with �2,
i �12’s and �1. In `A1 , s1 is followed by some number j of Ne� segments followed by
a c�
k

. If j > i then x has an incoming operation with inputs .�2; �12; : : : ; �12; �1/ with
i �12’s, and if j � i then x has an incoming operation with inputs .�12; : : : ; �12; �1/
with j �12’s. In either case, these operations give rise to a differential in the box tensor
product ending at x˝y. In both cases it is also easy to check that the initial generator
of this differential has no other differentials, and so x˝y cancels in homology.

The only case remaining is the case that s1 is c�
k

and s2 is c`. This case is depicted in
Figure 7 for kD3 and `D2. We label the generators of s1 sequentially as x1; : : : ; xkC1,
and we label the generators of s2 as y0; : : : ; y`. For the remainder of this proof, assume
that s1 is c�

k
, s2 is c`, x˝y has grading 1 and x˝y does not cancel in homology; we

will produce a contradiction, proving the proposition.

Since x˝y has grading 1, y is y0 and x is xi with i 2 f1; : : : ; kg. For each i > k� `,
xi˝y0 has an outgoing differential which ends at xkC1˝yk�iC1. If i >k�`C1, then
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� ı ı
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ı

C

C

C
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x2

x3
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�3 �23 �1
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�3;�2

�3;�2

�3

�

�

�

C C

Figure 7: A portion of the chain complex `A1 � 2̀ coming from a segment c�3
in `A1 (left edge) and a segment c2 in 2̀ (top edge). SignsC and � indicate
generators in the box tensor product with grading 0 and 1, respectively.

xkC1˝yk�iC1 does not cancel on the right, since the arrow to the right of yk�iC1 is an
outgoing �23 arrow but xkC1 has only incoming A1 operations. Thus, if i > k�`C1,
xi ˝y0 cancels on the right. By Lemmas 5.2 and 5.3, k � n and `� n� 1; it follows
that k� ` is at most 1 and xi ˝y0 cancels on the right for any i > 2. Thus x must be
either x1 or x2.

If k � ` then x2˝y0 cancels on the right. If k D n and `D n� 1, x2˝y0 potentially
cancels from the right. It has an outgoing differential on the right ending at xkC1˝y`,
so it cancels from the right if and only if xkC1˝y` does not cancel on the right. Now
xkC1˝y` has a differential on the right only if s1 D c�k is followed by a segment c�

k0
,

in which case the differential starts with the generator x01˝ y
0
0, where x01 is the first

generator of the c�
k0

segment following s1 and y00 is the first generator of the segment
following s2. If x01 ˝ y

0
0 cancels on the right then so does x2 ˝ y0, and x01 ˝ y

0
0

automatically cancels on the right if s2 is followed by a type a segment. Thus, if
xD x2 we must have that s1 is followed by c�

k0
, s2 is followed by c0

`
, and x01˝y

0
0 does

not cancel from the right.

If k < ` then x1˝y0 cancels on the right, and if k > ` then x1˝y0 does not cancel
on the right. If k D `D n or k D `D n� 1, then x1˝ y0 potentially cancels on the
right. By the same reasoning as above, it does not cancel on the right if and only if s1 is
followed by c�

k0
, s2 is followed by c0

`
, and x01˝y

0
0 does not cancel from the right. Now

x1˝y0 may also cancel from the left. It has an outgoing differential on the left ending
at x0˝ y0`0 , where x0 is the last generator in the segment immediately preceding s1
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and y0
`0

is the last generator in the segment preceding s2. If s2 is preceded by b`0 then
it is easy to see that x0˝y0`0 has no differentials on the left, so x1˝y0 cancels from
the left. If instead s2 is preceded by c`0 , x0˝ y0`0 cancels from the left unless s1 is
preceded by c�

k0
and k0 < `0 or k0 D `0 and x01˝y

0
0 cancels from the left.

Suppose that x˝y D x2˝y0 does not cancel in homology (in particular it does not
cancel from the right). Then we have shown that k D n, `D n�1, s1D c�k is followed
by c�

k0
, s2 D c` is followed by c`0 , and the generator x01˝y

0
0 does not cancel from the

right. Furthermore, this last fact implies that either k0D n and `0D n�1 or that k0D `0,
c�
k0

is followed by c�
k00

, c`0 is followed by c`00 , and x001 ˝y
00
0 does not cancel from the

right, where x001 and y000 are the appropriate generators of c�
k00

and c`0 . Repeating this
argument, we see that s1 D c�n is followed by a sequence of c�n and c�n�1 segments
ending with a c�n and s2 D cn�1 is followed by a sequence of cn and cn�1 segments
ending with cn�1 but with indices otherwise the same as the indices in the sequence of
c� segments following s1.

Suppose that x˝y D x1˝y0 does not cancel in homology. The fact that it does not
cancel from the right implies that k D `D n or k D `D n� 1, s1 D c�k is followed
by c�

k0
, s2 D c` is followed by c`0 , and the generator x01˝ y

0
0 does not cancel from

the right. As in the preceding paragraph, this implies that s1 D c�n is followed by a
sequence of c�n and c�n�1 segments ending with a c�n and s2 D cn�1 is followed by
a corresponding sequence of cn and cn�1 segments ending with cn�1. The fact that
x˝y D x1˝y0 does not cancel from the left implies that s1 D c�k is preceded by c�

k0
,

s2D c` is preceded by c`0 , and either k0D n and `0D n�1 or k0D `0 and the generator
x01 ˝ y

0
0 does not cancel from the left. Repeating the argument, we see that s1 is

preceded by a sequence of c�n and c�n�1 segments starting with c�n and s2 is preceded
by a sequence of cn and cn�1 segments with matching sequence of indices except that
the initial segment is cn�1.

Regardless of whether x D x1 or x D x2, we find that there is a sequence of indices
k1; k2; : : : ; kr with ki 2 fn; n� 1g such that `A1 contains c�nc

�
k1
c�
k2
: : : c�

kr
c�n and 2̀

contains cn�1ck1
ck2

: : : ckr
cn�1. It follows that 1̀ and 2̀ satisfy property �. By

Lemma 5.4, this implies that 1̀ and 2̀ are not L–space aligned, a contradiction.

As noted previously, the gluing statement in Proposition 5.1 needs to be modified
if either loop is solid torus-like. Note that for a solid torus-like loop, all slopes are
L–space slopes except the rational longitude. If 1̀ is solid torus-like with rational
longitude r=s and 2̀ is simple, then 1̀ and 2̀ are L–space aligned if and only if s=r
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is a strict L–space slope for 2̀. This is a sufficient, but not a necessary, condition for
`A1 � 2̀ to be an L–space complex.

Proposition 5.6 If 1̀ and 2̀ are simple loops and 1̀ is solid torus-like with rational
longitude r=s, then `A1 � 2̀ is an L–space chain complex if and only if s=r is an
L–space slope for 2̀.

Proof We may choose a framing so that 1̀ is a collection of e segments, that is, so
that the rational longitude is represented by 0. Correspondingly, the slope s=r for 2̀ is
represented by1. The result now follows from Corollary 3.22.

5.2 A gluing result for loop-type manifolds

Returning to loop-type manifolds, we are now in a position to collect the material
proved in this section and, in particular, apply Proposition 5.1 to establish a gluing
theorem.

Theorem 5.7 Let .M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/ be simple loop-type bordered man-
ifolds with torus boundary which are not solid torus-like , and let Y be the closed
manifold .M1; ˛1; ˇ1/[ .M2; ˛2; ˇ2/ (with the gluing map ˛1 7! ˇ2, ˇ1 7! ˛2, as in
Section 2.5). Then Y is an L–space if and only if every essential simple closed curve
on @M1 D @M2 � Y determines a strict L–space slope for either M1 or M2.

Remark 5.8 There is an alternative statement of the conclusion on Theorem 5.7 using
the notation laid out in this paper: the closed manifold M1[M2 is an L–space if and
only if, for each rational p=q, either p=q 2 Lı.M1; ˛1; ˇ1/ or q=p 2 Lı.M2; ˛2; ˇ2/.
Recall that, following the conventions in Section 2.5, p=q 2 Lı.M; ˛; ˇ/ if and only if
˙.p˛C qˇ/ 2 LıM .

Note that Theorem 5.7 implies Theorem 1.3.

Remark 5.9 If either bordered manifold in the statement of Theorem 5.7 is solid
torus-like, then Y is an L–space if and only if every essential simple closed curve
on @M1 D @M2 � Y determines an L–space slope for either M1 or M2. This is an
immediate consequence of Proposition 5.6, and amounts to replacing Lı.Mi ; ˛; ˇ/

by L.Mi ; ˛; ˇ/. Notice that Dehn surgery — by definition of an L–space slope — is a
special case of this version of the gluing result, since the solid torus is solid torus-like,
in the sense of Definition 3.23.
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Proof of Theorem 5.7 Let bCFD.M1;˛1;ˇ1/ be represented by simple loops `11 ; : : : ;`
n
1

and let bCFD.M2; ˛2; ˇ2/ be represented by simple loops `12 ; : : : ; `
m
2 . A given slope

is a (strict) L–space slope for .Mi ; ˛i ; ˇi / if and only if it is a (strict) L–space slope
(abstractly) for each loop `ki . Y is an L–space if and only if `k1 � `

j
2 is and L–space

complex (again, abstractly) for each 1� k � n and 1� j �m.

Suppose there is a slope p=q such that p=q…Lı.M1;˛1;ˇ1/ and q=p…Lı.M2;˛2;ˇ2/.
Then p=q is not a strictL–space slope for `k1 for some k and q=p is not a strictL–space
slope for `

j
2 for some j. We may assume that `k1 is not solid torus-like; if it is solid

torus-like, then p=q must be the rational longitude for .M1; ˛1; ˇ1/ and thus not a
strict L–space slope for any of the loops `11 ; : : : ; `

n
1 . Similarly, we may assume that

`
j
2 is solid torus-like. Since `k1 and `

j
2 are not L–space aligned, `k1 � `

j
2 is not an

L–space complex, and Y is not an L–space.

If every slope is a strict L–space slope for either M1 or M2, then every slope is a strict
L–space slope either for each `k1 or for each `

j
2. It follows that, for every pair .k; j /,

`k1 and `
j
2 are L–space aligned, and thus Y is an L–space.

5.3 L–space knot complements

In light of Theorem 5.7, it is natural to ask which 3–manifolds M with torus boundary
have simple loop-type bordered invariants. We first observe that complements of L–
space knots in S3, that is, those knots admitting an L–space surgery, have this property.

Proposition 5.10 If K is an L–space knot in S3 and M D S3 X �.K/, then for any
choice of parametrizing curves ˛ and ˇ, bCFD.M; ˛; ˇ/ can be represented by a single
simple loop.

Proof We need only show that, for some choice of parametrizing curves, bCFD.M; ˛; ˇ/
is a loop which consists of only unstable chains in either standard notation or dual
notation. Consider then bCFD.M;�; n�C�/, where � is the meridian of the knot K
and � is the Seifert longitude of K. Suppose that jnj is chosen sufficiently large that
the result of Dehn surgery S3n.K/DM.n�C�/ is an L–space.

The knot Floer homology CFK�.K/ has a staircase shape of alternating horizontal
and vertical arrows (see [25], for example). By the construction in [20, Section 11.5],
bCFD.M;�; n�C �/ consists of alternating horizontal and vertical chains, with the

ends connected by a single unstable chain. Thus bCFD.M;�; n�C �/ is a loop. In
standard loop notation, the horizontal chains are type a segments, the vertical chains
are type b segments, and the unstable chain is a type d segment if n > 0 and a type c
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segment if n < 0. More precisely,

bCFD.M;�; n�C�/D
�
bk1
ak2

bk3
ak4
� � � bk2r�1

ak2r
dj if n > 0;

ak1
bk2
ak3

bk4
� � � ak2r�1

bk2r
cj if n < 0:

In either case, the loop has no bar segments in standard notation, so when we switch to
dual notation it has no stable chains. Thus, bCFD.M;�; n�C�/ is a simple loop.

Note that the behaviour established in this application of Theorem 5.7 is expected in
general and, in particular, should not require the hypothesis that the knot complement
be a loop-type manifold; see [9, Conjecture 1; 5, Conjecture 4.3].

Conjecture 5.11 For knots K1 and K2 in S3, with Mi D S
3 X �.K/ for i D 1; 2,

the generalized splicing M1 [hM2 is an L–space if and only if either  2 LıM1
or

h./ 2 LıM2
for every slope  .

On the other hand, it is clear that the case where two L–space knot complements
are identified in the generalized splice is the interesting case, and therefore the loop
restriction in this setting is quite natural. In this case, we remark that the question is
now settled.

Corollary 5.12 Conjecture 5.11 holds when the Ki are L–space knots.

Proof This is immediate on combining Theorem 5.7 and Proposition 5.10.

Note that Corollary 5.12 implies Theorem 1.6.

Some authors define L–space knots to be the class of knots for which some positive
surgery yields an L–space. We will not follow this convention because, while this is a
natural definition for knots in S3 in that certain statements become simpler, our interest
is in the more general setting of manifolds with torus boundary admitting L–space
fillings, wherein the distinction seems to be less meaningful. In particular, the next
section is concerned with this more general setting.

6 Graph manifolds

Note that knots in the three-sphere admitting L–space surgeries contain torus knots —
those knots admitting a Seifert structure on their complement — as a strict subset. Our
goal now is to establish another class of loop-type manifolds: Seifert-fibred rational
homology solid tori. This should be viewed as the natural geometric enlargement of the
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class of torus knot exteriors. To do so, we study these as a subset of graph manifolds,
and establish sufficient conditions for a rational homology solid torus admitting a graph
manifold structure to be of loop-type.

6.1 Preliminaries on graph manifolds

We will represent a graph manifold rational homology sphere Y by a plumbing tree,
following the notation developed in [22]. A plumbing tree is an acyclic graph with
integer weights associated to each vertex. Such a graph specifies a graph manifold as
follows: To each vertex vi of weight ei and valence di we assign the Euler number ei
circle bundle over the sphere minus di disks, and for each edge connecting vertices vi
and vj glue the corresponding bundles along a torus boundary component by a gluing
map that takes the fibre of one bundle to a curve in the base surface of the other bundle,
and vice versa.

To allow for graph manifolds with boundary, we associate an additional integer bi � 0
to each vertex. To construct the corresponding manifold, we associate to each vertex a
bundle over S2 minus .di C bi /; di boundary components of this bundle will glue to
bundles corresponding to other vertices, but the remaining bi boundary components
remain unglued. The resulting graph manifold has

P
i bi toroidal boundary components.

In diagrams of plumbing trees, we will indicate the presence of boundary tori by drawing
bi half-edges (dotted lines which do not connect to another vertex) at each vertex vi .

Given a plumbing tree � with a single boundary half-edge, let M� denote the cor-
responding graph manifold. The torus @M� has a natural choice of parametrizing
curves: one corresponds to a fibre in the S1 bundle containing the boundary, and one
corresponds to a curve in the base surface of that bundle (note that these are precisely
the curves used above to specify the gluing maps in the construction based on a given
graph). Call these two slopes ˛ and ˇ, respectively. These slopes do not have a preferred
orientation, but reversing the orientation on the bundle associated to every vertex in the
construction of M� gives a diffeomorphism between .M� ; ˛; ˇ/ and .M� ;�˛;�ˇ/

as bordered manifolds.

Thus .M� ; ˛; ˇ/ is a canonical bordered manifold associated to � . Since we will be
interested in the bordered invariants of such graph manifolds, for ease of notation we
will refer to bCFD.M� ; ˛; ˇ/ simply as bCFD.�/.

We will make use of three important operations on single boundary plumbing trees.
These are summarized in Figure 8, and described as follows:
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� � �

n T ˙

� � �

n˙ 1

� � �

n E

� � �

n

0

� � �

n1

, � � �

n2 M

� � � � � �

n1Cn2

Figure 8: Three operations on graphs for constructing and graph manifold
with torus boundary.

Twist The operation T ˙ adds˙1 to the weight of the vertex containing the boundary
edge.

Extend The operation E inserts a new 0–framed vertex between the boundary vertex
and the boundary edge.

Merge The operation M takes two single boundary plumbing trees and identifies
their boundary vertices, removing one of the two boundary edges to produce
a new single boundary plumbing tree; the weight of the new boundary vertex
is the sum of the weights of the original boundary vertices.

With these operations we can, in particular, construct any single-boundary plumbing
tree.

6.2 Operations on bordered manifolds

The graph operations described above may be thought of as operations on the corre-
sponding (bordered) graph manifolds. In particular, we will abuse notation and write
MT .�/D T .M�/. T .M�/ is obtained fromM� by attaching the mapping cylinder of a
positive (standard) Dehn twist to the boundary of M� . More precisely, by considering
the gluing conventions prescribed by the plumbing tree, the effect on the bordered
manifold is T .M� ; ˛; ˇ/D .M� ; ˛; ˇC˛/.

Similarly, E.M�/DME.�/ is obtained fromM� by attaching the bimodule correspond-
ing to the two-boundary plumbing tree

�
0
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The graph manifold assigned to this plumbing tree is the trivial S1–bundle over the
annulus, or T 2� Œ0; 1�. Recall that the bordered structure on each boundary component
of this manifold is given by the convention that ˛ is an S1 fibre and ˇ lies in the
base surface. One checks that the resulting bordered manifold can be realised as the
mapping cylinder for the diffeomorphism represented by the matrix

�
0 1
�1 0

�
2 SL2.Z/:

The effect on the level of bordered manifolds is E.M� ; ˛; ˇ/D .M� ;�ˇ; ˛/.

Finally, M.M�1
;M�2

/ is the result of attaching the bundle S1 �P , where P is a pair
of pants. The bordered structure on S1 �P (which we suppress from the notation)
is determined as follows: the two “input” boundary components which glue to M�1

and M�2
are parametrized by pairs .˛; ˇ/ with ˇ a fibre and ˛ a curve in the base

surface P , while the third “output” boundary component is parametrized by .˛; ˇ/ with
˛ a fibre and ˇ a curve in P . As usual, the bordered structure on S1 �P determines
the gluing as well as the bordered structure on the resulting three-manifold.

To see that M.M�1
;M�2

/ is indeed the manifold corresponding to M.�1; �2/, note
that S1 �P with the specified bordered structure is the manifold associated with the
three-boundary plumbing tree �M,

0 0

0

�M D

On the other hand, attaching �1 and �2 to the two lower boundary edges of �M produces
a single-boundary plumbing tree that is equivalent to M.�1; �2/ (by equivalent, we
mean that the corresponding manifolds are diffeomorphic; to see this equivalence, use
rule R3 of [22] to contract the 0–framed valence two vertices).

From this discussion, it should be clear that the operations T , E and M may be extended
to natural operations on arbitrary bordered manifolds. We are interested in the effect of
these operations on bordered invariants. Following the conventions laid out, we have
that T ˙.M; ˛; ˇ/D .M; ˛; ˇ˙˛/, so that, at the level of bordered invariants,

(1) bCFD.T ˙.M; ˛; ˇ//Š yT˙1st � bCFD.M; ˛; ˇ/:

Similarly, the action of
�
0 1
�1 0

�
2 SL2.Z/, giving E.M; ˛; ˇ/D .M;�ˇ; ˛/, is realized

by

(2) bCFD.E.M; ˛; ˇ//Š yTst � yTdu � yTst � bCFD.M; ˛; ˇ/

on type D structures.
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2CFDDD.YP/

�

1CFA
A.

I/

yT st

yT du

yT st

�

1CFAA.I/

�

Figure 9: A schematic description of the trimodule 2CFDAA.S1�P/ extracted
from the calculation and conventions in [8].

The most involved is the merge operation: for a pair of bordered manifolds .Mi ; ˛i ; ˇi /

for i D 1; 2, this produces a bordered manifold

M1;2 DM..M1; ˛1ˇ1/; .M2; ˛2; ˇ2//

using S1 �P . As a bordered 3–manifold with three boundary components, S1 �P
gives rise to a trimodule in the bordered theory (the object of study in work of the first
author [8]). More precisely, we consider the type DAA trimodule 2CFDAA.S1 �P/.

We will extract 2CFDAA.S1 �P/ from the trimodule 3CFDDD.YP/ computed in [8].
Note that S1 �P and YP agree as manifolds, but have different bordered structure.
The trimodule 3CFDDD.YP/ has five generators, v, w, x, y and z, and the differential
is given by (cf [8, Figure 10])

@.v/D �3˝ xC �1�3�123˝yC �123�123�123˝yC �3˝ z;

@.w/D �3�12˝ xC �1�3�1˝yC �123�123�1˝y;

@.x/D �2�12˝ vC �2˝wC �1�3˝y;

@.y/D �2�2˝ xC �2�2˝ z;

@.z/D �3�1˝yC �2˝w:
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m2.x; �3/D z

m2.y; �2/D x

m2.y; �23/D z

m2.w; �3/D z

m2.y; �2/D w

m2.y; �23/D z

m2.w; �23/D �23˝w

m2.x; �3/D �23˝y

m2.x; �2/D �2˝ v

m2.x; �23/D �23˝ x

m2.v; �3/D �3˝w

m2.y; �23/D �23˝y

m2.v; �3/D �3˝ x

m2.w; �2/D �2˝ v

m2.z; �2/D �23˝ x

m2.z; �23/D �23˝ z

m3.v; �1; �1/D �1˝y

m3.v; �1; �12/D �1˝ x

m3.v; �1; �123/D �1˝ z

m3.v; �1; �123/D �123˝y

m3.v; �12; �1/D �1˝w

m3.v; �12; �12/D �12˝ v

m3.v; �12; �123/D �123˝w

m3.v; �123; �1/D �1˝ z

m3.v; �123; �12/D �123˝ x

m3.v; �123; �123/D �123˝ z

m5.v; �3; �2; �1; �1/D �1˝ z

m5.v; �3; �2; �1; �1/D �123˝y

m5.v; �3; �2; �12; �1/D �123˝w

m5.v; �3; �2; �123; �1/D �123˝ z

m7.v; �3; �2; �3; �2; �1; �1/D �123˝ z

Table 1: Operations for 2CFDAA.�M/.

Since the trimodule has three commuting actions by three copies of the torus algebra
(one corresponding to each boundary component), we use �, � and � to distinguish
between algebra elements in each copy of A. The �–boundary of YP is parametrized by
a pair .˛; ˇ/ such that ˇ is a fibre of P �S1 and ˛ lies in the base P , while the �– and
�–boundaries have the opposite parametrization. Thus the bordered manifold S1 �P
can be obtained from YP by switching the role of ˛ and ˇ on (say) the �–boundary.

It is now clear how to compute 2CFDAA.S1 �P/ from 3CFDDD.YP/: we change the
parametrization of the �–boundary by applying the bimodule yTst � yTdu � yTst and then
change the �– and �–boundaries to type A by tensoring with 1CFAA.I/ (see Figure 9 for
a schematic description). These are both straightforward computations; the resulting
trimodule has five generators and the operations are listed in Table 1.

With this trimodule in hand, we have

bCFD.M1;2/Š 2CFDAA.S1 �P/� ..M1; ˛1; ˇ1/; .M2; ˛2; ˇ2//;
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where 2CFDAA.S1 �P/� . � ; � /, by convention, tensors against the �–boundary in the
first factor and against the �–boundary in the second factor; compare Figure 9.

6.3 The effect of twist, extend and merge on loops

Restricting to the case of loop-type bordered invariants, the effect of the operations
T ˙1, E and M can be given simpler descriptions. Recall that ED T ıH�1 ı T, and that
E can be easily calculated using Lemma 3.10.

Proposition 6.1 If bCFD.M; ˛; ˇ/ is of loop-type , and represented by the collection
f ìg

n
iD1, then bCFD.T ˙.M;˛;ˇ// is represented by fT˙1. ì/g

n
iD1 and bCFD.E.M;˛;ˇ//

is represented by fE. ì /g
n
iD1.

Proof The proof is immediate from Proposition 3.11 with (1) and Proposition 3.12
with (2).

It follows easily that the operations T ˙ and E preserve the simple loop-type property.

Lemma 6.2 Given a (simple) loop-type bordered three-manifold , the operations T ˙
and E produce (simple) loop-type manifolds.

Proof It is an immediate consequence of Proposition 6.1 that if bCFD.M; ˛; ˇ/ is
represented by a collection of loops then the same is true for bCFD.T .M; ˛; ˇ// and
bCFD.E.M; ˛; ˇ//, since the operations T˙1 and E take loops to loops. Moreover, if

the loops defining bCFD.M; ˛; ˇ/ are simple then the loops resulting from T ˙ and E
are simple, since changing framing by Dehn twists does not, by definition, change
whether or not a loop is simple. It only remains to check that bCFD.T .M; ˛; ˇ// and
bCFD.E.M; ˛; ˇ// have exactly one loop for each spinc–structure on the corresponding

manifolds. This is again clear since it is true for bCFD.M; ˛; ˇ/ and the operations
T ˙1 and E amount to changing the parametrization on the boundary of M ; changing
the parametrization does not change the number of spinc–structures, and the loop
operations T˙1 and E do not change the number of loops.

For the merge operation, we will restrict further to the case that the loop(s) representing
bCFD.M1; ˛1; ˇ1/ can all be written in standard notation with no stable chains. In this

case, bCFD.M1;2/ is also a collection of loops.

Remark 6.3 By contrast, if bCFD.M1; ˛1; ˇ1/ and bCFD.M2; ˛2; ˇ2/ both contain
stable chains in standard notation, bCFD.M1;2/ is not obviously of loop-type. However,
in many cases it can be realized as a collection of loops after a homotopy equivalence.
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It is enough to describe M on individual loops; we use M to denote the corresponding
operation on abstract loops. If bCFD.M1; ˛1; ˇ1/ is represented by a collection of loops
f ìg

n
iD1 and bCFD.M2; ˛2; ˇ2/ is represented by a collection of loops f j̀ g

m
jD1, then

bCFD.M1;2/ is given by
S
1�i�n;1�j�m M. ì ; j̀ /. Determining M. ì ; j̀ / is a direct

calculation using the trimodule and a key application of loop calculus.

Proposition 6.4 Let 1̀ be a loop which can be written in standard notation with only
type dk unstable chains and let 2̀ be any loop. Then M. 1̀; 2̀/ is a collection of loops.
If 2̀ cannot be written in standard notation , then M. 1̀; 2̀/ is one copy of 2̀ for each
segment in 1̀. Otherwise , M. 1̀; 2̀/ is determined as follows: The �0–vertices of the
A–decorated graph correspond to pairs .u; v/, where u is an �0–vertex of 1̀ and v is
an �0–vertex of 2̀, and for each dk segment from u1 to u2 in 1̀ we have:

(1) For each al segment from v1 to v2 in 2̀, there is an al segment from .u2; v1/ to
.u2; v2/.

(2) For each bl segment from v1 to v2 in 2̀, there is n bl segment from .u1; v1/ to
.u1; v2/.

(3) For each cl segment from v1 to v2 in 2̀, there is a cl�k segment from .u2; v1/

to .u1; v2/.

(4) For each dl segment from v1 to v2 in 2̀, there is a dkCl segment from .u1; v1/

to .u2; v2/.

Proof The type D module represented by M. 1̀; 2̀/ is obtained by tensoring the
typeD modules corresponding to 1̀ and 2̀ with the �– and �–boundaries, respectively,
of the trimodule 2CFDAA.YP/. We will denote this tensor by 2CFDAA.YP/� . 1̀; 2̀/.
This trimodule has five generators; the idempotents associated with each generator on
the �–, �– and �–boundaries are as follows:

generator v w x y z

idempotents .�
�
0; �

�
0 ; �

�
0/ .�

�
0; �

�
1 ; �

�
1/ .�

�
1; �

�
0 ; �

�
1/ .�

�
1; �

�
1 ; �

�
1/ .�

�
1; �

�
1 ; �

�
1/

Note that the �0–generators in 2CFDAA.S1 � P/� . 1̀; 2̀/ arise precisely from the
generator v tensored with �0–generators in 1̀ and 2̀.

First suppose that 2̀ is written in standard notation. Note also that, since 1̀ is assumed
to have no ak segments, we may ignore the m5 and m7 operations in Table 1. As
a result, there are no operations in M. 1̀; 2̀/ that arise from more than one segment
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in either loop. This means that to compute M. 1̀; 2̀/ we can feed 1̀ and 2̀ into the
trimodule one segment at a time. For each combination of segment in 1̀ and segment
in 2̀, the resulting portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ is homotopy equivalent to
the segment determined by (1)–(4) in the statement of the proposition. The proof is
essentially contained in Figures 10, 11 and 12; we will describe one case in detail and
leave the details of the other cases to the reader, with the figures as a guide.

Consider a segment dk in 1̀ and a segment al in 2̀ with k; l > 0 (see Figure 10, top
left, for the case of k D l D 2). Let the generators in these two segments be labelled as

dkD
�123
��! ı

x1

�23
�!� � �

�23
�! ı

xk

�2
�! �

u2

! alD �
v1

�3
�! ı

y1

�23
�!� � �

�23
�! ı

yl

�2
�! �

v2

!

Note that the arrow adjacent to u2 on the right is determined by the segment following dk
in 1̀, but, following Section 3.1 it must be an outgoing �1, �12 or �123 arrow. Similarly,
the arrows to the left of v1 and the right of v2 are outgoing �1, �12 or �123 arrows.
The portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming from dk and al has generators

x˝ xi ˝ vj for 1� i � k; j 2 f1; 2g;

y˝ xi ˝yj for 1� i � k; 1� j � l;

z˝ xi ˝yj for 1� i � k; 1� j � l;

v˝u2˝ vj for j 2 f1; 2g;

w˝u2˝yj for 1� j � l:

For each i in f1; : : : ; kg, the trimodule operationsm2.x; �3/,m2.y; �23/ andm2.y; �2/
give rise to the unlabelled edges

x˝ xi ˝ v1! z˝ xi ˝y1 for 1� i � k;

y˝ xi ˝yj ! z˝ xi ˝yjC1 for 1� i � k; 1� j � l � 1;

y˝ xi ˝yl ! x˝ xi ˝ v2 for 1� i � k:

We can cancel these unlabelled edges using the edge reduction algorithm described in
Section 2.3. We cancel them in order of increasing i and, for fixed i , in the order above.
It is not difficult to check that the only additional incoming arrows at z˝ xi ˝yj and
z˝ xi ˝ v2 are given by

z˝ xi ˝yj
�23
�! z˝ xi ˝yjC1 for 1� i � k; 1� j � l � 1;

z˝ xi ˝yl
�23
�! x˝ xi ˝ v2 for 1� i � k;

y˝ xi�1˝yj ! z˝ xi ˝yj for 1� i � k; 1� j � l � 1;

x˝ xi�1˝yl ! x˝ xi ˝ v2 for 1� i � k:
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Figure 10: Each box contains the portion of 2CFDAA.S1�P/�. 1̀; 2̀/ coming
from a d2, d0 or d�2 segment in 1̀ (top, middle and bottom, respectively) and
an a2 or b2 segment in 2̀ (left and right, respectively). Thick unlabelled arrows
can be removed with the edge reduction algorithm; gray indicates generators
and arrows that are eliminated when the differentials are cancelled.

It follows that each time we use the edge reduction algorithm on one of the unlabelled
arrows mentioned above, there are no other incoming arrows at the terminal vertex
that have not already been cancelled, and so cancelling the arrow produces no new
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arrows. After cancelling all of the unlabelled arrows, the only remaining generators
are v˝u2˝ v1, v˝u2˝ v2, and v˝u2˝yj for 1� j � l . Arrows between these
generators arise from trimodule operations involving only the generators v and w and
with no � inputs; there are only three:

m2.v; �3/D �3˝w; m2.w; �23/D �23˝w and m2.w; �2/D �2˝ v:

It follows that the only arrows in the portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming
from the segments dk and al are

v˝u2˝ v1
�3
�! w˝u2˝y1;

w˝u2˝yj
�23
�! w˝u2˝yjC1 for 1� j � l � 1;

w˝u2˝yl
�2
�! v˝u2˝ v2:

That is, the portion of 2CFDAA.S1�P/�. 1̀; 2̀/ coming from the segments dk and al
is an al segment from v˝u2˝ v1 to v˝u2˝ v2.

Finally, note that there can be no arrows connecting w˝u2˝yj to any other portions
of 2CFDAA.S1 �P/� . 1̀; 2̀/ arising from different segments, since the only arrow
connecting u2 to a generator in a different segment of 1̀ is an outgoing �1, �12 or
�123 arrow, and the only trimodule operations involving these inputs also have �1, �12
or �123 as an input. The outgoing arrows from u2 and from v1 and v2 do give rise to
additional arrows out of v˝u2˝ v1 and v˝u2˝ v2; these show up in the portion of
2CFDAA.YP/� . 1̀; 2̀/ coming from the segment following dk in 1̀ and the segment
following or preceding al in 2̀.

For other pairs of segments in 1̀ and 2̀, the proof is similar. Figure 10 depicts the
relevant portion of 2CFDAA.S1 �P/� . 1̀; 2̀/ for d2, d0 or d�2 paired with a2 or b2.
Any dk paired with al or bl behaves like one of these cases, depending on the sign
of k. Note that, if l < 0, we simply take the mirror image of these diagrams, since
a�l D Nal . This proves .1/ and .2/.

.3/ can be deduced from .4/ by observing that a cl segment from v1 to v2 is the same
as a d�l segment from v2 to v1. To prove .4/, consider pairing dk in 1̀ with dl in 2̀.
The behaviour depends on the sign of k and l ; Figures 11 and 12 depict the cases with
k in f2; 0;�2g and l in f3; 0;�3g. If k D 0, it is clear that the result is a segment of
type dl , and similarly, if l D 0, the result is a segment of type dk . The case of k and l
positive behaves like the top left box in Figure 11, and the case of k and l negative
behaves like the bottom box in Figure 12. In each case all generators cancel except for
those along the top and right edges, resulting in a segment of type dkCl .
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Figure 11: The portions of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming from a d2, d0
or d�2 segment in 1̀ and a d3 or d0 segment in 2̀. Thick unlabelled arrows
can be removed with the edge reduction algorithm; gray indicates generators
and arrows that are eliminated when the differentials are cancelled.

The case that k and l have opposite signs is slightly more complicated. Assume first
that k is negative and l is positive. If k � �l , the resulting complex looks like the
bottom left box in Figure 11. Note that starting from the top left corner, there is a path
to the bottom right corner consisting of a �1 arrow, an odd length “zigzag” sequence
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Figure 12: Each box contains the portion of 2CFDAA.S1�P/�. 1̀; 2̀/ coming
from a d2, d0 or d�2 segment in 1̀ and a d�3 segment in 2̀. Thick unlabelled
arrows can be removed with the edge reduction algorithm; gray indicates
generators and arrows that are eliminated when the differentials are cancelled.

of unlabelled arrows, kC l �23 arrows and a �2 arrow. Everything in the diagram not
involved in this sequence can be cancelled without adding new arrows. Cancelling the
remaining unlabelled arrows turns the �1 arrow and the first �23 arrow into a �123 arrow
if kC l > 0, or it turns the �1 arrow and �2 arrow into a �12 arrow if kC l D 0. The
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Figure 13: The portions of 2CFDAA.S1 �P/� . 1̀; 2̀/ coming from a d2, d0
or d�2 segment in 1̀ when 2̀ is a collection of e� segments. The left and right
edges of each box should be identified. Thick unlabelled arrows can be removed
with the edge reduction algorithm; gray indicates generators and arrows that
are eliminated when the differentials are cancelled. The result is a copy of 2̀

for each �0–generator in 1̀.

result is a segment of type dkCl . The case that k < �l is slightly different. It is not
pictured separately, but the main difference is that the zigzag sequence of unlabelled
arrows starting at the end of the �1 arrow has even length and ends on the right side of
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the diagram instead of the bottom. It is then followed by �k � l � 1 backwards �23
arrows and a backwards �3 arrow. Everything not involved in this sequence cancels,
and removing the unlabelled arrows produces a segment of type dkCl from the top left
corner to the bottom right corner.

To complete the proof of (4), consider the case that k is positive and l is negative. If
l <�k, the resulting complex looks like the top box in Figure 12. The complex reduces
to a �1 arrow followed by a chain of unlabelled arrows, �k�l�1 backwards �23 arrows
and a backwards �3 arrow. This further reduces to a chain of type dkCl . If instead
l ��k, the chain of unlabelled arrows following the �1 arrow ends on the right side of
the diagram instead of the bottom. Again, the complex reduces to a chain of type dkCl .

Finally, we must consider the case the case that 2̀ cannot be written in standard notation.
In this case, 2̀ is a collection of e� segments. Note that in this case we can ignore all
operations in Table 1 that involve v, x, or � inputs other than �23 (this only leaves seven
operations). It is easy to see that the complex 2CFDAA.S1 �P/� . 1̀; 2̀/ collapses to
a copy of 2̀ for each dk segment in 1̀ (see Figure 13).

In practice, it is helpful to compute M. 1̀; 2̀/ by creating an i by j grid, where i is the
length of 1̀ and j is the length of 2̀. The .i; j / entry of this grid is a square containing
a single segment connecting two of its corners, as dictated by Proposition 6.4 (see,
for example, Figure 14). The collection of loops M. 1̀; 2̀/ can now be read off the
grid by identifying the top and bottom edges and the left and right edges. Note that
the number of disjoint loops in M. 1̀; 2̀/ is given by gcd.i; j 0/, where i is the number
of dk segments in 1̀ (by assumption, this is the length of 1̀) and j 0 is the number
of dk segments in 2̀ minus the number of ck segments in 2̀ (if j 0 D 0, we use the
convention that gcd.i; 0/D i ; our assumptions rule out the case that i D 0). Note that i
and j 0 can be given in terms of the .Z=2Z/–grading on 1̀ and 2̀: up to sign, we have
i D ��. 1̀/ and j 0 D ��. 2̀/. To see this, observe that, for an appropriate choice of
relative grading, each dk segment contributes 1 to ��, each ck segment contributes �1
and each ak or bk segment contributes 0.

Lemma 6.5 Consider a pair of loop-type , bordered , rational homology solid tori
.M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/. If the loops representing bCFD.M1; ˛1; ˇ1/ contain
only standard unstable chains then

M1;2 DM..M1; ˛1; ˇ1/; .M2; ˛2; ˇ2//

is of loop-type. If , in addition , the loops representing bCFD.M2; ˛2; ˇ2/ contain only
standard unstable chains , then M1;2 is of simple loop-type.
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Figure 14: Computing M. 1̀; 2̀/ for two loops 1̀ D .dk1
dk2

dk3
dk4

/ and

2̀ D .dl1dl2bl3cl4al5dl6/.

Proof If bCFD.M1; ˛1; ˇ1/ and bCFD.M2; ˛2; ˇ2/ are collections of loops and the
loops in bCFD.M1; ˛1; ˇ1/ contain only standard unstable chains, then, by Proposition
6.4, bCFD.M1;2/ is a collection of loops. Moreover, if the loops in bCFD.M2; ˛2; ˇ2/

also contain only standard unstable chains, Proposition 6.4 implies that the resulting
loops in bCFD.M1;2/ contain only standard unstable chains, and in particular are simple.
It only remains to check that bCFD.M1;2/ has exactly one loop for each spinc–structure
on M1;2.

Recall that the operation M corresponds to gluing two bordered manifolds to two of
the three boundary components of P �S1, where P is S2 with three disks removed.
Thus @.S1 �P/ has three connected components; denote the i th connected component
by @.S1 �P/i . For each i 2 f1; 2; 3g let fi denote a curve in @.S1 �P/i which is a
fibre fptg �S1 and let bi denote the relevant component of @P � fptg. According to
the conventions introduced in Section 6.1, applying the operation M to two bordered
manifolds .M1; ˛1; ˇ1/ and .M2; ˛2; ˇ2/ corresponds to gluing M1 and M2 to P�S1
by identifying ˛1 with f1, ˇ1 with b1, ˛2 with f2 and ˇ2 with b2. The result is the
manifold M3 DM1;2.

We consider homology groups with coefficients in Z. The spinc–structures on a
3–manifold M with boundary are indexed by H 2.M/ Š H1.M; @M/. Using the
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appropriate Mayer–Vietoris sequences, we have that H1.M3; @M3/ is homomorphic to
the quotient

H1.S
1
�P; @.S1�P/3/˚H1.M1/˚H1.M2/=f˛1�f1; ˇ1� b1; ˛2�f2; ˇ2� b2g:

Note that H1.S1 �P; @.S1 �P/3/ is generated by fi and bi for i 2 f1; 2; 3g with the
relations f1 D f2 D f3 and b1C b2 D b3 D 0. For i D 1; 2, since Mi is a rational
solid torus there is a unique (possibly disconnected) curve in @Mi that bounds a surface
in Mi , to which we associate pi=qi (where pi and qi may not be relatively prime), so
that pi˛i C qiˇi generates the kernel of the inclusion of H1.@Mi / into H1.Mi /. The
long exact sequence for relative homology gives

H1.Mi /ŠH1.Mi ; @Mi /˚H1.@Mi /=hpi˛i C qiˇi i:

In H1.M3; @M3/, the relation pi˛i C qiˇi D 0 translates to pifi C qibi D qibi D 0.
It follows that

H1.M3; @M3/ŠH1.M1; @M1/˚H1.M2; @M2/˚hb1i=.q1b1 D q2b1 D 0/:

Thus, for each spinc–structure on M1 and each spinc–structure on M2, there are
gcd.q1; q2/ spinc–structures on M3. Note that q2 may be 0; in this case we use the
convention that gcd.q; 0/D q. The assumption that bCFD.M1; ˛1; ˇ1/ contains only
standard unstable chains implies that q1 ¤ 0.

Recall that the rational longitude of a rational homology solid torus can be read off of
the bordered invariants. More precisely, by Proposition 2.10, the curves in @Mi which
are nullhomologous in Mi are integer multiples of

�ı.bCFD.Mi ; ˛i ; ˇi I si //˛i C��.bCFD.Mi ; ˛i ; ˇi I si //ˇi ;

where si is any spinc–structure on Mi . Thus qi D ��.bCFD.Mi ; ˛i ; ˇi I si //. By
assumption, bCFD.Mi ; ˛i ; ˇi I si / is a loop for each si . It was observed above that,
given two loops 1̀ and 2̀ with 1̀ consisting only of standard unstable chains, M. 1̀; 2̀/

is a collection of gcd.��. 1̀/; ��. 2̀// loops. Thus, for each loop in bCFD.M1; ˛1; ˇ1/

and for each loop in bCFD.M2; ˛2; ˇ2/, there are gcd.q1; q2/ loops in bCFD.M1;2/. It
follows that bCFD.M1;2/ has exactly one loop for each spinc–structure on M3 (where
M1;2 Š .M3; ˛3; ˇ3/ as bordered manifolds).

6.4 Bordered invariants of graph manifolds

With this description of T , E and M on bordered invariants in hand, we may now
return our focus to graph manifolds. The first author has described (and implemented)
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an algorithm for computing the (bordered) Heegaard Floer invariants of graph mani-
folds [8]; we will now outline a version of this algorithm for graph manifolds with a
single boundary component and adapt it to the loops setup. Recall that, given a graph �
with associated bordered manifold .M� ; ˛; ˇ/ (as described in Section 6.1), we write
bCFD.�/ for bCFD.M� ; ˛; ˇ/.

In order to compute bCFD.�/, we inductively build up the plumbing tree � using the
three plumbing tree operations T ˙1, E and M depicted in Figure 8, starting from the
plumbing tree

��0 D
0

Note that M�0
is a solid torus, with bordered structure .M�0

; ˛; ˇ/, where ˛ is a fibre
of the S1–bundle over D2 (ie a longitude of the solid torus) and ˇ is a curve in the
base surface (ie a meridian of the solid torus, identified by @D2�fptg). Thus bCFD.�0/
is represented by the loop

�̀
� .d0/. As we apply the operations T , E and M, we

keep track of the bordered invariants of the relevant manifolds. Let �1 and �2 be
single-boundary plumbing trees. As shown in the previous section,

bCFD.T .�1//Š yTst � bCFD.�1/;

bCFD.E.�1//Š yTst � yTdu � yTst � bCFD.�1/;

bCFD.M.�1; �2//Š 2CFDAA.�M/� .bCFD.�1/; bCFD.�2//:

Specializing Lemmas 6.2 and 6.5 to graph manifold leads to the following observation:

Lemma 6.6 Let � be a single boundary plumbing tree constructed as described above
from copies of �0 using the operations T ˙, E , and M. bCFD.�/ has simple loop-type
as long as , each time the operation M is applied , the two input plumbing trees have
simple loop-type bordered invariants with only unstable chains in standard notation.

Proof This follows from Lemma 6.2, which says that T ˙ and E take simple loop-type
manifolds to simple loop-type manifolds, and Lemma 6.5, which says that M takes
two simple loop-type manifolds to a simple loop-type manifold provided the simple
loops corresponding to both inputs consist only of unstable chains.

With this observation, we can describe a large family of simple loop-type manifolds.

For each vertex v of a plumbing tree � , let w.v/ denote the Euler weight associated
to v and let nC.v/ and n�.v/ denote the number of neighbouring vertices v0 for
which w.v0/ � 0 and w.v0/ � 0, respectively. We will say that v is a bad vertex if
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�n�.v/ < w.v/ < nC.v/, and otherwise v is a good vertex (this should be viewed as a
generalization of the notion of bad vertices defined for negative definite plumbing trees
in [23]).

Proposition 6.7 Let � be a plumbing tree with a single boundary edge at the vertex v0,
and suppose that every vertex other than v0 is good. Then bCFD.�/ is a collection of
loops consisting only of standard unstable chains; up to reversal we can assume these
unstable chains are of type dk . Moreover , if w.v0/ is (strictly) greater than nC.v0/,
then these unstable chains all have subscripts (strictly) greater than 0. If w.v0/ is
(strictly) less than n�.v0/ then the unstable chains all have subscript (strictly) less
than 0.

Proof We proceed by induction on the number of vertices of � . The base case, where
� has only one vertex v0, is trivial; bCFD.�/ in this case is given by the loop .dw.v0//.

For the inductive step, first suppose the boundary vertex v0 of � has valence two
(including the boundary edge). That is, � has the form

�� D � 0
w0

wherew0Dw.v0/. Let v1 be the boundary vertex of � 0, and letw1 be the corresponding
weight. Let n˙.v1/ denote the counts of neighbouring vertices defined above for v1 as
a vertex in � , and let n0

˙
.v1/ denote these counts for v1 as a vertex in � 0 (ie ignoring

the vertex v0). Since v1 is a good vertex, we have one of the following two cases:

(1) w1 � �n�.v1/� �n
0
�.v1/� 0.

(2) w1 � nC.v1/� n
0
C
.v1/� 0.

Note that � D T w0.E.� 0//, and so bCFD.�/ is given by Tw0
�

E.bCFD.� 0//
�
. Further-

more, we assume by induction that the proposition holds for � 0.

In case (1), we have that bCFD.� 0/ consists of dk segments with nonpositive sub-
scripts. Thus in dual notation E.bCFD.� 0// is a loop consisting of d�

k
segments

with nonnegative subscripts, and in standard notation E.bCFD.� 0// consists of dk
segments with nonnegative subscripts. Moreover, if w0 � 0, then w1 is strictly less
than �n0�.v1/D�n�.v1/C 1, so the dk segments in bCFD.�/ have strictly negative
subscripts, the d�

k
segments in E.bCFD.� 0// have strictly positive subscripts, and in

standard notation E.bCFD.� 0// consists only of d0 and d1 segments. It follows that
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bCFD.�/ is a collection of loops consisting of dk segments with subscripts satisfying
k < 0 if w0 <�n�.v0/D�1, k � 0 if w0D n�.v0/D�1, k � 0 if w0D nC.v0/� 0
and k > 0 if w0 > nC.v0/� 0. Thus the proposition holds for � .

In case (2), bCFD.� 0/ consists of dk segments with nonnegative subscripts. Thus
E.bCFD.� 0// consists of d�

k
with nonpositive subscripts in dual notation and of dk with

nonpositive subscripts in standard notation. Moreover, ifw0� 0 then nC.v1/>n0C.v1/,
so the dk segments in bCFD.� 0/ have strictly positive subscripts, the d�

k
segments in

E.bCFD.� 0// have strictly negative subscripts and the dk segments in E.bCFD.� 0//
have subscripts in f0;�1g. It follows that bCFD.�/ is a collection of loops consisting
of dk segments with subscripts satisfying k < 0 if w0 < �n�.v0/ � 0, k � 0 if
w0 D n�.v0/ � 0, k � 0 if w0 D nC.v0/D 1 and k > 0 if w0 > nC.v0/D 1. Thus
the proposition holds for � .

Now suppose that v0 has valence higher than two. This means that � can be obtained as
M.�1; �2/, where �1 and �2 have fewer vertices than � . By induction, the proposition
holds for �1 and �2, and so bCFD.�1/ and bCFD.�2/ may be represented by a collection
of loops consisting only of standard type dk chains. By Proposition 6.4, merging two
(collections of) loops with only dk chains produces a new collection of loops with only
dk chains. Moreover, each chain in the bCFD.�/ is of the form dkCl for some chains dk
in bCFD.�1/ and dl in bCFD.�2/, so the maximum (resp. minimum) subscript in bCFD.�/
is the sum of the maximum (resp. minimum) subscripts in bCFD.�1/ and bCFD.�2/.

For i 2 f0; 1g, let vi be the boundary vertex of �i and let wi D w.vi / be the cor-
responding weight. We can choose any values for wi provided w1 Cw2 D w0. If
w0�nC.v0/DnC.v1/CnC.v2/, then we can choose w1DnC.v1/ and w2�nC.v2/.
By the inductive assumption, bCFD.�1/ and bCFD.�2/ both have only nonnegative
subscripts, so the same is true of bCFD.�2/. Furthermore, if w0 > 0 then w2 > nC.v2/,
so bCFD.�2/ has only strictly positive subscripts and the same follows for bCFD.�/.
Similarly, if w0 is (strictly) less than n�.v0/ D n�.v1/C n�.v2/, we can choose
w1 D n�.v1/ and w2 (strictly) less than n�.v2/ and conclude that bCFD.�/ only has
subscripts (strictly) less than 0.

Note that if � is a plumbing tree with at most one bad vertex, we can compute cHF.M�/

by taking the dual filling of bCFD.� 0/, where � 0 is obtained from � by adding a
boundary edge to the bad vertex, or to any vertex if there are no bad vertices. bCFD.� 0/,
which has simple loop-type by Proposition 6.7, can be computed using the operations
T˙1; E and M. In particular, we have the following generalization of [23, Lemma 2.6]:
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Corollary 6.8 If � is a closed plumbing tree with no bad vertices , then the manifold
M� is an L–space.

Proof Add a boundary edge to any vertex of � to produce a single boundary plumbing
tree � 0. By Proposition 6.7, bCFD.� 0/ is a collection of loops consisting only of type dk
segments with either all subscripts greater than or equal to zero or all subscripts less
than or equal to zero. By Observation 3.9, it follows that in dual notation the loops
representing bCFD.� 0/ have no stable chains. M� is obtained from M� 0 by dual filling,
and dual filling is an L–space if there are no stable chains in dual notation.

Recall that in the context of Theorem 1.3 it is important to distinguish solid torus-like
manifolds from other manifolds of simple loop-type. Toward that end, we check the
following:

Proposition 6.9 Let � be a plumbing tree with a single boundary edge at the vertex v0,
and suppose that every vertex other than v0 is good. Then M� is solid torus-like if and
only if it is a solid torus.

Proof We proceed by induction on the size of � as in the proof of Proposition 6.7.
Applying Dehn twists does not change whether or not a manifold is a solid torus, nor
does it change whether or not the corresponding bordered invariants are solid torus-like.
It follows that the proposition holds for T ˙.�/ and E.�/ if it holds for � . We only
need to check that it holds for M.�1; �2/, assuming by induction that it holds for �1
and �2. By Proposition 6.7, we may assume that the loops representing bCFD.�1/ and
bCFD.�2/ consist only of dk chains.

Suppose bCFD.M.�1; �2// is solid torus-like. Recall that, by the appropriate gener-
alization of Lemma 3.15, the loops representing bCFD.M.�1; �2// consist only of
dk segments such that the maximum and minimum subscripts appearing differ by at
most one. Note also that the difference between maximum and minimum subscripts is
additive under M. It follows that either �1 or �2 must have bordered invariant consisting
only of dn segments for a fixed n 2 Z; say �2 has this property. M�2

is solid torus-
like; by induction, M�2

is a solid torus, and bCFD.�2/ is given by the single loop .dn/.
Proposition 6.4 then implies that bCFD.M.�1; �2// is obtained from bCFD.�1/ by adding
n to the subscript of each segment. In other words, bCFD.M.�1; �2//Š bCFD.T n.�1//.

This equivalence does not only hold on the level of bordered invariants. Indeed,
M.�1; �2/ is equivalent to T n.�1/ up to the graph moves in [22]; in particular, the
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corresponding graph manifolds are diffeomorphic. To see this, note that �2 must be
equivalent to the plumbing tree

�
n

since bCFD of this tree is .dn/, and it is clear from Figure 8 that merging with this tree
has the same effect as applying T n. Since bCFD.T n.�1// is solid torus-like, bCFD.�1/
is solid torus-like and, by the inductive hypothesis, M�1

is a solid torus. It follows that
MM.�1;�2/ DMT n.�1/ D T n.M�1

/ is a solid torus.

6.5 An explicit example: the Poincaré homology sphere

As an example of the algorithm and loop operations described above, we will computecHF of the Poincaré homology sphere using the plumbing tree

�

�

�

�

� D �1

�3

�2

�5

We start with the loop .d0/ representing bCFD.�0/. For this example, by abuse of
notation, we will equate the bordered invariants with their loop representatives; thus,
bCFD.�0/D .d0/. We use the twist and extend operations to compute invariants for the

plumbing trees

��1 D
�2

�
0

��2 D
�3

�
0

��3 D
�5

�
0

Note that �1 D E.T �2.�0//, so

bCFD.�1/D E
�

T�2..d0//
�
D E..d�2//D .d

�
2 /� .d1d0/:

Similarly, we find that

bCFD.�2/D E
�

T�3..d0//
�
D E..d�3//D .d

�
3 /� .d1d0d0/;

bCFD.�3/D E
�

T�5..d0//
�
D E..d�5//D .d

�
5 /� .d1d0d0d0d0/:

Now let

�

� �

�4 D 0

�2 �3

�

� � �

�5 D 0

�2 �3 �5

�

� � �

�6 D �1

�2 �3 �5
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We have that �4 D M.�1; �2/, �5 D M.�4; �3/ and �6 D T �1.�5/. Reading di-
agonally from the first grid below, we see that bCFD.�4/ D M..d1d0/; .d1d0d0// D

.d2d0d1d1d1d0/:

d1 d0 d0

d1 d2 d1 d1
d0 d1 d0 d0

d1 d0 d0 d0 d0

d2 d3 d2 d2 d2 d2
d0 d1 d0 d0 d0 d0
d1 d2 d1 d1 d1 d1
d1 d2 d1 d1 d1 d1
d1 d2 d1 d1 d1 d1
d0 d1 d0 d0 d0 d0

The second grid tells us that

bCFD.�5/D

.d3d0d1d1d1d1d2d0d1d1d2d0d2d0d1d2d1d0d2d0d2d1d1d0d2d1d1d1d1d0/:

Applying the operation T�1, we find that

bCFD.�6/D
�
d2d�1d0d0d0d0d1d�1d0d0d1d�1d1d�1d0d1d0d�1d1d�1d1d0d0

d�1d1d0d0d0d0d�1
�
:

Finally, to compute cCF of the closed manifold M� we must fill in the boundary of
.M�6

; ˛; ˇ/ with a D2 � S1 such that the meridian @D2 � fptg glues to ˇ and the
longitude fptg �S1 glues to ˛. In other words, M� is the 0–filling of .M�6

; ˛; ˇ/, socCF.M�/ is obtained from bCFD.�6/ by tensoring with `Aı . To do this, we first write
bCFD.�6/ in dual notation (using the procedure described in Section 3.2),

bCFD.�6/D .d�0 b
�
1a
�
5b
�
1a
�
3b
�
1a
�
1b
�
1a
�
2b
�
2a
�
1b
�
1a
�
1b
�
3a
�
1b
�
5a
�
1/:

Tensoring with ı̀ produces one generator for each segment in dual notation, but also
one differential for each type a� segment. Since bCFD.�6/ has 17 dual segments and 8
a� segments, all but one generator in `Aı � bCFD.�6/Š cCF.M�/ cancels in homology.
Thus cHF.M�/ has dimension 1, as is now well known (this was first calculated in [24,
Section 3.2]).

Remark 6.10 While computer computation is not our primary motivation, it is worth
pointing out that using loop calculus as described in this section instead of taking box
tensor products of modules, bimodules and trimodules greatly improves the efficiency
of the algorithm in [8] for rational homology sphere graph manifolds. This is illustrated
by the fact that the example above can easily be done by hand, while computing the
relevant tensor products would be tedious without a computer. The largest computation
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in [8] (for which the dimension of cHF is 213 312) took roughly 12 hours; when the
computer implementation is adapted to use loop calculus, the same computation runs in
30 seconds.3 The caveat is that the purely loop calculus algorithm may not work for all
rational homology sphere graph manifolds, since there may be graph manifold rational
homology solid tori that are not of loop-type, but in practice it works for most examples.

7 L–spaces and non-left-orderability

We conclude by proving the remaining results quoted in the introduction: Theorem 1.4,
Theorem 1.5 and, finally, Theorem 1.1.

To begin, we observe that Seifert-fibred rational homology tori have simple loop-type
bordered invariants. Any Seifert-fibred space over S2 can be given a star-shaped
plumbing tree in which all vertices of valence one or two have weight at most �2; in
particular, there are no bad vertices except for the central vertex. Adding a boundary
edge to the central vertex corresponds to removing a neighbourhood of a regular fibre,
creating a Seifert-fibred space over D2. By Proposition 6.7, such a plumbing tree has
simple loop-type bCFD. Moreover, by Proposition 6.9, such a plumbing tree is nonsolid
torus-like unless the corresponding manifold is a solid torus.

The only other option to consider is a Seifert-fibred space over the Möbius band, since
a Seifert-fibred space over any other base orbifold has b1 > 0. Such a manifold can
be obtained from a Seifert-fibred space over D2 by removing a neighbourhood of a
regular fibre and gluing in the Euler number 0 bundle over the Möbius band, fibre to
fibre and base to base. On the plumbing tree, this corresponds to adding

�

�

�

0
2

�2

to the central vertex, or equivalently to merging with the plumbing tree

� �

�

�

�N D
0 0

2

�2

Proposition 7.1 bCFD for the plumbing tree �N above consists of two loops , one
.a1b1/� .d

�
1 d
�
�1/ and the other .e�e�/.

3An implementation is available from the authors upon request.
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Proof Using the loop operations described in the preceding section, this is a simple
computation. Note that�N DE

�
M
�
E.T 2.�0//; E.T �2.�0//

��
. Thus bCFD.�N / is given

by
E
�

M
�

E
�

T2..d0//
�
; E
�

T�2..d0//
���
D E

�
M
�

E..d2//; E..d�2//
��

D E
�

M..d�1d0/; .d1d0//
�

D E..d0d0/q .d1d�1//

D .d�0 d
�
0 /q .d

�
1 d
�
�1/:

Remark 7.2 This result was first established by a direct calculation by Boyer, Gordon
and Watson [3]; this calculation is greatly simplified by appealing to loop calculus.

We now complete the proof that Seifert-fibred rational homology tori have simple
loop-type.

Proof of Theorem 1.4 As observed above, the case of Seifert-fibred manifolds overD2

is a special case of Proposition 6.7. For a Seifert-fibred manifold over the Möbius
band, a plumbing tree � is given by M.� 0; �N /, where � 0 is a star shaped plumbing
tree for a Seifert-fibred manifold over D2. By Proposition 6.7, the loops in bCFD.� 0/
contain only unstable chains in standard notation. By Propositions 6.4 and 7.1, we
find that bCFD.�/ is a collection of disjoint copies of bCFD.�N /, and in particular is
a collection of simple loops. Moreover, by Lemma 6.5 there is one loop for each
spinc–structure, and so bCFD.�/ is of simple loop-type. Finally, with the foregoing in
place (in particular Proposition 6.9) one checks that the only solid torus-like manifold
in this class is the solid torus itself.

We are now in a position to assemble the pieces and give the proof of Theorem 1.1. A
key observation is the following consequence of our gluing theorem, which provides
some alternative characterizations of the set of strict L–space slopes of a given simple
loop-type manifold:

Theorem 7.3 Let M be a simple loop-type manifold that is not solid torus-like. The
following are equivalent :

(i)  is a strict L–space slope for M, that is ,  2 LıM .

(ii) M[hM
0 is anL–space , where h./D� andM 0 is a nonsolid torus-like , simple ,

loop-type manifold with rational longitude � for which LM 0 includes every slope
other than �.

(iii) M [hN is an L–space , where h./D � and N is the twisted I–bundle over the
Klein bottle with rational longitude �.
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Proof Given  2 LıM and a simple, loop-type manifold M 0 for which LM 0 includes
every slope other than �, Theorem 5.7 ensures that M [hM 0 is an L–space. Indeed,
for any  0 ¤  we have that �¤ h. 0/ 2 LıM 0 . This proves that (i) implies (ii).

To see that (ii) implies (iii), is suffices to observe that N./ is an L–space for all 
other than the rational longitude; this is indeed the case, as observed, for example, in
[3, Proposition 5] (alternatively, this fact is an exercise in loop calculus).

Finally, suppose thatM[hN is an L–space and consider the slope  in @M determined
by h�1.�/. Since N.�/ is not an L–space, by Theorem 5.7 it must be that  2 LıM , as
required, so that (iii) implies (i).

Boyer and Clay consider a collection of Seifert-fibred rational homology solid tori
fNtg for integers t > 1. In this collection, N2 D N, the twisted I–bundle over the
Klein bottle. More generally, the Nt are examples of Heegaard Floer homology solid
tori (see [12, Section 1.5] for a expanded discussion on this class of manifolds). These
manifolds are easily described by the plumbing tree

� �

�

�

0 0
t

�t

Translated into loop notation, the invariant bCFD.Nt ; '; �/ is simple, described by

.d�0 /
t
q

� t�1a
iD1

.d�i d
�
i�t /

�
:

This calculation is similar to that of Proposition 7.1; these are members of a much
larger class of manifolds that are interesting in their own right. Note, in particular,
that Nt ./ is an L–space for all  other than the rational longitude; see Section 4 but
compare also [3]. Therefore, the Nt satisfy the conditions of (ii) in Theorem 7.3 and
we have the following:

Corollary 7.4 Let M be a simple loop-type manifold that is not solid torus-like. The
following are equivalent :

(i)  is a strict L–space slope for M, that is ,  2 LıM .

(ii) M[hNt is anL–space , where h./D� is the rational longitude , for any integer
t > 1.

(iii) M [hN2 is an L–space , where h./D � is the rational longitude.
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Note that Theorem 1.5 follows from the equivalence between (i) and (iii) in Corollary 7.4.
This answers [2, Question 1.8] and considerably simplifies [2, Theorem 1.6] when
restricting to Seifert-fibred rational homology solid tori. Indeed, we have shown:

Theorem 7.5 Suppose M ©D2�S1 is a Seifert-fibred rational homology solid torus.
The following are equivalent :

(i)  2 .LıM /c .
(ii)  is detected by a left-order (in the sense of Boyer and Clay [2]).

(iii)  is detected by a taut foliation (in the sense of Boyer and Clay [2]).

Proof This follows immediately from [2, Theorem 1.6] combined with Corollary 7.4.

Proof of Theorem 1.1 The equivalence between (ii) and (iii) is due to Boyer and
Clay [2]. To see that (i) is equivalent to either of these we first note that, if M is
one of the two Seifert-fibred pieces in Y, then, according to Theorem 4.1, the set of
all slopes yQ is divided into (the restriction to yQ of) two disconnected intervals LıM
and .LıM /c . The latter is precisely the set of NLS detected slopes in the sense of Boyer
and Clay [2, Definition 7.16], according to Theorem 7.5. (In particular, this observation
should be compared with [2, Theorem 8.1].) Thus the desired equivalence follows from
Theorem 1.3, on comparison with [2, Theorem 1.7] restricted to rational homology
solid tori.
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